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Abstract

Differential evolution (DE) is a simple yet effective algorithm for numerical optimization, and its performance sig-
nificantly depends on mutation operator and control parameters. Therefore, designing appropriate mutation operator
and parameter regulation strategy is an important and necessary task. To improve the performance of DE algorithm,
we propose a novel DE variant called DCDE based on a dynamic combination based mutation operator and a two-
level parameter regulation strategy. More specifically, the newly proposed mutation operator contains a dynamic base
vector that consists of two individuals, one is the current optimal individual while the other, called elite individual, is
the best one among three randomly selected individuals, and they are dynamically combined by a weight parameter
associated with the evolution process and the ranking status of the elite individual in the current population. More-
over, the scale factor and crossover rate in DCDE depend on the combined effect of a population-level parameter and
one individual-level parameter, respectively. Both mutation operator and control parameters in DCDE are designed
to achieve an appropriate balance between global exploration ability and local exploitation ability. To evaluate the
performance of DCDE, comparison experiments are conducted with five state-of-the-art DE variants and three non-
DE algorithms on solving 29 functions in IEEE CEC 2017 benchmark suite. The comparison results indicate that the
proposed DCDE is significantly better than, or at least comparable to the adopted competitors.

Keywords: Differential evolution, Mutation operator, Two-level Parameter, Numerical optimization.

1. Introduction

Differential evolution (DE), first proposed by Storn and Price (Storn & Price, 1997), is a very effective evolutionary
algorithm (EA). DE has exhibited outstanding performance due to its simple structure, rapid convergence speed as
well as strong robustness and it has been successfully applied in various domains of science and engineering, such
as signal processing (Hancer et al., 2018; Zhou et al., 2019; Hancer, 2019), neural network (Duchanoy et al., 2017;
Arce et al., 2018), power system (Sakr et al., 2017; Biswas et al., 2017; Reddy, 2019), clustering analysis (Dong et al.,
2014; Alswaitti et al., 2019), scheduling problems (Zhu et al., 2017; Liang et al., 2019) and many other practical
optimization problems.

Similar to other evolutionary algorithms, DE continuously repeats three basic operators, i.e., mutation, crossover
and selection, to evolve its solution toward to the global optima until the stopping criteria is met. Its performance
is not only sensitive to the trial vector generation strategy ( mutation and crossover), but also the associated con-
trol parameters including the population size NP, scale factor F and crossover rate CR. Inappropriate descendant
generation strategy or parameter settings may directly impact the convergence speed and searching precision. There-
fore, it is essential to adopt an appropriate strategy for a specific optimization task. However, it is a time-consuming
trial-and-error process, since we cannot find a best suitable parameter setting and descendant generation strategy
for all cases when solving problems with diverse characteristics according to the NFL theorem (Adam et al., 2019).
Consequently, many researchers are devoted to put forward different adaptive or self-adaptive mechanisms to adjust
the control parameters and tune mutation strategies during the evolution process. For instance, Zhang and Sander-
son (Zhang & Sanderson, 2009) proposed an adaptive algorithm (JADE) characterized by a novel greedy mutation
strategy, namely “DE/Current-to-pbest” with an optional external archive. Sun et al. (Sun et al., 2018) introduced
a novel mutation operator called DE/better/2, which uses the best one among five randomly selected individuals as
the base vector. Meanwhile, it combines a sinusoidal function with the individual’s rank information to adjust the
parameters F and CR. Li et al. (Li et al., 2017) integrated the clearing niche mechanism with the existing mutation
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strategy to enhance the population diversity and searching ability. Additionally, many multi-mutation strategies were
also proposed to improve the performance of DE. MPEDE (Wu et al., 2016b) implemented a dynamic ensemble of
three mutation strategies with different characteristics. On the basis of MPEDE, Wu et al. (Wu et al., 2018) intro-
duced a variant of MPEDE named EDEV, which attempted to realize a high-level ensemble of multiple DE variants
including JADE (Zhang & Sanderson, 2009), EPSDE (Mallipeddi et al., 2011) and CoDE (Wang et al., 2011). Sun et
al. (Sun et al., 2020b) proposed two novel mutation strategies with different search feature and combined a decreasing
function with a periodic function to adjust the size of the elite population.

The superior performance of the aforementioned DE variants proved that adaptive or self-adaptive mechanisms
can significantly improve the optimization ability of DE. As pointed out in (Črepinšek et al., 2013), the balance
between global exploration ability and local exploitation ability has a significant impact on the performance of the
evolutionary algorithms. However, maintaining a proper tradeoff between these two abilities is an intractable problem,
especially for the higher dimensional problems (Jian et al., 2020). In fact, both the trail vector generation strategies
and control parameters directly affect the exploration ability and exploitation ability of algorithm, so it is important to
design appropriate trail vector generation strategy and parameter control strategy and exploit the synergy between the
two in balancing global exploration work and local exploitation work.

In view of above considerations, we propose a new DE variant (DCDE) with a dynamic combination based mu-
tation operator and two-level parameter control strategy to balance the exploration ability and exploitation ability. In
fact, the base vector in the mutation operator determines the current searching center, and the region around the indi-
viduals with good fitness values is often a potential area that needs to be developed. At the same time, the difference
vectors have an great influence on the population diversity. For an effective DE algorithm, the population diversity
should be maintained in the early stage of the evolutionary process, and the search work of potential areas should
be emphasized in the later stage. To achieve this purpose, we combine the optimal individual and an elite individual
which performs the best among three randomly selected individuals to construct a dynamic base vector. The combi-
nation is realized by a dynamic weight parameter which is determined by not only the evolution process but also the
ranking status of the elite individual. What’s more, the values of parameters F and CR in DCDE are adapted based
on a global parameter from perspective of the whole population and a individual-dependent parameter obtained by
the ranking status of the corresponding individual. To verify the effectiveness of the proposed DCDE, it’s compared
with five state-of-the-art DE variants and three non-DE algorithms. Extensive experiments are carried based on 30D,
50D and 100D benchmark functions from IEEE CEC 2017 test suite. The results indicate that the proposed DCDE
algorithm is superior or competitive to all the compared algorithms. Summarily, the main contributions of this paper
can be concluded in the following four aspects:

(1) In order to fully exploit the role of the base vector in the mutation operator during the search process, we
construct a new base vector using the dynamic combination between the optimal individual and the best one
among the three randomly selected individuals, and then design a novel mutation operator;

(2) In order to fully exploit the role of the two core parameters F and CR in balancing the global exploration ability
and the local exploitation ability, we design a novel adaptive strategy for them through the joint action of a
population-level macro-parameter and an individual-level micro-parameter;

(3) In order to achieve the best performance of the designed algorithm, we design the mutation operator and the
adaptive strategy for the core parameters F and CR with full consideration of the synergy effect between them
in balancing the global exploration ability and the local exploitation ability;
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(4) Comparison experiments with eight outstanding competitors in a public test platform (IEEE CEC 2017) show
that our proposed DCDE algorithm has the best overall performance.

