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ABSTRACT

VAZ, Y. Coarse-refinement dilemma: on generalization bounds for data clustering. 2020.
146 p. Tese (Doutorado em Ciéncias — Ciéncias de Computagcdo e Matematica Computacional) —
Instituto de Ciéncias Matematicas e de Computagdo, Universidade de Sao Paulo, Sdo Carlos —
SP, 2020.

Machine Learning (ML) is typically organized into two main paradigms: (i) the Supervised
Machine Learning (SML) to identify patterns from pre-labeled data, in which a loss function is
used to adapt the corresponding model; and, (ii) the Unsupervised Machine Learning (UML)
to organize data points in the absence of labels, taking similarity relations among elements
into account. SML relies on well-consolidated theoretical frameworks, such as the Statistical
Learning Theory (SLT) and the Algorithmic Stability (AS) to define assumptions, properties
and convergence guarantees, allowing the comparison of different methods and, consequently,
their improvements. Complementary, UML has been supported by investigations on Data
Clustering (DC) and Hierarchical Clustering (HC) in order to define properties and improve
their characterizations. Specifically, Kleinberg stated richness, scale-invariance and partition
consistency as the necessary properties to define the DC problem, proving they do not hold
simultaneously, while Ackerman, Ben-David and Loker explored other properties such as
locality, and Carlsson and Mémoli developed stability and consistency frameworks for HC
from metric spaces. To bring an additional contribution to UML, we considered topological
spaces to design more general theoretical results given: (i) the invariance on topological spaces,
more precisely isomorphism of homology groups, guarantees the properties of scale-invariance,
partition consistency and locality; and (ii) this same invariance is inherited along less general
spaces, such as the metric, thus allowing a more abstract clustering representation. Taking
such invariance into account, we demonstrated that over-refined topologies endowed by DC
and HC models lead to non-consistency in terms of their associated homology groups and,
on the other hand, over-coarsed topologies devise consistent but unrepresentative homology
groups, a phenomenon that we referred to as the Coarse-Refinement Dilemma (CRD). We then
formulated DC and HC problems by employing Carlsson and Zomorodian’s bidimensional
persistent homology, with the first dimension corresponding to the HC levels and the second
to the inclusion of new data, thus allowing a probabilistic study based on martingales process
and subsequent formalization of generalization bounds. From such results, we contributed with
the related work by: (1) defining lower and upper bounds for Carlsson and Mémoli’s metric
consistency; (i1) showing that Kleinberg’s richness axiom must be relaxed otherwise over-refined
or over-coarsed clusterings could be obtained; and, finally, (iii) defining unexpected changes in
consistent topologies using what we named as Topological Concept Drift (TCD). An extensive
set of experiments was performed to analyze the CRD and the TCD, including a brief study of a
real-world scenario involving text documents. Results corroborated the usefulness in representing
DC and HC problems using topological spaces, in detecting topology changes and the existence
of CRD.

Keywords: Data clustering, Hierarchical clustering, Algorithmic stability, Persistent homology,

Topological Concept drift.






RESUMO

VAZ, Y. Dilema do sobre-refinamento: limites de generalizacao para agrupamento de da-
dos. 2020. 146 p. Tese (Doutorado em Ciéncias — Ciéncias de Computacao e Matematica
Computacional) — Instituto de Ciéncias Matematicas e de Computacao, Universidade de Sao
Paulo, Sao Carlos — SP, 2020.

O Aprendizado de Maquina € tipicamente organizado em dois principais paradigmas: (1) o
Aprendizado de Maquina Supervisionado (do inglés Supervised Machine Learning — SML) que
identifica padrdes de dados pré-rotulados, empregando uma funcao de perda para adaptar o
modelo estatistico correspondente; e, (ii) o Aprendizado de Maquina Nao-supervisionado (do
inglés Unsupervised Machine Learning — UML) que organiza dados ndo rotulados por meio de
relagdes de similaridade. O SML € suportado por arcabougos tedricos bem consolidados tais
como a Teoria do Aprendizado Estatistico e a Estabilidade Algoritmica as quais definem suas
principais suposi¢des, propriedades e garantias de convergéncia, permitindo a comparacao de
diferentes métodos de SML e, consequentemente, seus aperfeicoamentos. Complementarmente,
UML conta com investigacgdes sobre Agrupamento de Dados (do inglé€s Data Clustering — DC)
e Agrupamento Hierdrquico de Dados (do inglés Hierarchical Clustering — HC) definindo
propriedades e caracterizando DC e HC de maneira mais adequada. Especificamente, Klein-
berg estabeleceu riqueza, invariancia a escala e consisténcia de particdo como propriedades
necessdarias para a definicao do problema de DC, provando a impossibilidade de satisfazé-las
simultaneamente. Ackerman, Ben-David e Loker exploraram outras propriedades tais como a
localidade, e Carlsson e Mémoli relataram resultados sobre a estabilidade e consisténcia para
HC baseando-se na distancia entre espacos métricos. A fim de complementar tais trabalhos,
considera-se nesta tese de doutorado espagos topoldgicos para desenvolver um arcabougo tedrico
mais geral dado que: (i) a invariancia de espagos topoldgicos, isomorfismos de grupos homolgi-
cos mais precisamente, garante as propriedades de invariincia a escala, consisténcia de particao
e localidade; e (i1) essa mesma invariancia € herdada ao longo de espacos menos gerais, tal
como o métrico, permitindo uma representacdo mais abstrata de agrupamento. Nesse contexto,
foi demonstrado que topologias sobre-refinadas adotadas por modelos de DC e HC levam a
nao-consisténcia dos grupos homolégicos associados. Por outro lado, topologias muito grosseiras
levam a consisténcia, porém produzem grupos homoldgicos sem representatividade; nomeamos
tal dilema como Coarse-Refinement Dilemma (CRD). Os problemas de DC e HC foram entao
formulados empregando a homologia persistente bidimensional de Carlsson e Zomorodian,
sendo a primeira dimensdo correspondente as hierarquias do HC e a segunda as inclusdes de
novos dados, o que permitiu o estudo probabilistico por meio de processos de martingales e
subsequente formaliza¢do de um limite de generalizac@o para DC e HC. Por meio desse resultado,
complementamos os trabalhos relacionados: (i) definindo limitantes inferiores e superiores para a
consisténcia métrica de Carlsson e Mémoli; (i1) mostrando que o axioma da riqueza de Kleinberg
deve ser relaxado, caso contrario agrupamentos sobre-refinados e sobre-grosseiros serdo obtidos;
e, finalmente, (iii) definindo mudancas inesperadas em topologias consistentes como Mudancas
Topolégicas de Conceito (do inglés Topological Concept Drifts — TCD). Um extenso conjunto
de experimentos foi executado para analisar o CRD e o TCD, incluindo um breve estudo de um
cendrio real envolvendo documentos textuais. Resultados corroboraram com a empregabilidade
de espacos topoldgicos para a representacdo de problemas de DC e HC, sendo possivel detectar
mudancas topoldgicas e a existéncia do CRD.

Palavras-chave: Agrupamento de dados, Agrupamento hierdrquico de dados, Estabilidade algo-
ritmica, Homologia persistente, Mudancas Topolégicas de Conceito.
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CHAPTER

INTRODUCTION

Machine Learning (ML) is a branch of Artificial Intelligence (Al) whose main goal is
the identification of patterns in complex data which are infeasible or even impossible to be
directly assessed by human cognition. This area of computer science provides tools to address
different applications, such as disease diagnosis (SAJDA, 2006), genetic characterization (LIB-
BRECHT; NOBLE, 2015), epidemic forecasting (RAHMAWATI; HUANG, 2016), stock market
prediction (PATEL et al., 2015), and brain-computer interfaces (WANG et al., 2018). ML is
typically organized into two paradigms: (i) the Supervised Machine Learning (SML) that counts
on well-consolidated theoretical frameworks to ensure learning from pre-labeled instances, such
as the Statistical Learning Theory (SLT) (VAPNIK, 1995; LUXBURG; SCHOLKOPF, 2011;
MELLO; PONTI, 2018) and the Algorithmic Stability (AS) (BOUSQUET; ELISSEEFF, 2002;
MUKHERIEE et al., 2006); and (ii) the Unsupervised Machine Learning (UML) to analyze the
structure of data spaces by using similarity measures, whose first theoretical results have been
mostly formalized in the last two decades (KLEINBERG, 2002; BEN-DAVID; ACKERMAN,
2009; ACKERMAN; BEN-DAVID; LOKER, 2010; CARLSSON; MEMOLI, 2010).

1.1 Learning in the supervised scenario

The goal of SML is to predict labels associated with data instances from some unknown
joint probability distribution P(X,Y), such that x € X is an instance and y € Y is its corresponding
label. In this sense, SML algorithms attempt to model either classes (classification) or real values
(regression) from instances in P(X,Y). In order to devise such model, SML algorithms attempt
to minimize some loss function ¢(x,y) by adapting their parameters from a limited dataset

{(x1,51)5- -5 (X0, %) } € X x Y sampled from P(X,Y), which is referred to as training set.

The theoretical frameworks of SLT (VAPNIK, 1995; MELLO; PONTI, 2018) and
AS (BOUSQUET; ELISSEEFF, 2002; MUKHERIJEE et al., 2006) define conditions to en-

sure learning using the asymptotic approximation (uniform convergence) of the estimate
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Z{(xl,m).,-..,(xn,yn)} (x,¥) to E( yyep(x,y)[€(x,y)], as the sample size n — co. SLT and AS rely on a set
of assumptions among which it is worth to mention that the joint probability distribution P(X,Y)
must be constant (fixed or static such as referred in the literature (LUXBURG; SCHOLKOPF,
2011)), that every pair (x;,y;) must be statistically independent from (x;,y;), for all i # j, and
uniformly sampled from P(X,Y). In summary, they formalize the effort involved in starting with
some initial function until the convergence to the best as possible function, a.k.a. learning model,

contained in the algorithm bias.

Regarding the algorithm bias, Vapnik (1995) formalized the Bias-Variance problem
which determines the trade-off related to the effort of reducing the empirical risk Remp(f) =
%Z?:l 0(xi,y;), i.e., the estimated loss in some data sample, while maintaining similar classi-
fication results when predicting unseen instances that is referred to as expected risk R(f) =
Eey
to some space of admissible functions (MELLO; PONTI, 2018) from which classification mod-

yep(x,y)[£(x,y)], for some f contained in the algorithm bias F. In that sense, J corresponds

els are selected from, such that the space cardinality is proportional to the effort involved in

converging to the best as possible solution.

Observe that one supervised algorithm may endow as much complexity as possible so
that it would be capable of representing the universe set of functions, thus allowing to fit all
training instances. Besides correctly classifying all training data, the model found from such
large-scale space of admissible functions would miserably fail whenever used to classify unseen
instances given its low probability of representing the unknown joint probability distribution
P(X,Y) what is referred to as overfitting (LUXBURG; SCHOLKOPF, 2011). On the other hand,
whenever one over-reduces such space complexity, the supervised algorithm has only access to
a non-representative set of functions which is not even capable of modeling the training data.
In such scenario, besides the convergence of Remp(f) to R(f) is held, the best classification
function found does not minimize the empirical risk as necessary, thus leading to what is referred
to as underfitting (LUXBURG; SCHOLKOPF, 2011).

For example, suppose the regression problem, illustrated in Figure 1, whose data follows
a linear behavior with some additive white noise from which we can conclude that: (i) if
the algorithm bias considers a set of high-order polynomial functions, it will certainly fit all
training instances, but as it does not endow the necessary linear behavior, it will probably
devise substantial errors when forecasting unseen elements (overfitting); otherwise, (ii) if the
algorithm bias only takes the average function, then no adequate solution will be given neither
over the training set nor over unseen data, but the associated errors will approach one another

(underfitting).

This result is the main motivation for the formulation of the Empirical Risk Minimization
(ERM) principle (VAPNIK, 1995) responsible for stating the conditions for the minimization
of the divergence between the empirical and the expected risks, this is simply defined by the

generalization term G(f) = |Remp(f) — R(f)| which must converge to G — 0 as the sample size
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Figure 1 — Illustration of overfitting in: (a) points in the training set and the fitted curve (polynomial of
order 1,000); (b) unseen points and its corresponding errors with respect to the trained model.
Ilustration of underfitting in: (c) points in the training set and their average value; (d) unseen
points and the errors among them and such value (Adapted from Mello and Ponti (2018)).

n — oo,

Based on the ERM principle, Vapnik (1995) formalized additional concepts such as
the Shattering Coefficient (SC) and the Vapnik-Chervonenkis (VC) dimension to quantify the
complexity of some algorithm bias J. SC is related to the growth of the number of distinct
classifications as the sample size increases, and VC defines the greatest sample size for which all
possible classifications are obtained. In that sense, the consistency of the ERM principle is only
guaranteed if and only if SC is a polynomial function what consequently makes VC finite. This
implies that some classification function f € J is capable of producing all possible classification
results for some sample size in general position (HAR-PELED; JONES, 2018), however that
number of possibilities will be eventually bounded by the dimensionality composing the input
space X. If one adds up more hyperplanes to compose f, the complexity of SC also increases and
its VC dimension, therefore there is a clear relation between SC and the number of the partitions
formed to classify some dataset (HAR-PELED; JONES, 2018; MELLO; MANAPRAGADA;
BIFET, 2019).

Complementary, AS defines convergence guarantees between the estimated error of an
algorithm A, in form £ 4(x,y), and its expected error E,cx[¢4(x,y)], taking into account bounded
perturbations on input instances X = {xy,xp,...,x,} that follow some fixed data distribution
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X ~ P(X), as follows:

1. Removal of the i-th element: X/* = {x{,X2, ..., Xi_1,Xi41,- -, Xn};
2. Replacement of the i-th element: X! = {x,x,, ... Xy X} With x} ~ P(X0);

3. Insertion of m new elements: X" = {xi,x2,...,%,,x],%,...,x,} with
/ /
Xl X, ~ P(X).

Under assumptions that depend on the type of stability, an algorithm is stable with
respect to W if ((x,d(x)) < c given some perturbation ¢ : X — X’ and some divergence measure
U :X x X" — R,. In this sense, some of the AS formalizations can guarantee probabilistic
convergence between f : X — R and E,cx[f(x)] such as the Uniform Stability (BOUSQUET,;
ELISSEEFF, 2002), which holds whenever sup,_x | f(X) — f(X1)| < ¢; fori=0,1,...,n. From
such stability and assuming that the underlying probability distribution is independent and
identically sampled (i.i.d.), f converges to E[f] according to McDiarmid (1989)’s inequality:

PUS0) - Breal FO0)1 > ) < 2080 (03 ) (.
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thus guaranteeing generalization.

1.2 Learning in the unsupervised scenario

Algorithm Stability relies only on P(X) so that labels are not even necessary to proceed
with guarantees, allowing its use to support a theoretical framework for Data Clustering (DC)
and Hierarchical Clustering (HC) problems. However, the formalization of DC and HC problems
requires some measure capable of comparing clustering models as studied in (CARLSSON;
MEMOLI, 2010), which considers models as ultrametric spaces in order to allow the use of
the Gromov-Haursdorff distance (GROMOV; LAFONTAINE; PANSU, 1981) to evaluate their

respective divergences.

Although the efforts by Carlsson and Mémoli (2010) in proposing stability and consis-
tency results for HC problems and the definition of clustering properties by Kleinberg (2002),
Ackerman, Ben-David and Loker (2010), there is no unified formalization connecting those
scientific outcomes in order to provide a single and complete clustering framework from initial
conditions to generalization bounds. This gap is the main motivation for this PhD thesis which
adopts a topological perspective on DC once properties by Kleinberg (2002), Ackerman, Ben-
David and Loker (2010) naturally rise from homology isomorphism which is guaranteed by the

stability and consistency results proved along this manuscript.

Specifically, the DC properties (KLEINBERG, 2002; ACKERMAN; BEN-DAVID;
LOKER, 2010) considered along this PhD thesis are: (i) scale-invariance — partitions should be
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maintained after scaling the distance matrix (such as if data are zoomed in or out); (ii) partitions
consistency — partitions should be maintained after reducing intracluster and/or increasing
intercluster distances; (iii) locality — subpartitions must be preserved whenever clustering is
performed over the corresponding subset of data samples; and, finally, (iv) richness — the distance

function must allow the production of any desired partition.

In this sense, Kleinberg (2002) proves, for a finite and fixed dataset and disregarding the
ambient space, that scale-invariance, partitions consistency, and richness are not simultaneously
satisfied. However, we here question the need for the property of richness given it allows
the obtained partitions to be non-consistent and non-stable. Instead, we consider the need
for relaxing such property and only assume that topologies should maintain scale-invariance,
partitions consistency and locality (ACKERMAN; BEN-DAVID; LOKER, 2010). For example,
in order to prove their consistency theorem for single-linkage algorithm, Carlsson and Mémoli
(2010) avoid over-refined partitions considering only measurable metric spaces coarser than a

specific measurable set.

Complementary, Carlsson and Mémoli (2010) formulate HC using dendrogram structures
and show they are analogous to ultrametric spaces. From that, they define properties to charac-
terize HC for linkage-class algorithms, which they claim to be closely related to Kleinberg’s,
proving that the single linkage criterion is the only one satisfying them. One of such properties
(to mention, the third of Theorem 18, pg. 1451 (CARLSSON; MEMOLLI, 2010)) states that
dendrograms produced from Hierarchical Clustering must disregard subdendrograms correspond-
ing to singleton elements. Our theoretical framework strengthens such property as it proves
that over-refined partitions (singleton and quasi-singleton partitions) are prone to topological
variances whenever unseen data are included. From the corresponding topological features, we
also prove that it is possible to bound the consistency result proposed by Carlsson and Mémoli
(2010), thus generalizing the DC and HC problems from a topological perspective.

1.3 Our approach

Topological spaces are mathematical structures described with respect to contiguity
among elements, i.e., in terms of their neighborhoods. Therefore, we consider that, in order
to perform some clustering, an algorithm must adopt open sets to define similarities among
elements so the clustering procedure identifies contiguous groups. The collection of open sets
(typically open balls (MUNKRES, 2000)) endowed in clustering models forms a topological
space from points sampled from some unknown but fixed probability distribution P(Z) of an
unknown (also fixed) measurable topological space (Z,1z). As P(Z) and (Z, Tz) are unknown,
we can only compare topological spaces produced from X ~ P(Z) with another X’ ~ P(Z) given

some perturbation ¢ : X — X', as previously discussed in this section on Algorithmic Stability.

The most important relation considered between such spaces is the homeomorphism
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which is a continuity bijection (MUNKRES, 2000) responsible for transforming some topological
space without “cutting” or “gluing” its elements, thus being, at a first glance, an adequate
candidate to compare clustering models. However, such relation requires the explicit definition
of a map from one topological space to another and, as P(Z) is unknown, such amap ¢ : X — X’

cannot be explicitly defined.

Homology is capable of algebraically and numerically characterizing topological spaces
though, and even if not precisely in the sense that invariance in homology does not imply
homeomorphism, it is still an adequate candidate for clustering comparison (HATCHER, 2000;
CARLSSON, 2009). Homology is referred to as the association of algebraic structures to other
mathematical objects (such as topological spaces) and, in this context, homology groups are
abelian groups that identify features of such spaces. These groups are associated with the
dimension of such features, depicting, for example, the connected components at the 0-th
dimension, holes at the 1-th dimension and voids at greater dimensions (HATCHER, 2000).

For instance, a tridimensional spherical surface S has homology groups Hy(S?) = Z',
H;(S%) = 0 and H,(S?) = 7', as it only presents one connected component, no holes and
one void, respectively. The ranks associated with a p-th group (defined by its superscript) are
named as p-th Betti numbers (HATCHER, 2000), which we prove in this PhD thesis to be a
measure over the o-algebra formed by the combination of all possible singular homology groups,
and then renamed it as p-th Betti measure. Therefore, p-th Betti measures can be adopted to
compare underlying structures, i.e., the endowed open sets of clustering models, allowing the
assessment of features beyond connected components in data clustering. Two issues rise in terms
of homology though: (i) the representation of clustering hierarchies, and (ii) the definition of

data perturbations.

Persistent homology was then adopted in order to solve those issues as it allows the
homology over filtrations corresponding to a sequence of inclusions of topological spaces. In
other words, persistent homology depicts the persistence of homology groups along some ordered
variable, such as time or radius. Take the torus data illustrated in Figure 2 as an example, where
points are connected to each other whenever they are enclosed by the same open ball in order to
reconstruct some topological space. In the context of persistent homology, note that: (i) partitions
of the torus will last until they are merged, defining their persistence, and (ii) its hole will be

represented with some radius r > 0 until being vanished when ' > r (for some great value of r).

Hence, to employ such technique we assume that the insertion of new data in DC and
HC models produces filtrations along which the persistence of homology groups can be studied.
An HC model is then represented as a bifiltration (CARLSSON; ZOMORODIAN, 2009), with
one dimension corresponding to hierarchies and another to data insertions, such as illustrated
in Figure 3, from which some bidimensional persistent homology can be devised in order to
evaluate changes in p-th Betti measures. Although there are two studies proving stability for

persistent homology, none of them considers variations over topological spaces as data are
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radius = 0.30 radius = 0.47

radius = 0.63

Figure 2 — Illustration of the simplexes built on top of a data set acquired uniformly from a toroidal
topology and along the filtration associated with open balls of radius 0,0.13,0.30,0.47,0.63
and 0.8 (Adapted from Khasawneh and Munch (2016)).

inserted (COHEN-STEINER; EDELSBRUNNER; HARER, 2007; CHAZAL et al., 2009).

By defining the HC bifiltration, we employ Azuma (1967)’s inequality to prove that
over-refined topological spaces produce divergent p-th Betti measures whenever data is subject
to perturbations relative to data insertions. Therefore, considering some clustering model, if its
corresponding Betti measures present bounded changes following a martingale sequence (VILLE,

1939), then the clustering algorithm is capable of generalizing from data.
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Figure 3 — Simplexes created in a bifiltration in which the associated radius increases along the horizontal
frames and new data is collected along the vertical one (Adapted from Carlsson and Zomorodian
(2009)).