The remainder of this paper is arranged as follows: Section 2 introduces the basic DE algorithm. Section 3 briefly
reviews some advanced methods related to our research. The proposed DCDE algorithm is described explicitly in
Section 4. In Section 5, the experimental results are presented and analysed. At last, Section 6 provides the conclusion
of our research.

2. Differential Evolution

The classic differential evolution algorithm consists of four basic operators: initialization, mutation, crossover and
selection, which will be briefly reviewed in this section.

The global minimization task of D dimensions is considered in this paper and can be defined as follows:

f (x∗) = min f (xi), xi ∈ [xmin, xmax] (1)

where f (·) denotes the objective function, and xi = (xi,1, xi,2, · · ·, xi,D) is named as the target vector, x∗ is the global
optima of the optimization task. Usually, the target vectors will be restricted in the searching space by a pre-defined
lower bound xmin = (xmin,1, xmin,2, · · ·, xmin,D) and a upper bound xmax = (xmax,1, xmax,2, · · ·, xmax,D).

2.1. Initialization operator

To begin the optimization process, an initial population consisting of NP individuals P0 = (x0
1, x

0
2, · · ·, x

0
NP) needs

to be created by uniformly randomizing these individuals through the following formula:

xi, j = xmin, j + rand[0, 1] · (xmax, j − xmin, j) (2)

where rand[0, 1] denotes a uniformly distributed random number within the interval [0,1].

2.2. Mutation operator

At each iteration, the mutation operator will be employed for each target vector to produce the corresponding
mutant vector vg

i = (vg
i,1, v

g
i,2, · · ·, v

g
i,D). The five most frequently used mutation strategies are listed below, and more

detailed information of them can be found in Ref. (Das & Suganthan, 2011).

• DE/Rand/1:

vg
i = xg

r1 + F · (xg
r2 − xg

r3 ) (3)

• DE/Best/1:

vg
i = xg

best + F · (xg
r1 − xg

r2 ) (4)

• DE/Current-to-best/1:

vg
i = xg

i + F · (xg
best − xg

i ) + F · (xg
r1 − xg

r2 ) (5)
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• DE/Rand/2:

vg
i = xg

r1 + F · (xg
r2 − xg

r3 ) + F · (xg
r4 − xg

r5 ) (6)

• DE/Best/2:

vg
i = xg

best + F · (xg
r1 − xg

r2 ) + F · (xg
r3 − xg

r4 ) (7)

In above equations, the indices r1, r2, r3, r4 and r5 ∈ {1, 2, · · ·,NP} are mutually exclusive integers and are different
from the index i. The vector xg

best represents the optimal individual in the population at the gth generation. The
parameter F is called the scale factor, which is a positive constant within the range [0,1].

2.3. Crossover operator

The crossover operator is implemented on each pair of target vector xg
i and corresponding mutant vector vg

i to
generate a trial vector ug

i = (ug
i,1, u

g
i,2, · · ·, u

g
i,D). The binomial crossover which is commonly utilized can be defined as

follows:

ug
i, j =

v
g
i, j if rand[0, 1] 6 CR or j = jrand

xg
i, j otherwise

(8)

where CR ∈ [0, 1] is named as the crossover rate, and the index jrand ∈ {1, 2, · · ·,D} is a randomly selected integer to
ensure that at least one dimension of trial vector is inherited from mutant vector.

2.4. Selection operator

In this step, DE applies a one-to-one greedy mechanism to choose a better one from the target vector xg
i and trial

vector ug
i to survive into the next generation. For a minimization problem, this operator can be defined as follows:

xg+1
i =

u
g
i if f (ug

i ) 6 f (xg
i )

xg
i otherwise

(9)

3. Related Works

Recent two decades have witnessed the significant development of DE, and many variants have been proposed by
researchers to enhance DE’s optimization ability. In this section, we will only briefly review some modified methods
on the trial vector generation strategy and the control parameter adjustment which are relevant to our work. For a
comprehensive up-to-date survey on DE, please refer to Refs. (Das et al., 2016) and (Opara & Arabas, 2019).

The generation of trial vector is one of the most critical steps of DE, and has attracted the attention of many
scholars to propose various improvement variants. Zhang and Sanderson (Zhang & Sanderson, 2009) introduced a
classical and effective DE variant JADE, which executed a novel mutation operator “DE/Current-to-pbest” with an
optional external archive providing direction information. Tanabe and Fukunaga (Tanabe & Fukunaga, 2013) proposed
a new variant of JADE, namly SHADE, which applied archives techniques based on the historical memory to store
a set of well-performed scale factors and crossover rates. Tanabe and Fukunaga (Tanabe & Fukunaga, 2014) further
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introduced an improved version called LSHADE by applying a linear reduction scheme for population size. Mohamed
et al. (Mohamed et al., 2019) proposed two novel mutation operators including a more greedy strategy “DE/Current-to-
ord pbest” and a less greedy strategy “DE/Current-to-ord best” and incorporated them into SHADE and LSHADE to
enhance their performance. Islam et al. (Islam et al., 2012) developed a new mutation operator namely “DE/Current-
to-gr best/1” and a novel crossover operator to surmount the premature convergence and stagnation problems in
the canonical DE. Otani et al. (Otani et al., 2013) introduced a “DE/isolated/1” mutation operator to generates new
individuals near an isolated individual which would be helpful to evenly allocate the search resources. Sallam et
al. (Sallam et al., 2017) established an adaptive operator selection mechanism, which measured the landscape and
the historical performance to select appropriate DE mutation strategies from a pool of operators. In order to improve
the global and local search abilities, as well as the convergence speed of the basic DE, Mohamed (Mohamed, 2017)
presented an efficient modified DE with applying a new triangular mutation operator, which was on the bias of a
convex combination vector.

Selecting appropriate control parameters is an indispensable task and plays a pivotal role for enhancing the perfor-
mance of DE. Therefore, various adjustment methods have been introduced by the researchers to lessen the sensitivity
of DE to the control parameters when solving different optimization tasks. For instance, Yu et al. (Yu et al., 2013)
implemented a two-level adaptive parameters control mechanism, in which the population-level parameters were adap-
tively adjusted based on the optimization state and the individual-level parameters were generated in accordance with
fitness values and its distance from the optimal individual. Tang et al. (Tang et al., 2014) introduced a new DE variant
which embedded an individual-dependent scheme to determine the control parameter values. Draa et al. (Draa et al.,
2015) proposed a sinusoidal differential evolution, which was based on two preset sinusoidal formulas to automatical-
ly adjust F and CR. What’s more, Draa et al. (Draa et al., 2019) proposed a new variant of SinDE, namely OCSinDE,
which utilized a compound sine-based formula to adjust F and CR. Compared with original SinDE, OCSinDE could
make parameters’ variation less monotone. Tatsis et al. (Tatsis & Parsopoulos, 2017) proposed a grid-based parame-
ter adaptation scheme to dynamically select the most appropriate crossover type and parameter values, and the core
technique of the scheme lies in the discrete parameter searching space. More recently, Meng et al. (Meng et al., 2018)
established a DE variant called PALM-DE to generate new parameters with an adaptive learning mechanism for the
inconvenience in selecting control parameters. However, this variant was heavily relied on the number of individuals
to generate a suitable value for CR. Thus, on the basis of PALM-DE, Meng et al. (Meng et al., 2019) introduced a
new parameter adaptive DE variant called PaDE to resolve inappropriate adaptation schemes with a novel grouping
strategy. In order to provide explicit guidelines for generating appropriate control parameters, Wang et al. (Wang et al.,
2019) proposed a parameter adaption strategy based on Association Rule Mining methodology, which could extract
precise effectual F and CR couple associations during different evolving phases. Sun et al. (Sun et al., 2020a) con-
structed an adaptive parameter settings using decreasing and periodic functions for balancing the global exploration
ability and the local exploitation ability.

Great efforts have also been made to achieve an ideal balance between the global exploration and the local ex-
ploitation for designing an effective DE variant. Li and Yin (Li & Yin, 2016) presented a modified DE by combing
two mutation rules(i.e., DE/Rand/2 and DE/current-to-pbest (Zhang & Sanderson, 2009)) by an alternate probability
rule to balance the exploitation and exploration of the algorithm. Liu et al. (Liu et al., 2016) introduced a new DE
on the bias of a two-stage mechanism, called TSDE, which divided the whole evolving process into two stages, and
applied different trial vector generation strategies in these two stages. Bhattacharya and Chattopadhyay (Bhattacharya
& Chattopadhyay, 2010) integrated DE with the biogeography-based optimization algorithm (BBO) to make use of
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the exploration ability of DE and the exploitation ability of BBO. Similarly, Liu et al. (Liu et al., 2019) presented
a hierarchical DE with implementing multi-cross operation in the top layer which is featured with fast convergence
speed and superior local exploitation ability while executing SHADE (Tanabe & Fukunaga, 2013) in the bottom layer
to make use of its global exploration ability. Sun et al. (Sun et al., 2021) designed two regeneration strategies based
on the dynamic adjustment of the search space focusing on global exploration and local exploitation respectively to
improve the optimization performance of the DE algorithm. Zhao et al. (Zhao et al., 2018) introduced a new DE
variant by integrating DE with the gravitational search algorithm. In this variant, two mutation strategies and a novel
disruption scheme on the bias of Levy flight were employed to strengthen the local exploitation ability, meanwhile a
new self-adaptive tuning mechanism was designed to balance the exploration and exploitation.

4. Description of DCDE

In this part, we will provide a detail description of the proposed DCDE algorithm. Firstly, we will present our
designing motivation of DCDE, and then introduce the adopted mutation operator based on the dynamic combination
scheme and the two-level adaptation strategy for scale factor F and crossover rate CR. Finally, the overall operation
process of DCDE will be introduced.

4.1. Motivation

For DE algorithms, the mutation operator plays the vital role in its searching ability. A superior mutation operator
should maintain a proper balance between the global exploration ability and the local exploitation ability during
different stages of the evolution process. Generally, the mutation operator is composed of base vector and difference
vector, where the base vector determines the reference point of searching while the difference vector is utilized to
provide the searching direction and perturb base vector to find a new position. As pointed out in (Khaparde et al.,
2015), the information of base vectors is utilized for cluster formation, which further has an influence on the final
solutions. For instance, mutation strategy DE/Rand/1 (i.e. Eq. (3)) takes a random individual as the base vector which
can enrich the population diversity and maintain the outstanding global exploration ability, but it is highly likely to
lead to stagnation problems. Mutation strategy DE/Rand/2 (i.e. Eq. (6)) is a variant of DE/Rand/1 by adding an extra
difference vector, which is expected to have a better perturbation to the base vector (Mohamed et al., 2019). Mutation
strategy DE/Best/1 (i.e. Eq. (4)) is a greedy scheme by choosing the best individual as the base vector, which can
enhance exploitation ability and increase the convergence speed, but it is against the population diversity and is easy
to cause premature convergence problem (Li et al., 2017). It can be seen that suitable base vector can effectively
improve the ability of mutation strategy in balancing global exploration and local exploitation, which in turn improves
the optimization performance of the DE algorithm.