1.4 Qur results

The Coarse-Refinement Dilemma (CRD) is, then, the trade-off given as follows: whenever
topological spaces are over-refined, corresponding p-th Betti measures are not consistent, thus the
clustering algorithm is unable to generalize from data; on the other hand, if they are over-coarsed,
then p-th Betti measures will be always the same within all dimensions, thus leading to a trivial
scenario that fails to represent data structures. Then, it is possible to choose the appropriate set of
clusters by assessing their stability/consistency and their representability. Moreover, we prove for
the 0-th homology group that if some topological space is stable in terms of Betti measures, all

spaces enclosing it will be also stable, something invalid for homology groups at greater degrees.

Considering the CRD, we define Topological Concept Drifts (TCD) as changes in
topological features which are not associated with the inherent problem of over-refinement, i.e.,
they are the direct result of relevant modifications in topologies. We then performed experiments
demonstrating the Coarse-Refinement Dilemma on multiple datasets and also studied the effects
of the Topological Concept Drifts. Results allowed us to confirm the existence of CRD and
identify drifts in the considered topological spaces. Although this PhD thesis models HC
regarding only its hierarchy, Coarse-Refinement Dilemma can be extended to study density-based
clustering algorithms (ESTER et al., 1996), as density variations also devise filtrations, and to its
hierarchical model proposed in (CAMPELLO; MOULAVI; SANDER, 2013). In fact, Carlsson

and Zomorodian (2009) work allows a multiparameter study for clustering as long as these
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parameters are ordinal and correspondent with topological inclusions, i.e., given a parameter r,

if r; < r;, then two topological spaces (X, 7;) and (X, 7;) must respect (X, 7;) C (X, 7).

1.5 Contributions

With the goal of design a novel theoretical framework defining learning and generaliza-
tion bounds for DC and HC in terms of topological variances, this PhD thesis resulted in the

following contributions:

e A topological definition for both DC and HC problems;

e The characterization of the CRD;

The definition and demonstration of generalization bounds for DC and HC;

The presentation of upper and lower bounds for Carlsson and Mémoli (2010) consistency

result for single-linkage algorithm, based on topological features;

The definition of Topological Concept Drifts.

1.6 Claims

Also, based on the results of this thesis we claim that:

Kleinberg (2002)’s richness axioms must be relaxed or disregarded when adopting a

consistency/stability study of DC and HC;

e Over-refined clustering leads to non-consistency/non-stability and over-coarse ones lead

to unrepresentability of the data;

e Homology groups invariance along data sampling are enough to guarantee scale-invariance,

partitions consistency and locality;

e Topological variations which are not associated with the intrinsic instability of over-refined
clustering comprise concept drifts occurred by changes in the underlying topological space

from which data are acquired.

1.7 Thesis organization

This PhD thesis is organized as follows: Chapter 2 introduces the theoretical foundations
adopted in this PhD thesis; Chapter 3 discusses the developments on theoretical frameworks for
Data Clustering and Hierarchical Clustering; Chapter 4 defines and demonstrates the Coarse-

Refinement Dilemma, formalizing generalization bounds for DC and HC algorithms; Chapter 5
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details the experimental results performed to show CRD and TCD; Chapter 6 draws concluding
remarks and future directions; references are listed in Bibliography; and Appendices include
(i) the notations of this thesis in Appendix A, (ii) the dictionary of terms in Appendix B, (iii)
the proofs of proposed theorems in Appendix C, (iv) the datasets images in Appendix D, (v) the
barcode plots in Appendix E, (vi) charts with the measurements of TCD in Appendix F, and,

finally, (vii) word clusters related with the experiment of document semantic changes G.
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CHAPTER

THEORETICAL FOUNDATION

2.1 |Initial considerations

In the data clustering context, metric spaces and topological spaces can adequately repre-
sent data similarities, defining partitions (clusters) in the absence of data labels. As topological
spaces can be induced by metric ones, a topology-based framework for data clustering can count
on more general space features which are present in spaces of lower hierarchy (e.g., vector,
Hilbert and metric ones). In fact, the Coarse-Refinement Dilemma (CRD) claims that if the
topological representation of a clustering model is overly refined, then there is no guarantee
that the topological features will be stable or consistent. Therefore, given a clustering model
built from a space of lower hierarchy, if its induced topology is overly refined, such stability and

consistency are not guaranteed either.

2.2 Spaces

A space is a mathematical structure formed by a set of elements whose relations should
respect a set of properties defining its type. In other words, such structures allow to study how
the elements in their sets are related with one another taking their properties into account. For
instance, the Euclidean space formed by an n-tuple (x;,x»,...,x,) of real numbers, corresponding
to the vector space R”, called points. Euclidean spaces have an affine structure such that, given a
point p and a vector ¥, they allow translations A X A — A : (a,V) — a+V of their points which,
since the nature of the field R”, are invariant in terms of the permutations of operands (i.e., are
commutative) and operations (i.e., they are associative), still allowing the identity and the inverse
element. Therefore, as illustrated in Figure 4, it is possible to factorize a translation a + v onto
a+ vy +vVy+ -+ v, which is invariant given the permutation of its operands and operations

and it is also possible to define a kernel set.

Another example is the Hamming space which is typically composed of 2V binary
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Figure 4 — Invariance of vectors in relation to the permutation of operands and decomposition of the
vector V onto V| and ¥, (Adapted from Steinbruch and Winterle (1987)).

strings {(000...0),(100...0),(010...0),(110...0),...,(111...1)} with length N, structured
as illustrated in Figure 5. Formally, such space is a vector space over a finite binary field GF(2)
(or Galois Field of Order 2) which means that, in practice, the addition and multiplication
operators correspond to, respectively, the logical OR and AND, holding: the addition and
multiplication associativeness, commutativeness, identity, inverse and the distributiveness of the
multiplication over an addition. Moreover, a Hamming space can be embedded into a metric one
when considering Hamming distances, i.e., the number of corresponding positions that elements
are pairwise different in binary strings. Such embedding allows a summarized similarity measure
between binary strings, however it loses the vector structure of the space, implying the lack of
information about vector directions. It will also characterize, as illustrated in Figure 5, the notion
of neighborhood as, given binary strings b, it defines closed balls B(Z, r) around b containing the

binary strings whose distances from b are less or equal to an integer r which is known as radius.

In this sense, spaces can be represented using a hierarchical scheme such that the lower
level spaces can be endowed with properties of higher level ones, such as in the aforementioned
example of the Hamming distance. Note that, although this endowment produces new repre-
sentations for the original space structures, it loses other spatial information. For instance, as
illustrated in Figure 6, the embedding of a vector space in a metric one results in the definition
of neighborhoods called open balls, but with the cost of disregarding directions, angles and,
consequently, linear dependencies of vector spaces. As it is also illustrated in Figure 6, a metric
embedding into a topological space maps the open balls into a collection of open sets named as
topology, losing any distance information. As consequence, the relevant space feature comes

from the arrangement of its elements in the topology, not distances among them anymore.

Such space hierarchy, as illustrated in Figure 7, motivates the employment of topological
spaces in the context of this PhD thesis in order to provide a more abstract definition for

data clustering, allowing the study of such problem disregarding any distance information and
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Figure 5 — Tridimensional Hamming space. Note that (000) belongs to the closed ball B3((111)) centered
in (111) with radius 3, (100) belongs to the closed ball B;((111)) and (101) to B;((111))
(Adapted from Klein (2013)).
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Figure 6 — Embedding of the Hamming vector space onto a Hamming metric space composed of the closed
ball B,((111)), and, sequentially, onto an arbitrary topological space (Adapted from Matousek

(2002)).
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considering only the neighborhoods produced for a particular dataset. It is worth to mention
that, in practice, a distance function will be typically employed by a clustering algorithm exactly
to define such neighborhoods. This restriction does not impact the topology-based framework
considered in this thesis whatsoever as, in fact, the properties of topological spaces are present

along all embeddings resultant from lower level spaces when addressing data clustering.

e ™
Topological Spaces
e oo --------< ™
Metric Spaces ' Ultrametric Spaces |
e 1 l ™
Normed Spaces } |
s : } R
Inner-product Spaces ! |
| |
\ J
N J
N J
N J

Figure 7 — Hierarchy of spaces, from topological to inner-product ones (Adapted from Formaggia, Saleri
and Veneziani (2012)).

2.2.1 Vector and Hilbert spaces

Vector spaces are structures which count on a set V of n-tuples v = (vy,va,...,v,), called
vectors, endowed with the addition V+V — V : (V, i) — V+ i and with the scalar multiplication
F xV =V :(a,V)— aV. Such structures are built so that the set V forms an abelian group
(V,+) defined as follows:

Definition 1 (Abelian group). Given a set V, limited or not, and elements V,#,w € V, an abelian

group is defined by the tuple (V,+) respecting the following properties:

e Closure under +: V+iu eV,

Associativity: V+ (i +w) = (V+ ) + w;

Commutativity: V+iu = i+ V,

Identity existence: 30s.t. V+0=V, VvV eV,

Inverse existence: Vv € V, 3(—v) s.t. v+ (—V) = 0.
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In this sense, translations of vectors maintain their results even if such operations and/or operators
are permutated, besides, the existence of inverse operations allows the definition of opposed

directions in the vector space.

In addition, the structure of scalar multiplication must assure field properties defined as:

Definition 2 (Field). Given a set F of scalars and o, 3,7 € F, a field is formed by the triple
(F,+,-) respecting the following properties:

e Closureunder +and-: a+B €Fand - € F;

e Associativity: oo+ (B+7y)=(a+B)+7v,and a-(B-y)=(a-B)-7;

e Commutativity: a+f =B+, anda-p = - o;

e Identities existence: 30s.t. x+0=qa,Va € F,anddlst. l-a=a,Va e F;

e Inverses existence: V@ € F, 3 —ast.a+(—a)=0,andVa € F— {0}, Ja 's.t. a-
-1
o ' =1;

e Distributivity: o- (B +7)=a-B+a-Y.

As the scalar multiplication of vector spaces must respect the aforementioned properties of fields,

it is typically said that a vector space is built over a field F'. A vector space is then defined as:

Definition 3 (Vector space). A set V of vectors endowed with a vector addition V+V — V :
(V,u) — w and with a scalar multiplication F x V : (a,V) — i forms a vector space over the field

F if and only if the following properties hold:

e (V,+) is an abelian group;

e VaeFandVv,ieV, a(V+i) = ov+ aii;

Va,B e FandVVeV, (a+p)V=av+ BV,

Va,p e FandVveV, o(BV) = (af)v,
e VeV, 1V =1V where 1 is the multiplicative identity of the field F.

The most important result of such properties is that they define the linear transformation F x

VXV —=V:(a,V,i)— av+ i, which is composed of translations and scaling over vectors.

Vector spaces V can be also endowed with the inner product (-,-): V xV — V such
that (V,i) =Y ,c; viu;, in which I is a countable set of indices. Such operation must respect the

following properties:

e Conjugate symmetry: (V,#) = (#,V)” such that * is the conjugate operator;
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e First argument linearity: (oV+u,w) = o (V,w) + (i, w);

e Positive definiteness: (V,V) >0VveV —0.

If such space is complete, then it is named as a Hilbert space (SCHOLKOPF; SMOLA, 2001).
With the inner product operation, the notion of angles arises in the vector space, and, consequently,

it characterizes the linear dependency as it also defines the rotation transformation over vectors.

In the context of Supervised Machine Learning (SML), the inner product allows the
definition of linear classifiers, for example: considering an input space X with X € X and a
binary output space Y = {+1,—1}, a Perceptron model (ROSENBLATT, 1957) with neuron
weights w and bias 0 applies a decision function f : X — Y over a transformation in form
(w,X,0) — (w,X)+ 6 in order to perform a classification. Note that, the inner product allows
rotation operations, w defines the angle relative to the canonical base of the Perceptron hyperplane,
and 0 corresponds to its translation along the input space. The decision function f then classifies

the two half-spaces formed by such hyperplane as either +1 or —1.

Remark 1. It is well known that the Perceptron algorithm is unable to solve nonlinear problems
(e.g. XOR), motivating the development of the Multilayer Perceptron (MLP) (ROSENBLATT;
BUFFALO, 1961; WERBOS, 1974; RUMELHART; HINTON; WILLIAMS, 1986), which
models multiple hyperplanes transversing the input space. As formalized in the context of
the Statistical Learning Theory (VAPNIK, 1995; LUXBURG; SCHOLKOPF, 2011; MELLO;
PONTI, 2018), extra hyperplanes can be used to classify more complex input spaces in exchange
of an increase in the shattering coefficient, thus relaxing generalization guarantees (Bias-Variance
Dilemma (VAPNIK, 1995; LUXBURG; SCHOLKOPF, 2011; MELLO; PONTI, 2018)). Note
that, for the sake of curiosity, the hyperplanes will define partitions on the input space so that the
addition of new hyperplanes will refine such partitions. Therefore, the embedded topological
space will be over-refined, as illustrated in Figure 8, and its consistency is not guaranteed for
associated homology groups, as proved in Chapter 4. Although this apparent relationship between
the Bias-Variance and the Coarse-Refinement dilemmas is not completely addressed in this thesis,

it is an interesting topic to approach in future studies.

A A ;o
/ O N V7
® ‘e 7
° ° // \ /\ T < <
v ,oN 7
7 / [
A . , N e 4 >
, ° \ {, \o_ -~
. ’ ° .\ Iy oA
/ 1\~ \
o \/ [e]
’ N I =\ \
7/ o U\ o
- \
/ [ £\ © \
7 _ 7 IN \ \
/ 4 /A
- |

Figure 8 — Data space shattered by hyperplanes forming multiple partitions (Adapted from Guarascio,
Manco and Ritacco (2019)).
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In addition to the inner product, norms can also be endowed in vector spaces characteriz-
ing the notion of length. Given a vector space V over a field F, forall Vi € V andall ¢ € F, a

norm || - || : V — R must respect the following properties:

e Triangle inequality: ||V | < ||V|| + ||é]];
e Absolute scalability: ||aV|| = |a|||V][;

e Positive definiteness: ||| = 0 iff ¥ = 0, otherwise, ||7]| > 0.

A norm can naturally rise from the inner product space given ||#|| := 1/(¥,¥) and, therefore, all
inner product spaces are also normed vector spaces (such as illustrated in Figure 7). Nonetheless,
the norm of a vector that begins at the tip of vector v and ends at i calculates the distance between
the point (vi,va,...,v,) and (uj,u,...,u,) and, in this sense, a normed space can be endowed

with a metric (Figure 7).

2.2.2 Metric and ultrametric spaces

Metric spaces are structures formed from relations among a set of elements which
disregard the use of algebras and coordinate systems and, consequently, the characterization of
directions, angles, and linear dependencies. In other words, such relations, known as distances,

are enough to construct a metric. Formally, the metric spaces are defined as:

Definition 4 (Metric space). Given a set X of elements and a function dy : X x X — R™, known
as the distance function, a metric space is the tuple (X, dx) such that, for all x,x’ € X, dx respects

the following properties:
e Identity: dx (x,x') = 0iff x =x/;
e Symmetry: dy (x,x") = dx (¥, x);
e Triangular inequality: dx (x,x”) < dx (x,x") +dx (x',x").

Note that a normed vector space V can naturally endow a metric dy by the application of a norm

over the subtraction of the vectors ¥ € V. More precisely, given V,i,w € V and dy := ||V —il]|:

o |V—i]| =0iff V=il < dy(V,id) =0iff v =1,

e The absolute scalability of normed vector spaces implies in ||(—1)(V—u)|| = ||i — V|| <
dV(‘_;v ﬁ) = dV<ﬁ= ‘7)’

o [V=wll=I—u)+@—-wI < V-l +[d—w| <= dv(V,w) < dv (Vi) +dy (i, W),
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Figure 9 — Open balls of a metric space (on the right) induced by a normed space (on the left).

and, therefore, metric spaces can be induced from any normed vector space, as illustrated in

Figure 9.
For instance, in the k-nn algorithm (ALTMAN, 1992), a metric space (X, dx) is induced

from a dataset X which is assumed to form a normed vector space. Then, taking X C X as
the training set, X’ C X as the test set and a constant r, for every point x’ € X’, there is a set
B(X',r) = {x € X|dx(x/,x) < r} known as open ball, which is defined as follows:

Definition 5 (Open ball). Given a metric space (X,dx), an open ball around a point x € X
is a set which contains all points x’ € X whose distance from x is less then a radius r, i.e.,
B(x,r) ={xX € X | dx(x,X) <r}.

Remark 2. Complementary, a closed ball is formed by the set centered at some x € X with
radius r such that D(x,r) = {x' € X | dx (x,x") < r}.

Therefore, the k-nn algorithm finds, for every training point X' € X’, an open (or closed) ball
centered at x’ containing only its k-nearest neighbors x € By(x',r) and, in order to classify x’,

k-nn assigns the majority class of By (x',r) to it, as illustrated in Figure 10.

Remark 3. Typically, when considering metric spaces, machine learning techniques and theoret-
ical frameworks assume that a dataset X C X forms a finite metric space (X,dx), i.e., a metric
space built on top of a finite set, as, in practice, there are only a limited number of data points

available.

In Data Clustering (DC), metric spaces are usually assumed to obtain distance functions
to measure similarities among data points. For instance, the DBSCAN algorithm (ESTER et al.,
1996) finds clusters based on the density of each data point neighborhood. More precisely, given
a radius r, a density parameter p, and a dataset Z C Z, the DBSCAN analyzes all open balls
B(z,r) around each data point z € Z and if |B(z,r)| > p, z is attached to every other point in its
neighborhood. In this context, not only the neighborhood of z configures a similarity criterion to

form clusters, as also its density.
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Figure 10 — Illustration of the procedure of a k-nn (with k = 16) algorithm in assigning a class for an
unknown data point (Adapted from Wang et al. (2017)).

Remark 4. Some studies adopt a distance function disregarding the ambient space, i.e., the
space surrounding a mathematical object, in which lies data points. For instance, let a distance
function be defined as d : I x I — R, with I being the set of indices associated with the data
points in X, instead of d : X x X — R. Therefore, no information about the surrounding of points

is given.

Fixing a single radius in order to produce a clustering can disregard other relevant cluster
structures, what motivates the development of Hierarchical Clustering (HC) techinques. In HC,
a sequence of radii ry < ry < --- < ry, determining the level of model hierarchy, is adopted to
built a collection of open balls B = {B(Z,z1),B(Z,r2),...,B(Z,r¢)} from which a collection
of clusters C = {Cy,,C,,...,Cy, } is defined, such that B(Z,z1) C B(Z,z2) € --- C B(Z,zy) and
C,Cc(C,C---C( ” For instance, the HDBSCAN (CAMPELLO; MOULAVI; SANDER,
2013), a hierarchical variation of DBSCAN, considers multiple density-based clustering asso-
ciated with radii ro,r1,...,rs thus leading to a hierarchical model. In addition, linkage-based
algorithms (SIBSON, 1973; DEFAYS, 1977) also adopt such HC paradigm but disregarding the
density of open balls.

Such hierarchical model can be characterized by an ultrametric space as follows:
Definition 6 (Ultrametric space). Given a set of elements X and a distance function uy : X x X —

R™, an ultrametric space is the tuple (X,ux) such that, given x,x’ € X, ux must respect the

following properties:

e Identity: ux (x,x") =0 iff x = x’;

e Symmetry: uy (x,x') = ux (¥, x);



42 Chapter 2. Theoretical foundation

e Strong triangular inequality: ux (x,x”) < max{ux (x,x),ux (x',x")}.

In fact, the ultrametric space structure naturally defines the hierarchical scheme, given open balls
Ulx,r) ={x € X |ux(x,X) <r}, Ulx,r)NUX, /") # @ iff U(x,r) CUX,r) or U(X,r) C
U (x,r), proved as follows:

1. First, let us prove that if x' € U(x,r) then U(x,r) = U(xX',r): Given points x” € U(x,r)
such that uy(x,x") < r, as X € U(x,r) <= ux(x,x’) < r, we have that uy(x",x") <
max{uy (x”,x),ux (x,x')} < r. Therefore, all points x”" € U(x,r) belong to U (x’,r). Con-
versely, assuming x € U (X', r), all points x” € U (X, r) belong to U (x,r), hence, U (x,r) =
Ux,r);

2. AsU(x,r)NU(¥',r") # &, there are points x”" € U (x,r)NU (¥, '), and, therefore, ux (x,x") <
rand uy (x',x") < r”. According to Property 1, U (x',r') = U (X",r') and U (x,r) = U (x",r),
implying that, if r </, U(x",r) CU(X",r'), hence, U (x,r) CU (X', r"), conversely, if ¥ <r,
Ux,r) CUX, 1.

Such hierarchical structures of ultrametric spaces can be organized, as presented in (CARLS-
SON; MEMOLI, 2010), in tree-like structures called dendrograms. Formally, given a set X of
elements, dendrograms are defined as the pair (X, &) such that £ : [0,r) — 'y with 'y being a
partition built up on top of X. Therefore, in the hierarchical clustering scenario, as illustrated in
Figure 11, (X, &) associates the partitions of each hierarchical level, i.e., the open balls of the

corresponding ultrametric space, to the radius considered in their construction.
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Figure 11 — Illustration of a transformation from an ultrametric space to a dendrogram (Based in Carlsson
and Mémoli (2010)).

In addition, a metric space (X,dx) (and, consequently, an ultrametric space) can induce a
topological one. In this sense, its topology, i.e., its collection of open sets, is given by all subsets

formed by the union of the open balls of (X,dx).

2.2.3 Topological spaces

Topological spaces are mathematical structures that describe the relations among el-

ements relying on a collection of open or closed sets. For instance, the set of elements X =
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{a,b,c} associated with a collection Ty = {&,X,{a},{b,c}} is organized in 7y, such that b is
related to ¢, and a is related to itself only. Note that, those arrangements are enough to represent
correspondences, hence, if such topology is induced from a metric space, distance relations are

disregarded. Formally, a topological space is defined as:

Definition 7 (Topological space). Given a set of elements X and a collection of open subsets
of X, 7y, named as topology, a topological space is a tuple (X, Ty) that respects the following

properties:

e Triviality: X € 7x and & € 1y;
e Closure under arbitrary unions: For U; € Tx with i € I and I a set of indices, ;c; U; € Tx;
e Closure under limited intersections: For U;,U, € tx, Uy NU, € 1x.

Remark 5. A topological space can be also defined considering closed sets by assuming the
complements of those properties, which are then redefined as triviality, closure under arbitrary

intersection and closure under limited unions.

Remark 6. Some sets, called clopen sets are closed and open simultaneously, as for example the
set A = (0,1) of a topological space (X, tx) with X = (0,1)U(2,3) and tx a induced topology
in R. Note that A = (2,3), which is also an open set, and therefore, also clopen.

In this sense, a subspace of a topological space is the subset S € X endowed with a
topology induced by Ty, such that g = {SNU | U € 1x }. For instance, suppose X = {a,b,c,d, e}
with 7y = {@,X,{a,b},{c},{d,e}}, assuming S = {a,d, e}, (S, T5) forms a subspace of (X, x)
such that 73 = {2, S,{a},{d,e}}, then there exists an inclusion map 1 : (S, 75) — (X, 1x), i.e.,
(S,75) C (X, 1x), so that (S, Tg) is a refinement of (X, Tx) which is a coarsening of (S, Ts).

In addition, the relations represented by a topology are usually characterized in terms of

neighborhoods:

Definition 8 (Neighborhood). Given a point x € X, a neighborhood is a subset V C X such that
there exists another open subset U C V withV D U > x.

For instance, consider X = {(0,1),(2,3]} and 7x = {&,X,(0,1),(2,3]}. Given x = 0.5, there is
an open set (a,b) C (0, 1) which contains x. Thus, (0, 1) is a neighborhood of x = 1. Conversely,
given x = 3, there is no open set (a, b) containing x, so (a, 3|, with a > 2, is not a neighborhood of

x = 3. In addition, it is also possible to characterize Ty by means of its connected components.

The definition of such structures rely on connected spaces which are topological spaces
that cannot be represented by a union of two or more disjoint non-empty subsets. For instance,
the former example is not a connected space as its topology is formed by the disjoint non-empty
subsets (0, 1) and (2,3]. Conversely, given X' = {((0,1],(1,2))} and 7y = {2, X’,(0,1],(1,2)},
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(X', Tx) is connected as no disjoint non-empty subset is capable of forming such topology. A
connected component is, then, the coarsest subspace topology formed from a connected subset,
which is a connected subspace topology of a topological space. In the former example, (X, Tx)
can have many connected subsets such as (0.5,0.7),(2.4,2.9) and (0.1,0.11), although there are

only two connected components, to mention, (0,1) and (2,3).

Another important property of topological spaces is compactness, which generalizes the
concept of closed sets in Euclidean spaces. Intuitively, compact topological spaces are closed
and bounded, for example, if X = [0,00) with a trivial topology tx = {&, X}, the topological
space (X, Tx) is closed but not bounded, however, if X = [0, 10] the topological space endowed

with the trivial topology is compact. Formally, compactness is defined as:

Definition 9 (Compactness). A cover C = {U; | i € I} of some topological space (X, Tx) is an
indexed family of subsets U; of (X, tx) with i € I, such that |J,c; U; = X, then a subcover is a
subset of C which also covers (X, Tx). A topological space is compact if every of cover C has a

finite subcover.

For instance, the trivial topology of X = [0, 1) produces a non-compact topological space as there
are open subcovers that can arbitrarily approximate to 1 on the rightmost bound, and if X = [0, 1],
its trivial topology forms a compact topological space given all covers have a finite subcover.
Note that, without losing generality, DC and HC models can rely on compact topological spaces,
which support a measure if they are Hausdorff separable. In that sense, a Hausdorff space is a

topological space defined as follows:

Definition 10 (Hausdorff space). A topological space (X, Tx) is a Hausdorff space if and only if,
for every pair of points x,x” € X, there are neighborhoods U > x and V > X/, such that U NV = &.

Then, we assume in this PhD thesis, without losing generality, that DC and HC models
endow Hausdorff compact spaces.

Still in the context of DC and HC, the open balls typically adopted to build up a model
induce a collection of neighborhoods around each data point. In order to compare the clusters
formed from neighborhoods associated with different sets of points, which are assumed to be
acquired from the same i.i.d. principle, there is a function f : (X, 7yx) — (X', Tx/) mapping a
topological representation of some clustering partition of dataset X into another produced from a
second dataset X’. As a consequence, f can be studied to evaluate the changes from (X, 7x) to
(X', 7x0).

In this sense, continuity is a function property described as follows:

Definition 11 (Continuous function). A function f: (X, 7x) — (X', Tx)) is continuous, if for all
open sets V C (X', 7x), the pre-image f~!(V) is an open set U, such that U C (X, tx).
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For example, let (X, Tx) be a topological space in the usual topology with X = {(0,1),(1,2)},
and (X', Ty/) be another topological space with X’ = {(0,2)}, if f((X,tx)) = (X', 7xs), then
there is a continuous f such that for every point in (X', 7y/), exists an open set U C X whose pre-
image is an open set f~!(V C X’). Now, suppose g((X’,7x/)) = (X, Tx), given the neighborhood
Nx:(1) of (X', ty/), there is no open set associated with a pre-image g(U), e.g., the open set
(1 —¢€,1+¢€) C X'. Intuitively, a continuous map is capable of merging neighborhoods as

illustrated in Figure 12.

Figure 12 — Continuous mapping f applied over the curve A “gluing” the point a to the point b (Adapted
from Hatcher (2000)).

An important continuous map studied in Topology is the quotient map, which counts

on an equivalence relation ~, on set X, respecting the following properties:

e Reflexivity: x ~xVx € X;
e Symmetry: x ~x' <= x' ~xVx,x € X;

e Transitivity: x ~ X’ and X' ~ X" = x ~ X" Vx,x', X" € X.

An equivalence relation induces a set named equivalence class that when defined on an element
x is given by [x] = {x’ € X | ¥’ ~ x}, i.e., a set with all elements equivalent to x. Then, a
quotient map x : (X,7x) — (X, Tx)/~ transforms a topological space in a quotient space
(X,1x)/~={[x] | x € X}, i.e., the set of all equivalence classes in (X, Tx).

Intuitively, the quotient map is a continuous map which “glues” all elements of the same
equivalence class into a single one. For example, suppose an undirected graph G, illustrated in Fig-
ure 13, composed of vertices W = {a,b,c,d, e, f,g} and edges E = {{a,b},{a,c},{a,d},{f, e}}.
Note that such graph induces a topological space (W, Ty ), so its topology Ty contains all of its
combinations of connected components. Thus, given a quotient map x : (W, tw) — (W, 7w )/~,

with the relation x ~ x’ satisfied if and only if x and x’ belong to the same connected component,
the quotient space is (W, tw)/~ = {[a],[f], [g]}-

In addition, given a continuous function f : (X, tx) — (X', x'), if £~ ! is also continuous,
f is referred to as homeomorphic, thus corresponding to transformations that do not merge

nor divide any neighborhood in the topological space, as shown in Figure 14. For instance, still
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Figure 13 — Quotient map ) applied over the topological spaces produced by the graph G, which the
quotient space (W, tw)/~ = {[a],[f], [¢] }(Adapted from Hatcher (2000)).

considering the former example, if X’ = {(1,10),(20,40)} then f would be homeomorphic. In
this sense, homeomorphisms could be considered in order to compare the topological spaces
induced by different clustering partitions. However, in DC and HC problems, the probability

distribution of the dataset is unknown and, therefore, f cannot be explicitly defined.

Figure 14 — Examples of, respectively: (i) f; — non-homeomorphic function, cutting the curve A, (ii) f> —
non-homeomorphic functions “gluing” the curve A, and, (iii) f3 — homeomorphic function
“twisting” the curve A (Adapted from Hatcher (2000)).

This motivates the adoption of a framework which does not require the definition of such
a map in order to allow the comparison among clustering partitions. In this sense, homology
provides such framework as it relies on algebraic and graph representations of topological spaces,

as well as on the quantification of their topological features.
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2.3 Homology

Suppose a disk D and a circle R on top of which a topological space is built up. As illus-
trated in Figure 15, it is possible to define a function f : D — R which maps every neighborhood
in the interior of D onto an interval lying on the circle R. Such transformation is clearly not
continuous nor homeomorphic. Although, consider that the function f is not defined such as,
for instance, in the construction of a topological space from data points. Such scenario does not

allow the explicit definition of a function f that transforms, for example, D in R.

D R

Figure 15 — Transformation of a disc D into a ring R by a non-homemorphic function f. (Adapted
from Hatcher (2000)).

There are features that can be compared though, such as the number of connected
components and the number of holes in D and R. Therefore, as D and R have the same number of
connected components, often defined as O-dimensional “holes”, they are equivalent when such
feature is considered. However, a circle R contains a hole and a disk D does not, hence, they
are not equivalent with respect to 1-dimensional holes. Complementary, if a spherical surface S
and a solid sphere B are studied, there is only one connected component and no holes for both
objects. However, differently from B, S presents a 2-dimensional hole, also known as void, i.e.,

holes of dimension greater than or equal two.

In this sense, regardless the properties of continuity and homeomorphisms, topological
spaces can be compared by using such topological features. Homology is a branch in mathemat-
ics (HATCHER, 2000) whose goal is to describe topological spaces using algebraic objects, such
as groups and modules, in order to provide complementary structural information on topological
spaces. For instance, a topological space can be described as CW-cells which are a generalization
of oriented graph elements, such as vertices and edges. CW-cells does not only rely on vertices
and oriented edges but also on oriented areas and n-dimensional volumes, such as illustrated in

Figure 16.

A set of CW-cells, as illustrated in Figure 16, forms a CW-complex C,, whenever
elements are attached to their (i — 1)-dimensional boundaries, being i < p the dimension of
a CW-cell, forming the inclusions Cy C C; C --- C C,, such that each C; contains CW-cells
with dimensions of, at most, i. In this sense, the CW-complex is capable of building up the

corresponding topological space by means of a quotient map ) that attaches its CW-cells. For
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?

0-dim 1-dim 2-dim
Figure 16 — Examples of 0,1 and 2-dimensional CW-cells. (Adapted from Hatcher (2000)).

instance, suppose the following CW-complex:

A—2 5 B

ol

C#D.

If a quotient map Y appends the edge a on b and ¢ on d following their orientations, it results in

a 3-dimensional torus, as illustrated in Figure 17. Now suppose the following CW-complex:

A——B
[«
C —— D,

the quotient map which only appends a on b, respecting their orientations so that D = A and
C = B (Figure 17), forms a Moebius strip. Note that CW-complexes are also often represented as

topological spaces.

Topological features can then be defined along the inclusion Cop C Cy C --- C Cp, consid-
ering abelian groups that correspond to each complex C;, known as the homology group H;(X)
of a topological space (X, Tx). In this sense, there exists a sequence of homomorphisms d,,

denominated boundary operators, between complexes, such that:

0pi1 d Ip—1 0 0 a
P Cy 5 Cpg —— 20 20 250

is defined as chain complex. A boundary operator is a map 0; : C; — C;_1, such that it transforms
a complex C; into a lower dimensional complex C;_; containing the boundaries of C;. For
example, an oriented open triangle A' = {{A — B}, {B — C},{C — A}} forming the following

I

has boundaries im(d;) = {{A},{B},{C}}.

CW-complex:

Remark 7. More precisely, CW-complexes are topological spaces whose constructions are given
by maps ¢q : S' — C; attaching the topological space of C; with a collection of disks D!, thus
producing the quotient space of the disjoint union C; LI D% I, Such quotient space is defined as
C;LIDE! and, given x € C;, such that x ~ ¢ (x), for x € dD, as illustrated in Figure 18. For
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Moebius strip
A~D B~C

/ /\/

! BNC

Figure 17 — [llustration of the: (i) Torus formed from the Diagram 2.3, represented above, and, (ii) Mdebius
strip formed from the Diagram 2.3, represented below. (Adapted from Hatcher (2000)).

example, given a CW-complex Cy defined in terms of three vertices {{0},{1},{2}}, there is a
collection of three disks D}, = {Dy,D,,D3} with D; = [0, 1], for j = 1,2,3, such that ¢¢ (D)
provides an edge formed by D ; that connects two vertices of Cy, thus generating the open triangle
A= {{1,2},{2,3},{3,1}} from Co Ll D.,.

Figure 18 — Illustration of a C; CW-complex being formed by the quotient of the disjoint union C; Uy D;
between a 1-dimensional CW-complex and a 2-dimensional disk. (Adapted from Hatcher
(2000)).

Now suppose the oriented and closed triangle A?> = {{A — B — C — A}} which forms
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the following CW-complex:

2.1)
A

B 9999 > C

The boundaries im(d3) and im(d,) of A? are given by the boundaries of the oriented area A in
Diagram 2.1 which is equal to Al i.e., im(dy) = A = {{A — B},{B — C},{C — A}}. However

A and A? result in different topological features, as A! has a hole and A does not.

Algebraically, the direct sum of groups of the oriented edges {{A — B},{B — C},{C —
A}}isaj(B—A)+ax(C—B)+az(A—C) =0, which leads to the following system of equations:

ar = a
az = a 2.2)
a = aj

The System of Equations 2.2 has as solution the space a; = a, = a3 with rank equals one, then,
as im(d,) = 0, the cycle represented in A!' corresponds to the kernel ker(d;) = Z. However,
topologically, A> does not have such cycle as it presents a 2-dimensional cell attaching its edges,
i.e.,im(dy) = ker(d; ) = Z. In this sense, the cycles in A are defined by ker(d;)/im(d,), i.e., by

using d; except for those attached to 2-dimensional CW-cells.

In this sense, a homology group is defined as:

Definition 12. Given a topological space (X, Tx) and a chain complex C(X), a homology group

is a quotient abelian group defined as:
HI(X) = ker(&i)/im(8,-+1),

and whose elements are called homology classes.

Hence, a homology group finds the cycles in an i-dimensional complex which are not attached by
(i+ 1)-dimensional cells. For instance, suppose the CW-complex present in Figure 19, designed
such that each vertex is associated with a data point. When the 0-dimensional homology group
Hy(X) is considered, it is possible to evaluate how many connected components are present in
such a complex. In addition, H;(X) represents how many holes are present in the respective
topological space. DC and HC can adopt such groups in order to quantify the topological features
which rise from a specific model. Such quantification is often defined by the rank, rank(H;(X)),

of the homology group of interest, named i-th Betti number.

However, DC and HC problems do not have orientable surfaces and, therefore, they can
rely on the employment of simpler structures to form complexes, instead of CW-cells. Such

structures are named simplices, being the p-dimensional generalization of triangles defined as:
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Figure 19 — Illustration of the complex associated with a dataset X, in which can be identified the homology
groups Hy(X) =73, Hy(X) = Z and H>(X ) = 0 and their respective Betti numbers o(X) = 3,
B1(X) =5 and B2(X) = 0 (Adapted from Hatcher (2000)).

Definition 13. A p-simplex is a p-dimensional convex hull built up on top of non-collinear p

vertices vi,v2,...,v, € R? such that:

P P
o= {Zaivi | ZaizlwithaiZOVi}.

i=1 i=1
Hence, a simplicial complex is defined as:

Definition 14. A simplicial complex K is a set of simplices 6 = {0}, 02,...,0,} such that:

e Every face is a simplex in K;

e Every non-empty intersection of any two simplices 6, 0y € K is a face of 0} and oy.

Let us consider the homology group Hy(X) associated with the simplicial complex
representing models built up from the single linkage algorithm, such as illustrated in Figure 20.
As the radius increases, more simplices are created through the connection of data points and,
also, the number of connected components decreases as clusters are attached to each other.
Hence, there is a variation on the topological features (i.e., Betti number) along the topological
inclusions formed by such a process. This PhD thesis demonstrates that such features are not
stable nor consistent for the most refined topologies. Such demonstration relies on persistent
homology to allow the study of the birth and death of homology classes (EDELSBRUNNER;
HARER, 2008).

2.3.1 Persistent homology

The consequences of an over-refinement upon the stability and consistency of an HC

model can be studied through persistent homology, which identifies the birth and death of
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Figure 20 — Illustration of clusterings produced by the single linkage algorithm and their respective
associated 0 and 1-dimensional homology groups (Adapted from Carlsson and Mémoli
(2010)).

homology classes along a sequence of topological inclusions F (X ) := (Xo, Tx,) € (X1,7x,) C
-+ C (X, Tx, ), known as filtration of topological spaces. Such inclusions correspond to each
hierarchical level of an HC clustering model and, therefore, the persistent homology, in the
context of HC, represents how the associated topological space changes along HC levels. For
instance, a dendrogram (X, &) built up on top of the set X = {—1,0,1,2.9,3,3.1,9,10} such
that:

e £(0.1) = {{-1},{0},{1},{2.9,3,3.1},{9}, {10} };
o £(1)={{-1,0,1},{2.9,3,3.1},{9,10}};
o £(1.9)={{-1,0,1,2.9,3,3.1},{9,10}};

o £(5.9)={{-1,0,1,2.9,3,3.1,9,10}},

devises a filtration F(X) := (X, T¢(0.1)) C (X,Te(1)) C (X,Tg(1.9)) C (X, Tg(s.9)) in which
(X, T¢(r)) is equipped with a topology induced from &(r) on the usual topology R, such that for
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every pair x;,x; € X there is an open set (x;,X;) € T¢ ().

Consider the 0-dimensional homology classes a; € A associated with (X, ¢ (0,1)), such
that for all x € X there is a map & : X — A in which x — q;, i.e., hi(—1) = a1,h(0) = ap,h(1) =
az,h(2.9) = as,h(3) = as,h(3.1) = ag,h(9) = a7, and h(10) = ag. In this sense, the homology
classes ay, as and ag were born at & (0) and persist until they are merged at & (0.1), therefore their
persistence is given by 0.1. In addition, the function f : (X, ’L'é(r)) — R mapping the induced

topological space onto the corresponding radius is an example of a tame function.

Precisely, tame functions are employed to map, along the filtration, subspace topologies

into the real line:

Definition 15 (Tame functions). Let (X, Tx) be a topological space. A tame function is a
continuous map f : (X,7x) — R such that (X,x)e; C (X,Tx)q, Whenever o; < a;, where
(X,Tx)q := f ' (—oo, ] is taken with the subspace topology. Moreover, a tame function f must

satisfy the following properties:

e The homology groups H,((X, Tx)«) are of finite rank for every p;

e There are finitely many o; € R, such that H[(X, Tx )] and H[(X, Tx)¢-+¢| are not isomor-

phic; in which ¢;’s are called the critical values of f.

Remark 8. Whenever a homology class emerges at Hp[(X, 74, (X))] and vanishes at
Hp[(X,7,(X))], given i < j, its persistence is defined as o; — ;.

Considering the aforementioned example, the pre-image of the tame function f is given by & (-)
such that f~1(r) = &(r).

In this sense, a persistent homology group identifies the homology classes that persists
along some interval [@;_1, @;) in the co-domain of the tame function. Formally, the persistent

homology groups are defined as:

Definition 16 (Persistent Homology Group). Let (X, 7x) be a topological space equipped with
the filtration that arises from a tame function f, as in Definition 15. Given ¢;_| < ¢;, we have the
inclusion f/: (X, tx) e, C (X, Tx ) ;- The persistent homology group of degree p is the image of

the induced homomorphism:

fll.;j . HP[(X7 TX)OC,'] - HP[(X7 TX)OCJ']'
Given the aforementioned example, let &¢; = 1 and ap = 1.9 + €, then the persistent homology
group im(f(l)’z) is 72 as only two connected components persist in the interval [, & ). In addition,
the rank of the image of £/ is called the (i, j)-persistent Betti number, i.e., f,;” = rank(im(f};’)),

which allows to compute the number of homology classes persisting inside an interval [i, j).
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Considering that data insertion produces topological inclusions, if the topological proper-
ties of clusters persist along such operations, which must respect the same i.i.d. distribution of the
adopted dataset (i.e., if fg’m is an isomorphism given datasets X and X" = {X,x],...,x,} from
which some filtration (X, 7x) C (X1, Tx,) C --- C (X, Tx,,) is defined by a clustering algorithm),
the clustering model is stable in terms of p-dimensional homology groups. We claim in this PhD
thesis that over-refined topologies do not provide persistent homology classes whenever data is

subject to perturbations due to data insertions.

However, the filtration associated with the data insertion does not identify changes
in topological spaces obtained along the HC levels, thus only supporting the study of non-
hierarchical clustering models, one can take advantage of the multidimensional persistent
homology, proposed by Carlsson and Zomorodian (2009), to assess the persistence of homology
groups from a multiparameter perspective. Let v,u € N and a reflexive and transitive relation
< such that u S v iff u; <v; Vi=1,...,n, a multifiltration of a topological space (X, tx) is
defined as the topological inclusions (X, 7x,) C (X,, 7x,) with v S u and (X,, 7x,) C (X, 7x),
for all w € N, In addition, as illustrated in Figure 21, there is a function F : R" — K that maps a
n-tuple into a subcomplex K, of a finite complex K, such that there is a finite set C = {v; € R"}

of critical coordinates that form the n-tuples v in which homology classes die or were born.

R R
- . //
= N N}
= e /S
vy A . K, B 5 g
B e Ve
] ]
B e Ve

Figure 21 — Vector representation for K, (Adapted from Carlsson and Zomorodian (2009)).

For instance, consider the study of persistent homology groups in HC. Whenever the

adopted radius increases from r; to r;, with i < j, and new m data points are inserted to build up a
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next HC model, there is an inclusion K, o) C K m) such that the following diagram commutes:

U
Kiimy — Kiym)

LmT |

U
K00 — Kir,0)

with 1, and 1, being homomorphisms. Therefore, it is possible to study the morphism K, ,,,) —
K(;;m) such that if t,,(K(,, ,,)) and 1,x(K(,, o)) are isomorphisms, then the mapping of 1,(K(,, o))
is the same of lr(K(r,-,m)), i.e., they map the same domain into the same image. The behavior of
such maps are equivalent and, if this equivalence is respected with the insertion of new data,
then we can state that a clustering model is consistent. Assuming DC and HC as processes based
on i.i.d. sampling, a probability measure can be devised to assess their associated complexes as

random variables.

2.4 Measures and Borel sets

Measures are employed to map subsets of elements from X into the positive real line
in order to represent their relative order (in terms of the order theory (BURRIS; SANKAP-
PANAVAR, 1981)), such as length, area, or volume. For instance, suppose a finite countable set
X ={@,x1,x2,...,X,}, a counting function it : X — R is a measure such that (X’ C X) = |X]|.
Note that one of the requirements of a measure is that there must be an empty set & belonging to
X with measure equals to zero. A measure requires the set X to be equipped with a c-algebra

defined as follows:

Definition 17 (o-algebra). A o-algebra on X is a collection X of subsets of X such that:

e X € ¥ (implying in @ € ¥);
e Y is closed under countable unions;

e Y is closed under complement.