4.2. Dynamic combination based mutation operator

According to the above considerations, we propose a novel mutation operator in which the base vector is con-
structed from a dynamic combination of the optimal individual and the best one (named elite individual) among three
randomly selected individuals. In order to more fully exploit the function of the base vector, we try to incorporate the
fitness information of individuals into the combinatorial control parameters, i.e., we need to sort the populations in
ascending order according to the fitness values of individuals. Then, the mutation operation will be executed and can
be expressed by the following formula:

vg
i = w · xg

r∗ + (1 − w) · xg
best + F1 · (xg

r1 − xg
i ) + F2 · (xg

r2 − xg
i ) (10)
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where the indexes r∗, r1 and r2 are mutually exclusive integers randomly selected from the set {1, 2, · · ·,NP} and are
different form the index i. What’s more, xg

r∗ is called the elite individual in DCDE, which is the best one among the
three randomly selected individuals, while xg

best is the currently best individual in the population. Parameters F1 and
F2 are two mutually independent scale factors, and we will describe them in detail later. The variable w is a weight
parameter and can be calculated as follows:

w =
δ

exp(m · ES )
(11)

where δ = (Gmax − g + 1)/Gmax is a process parameter relied to the evolutionary process, where Gmax is the maximum
allowed number of iterations, and g is the index of the current iteration. The parameter ES = r∗/NP indicates the
current ranking status of the selected elite individual xg

r∗ . It is easy to see that the better the ranking of elite individuals,
the smaller the parameter value ES . The constant m is applied to control the influence of individual-level parameter
ES on weight parameter w, and it’s set to 1 in DCDE, which will be further analyzed in the parameter analysis section.
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Fig. 1. The changing process of weight parameter w (a) and macro parameter GP (b).

From the Eq. (10), it’s evident to see that the new base vector includes two individuals, i.e., xg
r∗ and xg

best, which are
collaborated by one dynamic combination scheme. Obviously, parameter w is a key control variable in the combination
strategy, which is used to regulate the influence degree of the random-based elite individual xg

r∗ and the optimal
individual xg

best in the mutation operator respectively. In order to present the combination strategy more intuitively,
the changing process of parameter w along with the the iteration for three elite individuals with different ranking
status is plotted in Fig. 1 (a). As we can see in this figure, the value of w decreases linearly along with the evolution
process while it increases when the ranking status of the selected elite individual gets better, which is reflected in the
smaller value of the parameter ES . In the early stage, a lager value of w implies that the elite individual xg

r∗ plays a
relatively large role, which means that the population need to maintain a relatively high level of diversity. It should be
specified that the use of elite individual in the base vector can provide a more promising region for the search work and
effectively improve the search quality. In the latter stage, the focus is transferred to the exploitation work by making
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the optimal individual xg
best plays a greater role. In addition, regions around elite individuals with better fitness values

are more worthy of deeper development and therefore need to be assigned greater weights, and the individual-level
parameter ES is applied to achieve this consideration. What’s more, the use of two difference vectors can enhance
the diversity of populations. Finally, it should be note that if the component of mutant vector generated by Eq. (10)
exceeds the limits of the searching space, it will be set to the middle of selected elite individual xr∗ and the parent
vector xi. In summary, the new mutation operator based on the dynamic combination scheme has fully considered
the function of base vector and difference vector, thus it is expected to can effectively regulate the global exploration
ability and local exploitation ability in the optimization process.

4.3. Two-level parameter regulation strategy

The control parameters also paly an important role in the success of DE. The scale factor F is utilized to determine
the searching radius centred on the base vector, and the crossover rate CR controls the components inherited from
mutant vector. As pointed out in (Tang et al., 2014), F should be arranged a smaller value for better base vectors to
exploit around the base vectors with a small radius; a relatively large value of F is more suitable for inferior base
vectors to help them out of the local areas and explore more promising areas. Similarly, CR should be a smaller
value for a superior parent vector to inherit more valuable information to the offspring. On the contrary, if the parent
vector does not perform well, the offspring should inherit more information from the trial vector for improving their
own genes. It is worth mentioning that the probability distribution model is attracting more and more attention on
solving the optimization problems, and the Gaussian distribution is one of the most commonly used models (Zhang
& Sanderson, 2007; Mallipeddi et al., 2014; Jena et al., 2016; Sun et al., 2019; Zhang et al., 2020). According to the
study of Ref. (Omran et al., 2005), the mutation operator perturbed by Gaussian distribution has less chance to lead
the population to the local optimum.

Based on the above analysis, a population-level parameter, two types of individual-level parameters and a Gaussian
distribution model are employed to modulate the core parameters F and CR during the evolution process, where the
population-level parameter GP is utilized to control the trend of involved parameters from the perspective of the whole
population, and it can be defined as follows:

GP = exp[n · (δ − 1)] (12)

The changing process of GP is depicted in Fig. 1 (b) when n = 3. Obviously, the value of GP decreases exponentially
along with the evolution process, and its descent speed is determined by the parameter n. In our proposed DCDE
variant, the value of n is set to 3, and the reason for this choice will be illustrated in the parameter analysis part.
Moreover, the parameter F is associated with ranking status of the elite individual while CR is influenced by that of
target vector xi. In fact, this setting is derived from the functions of the parameters F and CR themselves, i.e., F is used
to regulate the search radius centered on the base vector, while CR is used to control the proportion of information
inherited from the current individual to the next generation. The calculation formula of them are expressed as follows:

F = GP · N(µ, σ2) + (1 −GP) · ES (13)

CR = GP · N(µ, σ2) + (1 −GP) · IS (14)

where N(µ, σ2) returns a random value which is based on the Gaussian distribution with µ = 0.5 and σ = 0.1. It
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should be noted that F1 and F2 were generated independently using Eq. (13), which could increase the diversity of the
population to some extent. The parameter ES is the same as defined in Eq. (11), and IS = i/NP is utilized to indicate
the ranking status of parent vector xi and it is seen that the better parent vector corresponds the smaller value of IS .

From the Eq. (13) and Eq. (14), we can observe that in the early stage, the random number generated by the
Gaussian function has more intense impact on the two control parameters F and CR by arranging a larger value of
GP, but in the latter phase, the ranking status parameters ES and IS will fully play their function to generate F and
CR respectively. The mechanism behind this design is that in the early stage, individuals accumulate less information,
and reducing the influence of individual information on the search work will reduce the probability of falling into the
local optimum; while in the later stage, individuals gradually have more valuable information, and making full use
of this information will help improve the search efficiency. In summary, the two-level control parameters regulation
scheme can not only make use of evolutionary process information but also utilize the feedback information from
different individuals and the scheme is also designed on the principle of achieving a suitable balance between the
global exploration ability and the local exploitation ability.

The detailed description of the dynamic combination scheme for mutation operator and the two-level regulation
scheme for control parameters in our proposed DCDE have been provided. Now, the complete operation flow of the
proposed DCDE algorithm will be summarized in Algorithm 1, which shows that DCDE has a simple structure and it
is easy to implement and operate.

5. Experimental Study

In this section, the computational results of the proposed DCDE on the adopted experimental platform as well as
the comparisons results with eight state-of-the-art algorithms will be presented in detail. Additionally, the parametric
sensitivity analysis experiment will also be provided to confirm the optimal parameter setting in DCDE.

5.1. Benchmark functions

To verify the performance of the proposed DCDE algorithm, extensive experiments are carried out based on 29
benchmark functions in IEEE CEC 2017 test suite, which can be divided into the following four categories with
different characteristics: f1, f3: unimodal functions; f4− f10: simple multimodal functions; f11− f20: hybrid functions;
f21 − f30: composition functions. It should be noted that function f2 has been detached from the IEEE CEC 2017 test
suite for its unstable characteristic especially for high-dimensional problem, and more detail information about these
optimization functions can be found in Ref. (Wu et al., 2016a).

5.2. Comparison algorithms and parameter setting

In our experiment, five state-of-the-art DE variants including JADE (Zhang & Sanderson, 2009), SinDE (Draa
et al., 2015), EFADE (Mohamed & Suganthan, 2018), AGDE (Mohamed & Mohamed, 2019), GODE (Zhao et al.,
2021), and three recently proposed meta-heuristic algorithms including MPA (Faramarzi et al., 2020a), EO (Faramarzi
et al., 2020b), SGLSCA (Zhou et al., 2021) are used for performance comparison. To show that the comparison results
are convincing, parameters of all the compared algorithms are configured as recommended in the corresponding
original paper. In DCDE, the population size NP is set to 2 · D, which will be discussed in the parameter analysis
part. The comparison experiments are carried out on 30D, 50D, and 100D functions, and the maximum of function
evaluations is set to 10,000 ·D, which is also used as the stopping criteria.
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Algorithm 1: Algorithm Description of DCDE
Input: Maximum generations: Gmax; Population size: NP;

1 Generate an initial population P0 by Eq. (2);
2 Find the initial optimal individual xbest and calculate its fitness f (xbest);
3 for (g = 1 : Gmax) do
4 Reorder the whole population in an ascending order based on the fitness values;
5 Execute δ = (Gmax − g + 1)/Gmax;
6 Compute the population-level parameter GP by Eq. (12);
7 for (i = 1 : NP) do
8 Randomly select three individuals r∗, r1 and r2 from the set {1, 2, · · ·,NP}, and set the best one to 1;
9 Set the individual-level parameter ES to r∗/NP;

10 Set the individual-level parameter IS to i/NP;
11 Compute the weight parameter w by Eq. (11);
12 Compute the scale factors F1 and F2 independently by Eq. (13);
13 Compute the crossover rate CR by Eq. (14);
14 Randomly select an integer jrand from the set {1, 2, · · ·,D};
15 for ( j = 1 : D) do
16 if (rand[0, 1] < CR ‖ j == jrand) then
17 Compute vi, j by Eq. (10);
18 Execute ui, j = vi, j;
19 if (ui, j < xmin, j ‖ ui, j > xmax, j) then
20 ui, j = 0.5 · (xr∗, j + xi, j);

21 else
22 Execute ui, j = xi, j

23 Execute selection operator by Eq. (9);
24 if ( f (ug

i ) < f (xbest)) then
25 Replace xbest by ug

i ;

Output: Optimal solution: xbest; Optimal fitness value: f (xbest).

5.3. Performance metric

Several evaluation criteria are employed in our experiment to evaluate the performance of DCDE and they can be
divided into the following groups:

(1) Function Error Value: The function error value is utilized to reflect the effectiveness of test algorithms for search-
ing the solution within limited evaluations and can be computed by f (xbest) − f (x∗), where f (xbest) denotes the
optimal fitness value obtained by the end of optimization procedure, and f (x∗) is the fitness value of the actual
global optimal solution. In our experiment, all the compared algorithms are conducted 50 independent runs to
calculate the average value and standard deviation of the function error value, which are denoted by “Mean”
and “Std.”, respectively.

(2) Statistical Test: To gain a statistical conclusion of the comparison results, the single-problem analysis by Wilcox-
on rank-sum test (Derrac et al., 2011) is conducted on the experimental results at the 0.05 significance level
to distinguish whether there is significant difference between DCDE and each compared DE variant and the
markers “+/ = /−” denote that the performance of the DCDE is significantly better than, equal to, or inferior to
each competitor, respectively. What’s more, the multiple-problem analysis is conducted by both the Wilcoxon
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signed-rank test and the Friedman test at the 0.05 significance level. The difference between these two non-
parametric test methods lies in the fact that Wilcoxon signed-rank test is a pairwise test aiming to distinguish
the significant difference between the performance of only two algorithms while Friedman test (Derrac et al.,
2011) is a multiple comparison method aiming to detect significant difference and calculate the average ranking
between all the compared algorithms.

(3) Convergence Graphics: Convergence graphics are employed in our experiment to investigate the mean error
performance of the best solution over the total runs and compare the convergence speed of each algorithm in
the respective experiments.

5.4. Results and analysis

The comparison results of mean and standard deviation obtained by DCDE and other algorithms for solving 30D,
50D and 100D test functions are summarized in Tables 1-3. In these tables, the best results are highlighted in boldface
to indicate the best performing algorithm for each problem.