For instance, take the open set X = (a,b), the collection X = {&, (a,b), (a,c),[c,b)}
forms a o-algebra for all a < ¢ < b. Therefore, it is possible to build up a measure on X such
that u(X' CX)=d—cforalld,c € (a,b), and d > ¢ with a o-algebra £ = {(a,c], (c,d),[d,D) |

Va < ¢ <d < b}. Considering a measurable space (X,Y), a measure is defined as:

Definition 18 (Measure). A measure is a function t : ¥ — R which, given E; € ¥, respects the

following properties:

e Non-negativity: u(E;) >0, for all E; € Z;
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e Null empty set: u(2) =0;

e Countable additivity: u (UL, Ei) = Y u(E;), with E; being composed of disjoint subsets
of X,

from which a measurable space is defined as the triple (X, X, ).

Suppose now a topological space (X, Tx) on the usual topology R such that X = (a,b), it
is possible to take sets 3(X) of open sets or closed sets in (X, Tx ) in order to form a c-algebra as,
for example, B(X) = {9, (c — €,¢),(d,d+¢€),{(c—¢€,¢),(d,d+¢€)}} witha < c— € < c and
d < d+ € < b. Such open sets, named Borel sets, are defined as:

Definition 19 (Borel sets). A Borel set B(X) over X is any set containing open (or closed) sets

U; of a topological space (X, Ty ) such that they are:

e Closed under countable union: Given a countable set of indices I, J;c; U; € B(X);
e Closed under countable intersections: Given a countable set of indices I, (;c; U; € B(X);

e Closed under relative complement: U; —U; € B(X), for all U;,U; € B(X).

The collection of all Borel sets forms a Borel algebra which, therefore, allows the
definition of a measure. Then, this PhD thesis considers that there is an unknown Hausdorff
compact topological space (Z, 7z) from which data points are sampled. As (Z, 7z) is Hausdorff
compact, then it endows a Borel algebra from which it is possible to define a measure, thus

allowing the probabilistic analysis of how topologies change along the data sampling.

In this context, a probability space is a measurable space (Q, &, P) such that Q is the set
of all possible elements to be acquired, £ is the collection of possible events, i.e., a sequence
of elements acquired by some probability distribution, and P : £ — [0, 1] corresponds to the

probability function that measures the frequency that events occur.

In this sense, P must assure the properties of a measure and its image must lie in the
interval [0, 1] such that P(Q) = 1. So P measures how frequent is some event e € £ inside the
universe set Q. For instance, in the former example, the probability that an element belongs to
some interval (c,d) is given by (d —¢)/(b — a). Moreover, a probability measure P allows the
definition of the expected value of the random variables x € X C Q, thus leading to a “center of

mass” for the probability distribution as follows:

Ex[x] = /xexde(x),

such that the random variables diverge from the expected value according with its variance
Ex[(x—Ex[x])?].
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Furthermore, concentration inequalities formalize the probability of random variables
diverging from their expected values according to some factor &€, i.e., P(|x —Ex[x]|| > €). Consid-
ering a measure [y defined on top of a topological space (X, Tx ), corresponding to topological
features (e.g. number of connected components), this PhD thesis employs those inequalities in
order to study P(|ux (x) — Eyy [ux (x)]| > €).

2.5 Concentration inequalities and stability

The main goal of concentration inequalities is the definition of probabilistic bounds
for the divergence between a random variable (or some measure of it) and its expected value.
Such divergence can be used to assess an estimator, e.g., the generalization measure defined in
the Statistical Learning Theory (VAPNIK, 1995; LUXBURG; SCHOLKOPF, 2011; MELLO;
PONTI, 2018) as |Remp(f) —R(f)|, with Remp, R : F — R being, respectively, the empirical and
its expected risk, F corresponds to the space of admissible functions, and f € F is some classifier
or regression function (LUXBURG; SCHOLKOPF, 2011; MELLO; PONTI, 2018). In that
supervised context, Vapnik (1995) employed Chernoff’s and Hoeffding’s bounds (CHERNOFF,
1952; HOEFFDING, 1963) in order to prove the Empirical Risk Minimization, which is a direct

result of evaluating how the estimator Remp(f) approaches R(f) as the sample size n — co.

Although such proof requires the assumption of labeled data examples, concentration in-
equalities and algorithmic stability do not require such restriction, thus permitting us to study the
unsupervised machine learning scenarios, as performed in this thesis. In this sense, this chapter
covers the concentration inequalities proposed by Markov (GHOSH, 2002), Chernoff (1952), Ho-
effding (1963) and, finally, Azuma (1967). Inequalities such as Azuma’s assume restrictions
which, when held, naturally impose consistency whenever stability is assured. Therefore, taking
a measure [y : (X,Tx) — R™ over some topological space associated with a clustering model,
given the proper restrictions are respected and the stability is demonstrated, then the topological

features analyzed in terms of Ly are consistent with respect to the clustering model.

In order to demonstrate Azuma’s inequality, we must introduce Markov’s first, which is
defined as:

Definition 20 (Markov’s inequality). Given a non-negative random variable x € Q sampled from

some probability distribution function P : Q — [0, 1] and some scalar € € R

Px>e¢) <
(x>e)< =2

Such inequality provides a loose bound that proportionally decays along €, as illustrated in
Figure 22. Therefore, taking x as |x' — E[x']|, the following inequality holds:
o2

P(x' —E[X]| > €) < =y (2.3)



58 Chapter 2. Theoretical foundation

2.00

\ Functions
\
1.75 - \ — P(x>¢)
\ __. EX
1.50 - \ €
» 1.251
k]
< 1.00 -
Q
o
Q

0.75 A

0.50 A

0.25 4

0-00 T T T T T T T T
0.00 0.08 0.16 0.23 031 039 0.47 054 062 0.70
€

Figure 22 — The proportional decay of %x] in comparison with P(x > €) given 100 samples acquired from

a normal distribution N (0.2,0.12). Note that @ > 1 for the initial values of €, in this sense,

for such values, x > € always holds (Adapted from Mello et al. (2019)).
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Figure 23 — Chart comparing ‘;—22 with P(|x — E[x]| > ¢€), it was produced taking 100 samples acquired
from a normal distribution A/(0.2,0.12).
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with 62 being the variance of the random variables x.

The Inequality 2.3 is known as Chebyshev’s inequality (FERENTINOS, 1982) and
it implies that € must be sufficiently greater than the variance of x, as shown in Figure 23,
in order to guarantee consistency. Restricting such random variables in some interval [a,b],
Chernoff proposes a tighter bound than Markov’s inequality when analyzing consistency (KOTZ;
IBRAGIMOV; HAS’MINSKII, 2013), being defined as:

Definition 21 (Chernoff’s inequality). Given an i.i.d. random variable x € [a, b] sampled from
some probability distribution function P : [a,b] — [0, 1], Chernoff’s inequality is:

—2¢2
P(x—E[x] > &) <elt-o”,
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Figure 24 — Chart comparing e ®-o* with P(x — E[x] > €), it was produced taking 100 samples acquired
from a uniform distribution ¢/(4,9), i.e., with a = 4 and b = 9 (Adapted from Mello er al.

(2019)).

In this sense, Chernoff (1952) presents an inequality that exponentially decays, contra-
posing the fractional decay of Markov’s inequality as illustrated in Figure 24. Hoeffding (1963)
further generalizes Chernoff’s inequality by considering the sum S, of n random variables x;

such that:

Definition 22 (Hoeffding’s inequality). Given S, = x; +x3 + - - - +x, such that x; € [a;, b;| with
1 <i < nisindependent and identically sampled from some probability distribution function

P:Q—10,1]:

—2¢2

P(S—E[S] > €) < eXimi i,
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Hoeffding’s Inequality allows the study of consistency over averages whenever the size of some

dataset grows.

Azuma’s Inequality considers (HOEFFDING, 1963) to study a specific class of stochastic

processes referred to as martingales:

Definition 23 (Martingale). A martingale is a stochastic process endowed on a sequence of

random variables xi,x3,...,X,, in form:

E[x] < oo, and

Exq|x1,x2,. ., X0-1] = Xp1.

It is also possible to study a martingale with respect to another sequence with y = f(x) such that

E[y] < oo and E[y,|x1,x2,...,x,—1]. In addition, a martingale difference sequence is defined as:

Definition 24 (Martingale difference sequence). A martingale difference sequence is a stochastic
process endowed on a sequence of random variables x,x2,...,x,, given V; = X; — X;_1, in the

form:
E[x] < oo, and

E[Vn]xl,xz, ce ,xn] =0.

By employing such differences, Azuma’s inequality states that whenever |x; — x;_1| is upper
bounded by some constant c;, the probability of x; diverging from x,, by a factor of €, converges

to zero in form:

Definition 25 (Azuma’s inequality). Given a martingale sequence x1,x3,...,X, sampled from
some probability distribution function P, if |x; —x;—1| < ¢;:

_e2

P(|x,—x1| > €) < 2eTi-1 .

From that, suppose some measure [y : (X,Tx) — RT such that (X, 7y) corresponds
to a clustering model. In an ideal scenario, when learning is guaranteed, it is expected that
whenever such model is reconstructed from more data, the measure of ty should not change
and, therefore, the filtration given by such data insertions must form a martingale with respect
to uy. Therefore, whenever the measure on clustering models forms a martingale, learning is
guaranteed if |y (x;|x1,...,%,) — Wx (xi—1|x1,...,x,)| < ci, i.e, if Uy is stable with respect to

data insertions.

2.6 Final considerations

In the context of Machine Learning, spaces are of upmost importance in the development
of ML theoretical frameworks as they formalize datasets from an axiomatic structure, thus

supporting the development of more sophisticated properties and conclusions. Defined from
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a particular space type (e.g., vectorial, metric or topological), such properties are inherited
throughout the space hierarchy and, in this sense, topological attributes can be extrapolated along

more restricted spaces (see Figure 7).

A theoretical framework can take advantage of such formalization while studying the
invariances of ML models, as for instance: (i) by analyzing changes in input vector directions
with respect to hyperplanes; (ii) by verifying if metric or even topological spaces obtained
from clustering algorithms are somehow invariant to data bounded perturbations (e.g. isometry,
homeomorphism or isomorphism of homology groups). Such spatial invariance leads to a
novel notion of generalization which, instead of only relying on error functions, endows more

qualitative information from clustering models.
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CHAPTER

RELATED WORK

3.1 Initial considerations

Machine learning is divided into two main paradigms: Supervised Machine Learning
(SML) and Unsupervised Machine Learning (UML). The first relies on the Statistical Learning
Theory (SLT), which defines properties to ensure the consistency of the Empirical Risk Mini-
mization (ERM) principle, thus leading to model generalization. UML is not supported by SLT
as Vapnik’s theory assumes labeled data examples, thus requiring a new theoretical approach to

characterize generalization and devise learning bounds .

From this point of view, this chapter discusses the recent reports associated with the the-
oretical formalization of the Data Clustering (DC) problem as follows: (i) Section 3.2 introduces
the axiomatic characterization of data clustering by Kleinberg (2002); (i) Section 3.3 approaches
the collaborative report by Ackerman, Ben-David and Loker (ACKERMAN; BEN-DAVID;
LOKER, 2010), which extends Kleinberg’s by defining a taxonomy for clustering properties.
This same section includes a study on clustering quality measures (BEN-DAVID; ACKERMAN,
2009); (iii) Section 3.4 details Carlsson and Mémoli (2010) formalization on consistency and
stability for hierarchical clusterings; and, finally, (iv) Section 3.5 features essays on persistent

homology and its applications.

3.2 Kleinberg’s clustering formalization

After criticizing the vagueness on clustering foundations, Kleinberg (2002) defines
suitable partitions in terms of the relative similarity among points, given elements belonging to

the same group should be more similar than points from other groups, what consists in the main

' Note that Ben-Hur et al. (2002) developed a clustering algorithm, named as Support Vector Clustering

(SVC), which is based on Support Vector Machine (CORTES; VAPNIK, 1995) formulation, however,
no clear relation between SVC and Vapnik’s SLT is presented.
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motivation for his axiomatic framework built up on top of three main assumptions: there is (i) a
fixed dataset X with at least two data points; (ii) a distance function d : X x X — R that not
necessarily satisfies the triangle inequality (hence d does not necessarily form a metric space);
and (iii) a clustering function f : D — I' in which D represents the set of admissible distance

functions and I' the produced partitions.

Kleinberg disregards the ambient space of X such that the definition of any underlying
space is impossible to be made. Therefore, his formulation relies only on the dataset X without
any additional assumption, given the distance function d € D is defined upon a countable set
I, which is formed by the indices of the elements in X such thatd : I x I — R™, i, j € I and
(i, j) — d(i, j). In this sense, only the distance matrix D is assumed for the application of the
clustering function f. From that, Kleinberg defines the properties of scale-invariance, consistency
(different from the concept of statistical consistency), and richness as mandatory to characterize

and analyze clustering models:

Definition 26 (Scale-invariance). Given a scalar @, a cluster I' is scale-invariant if and only
if f(D) = f(aD), i.e., scalar multiplication over the matrix D does not change the resulting

partitions;

Definition 27 (Consistency). Let a I'-transformation be defined such that, if d’ is a

[-transformation of d, then d'(i, j) < d(i, j) for the elements i, j contained in the same cluster
and d'(i, j) > d(i, j) for the elements i, j belonging to different clusters. Then, given d and
d’ two distance functions, if d’ is a I'-transformation of d then I is consistent if and only if
f(d) = f(d), i.e., reducing the distance inside clusters while increasing the distance between

them must preserve the partitions;

Definition 28 (Richness). Let Range(f) be the set of all partitions f(d) =TI for some distance
function d. Then, I" is rich if and only if Range(f) is equal to the set of all partitions in X, i.e.,
“every partition of X is a possible output” (KLEINBERG, 2002).

Considering such properties, Kleinberg then proves that, in light of Arrow’s theorem (ARROW,
1951), they are impossible to be simultaneously satisfied, thus implying that one of them must be

relaxed somehow.

This PhD thesis presents an argumentation to justify the disregarding or relaxation of
the richness axiom when the dataset X is considered to be acquired from some probability
distribution, i.e., when X is not fixed. Briefly, there are topological spaces refined enough along
the hierarchical clustering representation that produce inconsistent measure functions when new

data are included. This topic is properly addressed in Chapter 4.
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3.3 On clustering quality measures and additional prop-

erties

Kleinberg’s axiomatic framework motivated Ben-David and Ackerman (BEN-DAVID;
ACKERMAN, 2009) to propose clustering quality measures as they claim the insatisfatibility
of axioms is an artifact of Kleinberg’s formulation and not an inherent property of clustering.
The authors define such Clustering Quality Measure (CQM) as a function i mapping the triple
(X,T',d), formed by a dataset, a partition and a distance function, respectively, into an ordered
set, reflecting how adequate such model is.

Ben-David and Ackerman (2009) then redefine Kleinberg’s axioms in terms of this
CQM as follows:

Definition 29 (Scale-invariance). A quality measure u satisfies the scale-invariance if for every
partition I" built up on top of (X,d), and every positive a, the following holds u(X,I',ad) =
u(x,I.d);

Definition 30 (Consistency). A quality measure { is consistent if for every partition I" built up on
top of (X,d) whenever d’ is a '-transformation of d the following holds u(X,I",d") > u(X,T,d);

Definition 31 (Richness). A quality measure u is rich if for each non-trivial partition I" of X

there is a distance function d over X such that I" = argmaxp, u(I;, X, d).

In this sense, the authors define a measurable function (X, I',d) on the partitions, but:
(i) there is no information if (X,I",d) is measurable nor the necessary conditions were defined to
allow such measurability; and (i1) Ackerman and Ben-David’s axiom of richness imposes that
there is a distance function d such that I' = argmaxr, u(I';, X, d), therefore, as there is always a
[-transformation shrinking all partitions I" it will always exist a distance function d’ such that

maxr,{ i (I';,X,d)} = oo so this new axiom of richness always holds.

Later on, Ackerman, Ben-David and Loker (ACKERMAN; BEN-DAVID; LOKER,
2010) propose a taxonomy for data clustering properties to support users while studying and
selecting the most appropriate clustering methods, to mention: isomorphism invariance, scale-
invariance, consistency, locality, inner and outer consistencies, k-richness, outer-richness and

threshold richness. In the context of this PhD thesis, the property of locality is defined as:

Definition 32. A clustering function f is local if the behavior on a union of subsets of clusters
only depends on distances among elements of that union (ACKERMAN; BEN-DAVID; LOKER,
2010). Thus, for C’' C C:

rJc.a)=c.

Then, this thesis takes into account the isomorphism invariance with respect to topological

properties devised from homology groups associated with clustering models, as it will naturally
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imply scale-invariance, consistency, and locality. Therefore, richness must be relaxed so that a

clustering algorithm provides such isomorphism invariance.

By relaxing richness, this PhD thesis claims that a single property is enough to guar-
antee adequate clustering: the corresponding topological space has to be invariant when
the related dataset is subject to new data acquisition. In such context, Carlsson and Mé-
moli study the metric invariance for hierarchical clustering algorithms along data perturbations,
then proving that a modification on the single linkage satisfies such condition (CARLSSON;
MEMOLLI, 2010).

3.4 Carlsson and Mémoli’s consistency for hierarchical

clustering

In attempt to complement Kleinberg’s axioms, Carlsson and Mémoli study and develop
a theoretical framework to support the agglomerative hierarchical clustering, which was then
characterized according to three conditions that were used to prove the uniqueness for a modified
version of the single linkage algorithm. This algorithm version is stable and statistically consistent

with respect to the Gromov-Hausdorff distance.

Their formulation considers that hierarchical clustering models are built on top of a
finite metric space (X,d) by producing nested partitions represented in terms of dendrograms,
which are equivalent to ultrametric spaces, as also shown. In order to proceed with their study,
they reformulated permutation-invariant linkage functions using the average, complete and
single criteria, by allowing the agglomeration of more then just two elements at each iteration.
Then, a hierarchical clustering method is defined as a map £ : X — U such that (X,d) € X —
(X,u) € U, with (X, u) being an ultrametric space associated with the corresponding dendrogram.
In this sense, Carlsson and Mémoli define three properties to characterize the hierarchical
clustering (CARLSSON; MEMOLL, 2010):

Definition 33 (Carlsson and Mémoli’s properties for hierarchical clustering). Let £ be a hierar-

chical clustering method:

o £({p.q},(%3)) = ({p.q},(%3)) forall § >0, i.e., a two point metric space must be
mapped into a dendrogram in which they are merged at radius 9, i.e., there exists a trivial

clustering;

e Whenever X,Y € X and ¢ : X — Y are such that dx (x,x") > dy (¢ (x), ¢ (x')) forall x,x’ € X,
then uy (x,x") > uy (¢ (x), 9 (x)) also holds for all x,x" € X where £(X,dx) = (X,ux) and
£(Y,dy) = (Y,uy), i.e., a shrinkage in metric spaces must proportionally impact the

ultrametric, such that it preserves the corresponding dendrograms. For instance, if a metric
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space with two clusters shrinks, and merges them, this must also occur in the corresponding

dendrogram;

o Givenx#x' € X, where £(X,d) = (X,u) with (X,d) € X and sep(x,x’) := min, 1y d(x,x’),
then u(x,x’) > sep(X,d), i.e., there is a 7 such that the produced dendrogram represents
singletons when 0 <t < sep(X,d), therefore exists an initial interval in which no points

are merged.

Carlsson and Mémoli prove that such properties are satisfied only if the considered algorithm
is the single linkage. Considering such an algorithm, they prove its stability in terms of the

Hausdorff and Gromov-Hausdorff distances, defined as:

Definition 34 (Hausdorff distance). Given two sets X,Y and a distance function d:

dy(X,Y) := max{sup inf d(x,y),sup inf d(x,y)},
xexyGY er xeX

and

Definition 35 (Gromov-Hausdorff distance). Given two metric spaces (X,dx), (Y,dy) and two
isometric embedding f, g, such that f: (X,dx) — (M,dy) and g: (Y,dy) — (M,dy):
don(X,Y) = ifﬂgdH(f(X,dx)ag(Y,dY))-

They respectively measure: (i) the maximal distance from a set to another; and (ii) the “ef-
fort” to transform two metric spaces into an isometric one. Therefore, given a compact metric
space (Z,dz), two hierarchical clustering models are finite stable if dgg ((X,ux), (X' ux)) <
d%(X,Z) +d%(X',Z). In this sense, Carlsson and Mémoli (2010) prove that there is a compact
metric space that bounds the hierarchical clustering for the single linkage algorithm, even when

data is subject to perturbations given by the underlying probability distribution.

In order to formulate the probabilistic convergence for the single linkage, Carlsson and
Mémoli consider a hierarchical clustering model on metric measure spaces. In this sense, the
measurable space (X,dy, lx), endowed with a metric space (X,dx) and a Borel probability
measure [y on X with compact support supp(Ly ), is defined as an mm-space (measure metric
space) (GROMOV; LAFONTAINE; PANSU, 1999). The authors also define a function fx :
RT — R¥ as r+— min,cqupp(x) Mx (Bx (x, 7)), which is non-decreasing and f(X) > 0 for all » > 0.
Let Fy : Nx R™ — R™ be a function defined by (n,0) — %, Carlsson and Mémoli
assume & to be fixed and, therefore, Fx (-, &) to be bounded and decreasing, in order to prove

the following theorem:

Theorem 1. Let (Z,dz, 1uz) be an mm-space, supp(tiz) = Uges U@ for a finite index set A,
and U = {U(*)} be a collection of disjoint, compact, path-connected subsets of Z. Let (A,d,) be
the metric space arising from U and 04 := sep(A,da)/2. Let X = {x},x2,...,X,} be a collection
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of n independent random variables with distribution iz and dx be the restriction of dz to X x X.
Then, for { >0 and n € N:

Py, (don (£(X,dx), £(A,da)) > §) < Fz(n,min(8,84/2)), (3.1

with £ being the ultrametric space produced by Carlsson and Mémoli (2010)’s modified single

linkage algorithm.