For 30D test functions, DCDE performs best among the compared algorithms by obtaining results with minimum
mean value for 10 functions which is followed by EFADE with getting the smallest mean value on 8 functions. For
other algorithms, JADE, SinDE and AGDE perform best on 4 functions; the performance of EO, SGLSCA and MPA
is relatively poor and they only obtain 1, 1, 0 best mean value respectively. From the statistical results based on
single-problem Wilcoxon rank-sum test, we can find that DCDE provides significantly better results compared with
both DE and non-DE variants in most functions. Specifically, for non-DE algorithms SGLSCA, MPA, EO, DCDE is
significantly better on 29, 26, 26 functions respectively, and DCDE is only beaten by EO on f4, and by MPA on f18,
f26. Compared with all the selected DE variants JADE, SinDE, AGDE, EFADE and GODE, DCDE yields significantly
better results on more than half of the functions.

Although it’s more difficult to deal with higher dimensional problems, DCDE still shows much more superior
performance compared with other algorithms on 50D test functions. From the perspective of minimum mean value,
DCDE still remains the first-ranking position by yielding best results on 12 test functions, which is increased by 2
compared with that of 30D test functions. For other algorithms, the number of optimal results obtained by JADE,
SinDE and EFADE is 4, and that obtained by MPA, AGDE, GODE, EO, SGLSCA is 3, 1, 1, 0, 0 respectively. What’s
more, according to the Wilcoxon rank-sum test for 50D experimental results, the number of significantly better results
provided by DCDE remains the same or increases compared with JADE, SinDE, AGDE, EFADE, GODE and EO for
solving 30D functions. And DCDE is only beaten by SGLSCA, MPA on 1 and 4 functions respectively.

When problem’s dimension increases to 100D, DCDE shows a similar performance to the results of 50D problems.
More specifically, DCDE still stands first since it obtains the smallest fitness value for 13 functions, which is far more
than other algorithms. JADE ranks the second place by getting 7 optimal results which is only about half of DCDE.
In terms of the Wilcoxon rank-sum test, DCDE performs significantly better than all compared DE variants on most
test functions. The significant difference is much more obvious when comparing with non-DE algorithms, i.e., DCDE
variant is significantly better than EO, MPA and SGLSCA on 26, 24 and 27 functions respectively.

To draw a comprehensive comparison based on statistical analysis, multiple-problem analysis by the Wilcoxon
signed-rank test is conducted at the 0.05 significance level using the KEEL software (Alcalá-Fdez et al., 2009). For the
sake of clarity, the experimental results for different dimensions are presented in Table 4, where R+ and R− represents
the sum of ranks that DCDE is significantly better and worse than the compared algorithm respectively, and the
significance marker “YES” means that there is 95% probability to ensure that there is significant difference between
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Table 1. Comparison results between proposed DCDE variant and other algorithms on 30D test functions.

Func. Metric JADE SinDE AGDE EFADE GODE EO MPA SGLSCA DCDE

f1
Mean 1.22E-14

+
2.74E+02

+
2.84E-16

–
4.77E-14

+
3.13E-15

–
4.39E+03

+
1.18E+07

+
3.13E+03

+
1.13E-22

Std. 4.98E-15 8.33E+02 2.01E-15 2.37E-13 5.95E-15 5.26E+03 1.61E+07 3.83E+03 5.93E-22

f3
Mean 2.06E+04

=
7.46E+02

+
3.75E-14

–
2.50E-13

+
1.14E+01

+
3.08E+01

+
2.75E+02

+
4.74E+03

+
9.14E-07

Std. 2.08E+04 4.29E+02 2.72E-14 3.39E-13 1.20E+01 5.74E+01 4.50E+02 2.38E+03 5.66E-06

f4
Mean 3.50E+01

–
9.18E+01

+
3.14E+01

–
3.55E+01

–
5.95E+01

–
4.42E+01

–
8.55E+01

+
1.03E+02

+
7.18E+01

Std. 3.00E+01 1.48E+01 3.09E+01 2.93E+01 2.06E+00 3.28E+01 2.80E+01 2.43E+01 1.07E+01

f5
Mean 2.79E+01

+
4.28E+01

+
7.34E+01

+
4.21E+01

+
1.12E+02

+
7.53E+01

+
7.10E+01

+
9.35E+01

+
2.23E+01

Std. 3.22E+00 7.93E+00 8.04E+00 8.22E+00 6.23E+01 2.07E+01 1.55E+01 2.60E+01 8.10E+00

f6
Mean 1.57E-13

+
0.00E+00

–
1.14E-13

+
1.23E-13

+
6.07E-09

+
2.74E-01

+
3.78E+00

+
1.23E+01

+
1.42E-07

Std. 6.03E-14 0.00E+00 7.65E-29 3.12E-14 1.04E-08 3.45E-01 1.52E+00 5.43E+00 3.81E-07

f7
Mean 5.44E+01

+
7.98E+01

+
1.15E+02

+
7.34E+01

+
2.05E+02

+
1.17E+02

+
1.30E+02

+
1.33E+02

+
5.24E+01

Std. 3.83E+00 8.09E+00 9.08E+00 1.01E+01 1.11E+01 2.75E+01 1.99E+01 2.75E+01 6.25E+00

f8
Mean 2.55E+01

+
3.46E+01

+
7.99E+01

+
5.67E+01

+
3.79E+01

+
7.22E+01

+
7.69E+01

+
9.69E+01

+
2.21E+01

Std. 3.89E+00 8.90E+00 7.32E+00 1.06E+01 3.69E+01 1.95E+01 1.54E+01 2.72E+01 7.66E+00

f9
Mean 9.09E-03

–
1.12E-28

+
0.00E+00

–
9.09E-03

=
0.00E+00

–
1.05E+02

+
2.42E+02

+
3.78E+02

+
7.20E-29

Std. 6.43E-02 1.32E-28 0.00E+00 6.43E-02 0.00E+00 2.36E+02 1.08E+02 2.99E+02 3.37E-30

f10
Mean 1.85E+03

=
2.64E+03

+
3.84E+03

+
3.14E+03

+
3.28E+03

+
3.65E+03

+
2.76E+03

+
3.50E+03

+
1.96E+03

Std. 2.18E+02 4.63E+02 2.73E+02 8.34E+02 1.47E+03 7.31E+02 3.62E+02 6.38E+02 5.06E+02

f11
Mean 2.37E+01

+
5.40E+01

+
1.76E+01

+
1.56E+01

+
4.15E+01

+
7.00E+01

+
6.53E+01

+
1.16E+02

+
1.89E+01

Std. 2.12E+01 3.35E+01 1.83E+01 9.76E+00 3.19E+01 4.56E+01 2.81E+01 3.71E+01 2.43E+01

f12
Mean 1.25E+03

–
6.84E+04

+
1.01E+04

+
7.53E+03

=
8.24E+03

=
6.38E+04

+
4.35E+05

+
5.25E+06

+
5.75E+03

Std. 3.51E+02 9.84E+04 7.69E+03 6.93E+03 7.03E+03 4.62E+04 6.23E+05 3.23E+06 3.10E+03

f13
Mean 3.65E+01

+
6.08E+03

+
5.43E+01

=
4.71E+02

+
8.04E+01

+
2.13E+04

+
3.33E+02

+
9.66E+04

+
2.36E+01

Std. 1.45E+01 5.80E+03 1.56E+02 1.44E+03 6.21E+00 1.77E+04 1.60E+02 4.52E+04 1.04E+01

f14
Mean 7.73E+03

+
3.36E+01

=
2.57E+01

=
1.19E+01

–
5.14E+01

+
7.44E+03

+
3.86E+01

+
8.70E+03

+
2.89E+01

Std. 8.61E+03 2.58E+01 1.10E+01 5.25E+00 1.61E+01 5.55E+03 1.03E+01 1.06E+04 3.52E+00

f15
Mean 1.44E+03

+
1.50E+02

+
1.15E+01

–
8.85E+00

–
3.09E+01

+
4.58E+03

+
7.92E+01

+
1.31E+04

+
1.20E+01

Std. 3.25E+03 7.69E+02 1.48E+01 4.05E+00 1.14E+01 4.65E+03 3.06E+01 8.04E+03 4.08E+00

f16
Mean 4.51E+02

+
2.99E+02

+
3.83E+02

+
4.38E+02

+
3.45E+02

+
6.95E+02

+
4.12E+02

+
9.38E+02

+
1.61E+02

Std. 1.28E+02 1.98E+02 1.63E+02 1.87E+02 2.26E+02 2.81E+02 1.62E+02 2.79E+02 1.51E+02

f17
Mean 8.10E+01

+
2.27E+01

–
8.35E+01

+
5.33E+01

=
8.42E+01

+
2.42E+02

+
7.76E+01

+
3.08E+02

+
3.61E+01

Std. 3.51E+01 1.13E+01 2.74E+01 5.17E+01 4.60E+01 1.13E+02 4.93E+01 1.63E+02 8.87E+00

f18
Mean 2.72E+04

=
4.08E+04

+
5.61E+02

+
1.45E+03

+
3.57E+01

–
1.47E+05

+
5.61E+01

–
1.31E+05

+
9.92E+01

Std. 7.54E+04 2.47E+04 1.18E+03 1.90E+03 4.29E+00 1.32E+05 2.09E+01 7.33E+04 7.50E+01

f19
Mean 1.49E+03

+
4.88E+02

=
1.19E+01

+
6.35E+00

–
1.34E+01

+
5.45E+03

+
1.83E+01

+
1.91E+04

+
1.03E+01

Std. 4.56E+03 2.10E+03 3.29E+00 2.34E+00 4.92E+00 7.57E+03 4.67E+00 2.83E+04 2.59E+00

f20
Mean 9.71E+01

+
5.14E+01

–
1.02E+02

+
1.11E+02

=
8.36E+01

–
2.85E+02

+
1.09E+02

+
2.93E+02

+
9.00E+01

Std. 5.43E+01 5.87E+01 6.01E+01 7.18E+01 1.06E+02 1.41E+02 5.79E+01 7.99E+01 5.99E+01

f21
Mean 2.29E+02

+
2.35E+02

+
2.78E+02

+
2.46E+02

+
3.63E+02

+
2.65E+02

+
2.42E+02

+
2.79E+02

+
2.21E+02

Std. 5.79E+00 7.96E+00 7.88E+00 1.02E+01 1.21E+01 2.24E+01 4.86E+01 2.34E+01 6.01E+00

f22
Mean 1.00E+02

=
1.00E+02

=
1.00E+02

=
1.00E+02

=
1.00E+02

=
2.24E+03

+
1.17E+02

+
1.00E+02

+
1.00E+02

Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.95E+03 3.10E+00 1.05E+00 0.00E+00