Complementarily, this PhD thesis not only considers topological spaces for the proper
formulation of the statistical consistency but also proves, in Chapter 4.3.1, upper and lower
bounds for Carlsson and Mémoli’s metric consistency based on the number of connected

components produced by an hierarchical clustering algorithm.

3.5 Persistent homology

Carlsson (2009) points out four strong motivations to the employment of topological
analysis on data: (i) the production of qualitative results; (ii) the absence of theoretical justification
in adopting the metric space; (iii) they are not restricted to coordinate systems; and (iv) their
hierarchical scheme provides complementary information for data clusterings. Although the
filtration performed along the hierarchical clustering represents multiple categorical aspects
of some dataset, hence producing richer information, there are over-refined topological spaces

associated with such filtration which do not produce stable measures.

Persistent homology characterizes the variations of homology groups along such filtra-
tions, thus allowing the study of the instability in hierarchical clustering models. Therefore, if
such changes do not indefinitely diverge when data is subject to perturbations, i.e., it is stable,
then this PhD thesis considers that such a hierarchical clustering model is capable of generalizing
data, thus leading to learning. Consequently, the clusters belonging to a hierarchical model can

be chosen whenever they are stable/consistent.

Although Cohen-Steiner, Edelsbrunner and Harer (2007) and Chazal et al. (2009) report
a proof that persistence diagrams are stable in terms of the Bottleneck distance (EDELSBRUN-
NER; HARER, 2008), their consideration of a fixed topological space diverges from the problem
formulated in this thesis as its main goal is the study of perturbations in topological spaces along

the sampling of new data, thus devising stability and consistency results.

Several applications can take advantage of persistent homology and our consistency
formulation by considering, along the filtration, only the topological spaces associated with
stable homology groups, leading to consistent measures. To mention, persistent homology has
gained prominence in other scientific areas, such as in medical and material sciences, given
its capability of summarizing the geometrical forms present in complex datasets. Lawson et

al. (2019), for example, employ it to improve a prognostic predictor for prostate cancer. Such
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predictor, known as Gleason Score (FURIHATA; TAKEUCHI, 2011), takes into account the
cytomorphological features of some biopsy from which cellular shapes devise five categories
known as architectural types. Such geometrical characteristic of cells motivated the adoption

of persistent homology to produce a richer set of architectural types, allowing a more detailed
prognostic system (LAWSON et al., 2019).

On a complementary point of view,Takiyama et al. (2017) apply persistent homology
over invasive ductal carcinoma (the most common type of breast cancer) information to improve
its prediction and prognostic. Data is collected by using the Imunnohistochemestry process,
which marks the cells of a tissue whenever antibodies bind to antigens. Its evaluation is typically
made from visual inspection, being inherently subjective and thus motivating the authors to
model such data by using persistent homology, leading to the development of the Persistent
Homology Index (PHI) which devises a similar result to the one produced by some pathologist’s

visual analysis.

Finally, Kimura et al. (2018) employ persistent homology to find trigger sites in a material
that are specific regions of heterogeneity from which reactions such as fractures, corrosion, and
degradation may initiate. A persistent diagram is used to describe the topological features of iron
sinter (raw material of iron fabrication) X-ray-based measurements, in order to correlate those

features with rupture formation.

3.6 Final considerations

Data clustering theoretical frameworks, such as the ones presented in Kleinberg (2002),
Ackerman, Ben-David and Loker (2010), list a series of properties that support the study of
clustering algorithms with respect to some mild assumptions. However, some of those properties,
as described in Kleinberg (2002), are impossible to be satisfied when simultaneously taken
into account. In this sense, this PhD thesis strongly considers Carlsson and Mémoli’s stability
and consistency developments and claims that a single property is enough to support a proper

clustering model: the guarantee of the statistical consistency.

This work counts on topological spaces and persistent homology instead of metric and
ultrametric spaces, as there is no theoretical guarantee that a clustering input space is essentially
metric, and the evaluation of consistency over topological features can guarantee invariance of
additional geometric structures regarding those of metric nature. In addition, persistent homology
has gained special attention in other scientific areas given its capability to analyze complex
datasets, hence the theoretical framework proposed in this PhD thesis can also support such

studies.
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CHAPTER

THE COARSE-REFINEMENT DILEMMA

4.1 Initial considerations

The Data Clustering (DC) problem is defined on top of multiple mathematical structures
such as partitions and metric spaces, which are the most employed to characterize it. There
is no evidence that data clustering is restricted to such structures, what motivates the study of
topological features to complement the formulation of the DC problem. From this perspective,
this chapter is organized as follows: (i) Section 4.2 introduces the DC problem and a brief
demonstration of the proposed Coarse-Refinement Dilemma (CRD) for the homology group
Hy; (ii) Section 4.3 presents the generalization for CRD in Hierarchical Clustering (HC) models
and the resulted consistency and stability formulations, comprising the main contributions of
this thesis; and, finally, (ii1) Section 4.3.1 associates such consistency and stability results to the

metric consistency by Carlsson and Mémoli (2010).

4.2 Introduction of the Coarse-Refinement Dilemma

Data clustering can be roughly defined as the process of organizing data into groups
having some sort of “meaning” even in the absence of class labels, in spite of the difficulty
in characterizing instances without any previous information. In this sense, such “meaning” is
typically related with proximity, or similarity, among data points. Equivalence relations are
suitable to formalize such proximity as it is endowed with just three reasonable properties:
identity, symmetry and transitivity. Intuitively, such relations assure that: (i) a data point is
similar to itself; (i1) if a data point is similar to another, the latter is also similar to the former;
and, finally, (ii1) if two data points are similar to third one, then they are also similar with each

other.

In this sense, we specifically define data clustering as the process of organizing data

into groups such that they are contiguous with respect to an equivalence relation. Then, the
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first question that arises is if an equivalence relation guarantees contiguity when data points,
or its underlying space, are subject to mild transformations. For instance, Kleinberg (2002)
states that clustering partitions, which in our scenario are the structures defining the equivalence
relations, must be invariant when the space is subject to scalar and I'-transformations. On the
other hand, Carlsson and Mémoli (2010) demonstrate the metric stability and consistency for a
variation of the single linkage algorithm, which become invariant with respect to its associated
ultrametric spaces when data is subject to bounded perturbations and, also, with respect to its

corresponding equivalence relation.

In order to define the equivalence relations for data clustering, two issues must be
considered: (i) the underlying structure on top of which such relations are constructed, e.g.,
partitions, metric spaces, topological spaces, among others; and (i1) the level of equivalence, e.g.,
the radius of open balls when metric spaces are taken into account to formulate the DC problem.

Such levels of equivalence are defined as:

Definition 36 (Levels of equivalence). Given a set X and an equivalence relation ~ associated

with an element o of an ordered set A, ; is a level of equivalence if there is a sequence:
X/ Naogx/ ~ey C e cx/ ~g C - CX/~a.,

being o the equality equivalence relation (x ~ x and x ¢ x’ for all x,x” € X), and 0. the trivial

equivalence relation (x ~ x’ for all x,x’ € X).

For instance, partitional algorithms such as k-means and spectral clustering typically present an
inherent mechanism to optimize the level of equivalence with respect to an objective function,
e.g., in k-means algorithms, such level is given by the affine spaces determined by the centroids
and, in case of spectral clustering, it is produced by the eigenspace maximizing the similarities
among data points in average. Such spaces can induce topological spaces thus fitting in our
framework, they will not present invariance in terms of homology groups though as the maximum
number of connected components will be always fixed and no homology group of degree greater
than one can be represented.

Conversely, density and hierarchical-based clusterings depend on the choice of one or
multiple levels of equivalence, e.g., those associated with radii of open balls, which can negatively
impact the suitability of a clustering model, as shown: (i) the first issue is that over-refinement
and over-coarsening produces tautological relations, respectively, a point is only equivalent
to itself (equality) or a point belongs to the universe set (triviality); and (ii) the second, and
more specific issue, is whether continuously refined equivalence relations, i.e., relations which

continuously “approximate” equality, are adequate and thus properly represent data.

Considering a probabilistic perspective, whenever over-refined relations are assumed,
then no inference, except a guess, can be made as it will only rely on one element. For instance,

in the supervised scenario, in light of the Statistical Learning Theory (SLT), the memory function
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producing the most overfitted classification rises from such equality relation as it classifies x
as y; if and only if x = x;. On the other hand, considering the DC problem, equality relations
will produce clusters unable to represent additional data samples, thus constantly requiring the
definition of new groups. In such context, the topological framework supports the notion of
continuous approximation between refined and equality relations without imposing any metric
restriction and with such relations being determined by the neighborhoods of a topological space,

as illustrated in Figure 25.

- ~

Figure 25 — Illustration of the continuous approximation from B, (x) to x itself, resembling the production
of a memory function defined in Statistical Learning Theory (LUXBURG; SCHOLKOPF,
2011).

For instance, suppose X = {—0.1,0,0.1,0.9,1, 1.1} and consider (X, 7x) as the topologi-
cal space induced by closed balls of radius 0.1 with a distance function d := |x — x| for x,x’ € X,
from which the following is derived tx = {{—0.1,0,0.1},{0.9,1,1.1}}. If such radius is reduced
by an infinitesimal value €, then tx = {{—0.1},{1},{0.1},{0.9},{1},{1.1}} is obtained, thus
resulting in an equality relation defined by the contiguity of the sets in the topology.

However, if points are acquired such that x; = [-0.1,—0.14+¢€) orx; = [0 —¢€,0), x, =
(0,0+¢€] or xp =[0.1 —¢,0.1), x3 = (0.9,09+¢] orx3 =[1 —¢,1) and x4 = (1,1 + €] or
x4 =[1.1 —g,1.1), then 7x = {{—0.1,0,0.1},{0.9,1,1.1}} is produced, demonstrating again
that there is a relation between the refinement of the topological space and the support of the
associated probability measure from which samples are acquired. Then, it is assumed that there
are data points in X, independent and identically acquired from a measurable topological space
(Z,7z) contained in a larger space (€, 1Tq) (typically the usual topological space R¢), with
an unknown structure but having some associated probability distribution P(Z) from which
some data clustering algorithm attempts to unveil (Z, 7). In this sense, the goal of a clustering

algorithm is to fetch the inherent relations of neighborhoods belonging to (Z,z), which are
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also of unknown nature. The produced clustering model endows a collection of neighborhoods,
which is referred in this PhD thesis to as a neighborhood topology N (X) such that:

Definition 37 (Neighborhood topology). Given a set X and a neighborhood map 1 : x — N (x),
with A/ (x) being an open neighborhood of x, a neighborhood topology is defined as N (X) :=

Uyex NV (x), being A the closure of the topology 4.

From such topology, it is expected that the associated topological space adequately repre-
sents (Z, Tz), i.e., it presents some invariance with respect to (Z, 7z), being homeomorphisms or

isomorphisms among homology groups. Therefore, the Data Clustering problem is defined as:

Definition 38 (Data Clustering problem). The Data Clustering problem consists in finding, given
sampled instances x € X from an unknown topological space (Z,7z) C (Q, 7o) endowed with
a Borel o-algebra, and with (X, tx) C (Z,1z), a neighborhood topology N (X) of (X, N (X))
which adequately represents (Z, 7). In this sense, such neighborhood topology N (X) should
approximate topological features of the unknown topology 7z. Random variables are independent
and identically sampled from some unknown probability distribution which is supported on Z.

Clusters are obtained from an equivalence relation derived from N (X).

For instance, suppose the topological space (Z, 1) formed on the usual topology R,
such that 77 = {(—1,1),(2,3)}. Such topological space is assumed to endow a Borel 5-algebra,
thus being Borel-measurable with support supp, (1) ={z€Z|ze N, € {(-1,1),(2,3)} =
W(N;) > 0}, i.e., the measure lies on the neighborhoods around every z € Z. Now suppose a
uniform probability distribution P(Z) defined over the topological space (Z, Tz), such that every
open set (a,b) C Tz has probability % = l%. Then take a set X = {—0.5,—-0.4,2.5}
sampled from Z and a neighborhood topology induced from open balls By j(x) = {x¥' € X |
d(x,x") < 0.1}, such that N'(X) = {[-0.6,—0.3],[2.4,2.6] }. Clearly, (Z,1z) and (X, N (X)) are
homeomorphic and the probability of a new sample producing a non-homeomorphic space
is u(tz/N(X)) = p(tz) —u(N(X)) = (1.3+0.4+0.4 +0.4)/3 = 0.83. In fact, as N'(X) is
too refined when comparing to (Z,1z), a new sample has a high probability to form an non-
homeomorphic topological space. Once the underlying topological space and the probability
distribution are unknown, no such analysis can be made through data points. Even if another
sample X' is acquired from Z, some analysis comparing N (X) and A/ (X’) cannot be explicitly
performed as P(Z) is unknown. In spite of that, homology allows the study of topological
structures, such as connected components and holes, disregarding the presence of (Z, 77) and
P(Z), such as made in Topological Data Analysis (TDA). In this sense, a data clustering model
can be evaluated by verifying how the associated homology behaves when data is subject to
perturbations. Depending on the guarantees of stability, the consistency of the homology group

can be assured.

Then, over-refined and over-coarsed topological spaces are defined as:
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Definition 39 (Over-refined topological spaces). Given some perturbation X’ of a dataset X, the
measurable topological space (X, N (X)) is over-refined with respect to a topological equivalence
relation ~op if P(X) C P(Z) = (X, 7Tx) %1op (X', Tx) almost certainly, i.e, if 1) produces
topological spaces associated with a finer probability measure P(X) than P(Z), such that (X, tx)

is unlike to preserve its topological features when data is subject to perturbations.

Remark 9. Topological equivalence relations refer to any relation that represents an invariance
over a topological structure such as: homeomorphisms, homotopy equivalences (HATCHER,

2000), and isomorphisms between homology groups.

Definition 40 (Over-coarsed topological spaces). Given some perturbation X’ of a dataset X with
d dimensions and the S¢ sphere, the measurable topological space (X, (X)) is over-coarsed
with respect to a topological equivalence relation ~rop if P(Z) C P(X) = (X, Tx) ~Top
(X', Tx') ~Top S¢ almost certainly, i.e, if the neighborhood map 1 produces topological spaces
associated with a probability measure P(X) coarser than P(Z), such that (X, tx) presents the
same topological features to the sphere S.

In this sense, it is possible, for instance, to study the impact of over-refinements in
the 0-dimensional homology group Hy, associated with the number of connected components.
Whether H is not isomorphic for both A'(X) and N (X’), then such neighborhood topologies
will not form homeomorphic topological spaces. Therefore, if the neighborhood topology N (X)
is refined enough to produce singletons, then, depending on how perturbations are bounded,
the 0-dimensional homology group Hy of AV (X) will be only isomorphic to Hy of NV (X') if
x| = x|

Theorem 2. Two over-refined topologies N'(X) and N (X’), being X’ perturbed by substituting
x; with x} but following the same data distribution, produce isomorphic 0-dimensional homology

groups if and only if [X| = [X].

Proof 1. Assume that, given a neighborhood topology N (X), the space (Q, Tq) (we remind the
reader that, typically, (Q, g ) is a closed cube in R”) is endowed with a probability measure P (in
the Borel o-algebra of (2, 7)) supported in (Z,7z) C (Q, 7o) and such that each corresponding
cluster has measure < €. Consider the presence of some sampled perturbation x' = x+ &, in
which 9 is an element of a measurable set D endowed with a probability function. One issue that
motivated the dilemma on over-coarsed versus over-refined topologies (in the same sense of the
Bias-Variance dilemma) in this thesis is that whenever an element in any C € N (X) becomes
unrelated with any neighborhood in A (X), the topology changes as well as its homology group
Hp. Then, we formulate the probability of the topology being “cut” (or divided) as:

P((x+D) =Ucenx)C) = Plx+D)

P (Ucenn) (€N (x+D))) (.1
= 1—=Ycen(x)P(Clx+D).
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Note that, if € — 0, i.e., the model tends to over-refinement, and some measure pz(D) does
not depend on &, then P(C|x+ D) — 0 and P(x ¢ C) — 1 for every C € N (X). In this case, the
topological space determined by N (X’) is not homeomorphic to the one determined by N (X)
nor its homology group Ho[(X',N'(X"))] is isomorphic to Hy[(X, N (X))]. On the other hand,
if the elements C € N/ (X) cover x+ D, then P(x ¢ C) = 0 for every C € N'(X) and, therefore,
Ho[(X", N'(X))] = Ho[(X,N'(X))].

Conversely, an excessive coarsening on the neighborhood topology leads to a repre-
sentation problem as some details will vanish. For example, as the radius adopted in the data
clustering increases, the hole of the 2-dimensional torus disappears (Figure 2 in Chapter 1).
Therefore, there is a dilemma in choosing the adequate refinement for a neighborhood topology
in the data clustering problem in order to guarantee the model stability while also ensuring
data representability. As in Carlsson (2009), we consider that data clustering presents richer
information whenever a hierarchical structure is considered, besides we claim that the lower
hierarchies are unable to generalize data. As a consequence, this PhD thesis takes persistent

homology to support the formulation of a generalization bound for the DC and HC problems.

4.3 Coarse-Refinement Dilemma and generalization

bounds for data clustering

From a topological perspective, a Hierarchical Clustering algorithm performs a sequence
of operations to find, from a pre-defined neighborhood map, the corresponding filtration of

topological spaces such that:
F(X,1) = (X, Ney(X)) S (X, Ney (X) € -+ € (X, N (X))

with Ny, (X) := Uysex N, (x), and then it associates F(X,n) with a pre-defined equivalence

relation.

For instance, a single linkage algorithm adopts a distance function as the pre-defined
neighborhood map to produce a metric space. A filtration is recursively defined such that clusters
are merged whenever they present the minimum distance among their points, i.e., given a
distance function d and some collection C of clusters, if two clusters C;,C, € C are such that
(C1,G2) := argming, ¢,ccd(c,c’) for all ¢ € Cy and ¢’ € G, they are merged, forming another
hierarchical level. In this context, the equivalence relation arises from the contiguity of the

elements belonging to clusters.

However, among all spaces in the filtration, there are those which will not guarantee
consistency for topological features of a model, as they form over-refined partitions. In this sense,
we claim that it is reasonable to define as an adequate HC model the one whose topological
features do not change even when data is subject to perturbations. So, the Hierarchical Clustering

problem is defined as:
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Definition 41 (Hierarchical Clustering problem). The Hierarchical Clustering problem consists
in finding, for each i € {1,...,k} in which k is a refinement index (e.g. such as the radius index
for a metric space), some filtration of topological spaces that preserves their topological features

when data is subject to perturbations.

Assuming that such perturbed dataset X’ is produced by the substitution of an element
in X, such that X’ = {xy,...,x,_1,x},xi41,...,x,} and there is some neighborhood topology
N (X)), it is not possible to identify whether (X, V(X)) C (X, N (X)) or (X,N (X)) C (X,N (X))
such that their relations are not explicitly defined. On the other hand, if the inclusion of new
samples is considered as a perturbation such that X" = {x1,...,x,,x],...,x),}, then (X,N'(X)) C
(X1, N (X)) C (X", N(X")) C (X", N(X™)) forall 0 < g <r<m.

Therefore, with X; being a topological space associated with a neighborhood topology
N (X), and X™ being the inclusion of m new data samples, it is possible to construct a bifiltration
F(X,X/X™,n) as follows:
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with inclusions (homomorphisms) 1z := Xl.l C X;I and 1y := X'~1 C X!, and such that, for every

i, 7, X! and X9 with ¢ > 1, the following diagram is commutative:

1
‘)C}qi>sz

llX llx

X} 2 Xl

Persistent homology groups fi;j tHy (X)) — HP(X;) and th’q : Hy(X!) — H,(X]") can be then
defined considering the tame functions f : (X}) > (—oo,i] and g : (X]) = (—eo,1] as well as the
study of consistency and stability of HC models can be made from the critical coordinates of the
bifiltration F(X,X /X", 7).

For instance, consider the 0-dimensional homology group when a neighborhood topology
N;(X) is formed from open balls and let AV;(X™) be a neighborhood topology built up after m
new data, such that the radius associated to each collection of open balls i is r;. If the diameter

of N;(X™) is sufficiently greater than that of V;(X), a new instance x;, is likely to form another



78 Chapter 4. The Coarse-Refinement Dilemma

cluster (with probability close to one) given P(N;(X™)/Ni(X)) = #/\%. This implies
that rank{im(ig’i o gg’m)} = rank{im(ig’i)} + m, where g is the map induced on the homology

after the data inclusions, being related to the tame function g.

Hence, fg’i(Hp(Xi)) will never adequately represent i'?,’i<Hp(Xim)) and the analyzed
topological features will vary along data insertions. In order to fg”(H »(X;)) properly represent
fg’i(Hp(é\fim)), gg’m must likely be an isomorphism. Therefore, a DC model is consistent from

the following definition:

Definition 42 (DC p-homology consistence). A DC model, associated with the neighborhood
topology N;(X), is p-homology consistent if gg’q(H (X)) is most likely an isomorphism, for all

g=1,...,mand m — oo,

In addition, Hierarchical Clustering requires the study of a filtration along the domain of
the tame function f, then a set of morphisms gg’m is applied over t?,’k (Hp(Xy)), fork=1i,...,j,to
verify isomorphisms among them. In the ideal scenario, all gg’m are isomorphisms fork=1,..., j,
but, in Hierarchical Clustering, the indices of filtrations are previously chosen thus restricting the
set of morphisms. Therefore, critical points lying on any interval [k — 1,k) will be disregarded
causing a resolution problem (in terms of dom(f)) that is inherent of such analysis. Assuming

this limited set of morphisms gg’m, the behavior of f, p’ (Hp (X)) can be study as follows:

Lemma 3. Given the persistences £ and g of a bifiltration, if g)" (H,,(X;)) and gy (H, (X))
are isomorphisms then £ (H, (X)) 2 £ (H,(Xo)) and £/ (H, (X)) = £5/ (H,(X;)).

Proof 2. The proof follows from the commutativeness of the bifiltration diagram.

Considering Lemma 3, if the isomorphism is almost certain for g?,’q(Hp(X,-)) and
gg’q(Hp(Xj)) given ¢ = 1,...,m and m — oo, then, £,/ (H,(X")) = £,/ (H,(X:)) is likely to
occur for any inserted data, i.e., ff;j (H,(&;)) consistently represents fi;j (H,(X")) along the

values of i, j. In sequence, we define a Hierarchical Cluster p-homology consistence as:

Definition 43 (HC p-homology consistence). A HC model, associated with the filtration F (X, 1),
is p-homology consistent if for all i < k < j, Ny is p—homology consistent (Definition 42).

In this context, by verifying if gg’m (H,(4;)) is non-isomorphic not only allows to locally
study X;, but also to represent f; p” as t — oo such as shown next:

Theorem 4. Given the associated simplicial complexes built up from &;, if g%m (H,(4;)) is not
an isomorphism then £ (H,(X;)) 2 £ (H, (X)) for t — oo,

Proof 3. Given simplicial complexes are considered, then, for an arbitrary unknown compact
topological space (Z,1z), H,[(Z,N:(Z))] = Z for p = 0 and H,[(Z,N;(Z2))] = 0
for p > 0 and ¢t — . Therefore, if gg’m(Hp(Xi)) is not an isomorphism, as
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dom(fy (H,(X;))) % dom(£5 (H,(X!™))), i.e., the homology classes of dom(f;' (H,(X;))) which
die, or are created after i, are different when compared to ij;t (Hp(X™)), then fé;’ (Hp(X;)) 2
£/ (H,(X™)) (as illustrated in Figure 26).

Corollary 1. If £ (H,(X;)) 2 £5/ (H, (X)), there is at least one critical point k in interval [i,?)
for which dom(tf,’t (Hp (X)) = dom(tJ;’l(H »(X]")) as t — oo (as illustrated in Figure 26).

17722 -0
—_——
Voo
0,m . 73 5 0,m
gy L°— 17 g, L — 7
g L — 77 g™ 00
—_———
£7:2° -7

T7 20

Figure 26 — Illustration of the changes in fi}t domain caused by an non-isomorphic gg’m applied over
H,(X;) (Adapted from Carlsson and Zomorodian (2009)).

Then, as t — oo, the p-th persistence homology f3 (Hp(&;)) and £ (Hp(X")) will be
equivalent if g?;m (H,(X;)) is an isomorphism. Although, even if gg’m (Hp(A;)) is isomorphic,
there is no guarantee that a critical point k € [i,¢) will produce an isomorphism gg’m (Hp(Xg)).
An adequate representation is then assured when enough points in [i, j) are chosen to characterize

all possible critical points in the filtration.

The morphism gg’m devises the changes along the levels of some hierarchical clustering
model (given by the p-th persistent homology f; ; (H,(X;))), when the HC model is subject to
data insertions. Then, a probability measure P, endowed with a measure (i, built up from the
produced p-th homology groups, is required to study the probability for which gg’m (Hp(X;)) is
isomorphic. The p-th Betti number can be considered such measure:

Theorem S. The p-th Betti number is a measure over a ¢-algebra formed by a collection of all

p-th homology groups associated with simplicial complexes.
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Proof 4. Let (Z,77) be a topological space and recover the definition of the p-th Betti num-
ber, we have B, := rank{H,[(Z,t7)]} = rank{im(d,)/ker(d,)}. Considering p-dimensional
simplicial complexes, for a limited natural number b, im(H,[(Z, tz)]) is a free abelian group
ZP and, therefore, rank{H,[(Z,tz)]} = b. Hence, there is a collection H = {0,Z",7Z>,...},
such that 3, is a group transformation 8, : (*,®) — (N,+) where @ and + are the direct and
the usual sum respectively, and 3, is a bijective map. We can construct a c—algebra closed
under a countable disjoint union (¢(#),X) from the one-by-one mapping ¢ : H — A, with
A ={Ap,,Apy,Abs, .- |Ap; NAp, = @ Vi # j} such that, for a set of indices I C N, there is an
isomorphism between @;.; Z" and | |, £Ap, (hence a natural isomorphism for F : (H,®) —
(A,L)). From X, we have the following measure function:

.u(Abi €X)=b;,

which respects:

e Non-negativity as b; > 0;
e Null-empty set with b; = 0 (induced by im(d,+1C,+1)/ker(d,Cp) = 2);

o Countable-additivity as i (| l;c;Ap,) = Licr bi-

It is worth to mention that these properties are associated one-by-one with the rank of the abelian

group (H,®) (p-th Betti number) since:
o 1(Ay) = rank(Z"};
o W(Llic/Ap,) = rank{@;e; 2"} = Lic; bi-

Therefore, B,[(X, Tx)] is a measure endowed of a disjoint set c-algebra from which a probability
measure Py (X) can be defined with expected value Ex (8,(X)) = Li=1,.... Bp(Xi) Pp, (Xk)-

For instance, suppose four neighborhood topologies Xil ,with/=0,1,...,3, forming a
sequence (H, (X))o 3 = (Z°,7*,7°,77) associated with the filtration F(X,X™, 1) and the
collection H = {H,(X/)}, from which it is possible to define a measurable space S, := (A, 24)
endowed with a measure u given A = {A3,A4,As5,As}. Such space supports, then, a probability
measure of ¢ which boundly diverges within an open ball with radius € whenever new data
are sampled, i.e., P(|u(X)) — u(Xx)| < €). Therefore, in this example, the probability of p
diverging (i) by one is 1/3, and (ii) by two is 2/3.

In this sense, topological features can be measured by p-th Betti numbers, employed
to compare topological spaces A; built up from a Data Clustering or Hierarchical Clustering
algorithm. Let us define the p-th Betti measure as a map from some topological filtration,

induced by the tame function g (corresponding to data insertions), to a filtration of c-algebras
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that devises a stochastic process B,(X"|X;, x|, x5, . ..,x),) with x} representing data insertions.
As E[B,(X/")] = Bp(&;) is required to guarantee that a DC or HC model is consistent, B, (/")
should behave as a martingale (VILLE, 1939), from which its difference is defined as:

E [ﬁp(sz> - Bp(Ximil)] =0.

From Equation 4.2, the expectation of arising and vanishing p-th degree homology classes

produced by the inclusion of m new data points is:

E [Bo(X") = Bp (X" 1)+ -+ Bp(X') — Bp(X;)] =0, (4.2)

implying:
E[Bp (") = Bp(X)] = 0. (4.3)

Hence, the convergence of a generalization measure is defined as:

Definition 44 (p-homology generalization). Given neighborhood topologies A/ (X) and NV (X™),

a p-homology generalization is given whenever:

Gp(Xi) = |Bp(X]") = Bp(i)| (4.4)

tends to zero as m — oo.

In this sense, adopting Azuma (1967) Inequality (Inequality C.1 in C), the lemma of the DC

p-homology convergence (the proof is in C) is given by:

Lemma 6 (DC p-homology convergence). Let X and X" be two datasets with i.i.d. samples
such that X" = X U {x],...,x),}, &; be the neighborhood topological space built up from a
points cloud and f3,(-) be the p-th Betti number calculated upon the neighborhood topologies,
the probability that the average absolute difference Y./ | 1By (X1) — B,(X;)| is bounded by €

exponentially decays with respect to:
m . —m2e?
P Z Bp(X]) = Bp(Xi)| >me | <2exp | scm——5— | » 4.5)
q=1 2Y4=1%p

given ¢g , = |B,(X7) — B, (X;)| is bounded.

Then, whenever the difference between the number of p-th homology classes of Xl.q and
AX; asymptotically increases faster than m, there is no guarantee that, in average, ﬂp(éfl-q) approx-

imates f3,(;). Conversely, if |B,(X) — B,(X;)| is asymptotically smaller than m, |B,(X™) —

B,(X;i)| — 0, and, therefore, go () is likely to produce an isomorphism.

Remark 10. For instance, considering the case of Hy, if each new sample increases the number
of connected components by one, i.e., if an over-refinement occurs, the terms ¢, , grow as
follows:

- 2 - 2 1
Yo=Y 4= gmlm+1)(2m+1),
q=1 q=1
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consequently, in this case, Inequality 4.5 diverges as follows:

g=1

P (i 1Bp(X1) — Bp(Xy)| > WL8> <2exp (O(m™")),

hence, there is no guarantee that g ,,(;) is isomorphic.

Corollary 2. The generalization can not be assured whenever:

Q (Cq,p) =m,

and convergence of the right-hand term in Inequality 4.5 occurs whenever:

O (cqp) <+/m.

Therefore, whenever O (cq.p) < /m, gom(X;) is likely to produce an isomorphism.
In this sense, a maximum value ¢, , bounded as described in Corollary 2 also guarantees

consistency ! then:

Corollary 3. Let ¢, , = max,—1 . u(cq, p) and m be the number of new samples added to the
dataset X:

¢, < &y/m/2In2. (4.6)

Such criterion can be used to select which subspace in a filtration will be considered for a

clustering model, avoiding non-stable and non-consistent partitions.

The result of Lemma 6 can, therefore, be extended for the HC problem. Remember that
every simplicial complex of X} and Xiq in the filtrations, with r,q = 1,...,m, must be associated
with the same pre-image of the tame function f. In this sense, the convergence of HC models in

terms of p-th Betti numbers is held by respecting the following theorem:

Theorem 7 (HC p-homology convergence). Let im(f)~! be the pre-image of the tame function
f associated with the filtrations Xl-q c...cxXx ;’, and a bijective function 4 : im(f )’1 — N which
maps the points of im( f )_1 onto the index of such filtrations. The DC p-homology convergence

for each one of those points is given by:

P ( sup Z ]ﬁp(X]f([)) —ﬁp(é\?h(t))] > me) —0asm — oo,
teim(f)~1g=1

1

.....

is sparse whenever DC p-th consistence is guaranteed, something that comprises the future work.
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with:

L —me?
P( sup 1 Z |ﬁp(X£1(t)) — Bp (X)) > ms) < 2Mexp ( ¥ ) ,
q=1

teim(f)~ D

where M is the cardinality of the pre-image im(f) ! of the tame function f, and &, = max;cg ¢, ;.

Corollary 4. Considering Theorem 7, let us define @p’, =Y |ﬁP(Xl?(z)) — Bp(Xp(s))| and

take § = P (supteim( f)—lmpﬂf < ms), then the HC p-homology convergence is guaranteed

whenever:
6%, InM

m

— 0 as m —» oo, 4.7

Corollary 5. If ¢, is constant, the convergence of Equation 4.7 is equivalent to:

InM
—— — 0 as m — oo,
m

Remark 11. The parameter ¢, can be stated as constant, for example, such as in partitional
clustering when using K-means (STEINHAUS, 1956; MACQUEEN, 1967), K-medoids (KAUF-
MAN; ROUSSEEUW, 1987) and Self-Organizing Maps (KOHONEN, 1982) which rely on
optimization procedures, typically based on some distance from data points and pre-determined
centroids. Considering an i.i.d. data distribution and enough samples, those centroids will never
sufficiently vary as new data are acquired, hence producing the same number of connected
components. Although, as the number of centroids increases w.r.t. the new samples acquired, it
is likely that those algorithms identify every point as a single cluster, and the DC 0-homology

consistence is not guaranteed.

Considering the Hy homology group, the generalization is guaranteed for every critical
point greater than the first that ensures the DC 0-homology consistence, as proved in the following

lemma:

Lemma 8. Assuming the Hy homology group, we have that for every critical point i < j which
implies in fo(X7) > ﬁo(qu), if A is DC 0-homology consistent then X’; is also DC 0-homology

consistent.

Proof 5. As Xiq is DC 0-homology consistent, following Lemma 6, we have that
maxg—1,__m(|Bp(X) — Bp(X;)|) must be bounded and, therefore, B,(X) and B,(X;) are also
bounded. In this sense, as B,(X), B,(X;) >0, BP(XJ(.]) < Bp(X7) and B,(X;) < Bp(X;), then
maxq:17,,.7m(\ﬁp(Xj.q) — Bp(&X})|) < o implies that X; is stable, hence it is DC 0-homology

consistent.

Following these consistency results, we conclude that Kleinberg (2002) richness axiom
must be relaxed as it considers partitions which do not guarantee the p-homology consistence.
Section 3.4 discusses how our results are related with Carlsson and Mémoli (2010)’s consistency

for their adapted single linkage method.
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4.3.0.1 The Topological Concept Drift

Considering the scenario in which the over-refined partitions are disregarded, i.e., all
clusters will be consistent/stable as long as my probability distribution is i.i.d., we can assume a
variation occurring in the topology associated with the clusters is generated by an anomaly in the
system which is being measured, i.e, in the unknown underlying topological space or probability

distribution. We define these anomalies as Topological Concept Drifts (TCD) such that:

Definition 45 (Topological Concept Drifts). Given a filtration F(X,n) of p-th homology con-
sistent topological spaces X; built on top of some dataset X acquired by an i.i.d. probability
distribution, an Topological Concept Drift occurs whenever for a new data acquisition X’,
H,(X;) % H,(X]) for one or more index i.

In this sense, it is possible to measure when a topological change occurs given anomalous
variations in the underlying and unknown topology. For instance, the filtration parameters (such
as radius) which lead to inconsistency in A; and X/ are disregarded in the clustering construction
on top of both X and X’. Then, X; and X/ are compared one by one for all i in order to detect the
TCD. Note that the filtration parameters can be removed by the criterion presented in Equation 4.6

for obtaining the p-th homology consistent clusters.

4.3.1 An ultrametric analysis for the Coarse-Refinement Dilemma

Recording the consistency proof by Carlsson and Mémoli (2010), discussed in Section 3.4,
Carlsson and Mémoli assume a function fy : R™ — R as r = min,cq,ppx)tx (Bx (x,7)), which
is non-decreasing and f(X) > 0 for all r > 0, and another function Fy : N x Rt — R be defined
by (m,d) — % in order to prove the consistency for their modified version of the single

linkage algorithm.

In this sense, fx defines the finest measure for a given radius r. For instance, suppose
ri < rj such that r; and r; are associated with the same partition that is originally formed by r; and,
therefore, fx(r;) = fx(r;j) = ux(Bx(x;,r)). On the other hand, Fx characterizes the exponential
decay in terms of the number of elements and the radius adopted to build up some clustering.
In order to prove consistency, Carlsson and Mémoli fix a radius 6 to bound Fx and avoid its
increasing. However, as By (x,r) reduces, tx (Bx(x,r)) tends to be uniform as Bx (x, r) induces

the trivial topology and, therefore, fx (&) = 1/m for an infinitesimal epsilon.

Given fBy(Xs), i.e., the number of connected components in the clustering associated
with the radius 8, we prove that if By(X)In By(Xs) reduces w.r.t. m, then Carlsson and Mémoli
(2010)’s consistency is guaranteed. On the other hand, if the 0-dimensional homology group

increases, thus Inequality 3.1 does not converge to zero.

Theorem 9. If BO(XM):; Bo(Xs/4)

is not guaranteed and, given a measurable topological space X, with B(X,) C B*(X,r), being

diverges as m — oo, Carlsson and Mémoli (2010)’s consistency
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)2
B*(X,r) = argming, (. ) xequpp(x) bx (Bx (x, 7)), if BolXr)” converges then Carlsson and Mémoli

m
(2010)’s consistency holds.

Proof 6. At the first step of the proof for Theorem 1, Carlsson and Mémoli (2010) study the
probabilistic convergence, in terms of the Hausdorff distance, between a restricted mm-space
Smm(X) = (X,dx, ux) and the support of py in form:

Py, (dpg (X, supp(ix)) > 8) < Fx(n,§).
On a next formulation, they find that:
Py, (diy (X, supp(pix)) > 8) < Ne "™x(3/%),

with N being equals to the cardinality of the maximal & /4-packing of supp(ux). A 8-packing is
defined as:

Definition 46. Let (901, dgy) be a metric space and M C 9. {M,..., M, } is an §-packing of
Mif L, B(M,;,8) = @.

Therefore, the topological space induced by the space (91, dsyy) is a Hausdorff space and its
cardinality is given by its number of connected components o(X’s4), implying that Carlsson
and Mémoli (2010)’s consistency implicitly considers the number of 0-dimensional homology
classes in its formulation. Then, let £(-,-) be defined as the single linkage function, whenever
the induced neighborhood topology is over-refined, there is no guarantee that Inequality 3.1 will

converge since:

Py, (don (&(X,dx), £(A,d4)) > §) < Pu, (diy(X,supp(ux)) > ¢)),

as proved in Carlsson and Mémoli (2010). More precisely, as 1/ fx(06/4) is a superior bound for

N, then:
ﬁo(X5/4)1nﬁo(X3/4)< InN

m ~ mfx(6/4)
so the divergence of Inequality 6 occurs whenever:
Bo(Xs4) In Bo(Xs/4)
—> 00 as m — oo,
m

Hence, if the number of connected components (0-dimensional homology classes) increases
w.r.t. the number of data points m, there is no convergence guarantee for Carlsson and Mémoli
(2010)’s consistency, i.e., if the clustering model is not DC 0-homology consistent (Definition 42),
then Carlsson and Mémoli (2010)’s consistency is not guaranteed. In order to prove the upper
bound for Carlsson and Mémoli (2010)’s consistency, we apply Taylor’s Theorem in In N resulting

in:
InN N 1

nfx (8/4) = mfx(8/4)  mfx(6/4)’
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As there is a measurable topological space X, with B(X,) C B*(X,r), being B*(X,r) =

argming, (. »yxesupp(x) Hx (Bx (x, 7)), then:

[30(?02 > N
m  ~ mfx(6/4)

implies

N X)) 1 Bo(E) = Bo(Xy)
mfx(86/4) — m mfx(6/4) — m '
Bo(X,)

Therefore, if there is some B(X,) C B*(X, r) assuring the convergence of ==/, Carlsson and

Mémoli (2010)’s consistency is guaranteed, i.e., if the DC 0-homology convergence (Lf’)z <
%’2’ — 0 as m — o in Inequality 4.6) is guaranteed, then Carlsson and Mémoli (2010)’s consistency
holds. Conversely, if Carlsson and Mémoli (2010)’s consistency diverges, DC 0-homology
convergence does not hold. Following the Lemma 8, as the considered mathematical object is the
ultrametric space, those consistencies are ensured for all radius > § /4 that were determined by
the single linkage algorithm. In addition, as Carlsson and Mémoli (2010)’s consistency does not
hold in over-refined metric spaces, then the Hy homology group of its induced topology will not

be DC 0-homology consistent.

4.4 Final considerations

The generalization property in the context of data clustering is here defined as the
invariance in terms of topological features, what guarantees the scale-invariance and consistency
formulated by (KLEINBERG, 2002). For 0-dimensional homology groups, such property is
guaranteed whenever the associated topological spaces are coarse enough, w.r.t. the support of
the unknown underlying topological space (Z,7z), to not produce new clusters as new data are
included. On the other hand, if such topological spaces are excessively coarse, then the clustering

model will simply correspond to the universe set.

As the underlying topological space (Z, 7z) is unknown, it is only possible to evaluate
such clustering model with respect to its reconfiguration after new data samplings. Taking this
into account, the next chapter will provide experimental studies about how those models change
whenever new data are sampled from the same distribution, as well as a concept drift analysis

based on our consistency results.
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CHAPTER

EXPERIMENTS AND RESULTS

5.1 Initial Considerations

The choice of an adequate clustering model depends on a trade-off between p-homology
consistence and the detailing of topological features devised from the refinement (or coarsening)
of the neighborhood topologies in the Data Clustering (DC) or Hierarchical Clustering (HC)
model, i.e., the Coarse-Refinement Dilemma (CRD) discussed in the previous chapter. If p-th
homology classes lie on a stable filtration interval with respect to data insertions, then they
represent well the topology of data points as it persists along the data sampling. On the other
hand, whenever such classes change with respect to those perturbations, they are not p-homology

consistent so they should be disregarded.

Supposing the p-homology consistence of topological spaces built on top of i.i.d. sampled
data points (with guaranteed statistical representability), as new data are sampled further changes
in its associated p-th homology groups indicate the presence of some new topological feature,
i.e., a Topological Concept-Drift (TCD). In this scenario, we describe and present, along this
chapter, experimental results to corroborate the CRD and TCD. This chapter is organized as
follows: (i) experimental setup and methods discussing the tools and frameworks employed in
our experiments; (ii) experiments performed on toy scenarios that include synthetic datasets to
study the CRD and the TCD; (iii) dynamical systems attractors were considered in an attempt to
analyze the clustering of data points sampled from Lorenz, Rossler and Mackey-Glass systems;
and, lastly, (iv) we considered the TCD in a real-world problem featuring document semantics
along time, in terms of 0-th homology groups. Such datasets were chosen given they present a
variety of topological characteristics regarding the 0 and 1-dimensional homology groups, except
for the document-related one from which we did not have any previous information about the

underlying topological space.
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5.2 Experimental setup and methods

The experimental study of this PhD thesis mainly relies on two aspects: the analysis of
CRD and the study of TCD with respect to 0-th homology groups. Given the distinct nature
of the datasets employed in such aspects, different experimental approaches are required. The
synthetic datasets corresponding to the Torus, Crescent Moon, and the attractors are evaluated in
terms of their O-th and 1-th homology groups, requiring techniques for the simplicial complex
construction. The 0-th and 1-th homology groups were selected as follows: (i) the required
allocated memory increases exponentially with the degree of the homology group, and, (ii) the
considered groups already contain relevant information about such datasets. Computational
limitations also determined two different strategies adopted to build up the simplicial complexes
along each dataset given its corresponding sample size and dimension. For instance, the Vietoris-
Rips (VIETORIS, 1927) complex were employed on the Torus while the Lazy Witness (SILVA;
CARLSSON, 2004) on the remaining datasets.
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Figure 27 — Construction of a simplicial complex using the Vietori-Rips technique (Adapted from Carlsson
(2009)).

The Vietoris-Rips complex is an abstract simplicial complex defined from a metric space
given open balls with radius r such that the simplices are formed whenever the distance of
its vertices is less then 2r, i.e., open balls around them intersect themselves as illustrated in
Figure 27. Such algorithm presents exponential asymptotic complexity and requires extensive
computational resources depending on the dataset size. In this sense, Lazy Witness reduces
the asymptotic complexity in the construction of simplicial complexes by setting up a subset
of points, named as landmarks, over which the witness complex is formed. Given a set X of
data samples, a set L of landmarks, and some radius r, as illustrated in Figure 28, a simplex
A = [vivy...v] is defined in the witness complex whenever there is a point w € X /L such that

A C B(w,r), i.e., the simplex is contained in the open ball with radius r around w. Hence, the



5.2. Experimental setup and methods 89

asymptotic complexity of the Lazy Witness algorithm is derived from the number of landmarks

and not from the dataset size.

—+Witness / A

* Landmark :/ v 7

g +/+ | +/

Figure 28 — Construction of a simplicial complex using the witness complex technique (Adapted
from Silva and Carlsson (2004))

In order to provide a visualization of the persistence among such built-in simplicial
complexes, Barcode plots (CARLSSON, 2009) were adopted. As illustrated in Figure 46 of
Appendix E, a Barcode plot is constructed on top of a bidimensional space in which the vertical
axis represents each homology class produced along a filtration whose indices are mapped into the
horizontal axis. Such filtration indices correspond to the radius of open balls employed by either
the Vietoris-Rips or the Lazy Witness algorithm (VIETORIS, 1927; SILVA; CARLSSON, 2004).
From such space, a barcode is horizontally drawn along the interval in which the corresponding
homology class persists, thus depicting where it appears and vanishes. Furthermore, heatmaps,
formed by a space (r,m, ;) (remind G, (X;) := [B,(X") — B, (X})| from Definition 44), were
adopted in order to show how p-th Betti measures diverge from &, whenever m new data
elements are included, having r as the radius of all employed open balls, m as the number of

included data, and 3, as the p-th Betti measures calculated from the simplicial complexes.

On the other hand, datasets associated with TCD were studied regarding only O-th
homology groups, i.e., their connected components. Therefore, the DBSCAN algorithm was
adopted in order to provide noise filtering while clustering as datasets might present undesirable
artifacts. Such algorithm regards the density of an open ball B(-,r) around some data point in
order to merge it to another group. Formally, given such open ball and two points ¢; € C; and
cj € Cj belonging to clusters C; and C}, if ¢;,cj € B(c;,r) (or conversely c;,cj € B(cj,r)) and
|B(ci,r)| > p (or B(cj,r) > p), with a pre-defined p, then C; and C; are merged.

In this sense, a tridimensional filtration, associated with the inclusions, points den-

sity, and radius, is required in order to analyze how 0-th homology groups change along the

considered periods. Hence, such tridimensional filtration was constructed at each period T
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disregarding the parameters p? and r* which had produced inconsistent homology classes (with
respect to Equation 4.4), forming the data space (p=,r~,Go(X,= ,~)), with a~ being the set
of parameters that produces consistent homology classes disregarding those associated with
over-coarsening, i.e., when fBy(X)*) = 1 for all m. Therefore, taking into account two periods 7;
and Tj, |Bo(X 0 2 T;) — Bo(X o0 1 T;)| calculates the divergence in the O-th homology groups
between period 7; and 7 (i.e., what we refer to as a TCD) being pr and 5, respectively, pT,- N ij
and rz. N r%]

5.3 Toy scenarios

We introduce our experiments to confirm the presence of the CRD and the TCD with
synthetic datasets associated with the torus and the “crescent moon” geometry !. Such results
were acquired from the successive calculus of the generalization measure (Equation 4.4) along
the insertion of new data points and the increase of radii adopted to construct the corresponding
simplicial complexes, being illustrated in the form of a Barcode plot or a heatmap of the space
(r,m,|Bp (X)) — By (X;)]). Finally, a synthetic dataset built up to represent the merging of three
Gaussians along time was employed to study TCD.

5.3.1 Torus

As an introductory experiment, a torus geometry relying on internal and external radii of,
respectively, r = 0.5 and R = 1 was considered in order to form the underlying topology (Z, t7)

from which the data samples were acquired. The torus equation:
f(R,r,0,¢) = ((R+rcosB)cos¢,(R+rcosO)sing), (5.1)

was adopted such that ¢ and 0 assumed 400 values uniformly sampled in the interval [0,27],

producing the dataset illustrated in Figure 39 (see Appendix D).

The perturbed dataset was obtained after the inclusion of 100 new samples, following
the same torus parameters, and, consequently, the same distribution function. A Vietoris-Rips
filtration (VIETORIS, 1927) was produced with the TDA package from the R Project of Statistical
Computing? considering radii in interval [0, 1) and producing the barcode plots for the 0-th and

the 1-th homology classes, as illustrated in Figures 46 and 47 (both found in Appendix E).

From such barcodes, the generalization G, (X,) was calculated for radii values from 0
to 1 with a step of 0.01 such as illustrated at the bottom charts of Figures 46 and 47. As shown
in Figure 46, the minimum value for Go(X;) is given whenever r = 0.01 or r € [0.2376,1) and,

therefore, they produce generalization for O-th homology classes, i.e., the number of connected

' The dataset of “crescent moon” geometry can be found in the package RSSL (https://cran.1-

project.org/web/packages/RSSL/) of R Project for Statistical Computing.

2 TDA package — <https://cran.r-project.org/web/packages/TDA/index.html>


https://cran.r-project.org/web/packages/TDA/index.html
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components does not change along the data insertion. Complementary, when 1-th homology
classes are considered, the interval of radii [0,0.0891) does not present any homology classes so
that it should be disregarded. Nonetheless, the interval [0.4257,1) produces generalization for
1-th homology classes that vanishes at radius 0.88, once the torus hole is filled up.

5.3.2 Crescent Moon

The Crescent Moon dataset was produced from the RSSL package of the R Project of
Statistical Computing® using the function generateCrescentMoon with parameters n = 5,000
(10,000 data points were produced as 7 is the number of elements per class),d =2 and 6 = 0.5
(see Figure 40 in Appendix D). From such dataset, a Lazy Witness algorithm was employed with
200 landmarks in order to produce a bifiltration associated with the addition of 200 new samples
having the initial dataset with 5, 100 elements up to a total of 10,000 elements while varying the
radii in [0, 3).

Crescent moon dataset: heatmap of 0—th Betti-measure generalization

Number of Samples

5200 5700 6200 6700 7200 7700 8200 8700 9200 9700

0.00 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30
Radius

Figure 29 — The heatmap generated from the Crescent Moon dataset formed by values of the generalization
measure Go(X,) along the insertion of samples and the increase of radii.

The barcode plot was generated for 0-th homology classes built up from X>1% and

X 10.900 gych as illustrated in Figure 48 (Appendix E). The generalization G,(X,) was calculated

over er 100 and XrIO’OOO resulting in the bottom chart of Figure 48 (Appendix E), from which it

3 https://cran.r-project.org/web/packages/RSSL/



Time step

92 Chapter 5. Experiments and Results

is possible to identify the 0-th homology inconsistency when the radii are in [0,0.84). Although
the interval [0.84,3) is associated with one single 0-th homology class, the crescent moon dataset
is known to present two classes, hence there are data points lying between its clusters which
are merging them together when Lazy Witness is performed. Therefore, some problems require
the regard of density-based clustering algorithms. In addition, Figure 29 presents how G, (X))
significantly increases when over-refined metric spaces are considered and new data is sampled,
such that there is no guarantee for the 0-th homology consistence, thus demonstrating the CRD

for such particular scenario.

5.3.3 Topological Concept Drift on a synthetic dataset

In order to study Topological Concept Drift (TCD), we performed experiments using
data sampled from three bidimensional Gaussian distributions whose mean values approximate
the space center (0,0) along time. In this sense, as illustrated in Figure 44 (Appendix D),
3,000 data points were sampled from each Gaussian whose mean values were (0,0), (5,5), and
(20,20), and variances were 0.2, 1, and 2, respectively. The centroids y;(¢) of such Gaussians

approximate the origin of the coordinate system in a factor of 1/10, i.e., at each time step,
Hit + 1) = i(r) — pi(1)/10.

Median of the variation Average variation
0-th homology generalizations 0-th homology generalizations
(m(xpﬁ,rﬁr Ti, T])) (,U(pr,rf:Ti: Tj))
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Figure 30 — Heatmaps produced from the median and average variations on 0-th homology generalizations
of Xz (Tr) and X =(T).

At each time step, the DBSCAN algorithm was run, as explained in the two last para-
graphs of Section 5.2, with the following setting p = (k)x—1,... 25 and r = (0.01 4-0.15)s—1 .. 30.

As illustrated in Figure 55 (Appendix F), after T = 4 the 0-th consistent homology groups
produced in X~ ,~(Tp) start to substantially vary. In this sense, from 7' =1 to T = 20, the
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median variation of 0-th homology generalizations of A~ ~ (T;) and X o (T;) given by:

m(&X,

g

,T;, Tj) = median (Iﬁo(xpg,rﬁ, T;) — Bo(Xp= =, Tj)l) :

S
ol

and its average variation is given by:

/,r’vTi) - BO(XP/,F’v Tj)’
[7'[1p’]

_ |Bo(X
(Y= TT)= Yy Y —=-F

p'epn r'ery

)

which can be employed to evaluate the overall divergence of the 0-th homology generalization.
Results illustrated in Figure 30 present the variations of such measure with respect to 7; €
{1,2,...,20} versus Tj € {1,2,...,20}. From such analysis, we can identify whether the overall
generalization of its associated parameters lead to significant changes, thus summarizing the

TCD occurred for each pair (p=,r~).

5.4 Dynamical systems attractors

Dynamical systems are mathematical representations that describe how points evolve
along time in a geometrical space (ALLIGOOD; SAUER; YORKE, 2000). Such points are
assumed to lie in a space named as state space which represents the relations between the current
and previous points given by the dynamics of a system in a regime. For example, the Lorenz

system is defined by the following system of equations:

4 — 5(y—x)
D —x(p—2)-y, (5.2)
% =xy—PBz

which sets how a point p € R? evolves along time, resulting in its state space (or phase space).
For the sake of illustration, when setting ¢ = 10, B = 8/3 and p = 28, this system will present a

chaotic nature.

Chaotic systems are dynamical systems which are sensitive to initial conditions and
bounded. Suppose the chaotic Lorenz system, whose attractor is illustrated in Figure 41 (Ap-
pendix D), given two points p = (x,y,z) and p’ = (x',)’,7), even when d(p,p’) < €, with €
small enough, p and p’ might be associated with different trajectories, therefore such system
is sensitive to initial conditions. Such attractors represent how a dynamical system evolves

independently of the initial points, i.e., how their trajectories behave given previous states.

For instance, as illustrated in Figure 41 (Appendix D), its attractor presents two orbits
which are the geometrical structures formed by the cycling of a trajectory around an attraction
point. Such class of geometrical structures can be identified by its topology as they form voids
in the attractor manifold. For example, from a visual inspection, the attractor X of Figure 41

(Appendix D) presents homology groups Hy(X) = Z and H; (X ) = Z? as it has one connected
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component and two unidimensional holes. However, visual inspection becomes harder as space

dimension increases.

Persistent homology can then be employed in order to study attractor orbits and, therefore,
our results provide means to adequately choose the radii that have to be considered in such
analysis since CRD impacts the representability and stability in the orbits modeling. Finally,
assuming that elements continuously evolve in the dynamical systems trajectory, i.e., they do
not “jump” (discontinuity) from a position to another, such systems will always present only one

connected component and, therefore, only radii which produce such result must be considered.

5.4.1 Lorenz system

The Lorenz attractor was modeled by the Lorenz system implementation from the
package nonlinearTseries of the R Project of Statistical Computing, setting o = 10, f = 8/3
and p = 28 in order to produce some chaotic behavior. The initial conditions were set up as
xo = —13, yop = —14 and zp = 47, and the time parameter varied from O to 50 with steps equal to
0.005 units. The attractor is illustrated in Figure 41 (Appendix D).

Lorenz attractor dataset: heatmap of 0—th Betti-measure generalization

Number of Samples

5201 5701 6201 6701 7201 7701 8201 8701 9201 9701

0.00 0.08 0.16 0.23 0.31 0.39 0.47 054 0.62 0.70

Radius

Figure 31 — The heatmap generated from the Lorenz attractor formed by values of the generalization
measure Go(X,) along the insertion of samples and the increase of radius over the filtration.

The Lazy Witness algorithm was then employed considering 200 landmarks, defining
a filtration with 10,000 radii values in interval [0,7) which are associated with simplicial
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complexes with degree of at most one. As illustrated in Figure 49 in Appendix E, the interval
[3.829,7) guarantees O-th Betti measure generalization once it produces a single connected
component. In addition, as illustrated in Figure 50 (Appendix E), the intervals [1.2747,1.4280),
[1.6037,3.9333), [4.4590,5.5643), and [5.6420,7) assure the 1-th Betti measure generalization,
being the three last of them the relevant/stable ones as only the interval [3.829,7) assures the
0-th Betti measure generalization. In this sense, the simplicial complex associated with the
interval [3.829,3.9333) properly represents the two orbits of the considered attractor, the interval
[4.4590,5.5643) is capable of representing only one and, finally, the interval [5.6420,7) does
not identify any.

As illustrated in the heatmaps of Figures 31 and 32, the generalization measure diverges
in the initial interval of radii when O-th homology classes are considered, while it converges to
zero in the complementary interval, confirming the CRD. Such measure presents a more complex
behavior for 1-th homology classes: (i) it is constant and equals to zero when considering the
first interval of radii, since no cycles were yet produced; (i1) as the radius increases, there is a
fast growth in the number of 1-th homology classes; and, finally, (iii) this number slowly decays.

Lorenz attractor dataset: heatmap of 1-th Betti-measure generalization

Number of Samples

5201 5701 6201 6701 7201 7701 8201 8701 9201 9701

0.00 0.08 0.16 023 031 0.39 0.47 0.54 0.62 0.70

Radius

Figure 32 — The heatmap generated from the Lorenz attractor formed by values of the generalization
measure G| (X,) along the insertion of samples and the increase of radius over the filtration.
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5.4.2 Rossler system

Rossler system is formed by three non-linear ordinary differential equations, like the

Lorenz system, such that:

==z
D — x+ay : (5.3)

& =ptz(x—w)
which may also depict chaotic behavior. We employed the system implemented in the package
nonlinearTseries of the R Project of Statistical Computing, setting the parameters a = 0.2,
b =0.2 and w = 5.7, and the initial conditions xy = —2,y9 = —10 and zg = 0.2, thus devising a
chaotic Rossler system. A total of 20,000 observations were acquired by varying time from O to
200 using steps of 0.01, thus generating the dataset illustrated in Figure 42 (Appendix D).

Rossler attractor dataset: heatmap of 0-th Betti-measure generalization

Number of Samples
15201 15801 16401 17001 17601 18201 18801 19401 20001

o
> —
S

0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30
Radius

Figure 33 — The heatmap generated from the Rossler attractor formed by values of the generalization
measure Go(X,) along the insertion of samples and the increase of radius over the filtration.

Considering the same approach as employed for the Lorenz system, i.e., the Lazy
Witness algorithm, we relied on 200 landmarks to produce simplicial complexes of one degree
at most, and their corresponding filtration was set in the radii interval [0,5). Considering the
0-dimensional homology classes, the generalization Go(X,) converges to zero in the interval
[0.46,5), which identifies the single connected component related to this particular attractor, as

illustrated in Figure 51 (Appendix E).
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Rossler attractor dataset: heatmap of 1-th Betti-measure generalization

Number of Samples
15201 15801 16401 17001 17601 18201 18801 19401 20001

0.00 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30
Radius

Figure 34 — The heatmap generated from the Rdossler attractor formed by values of the generalization
measure G| (X,) along the insertion of samples and the increase of radius over the filtration.

Taking 1-dimensional homology classes, as shown in Figure 52 (Appendix E), the
intervals [0.1050,0.1095), [2.2105,2.3400), and [2.4105,5.000) guarantee Go(X;) — 0 as m —
oo, In this sense, the two last intervals are considered to be relevant as [0.1050,0.1095) lies before
[0.46,5) (the interval which guarantees the 0-th Betti measure generalization), and also, they
are related to, respectively, the single orbit characteristic of Rossler attractors which is vanished
along the filtration. Furthermore, the heatmaps of Figures 33 and 34 present the same behavior

as discussed in the last paragraph of Section 5.4.1.

5.4.3 Mackey-Glass system

The Mackey-Glass system is defined after changes in a variable along time, which is set

int — 7 as follows:
dx  Bx¢

dt  1+x!
Such system is applied, for instance, in the blood-cell production modeling (MACKEY; GLASS,

— . (5.4)

1977). We adopted a dataset from such system which comes with the package frbs of the R

Project for Statistical Computing. As described in the documentation of frbs #, such dataset was

4 The documentation of frbs is available at <https://www.rdocumentation.org/packages/frbs/versions/3.
2-0/topics/frbsData>


https://www.rdocumentation.org/packages/frbs/versions/3.2-0/topics/frbsData
https://www.rdocumentation.org/packages/frbs/versions/3.2-0/topics/frbsData
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built considering § = 0.2, y=0.1,n =1, T = 17, xo = 1.2 and discrete time. Moreover, it is
formed after the embedding of the series in a five dimensional space given by the time-delayed
states x(r — 18), x(t — 12), x(t — 6), x(¢) and, finally, x(z +6), such that (x(r — 18),x(t — 12),x(r —
6),x(t),x(t +6)) forms the Mackey-Glass attractor, as projected in two dimensions in Figure 43
(Appendix D).

Mackey-Glass attractor dataset: heatmap of 0-th Betti-measure generalization

Number of Samples
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0.00 002 004 007 009 011 013 016 018 0.20
Radius
Figure 35 — The heatmap generated from the Mackey-Glass attractor formed by values of the general-

ization measure Gy(X,) along the insertion of samples and the increase of radius over the
filtration.

This dataset contains only 1,000 observations and, therefore, the initial set X 510 was
configured with the first 510 elements and the remaining acts as data insertions. So 20 new
elements were added to X°'° until it reaches the total size of the dataset. Barcode plots considered
only X109 and X310 to be produced, and heatmaps took into account the dataset snapshots
formed after every inclusion. In this sense, the generalization |[3P(Xr1’000) — Bp(X219)] is also
shown using the barcode plots, and the heatmaps contain, along the data insertion, a sequence of

generalizations (|, (X>1972%) — B,(X219)]);y . 2a.

The Lazy Witness algorithm was adopted to produce simplicial complexes of at most
degree one and the filtration occurred on the radius interval [0, 1). As illustrated in Figure 53
(Appendix E), the intervals [0,0.0001) and [0.0777,0.1) guarantee G(X,) = 0. However, the
interval [0,0.0001) only provides such guarantee as every simplicial complex in X>'? and X 1,000

are represented solely by their corresponding landmarks. Therefore, the relevant radii are in
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Mackey-Glass attractor dataset: heatmap of 1-th Betti-measure generalization

Number of Samples
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0.00 002 004 007 009 011 013 016 018 020
Radius
Figure 36 — The heatmap generated from the Mackey-Glass attractor formed by values of the general-

ization measure G, (X,) along the insertion of samples and the increase of radius over the
filtration.

interval [0.0777,0.1) which identifies the single connected component of the Mackey-Glass
attractor.

Considering one-dimensional homology groups, as illustrated in Figure 54 (Appendix E),
our approach identifies that the intervals [0,0.049),[0.051,0.0519),[0.0680,0.0709),
[0.1120,0.1229),[0.2021,0.3070),[0.3281, 1) present the 1-th Betti measure generalization for
the Mackey-Glass attractor, being the last three intervals the relevant ones once they are associ-
ated with the production of only one connected component. Such intervals identify, respectively,
two, one, and no orbit(s) for such attractor. In addition, the heatmaps illustrated in Figures 35
and 36 present the same behavior, as explained for the Lorenz and the Rossler attractors, thus

confirming once more the CRD.

5.5 Topological Concept Drift in real data

The following section details an experiment on how the vocabulary used in the abstracts
of scientific papers from Machine Learning (ML) and/or Time Series (TS), extracted from

Scopus , topologically changes from the year 2,000 to 2,020. Such changes correspond to

> https://www.scopus.com/home.uri
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variations between consecutive 0-th consistent homology classes produced on top of word
frequencies with respect to an initial dataset A(2,000 to 2,003) composed of documents from
2,000 to 2,003. Such initial set was employed to produce X~ =~ (Ty) for comparing the O-th
Betti measures such as stated in Section 5.2. Considering the ML papers, such initial dataset
counts on 3,080 abstracts, and the remaining years contain approximately 2,000 each, except
for 2,003 (1,689 abstracts) and 2,020 (889). Complementary, TS papers relies on around 2,000
abstracts for each year but for 2,020 (381).

5.5.1 Documents semantic changes

The main goal of this experiment was to study changes on word vocabularies from
ML and TS-related paper abstracts in order to verify their correspondences along time. The
similarity measure is computed from the number of connected components that the initial set
A(2,000 to 2,003) has in comparison with the following years (A(2,004),A(2,005),...,A(2,020)),

i.e., by assessing their differences in terms of 0-th Betti measures.
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Figure 37 — Average of variations, with respect to DBSCAN parameters p and r, on the 0-th homology gen-
eralizations of X~ =(0) and X,= ~(7;) with the respective standard deviations represented
[ARMA! n»'n
by red vertical lines.

In order to produce such a dataset, stop-words, numbers, non-alphabetic symbols and two
letter words were removed from all abstracts and the remaining words were stemmed (PORTER,
1980). Next, matrices My (2,000 10 2,003) Of word frequencies were calculated for the initial col-
lection A(2,000 to 2,003) and for all others A(2,004),A(2,005),...,A(2,020), considering set

A(year) contains abstracts (instances) whose words are the attributes. Non-negative Matrix
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Factorization (NMF) was then applied on My yeq) to reduce data dimensionality to three while
clustering data (DING; LI; PENG, 2008).

Non-negative Matrix Factorization finds matrices H > 0 and W > 0, such that WH ~ M
being M a non-negative matrix. In order to preserve such similarity between WH and M, the

generalized Kullback-Leibler divergence:

Al..
Dxr(M|M') = Z (Mi jlogM—l/j)

i,j

is employed as the objective function to find H and W, such that the optimal A and W are defined
as:

H = argming Dkr(My (2,000 10 2,003) |WH)

W = argminy Dgr(Ma(2,000 0 2,003) [|WH).

Therefore, as W contains the clustering information (DING; LI; PENG, 2008), we transformed
each M(A(year)) by adopting the trimmed generalized inverse A ' of A such that dim(f; ') =3,
i.e., the transformed dataset X (year) is equal to W (year)H; ' (being generated from A(year)),
such as illustrated in Figure 45 (Appendix D).
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Figure 38 — Median of variations, with respect to DBSCAN parameters p and r, on the 0-th homology
generalizations of X~ ~(0) and X~ ~(T;).

After obtaining each dataset X (year), the DBSCAN algorithm was adopted to find their
connected components, then the calculated 0-th homology generalizations were compared to
those of X (2,000 to 2,003), such as discussed in Section 5.2. By analyzing the average differences

(w.r.t. to parameters p and 7 ) between the 0-th homology generalization of X' o 1 (0) and
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X pﬁr%(Ti), as illustrated in Figure 37, from the years 2,004 to 2,007 the overall changes in
0-th homology classes increase in relation to the initial dataset, while decreasing from 2,007
to 2,009. Along 2,010, 2,013, 2,016 and 2,019, topological changes were also identified with
2,010 being associated with the minimum variation and 2,016 with the maximum. In the same
form, if the median is considered, years 2,007, 2,008, 2,016 an 2,019 present TCD as illustrated
in Figure 38. Such detection can allow the study of unexpected changes in a system such as the

vocabulary of a knowledge area or social group.

In fact, performing a deeper study over such dataset, by adopting clusters to analyze the
most frequent words present in the abstracts of 2,004, 2,007, 2,016, and 2,019 as illustrated in
Figures 56, 57 and 58, we conclude that the aforementioned TCDs were given not specifically by
some approximation of the vocabulary employed in ML and TS-related abstracts. Instead, there is
a significant number of papers related with health sciences which consider ML and TS techniques
in their approaches as there are word clusters in which terms such as “surgery” and ’‘disease” are
noticeable present. Hence, the associated TCDs represent the semantic approximation between

health sciences and ML/TS papers.

5.6 Final considerations

This chapter experimentally demonstrate the existence of Coarse-Refinement Dilemma
(CRD) in DC and HC by illustrating the divergence of the generalization measure (Equation 4.4)
along data inclusions and topological refinement. Such methodology allows the choice of a
collection of clusters which present p-homology consistence for any pre-defined value of p.
Such clusters are adequate to represent the data topology as long as the trivial one, produced by
over-coarsening, is disregarded in the model. In this sense, the presence of CRD was demon-
strated in the clustering of toy datasets and the Lorenz, Rossler and Mackey-Glass dynamical
system attractors. For instance, the evaluation of the stability of clusters leads to an adequate

identification of topological features as the orbits of such attractors.

In sequence, assuming that data are collected from i.i.d. distribution, if such model
presents only stable clusters, variations in their corresponding topological spaces represent
unexpected changes in the underlying and unknown topological distribution or in the associated
probability distribution, i.e., the system from which data is acquired presented some anomalous
perturbations, which we defined as Topological Concept Drift (TCD). In this context, this
chapter also presented experiments to detect the TCD in a synthetic scenario, as discussed
in Section 5.3.3, and in terms of document semantic changes in Section 5.5. In the latter, we
identified the TCD produced by the vocabulary approximation between health sciences-related

papers and the time series and machine learning-related ones.
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CHAPTER

CONCLUDING REMARKS

The Data Clustering (DC) and the Hierarchical Clustering (HC) problems consist in
finding partitions that adequately represent the structural space similarities of datasets. In addition
to the efforts to formalize DC and HC settings, Carlsson and Mémoli (2010) propose a statistical
approach, based on ultrametric divergences between a model built from some dataset and a
reference one, to ensure unsupervised learning stability, at first in terms of data order permutations
and, next, while considering data distributions. Besides their relevant contributions, such study
is restricted to deal with data endowed in the complete metric space what has motivated us, in
this PhD thesis, to extend the clustering problem to more general spaces, most precisely the
topological one, in order to redefine the DC and the HC problems. Such problems are typically
formalized from metric spaces even when other spaces are more adequate, e.g., when data
corresponds to network structures, geometrical forms, graphs, among others; therefore this first
contribution provides the ability to model structural similarities without assuming a metric nature

but instead allowing a less restrictive problem space representation.

From such foundation, we proceeded with the second contribution by defining over-
refined and over-coarsed topological spaces endowing topologies that, respectively: (i) are
refined enough to devise inconsistent results when new data is sampled from the same probability
distribution; and (ii) are coarsed enough to always produce consistent features while disregarding
any data detail (i.e., they are always topologically equivalent to the S sphere, as discussed in
Section 4.2). Consequently, the existence of such topologies imposes the conditions for which
consistency is ensured. In this sense, there is a trade-off in choosing an appropriate refinement

for a clustering model which we named Coarse-Refinement Dilemma (CRD, see Chapter 4).

In order to study the CRD, we modeled the HC problem as a bifiltration (CARLSSON;
ZOMORODIAN, 2009), i.e., bidirectional topological inclusions, regarding HC hierarchies while
inserting data samples. Note the DC model is associated with a particular filtration contained
in such structure that corresponds to a specific HC level. This framework comprises our third

contribution thus allowing the employment of persistent homology in order to analyze how
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topological features change not only along HC levels but also throughout the inclusion of new
data. Changes occurring along such inclusions are modeled as martingales in order to permit
their probabilistic representations from which we obtained a new consistency result derived
from Azuma (1967)’s inequality. As a practical outcome, clustering models can be compared and
appropriately refined in order to represent structural space similarities while leading to stable

results.

There are other subsequent contributions derived from our consistency result, to mention:
(1) fourth contribution — the definition of lower and upper bounds for Carlsson and Mémoli
(2010)’s metric space consistency; (ii) fifth contribution — the confrontation of Kleinberg (2002)’s
richness axiom once it leads to non-consistent clustering results, i.e., such axiom allows the
production of over-refined and over-coarse partitions thus not being, respectively, stable and
representative. This fact justifies the adoption of the 0-th homology consistency as a sufficient
property regarding scale-invariance, partitions consistency, and locality as these are sustained
by isomorphisms of Hp; and, finally (iii) sixth contribution — the definition of Topological
Concept Drift (TCD) from changes in topological features provided data inclusions unrelated to

over-refined topological spaces.

Experiments were performed to explore the CRD over five datasets: (i) the torus; (ii)
the crescent moon; (iii) the Lorenz attractor; (iv) the Rossler attractor and, finally, (v) the
Mackey-Glass attractor. We confirmed the usefulness of CRD to characterize orbits of dynamical
systems attractors by defining stable p-th homology classes that are more likely to correspond to
meaningful features. Opening room for future work, we noticed the need for adapting the Lazy
Witness algorithm which eventually found an incoherent number of connected components for

the crescent moon dataset due to its particular type of noise.

Moreover, we evaluated TCD over consistent clusterings produced from a synthetic (three
moving Gaussian distributions) and a real-world dataset formed by paper abstracts extracted
from Scopus !. Results allowed to depict the feasibility in detecting TCD but there is room for
additional work to reduce the computational processing demanded when substantial data is taken

into account.

All results expressed in this PhD thesis were condensed into two scientific journal
papers in which the first encloses initial aspects published in 2019 in the Expert Systems With
Applications, number 117, pages 90-102 under the title “On learning guarantees to unsupervised
concept drift detection on data streams” with the cooperation of Rodrigo F. de Mello, Carlos H.
Grossi Ferreira, and Albert Bifet. The second paper contains all the theoretical and experimental
contributions detailed along most of this PhD thesis, which is still under review in the journal

Expert Systems With Applications.

Finally, this PhD thesis still motivates future work on: (i) the study of how the sparsity in

' Scopus web site — <https://www.scopus.com/home.uri>


https://www.scopus.com/home.uri
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p-th Betti measures, associated with data insertions, impacts consistency; (ii) the formalization
of the asymptotic behavior of the p-homology generalization as neighborhood topologies are
refined or coarsed; (iii) the demonstration of a relation between 0-th homology consistency
and the theoretical results of the Statistical Learning Theory (SLT), therefore associating the
Coarse-Refinement Dilemma (CRD) with the Bias-Variance Dilemma in an attempt to closely
connect unsupervised and supervised learning; and, finally, (iv) the application of our TCD

detection method in additional real-world problems from the industry.
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APPENDIX

A

NOTATION

X, ...,z (Lower case Latin letters from x to z) : Variables;
f,...,h (Lower case Latin letters from f to k) : Func-
tions;

ax or ad (Lower case Greek letters associated with a
variable x or function d) : Scalar multiplication;

X (Upper case Latin letters) : Sets;

RP NP : Real and natural sets of dimension p;

I' : Partition of a set § defined as in (KLEINBERG,
2002);

(X,d) or (X,dx) : Metric space associated with a set X of
elements and a distance function d (when such function
is considered to be general) or dy (when such function is
considered to be associated with X);

(Z,17) : The unknown underlying topological space (con-
sidered in the Data Clustering and Hierarchical Cluster-
ing problems);

(X, 1x) : The topological space built on top of a dataset
X;

(Q, 7o) : The unknown universal topological space (in
which (Z, tz) is included) associated with a Borel mea-
sure;

N (x) : Neighborhood of x;

N :Map 1 :x— N(x);

X : Topological space built on top of X by a neighbor-
hood topology;

~ : Equivalence relation;

~;, : r-relation (CARLSSON; MEMOLL 2010);

N;(X) : A neighborhood topology associated with a level
i of a hierarchical clustering model;

n; : Map 1 : x = Ni(x);

i, j : Indices related with persistence along topological

coarse-refinement;

t; - Element of the pre-image of a tame function associ-
ated with an index i;

k : An iterator;

A? : Simplex of dimension p;

o : A singular p-th dimensional simplex (a continuous
map from a simplex to a topological space);

0 : The boundary operator;

Cp : A p-dimensional simplicial complex;

im(+) : Image of a map;

ker(-) : Kernel of a map;

H), : p-dimensional homology group;

ZP : Abelian group of p-tuple of integers endowed with
a direct sum;

Q : Field of rational numbers;

Bp : p-th Betti number (or measure);

E(-) : Expected value;

F(X,n) : Filtration of neighborhood topological spaces
associated with the map 7] and dataset X ;

fi;j and gi,’q : p-dimensional persistence functions as-
sociated with, respectively, the coarse-refinement of a
topological space and the inclusion of new data;

&; and X" : Neighborhood topological spaces associ-
ated, respectively, with NV;(X) and NV;(X™);

1y and 1y : Inclusions Xikq C X?and X7 C X/‘.’ respec-
tively;

[,q : Indices related with the persistence along data in-
clusions;

‘H : Collection of abelian groups;

U : A measure function;

P, : Probability function endowed with a measure func-
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tion U;

FPp, : Probability function endowed with a p-th Betti mea-
sure;

O(+) : Big-O notation;

Q(-) : Big-Q notation;

Q : Universe set;

M N : Cardinalities;

(X,ugq) : Ultrametric space;

(X,dx, ltx) : Measurable metric space (mm-space);
Sum(X) : Measurable metric space (mm-space) associ-
ated with the dataset X;

B(x,r) : Open ball of radius r centered in x;

supp(+) : Support of a measure function;

dpy : Hausdorff distance;

dgy : Gromov-Hausdorff distance;

£ : Carlsson and Mémoli (2010)’s adapted single link-

age function;

G,(X) : Generalization measure of a topological space
A} in terms of its p-th homology group;

G(f) : Generalization measure of a function f;

X : Set of instances associated with Supervised Machine
Learning;

Y : Set of labels associated with Supervised Machine
Learning;

T : Space of admissible functions;

R(f) : Expected risk of f;

Remp(f) : Empirical risk of f;

m(-) : Median;

u() : Mean;

[(-) : Estimated average;

p= : Parameter p that assure p-th homology consistency.
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B

DICTIONARY OF TERMS

Stability: Characteristic of the bounded absolute differ-
ence between a measure applied over a set of variables
(typically random) and its perturbation (given by variable
permutations, removals or inclusions);

Consistency: Characteristic of an estimation which ap-
proximates its expected value as the number of random
variables increases;

p-Homology consistency: Consistency for the estima-
tion of the rank of p-homology groups;

p-simplex: p-dimensional generalization of triangles;
Boundary Operator: Homomorphism applied over p-
chains producing p — 1-chains;

Chain complex: Sequence of p-chains produced by the
successive applications of the Boundary Operator;
Voids: “Empty space” inside a topological space;
Holes: “Empty space” which traverses a topological
space;

Connected Component: Maximal connected subsets
which cannot be partitioned into two disjoint nonempty
subsets;

Homology group: Algebraic representation for Topo-
logical Space which considers its connected components,
voids, and holes;

Homology class: Algebraic representation of cycles in a
Homology group;

Over-refinement: Refinement of a topological space

which produces unstable p-homology groups;

Over-coarse: Refinement of a topological space which
vanishes relevant information such as number of con-
nected components, holes, and voids;
Coarse-refinement Dilemma: Dilemma in choosing an
appropriate refinement in order to represent relevant
topological features while avoiding instabilities on the
p-homology groups;

Dendrogram: Representation of a hierarchical cluster-
ing model responsible for mapping a the set of grouped
elements into the minimal radius which merged them all
together;

Filtration: Successive inclusions of topological spaces;
Multifiltration: Inclusions of topological spaces modi-
fied by more than one degree (e.g., radius of neighbor-
hood topologies);

Persistence: Interval in which a homology class persists
along a filtration;

Persistence Function: Function which maps a homol-
ogy group of a included topological space into the
homology group of a larger topological space;
Multidimensional Persistence: Persistence calculated
on top of a multifiltration; p-th Betti number: The rank
of a homology group;

Topological Data Analysis: Scientific area responsible

for studying topological properties of data points.
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PROOFS

Proof of Lemma 6 1. Given a topological space A built on top of a dataset X by a clustering
algorithm, the one X" built on top of the perturbation of X, X" (such that X" = X U{x/,...,x,})
with i.i.d. samples), and their corresponding p-th Betti measure 3, (-) associated with a martingale

or a supermartingale process, by Azuma’s Inequality (AZUMA, 1967):

2
P([Bp(X") — Bp(Xi)| > €) < 2exp (ﬁ) : (C.1)
q=1%q.p

If Equation C.2, which calculates the absolute difference between the p-th Betti numbers

associated to X; and X7", holds, generalization is guaranteed:
Vm, |Bp(X") — Bp(Xi)| = 0. (C2)

Considering Equation 4.3, the sequence f3,(X;7) — B,(X;) with g =1,...,m also forms a
martingale as:
E [ﬁp(;\'/z’q) - ﬁp(Xi)] = E [ﬁp(/’viq)] — Bp(X)
= By~ Bp(X).
Therefore, in terms of the average p-th Betti measure differences, with |B,(X) — B,(Xi)| < cg.p

probabilistic convergence is defined as:

m _m2 2
P <Z |Bp(X) = Bp(Xi)| > m£> < 2exp (22,,,—;> : (C.3)

q:] q=1 q,p

Proof of Corollary 3 1. Consider the Inequality 4.5 of Lemma 6 which can be written as:

m —m282
P (Z B(X) — By(%) < me> > 2exp (zzm—) -

g=1 q=1%q,p

By substituting P( =1 1Bp(X1) — Bp(Xy)] < me) = 8, we have:

202
=1
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Now, let ¢, be the maximum value of (cq,p)g=1....m, then it follows from Inequality C.4 that:

2:2 2:2

—m-€ —m-€
S5>2 _— | >2 C.S5
> ~exp (2):21_1%71,) - exp( ZmE%, >’ €5

o > 26xp(‘2’;’i§2)

me?
Iné > In2-— b

and, consequently,

In2—-Ind < me?

_ )
¢ < \/amrms)

Since 6 = 1 implies consistency, then:

¢, < &\/m/2In2 (C.6)

guarantees it.

Proof of Theorem 7 1. Defining MW- =Y 1Bp(XT) — Bp(X:)]:

P (VieR(mp,i) > mg)
YicrP (Em > m3>

< wewp(22).
p

P (supieREm > me)

IN

in which M is the number of critical points that a tame function f produces and ¢, = max;cr ¢p,;.
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DATASET IMAGES

This appendix contains the illustrations of all datasets employed on the experiments of
this paper, which are: the bidimensional torus, the Crescent Moon dataset, the Lorenz Attractor,
the Rossler Attractor and the MacKey-Glass Attractor.
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Figure 39 — A two-dimensional torus formed by a point cloud of 500 samples generated using Equation 5.1
with parameters R =1,r =0.5,¢ € [0,27] and 6 € [0,27].



124 APPENDIX D. Dataset images

Figure 40 — The Crescent Moon dataset produced using the function generateCrescentMoon of the RSSL
package from the R Project for Statistical Computing, adopting the parameters: n =5,000,d =
2 and 6 =0.5.
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Figure 41 — The Lorenz attractor generated using the lorenz function of the package nonlinearTseries from
the R Project for Statistical Computing with the parameters: ¢ = 10,3 = 8/3 and p = 28 with
initial conditions given by xo = —13,yp = —14 and z = 47 (plotted using lines to improve
visualization).
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Figure 42 — The Rossler attractor generated using the function rossler, implemented in package nonlin-
earTseries from the R Project for Statistical Computing, with the parameters: a = 0.2,b = 0.2
and w = 5.7 with initial conditions given by xo = —2,y9 = —10 and zop = 0.2 (plotted using
lines to improve visualization).
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Figure 43 — The Mackey-Glass attractor available with the package frbs from the R Project for Statistical
Computing (plotted using lines to improve visualization).
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Figure 44 — The synthetic dataset of Section 5.3.3 corresponding to three Gaussians approaching one
another.
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Figure 45 — The dataset X (2,010) considered in Section 5.5 after transformation applied by Non-negative
Matrix Factorization. Red points are the data associated with abstracts whose main subject is
“Machine Learning” while blue ones are associated with “Time Series”.






131

APPENDIX

BARCODE PLOTS

This appendix contains the barcode plots produced by the datasets: Torus, Crescent Moon,
Lorenz Attractor, Rossler Attractor and MacKey-Glass Attractor. They are produced considering
the dataset with and without perturbations and the generalization measure |S,(X;,) — B, (A7) is

also considered in the illustrations.
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Torus dataset : 0 —dimensional homology classes
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Figure 46 — Graphs produced from 0-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated over the torus with 400 samples; (ii) Barcode plots
generated over the perturbed dataset with 500 samples; and, finally, (iii) the values for the
generalization measure Go(X;). Red-dashed lines mark the initial value of the intervals which
ensure Go(X,) = 0.
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Torus dataset : 1 —dimensional homology classes

Without Data Inclusion
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Figure 47 — Graphs produced from one-dimensional homology classes which correspond to, from top
to bottom: (i) Barcode plots generated over the torus with 400 samples; (ii) Barcode plots
generated over the perturbed dataset with 500 samples; and, finally, (iii) the values for the
generalization measure G (X;). Red-dashed lines mark the initial value of the intervals which
ensure G (X,) = 0.
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Crescent moon dataset : 0 —dimensional homology classes
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Figure 48 — Graphs produced from 0-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated using the Crescent Moon dataset with 5,100 samples; (ii)
Barcode plots generated using the perturbed dataset with 10,000 samples; and, finally, (iii)
the values for the generalization measure Go(X;). Red-dashed lines mark the initial value of
the intervals which ensure Go (X)) = 0.
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Lorenz dataset : 0 —dimensional homology classes
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Figure 49 — Graphs produced from 0-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated using the Lorenz attractor with 5,101 samples; (ii)
Barcode plots generated using the perturbed dataset with 10,001 samples; and, finally, (iii)
the values for the generalization measure Gy (). Red-dashed lines mark the initial value of
the intervals which ensure Go(X,) = 0.
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Lorenz dataset : 1 —dimensional homology classes
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Figure 50 — Graphs produced from one-dimensional homology classes which correspond to, from top
to bottom: (i) Barcode plots generated using the Lorenz attractor with 5,101 samples; (ii)
Barcode plots generated using the perturbed dataset with 10,001 samples; and, finally, (iii)
the values for the generalization measure G (X;). Red-dashed lines mark the initial value of
the intervals which ensure G (X)) = 0.
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Rossler dataset : 0 —dimensional homology classes
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Figure 51 — Graphs produced from 0-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated using the Rossler attractor with 5,101 samples; (ii)
Barcode plots generated using the perturbed dataset with 10,001 samples; and, finally, (iii)
the values for the generalization measure Gy (). Red-dashed lines mark the initial value of
the intervals which ensure Go(X,) = 0.
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Rossler dataset : 1 —dimensional homology classes
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Figure 52 — Graphs produced from one-dimensional homology classes which correspond to, from top
to bottom: (i) Barcode plots generated using the Rossler attractor previously described with
5,101 samples; (ii) Barcode plots generated using the perturbed dataset with 10,001 samples;
and, finally, (iii) the values for the generalization measure G (). Red-dashed lines mark the
initial value of the intervals which ensure G (X)) = 0.
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MacKey dataset : 0 —dimensional homology classes
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Figure 53 — Graphs produced from 0-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated using the Mackey-Glass attractor with 500 samples; (ii)
Barcode plots generated using the perturbed dataset with 1,000 samples; and, finally, (iii) the
values for the generalization measure Go(X,). Red-dashed lines marks the initial value of the
intervals which ensure Go(X,) = 0.
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MacKey dataset : 1 —dimensional homology classes
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Figure 54 — Graphs produced from one-dimensional homology classes which correspond to, from top to
bottom: (i) Barcode plots generated using the Mackey-Glass attractor previously described
with 500 samples; (ii) Barcode plots generated using the perturbed dataset with 1,000 samples;
and, finally, (iii) the values for the generalization measure G (X}). Red-dashed lines marks
the initial value of the intervals which ensure G; (X)) = 0.
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APPENDIX

TOPOLOGICAL CONCEPT DRIFT
GENERALIZATION MEASUREMENTS

This appendix contains the chart with the generalization divergence calculated for the

Topological Concept Drift experiment detailed in Section 5.3.3.
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Figure 55 — Generalization divergences regarding epochs (as discussed in Section 5.3.3) along parameters

rand p.
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APPENDIX

WORD CLUSTERS OF DOCUMENT
SEMANTIC CHANGES

This appendix contains word clusters associated with the document semantic changes
detailed in Section 5.5.



APPENDIX G. Word clusters of document semantic changes
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Figure 56 — Word clusters related with regions defined over the features X (2,004) produced by Non-

negative Matrix Factorization applied over the abstracts of the year 2,004, as defined in

Section 5.5.
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negative Matrix Factorization applied over the abstracts of the year 2,007, as defined in

Figure 57 — Word clusters related with regions defined over the features X (2,007) produced by Non-
Section 5.5.
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Figure 58 — Word clusters related with regions defined over the features X (2,016) produced by Non-
Section 5.5.
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