f23
Mean 3.74E+02

+
3.90E+02

+
4.20E+02

+
3.94E+02

+
5.15E+02

+
4.22E+02

+
3.97E+02

+
4.41E+02

+
3.66E+02

Std. 5.87E+00 7.51E+00 7.73E+00 1.15E+01 2.11E+01 1.93E+01 1.34E+01 2.20E+01 8.89E+00

f24
Mean 4.40E+02

=
4.46E+02

+
4.94E+02

+
4.75E+02

+
5.88E+02

+
4.85E+02

+
4.72E+02

+
4.96E+02

+
4.41E+02

Std. 5.10E+00 9.02E+00 1.70E+01 1.29E+01 9.32E+00 1.96E+01 1.41E+01 2.47E+01 8.38E+00

f25
Mean 3.87E+02

+
3.87E+02

=
3.87E+02

–
3.87E+02

+
3.87E+02

–
3.90E+02

=
3.91E+02

=
4.08E+02

+
3.87E+02

Std. 2.09E-01 2.01E-01 8.02E-02 5.75E-02 2.32E-02 1.44E+01 1.35E+01 1.77E+01 9.54E-02

f26
Mean 1.18E+03

+
1.13E+03

+
1.57E+03

+
1.25E+03

+
2.21E+03

+
1.56E+03

+
4.14E+02

–
1.82E+03

+
1.09E+03

Std. 7.13E+01 8.43E+01 1.18E+02 4.36E+02 7.31E+02 6.01E+02 3.38E+02 6.56E+02 9.10E+01

f27
Mean 5.02E+02

–
4.95E+02

–
5.02E+02

=
5.00E+02

–
4.88E+02

–
5.23E+02

+
5.11E+02

+
5.38E+02

+
5.04E+02

Std. 8.32E+00 7.78E+00 1.02E+01 7.92E+00 1.02E+01 1.60E+01 1.06E+01 2.23E+01 4.85E+00

f28
Mean 3.33E+02

=
3.37E+02

=
3.70E+02

+
3.11E+02

–
3.29E+02

=
3.31E+02

=
3.99E+02

+
4.40E+02

+
3.35E+02

Std. 5.47E+01 5.05E+01 5.36E+01 3.20E+01 4.91E+01 5.49E+01 4.26E+01 2.26E+01 5.09E+01

f29
Mean 4.81E+02

+
4.85E+02

=
5.48E+02

+
4.52E+02

–
5.38E+02

+
7.45E+02

+
5.24E+02

+
9.16E+02

+
4.58E+02

Std. 2.47E+01 5.37E+01 1.96E+01 5.50E+01 1.09E+02 1.63E+02 6.72E+01 2.11E+02 1.38E+01

f30
Mean 2.12E+03

–
4.33E+03

+
2.78E+03

–
2.48E+03

–
2.00E+03

–
8.11E+03

+
3.26E+03

+
2.68E+05

+
2.96E+03

Std. 1.64E+02 1.37E+03 1.30E+03 7.23E+02 6.04E+01 6.15E+03 7.47E+02 1.68E+05 5.60E+02

+/=/– 18/6/5 19/6/4 18/4/7 15/5/9 18/3/8 26/2/1 26/1/2 29/0/0 - - -
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Table 2. Comparison results between proposed DCDE variant and other algorithms on 50D test functions.

Func. Metric JADE SinDE AGDE EFADE GODE EO MPA SGLSCA DCDE

f1
Mean 5.46E-14

+
3.07E+03

+
5.42E-06

+
1.66E+00

+
1.28E+02

+
3.75E+03

+
4.78E+07

+
3.08E+03

+
1.37E-12

Std. 4.30E-14 3.08E+03 2.07E-05 5.56E+00 5.29E+02 3.90E+03 8.89E+07 3.85E+03 5.06E-12

f3
Mean 1.52E+04

–
2.97E+04

+
2.02E-07

–
8.55E-05

–
7.08E+04

+
3.84E+03

+
4.93E+03

+
1.90E+04

+
1.68E+01

Std. 3.31E+04 6.43E+03 4.67E-07 1.72E-04 1.26E+04 3.15E+03 2.44E+03 4.50E+03 2.15E+01

f4
Mean 6.21E+01

–
6.87E+01

=
5.05E+01

–
3.79E+01

–
8.52E+01

=
7.72E+01

=
1.48E+02

+
1.88E+02

+
7.34E+01

Std. 5.11E+01 5.70E+01 4.43E+01 2.53E+01 5.30E+01 5.08E+01 5.62E+01 5.11E+01 5.19E+01

f5
Mean 5.40E+01

+
6.74E+01

+
2.20E+02

+
9.46E+01

+
1.36E+02

+
1.85E+02

+
1.67E+02

+
2.35E+02

+
3.57E+01

Std. 8.11E+00 1.58E+01 1.21E+01 1.74E+01 1.22E+02 3.20E+01 3.88E+01 6.86E+01 8.34E+00

f6
Mean 1.27E-13 – 0.00E+00

–
1.68E-13

–
1.84E-13

–
1.76E-07

–
3.39E+00

+
1.17E+01

+
2.10E+01

+
1.80E-06

Std. 3.73E-14 0.00E+00 5.74E-14 5.57E-14 7.48E-07 3.29E+00 1.79E+00 8.72E+00 2.50E-06

f7
Mean 1.04E+02 + 1.30E+02

+
2.88E+02

+
1.94E+02

+
3.98E+02

+
2.65E+02

+
2.82E+02

+
2.61E+02

+
8.37E+01

Std. 7.19E+00 1.60E+01 1.52E+01 8.02E+01 1.37E+01 7.10E+01 3.62E+01 4.05E+01 8.61E+00

f8
Mean 5.48E+01 + 6.78E+01

+
2.15E+02

+
8.70E+01

+
1.72E+02

+
1.85E+02

+
1.62E+02

+
2.43E+02

+
4.03E+01

Std. 7.86E+00 1.18E+01 1.13E+01 1.70E+01 1.24E+02 3.67E+01 3.44E+01 5.76E+01 1.21E+01

f9
Mean 1.02E+00 + 5.54E-28

+
1.02E-13

+
8.17E-02

=
1.27E-02

–
1.80E+03

+
1.57E+03

+
2.74E+03

+
8.95E-03

Std. 9.97E-01 2.92E-28 3.45E-14 4.28E-01 6.62E-02 1.73E+03 5.40E+02 1.24E+03 2.71E-02

f10
Mean 3.71E+03 – 5.13E+03

+
8.52E+03

+
7.32E+03

+
6.79E+03

+
6.29E+03

+
6.13E+03

+
5.66E+03

+
4.15E+03

Std. 3.36E+02 7.99E+02 3.36E+02 1.99E+03 2.94E+03 1.00E+03 6.86E+02 1.01E+03 7.35E+02

f11
Mean 1.31E+02 + 3.88E+01

+
5.22E+01

+
4.44E+01

+
9.01E+01

+
1.54E+02

+
1.80E+02

+
2.65E+02

+
3.62E+01

Std. 3.48E+01 5.09E+00 1.37E+01 7.52E+00 4.84E+01 5.51E+01 3.97E+01 6.64E+01 4.48E+00

f12
Mean 5.32E+03 – 8.98E+05

+
7.03E+04

+
4.76E+04

+
6.00E+04

+
7.68E+05

+
6.99E+06

+
2.09E+07

+
2.20E+04

Std. 3.61E+03 4.86E+05 3.67E+04 2.78E+04 3.61E+04 6.13E+05 5.01E+06 1.28E+07 1.30E+04

f13
Mean 2.85E+02 – 1.51E+03

=
2.68E+03

=
2.22E+03

=
3.24E+02

–
1.07E+04

+
1.17E+03

=
9.52E+04

+
1.39E+03

Std. 1.95E+02 1.85E+03 4.38E+03 3.08E+03 2.35E+02 9.38E+03 3.16E+02 6.66E+04 1.20E+03

f14
Mean 1.91E+04 + 5.67E+03

+
1.95E+02

=
4.43E+01

–
1.25E+02

+
5.00E+04

+
7.33E+01

=
1.20E+05

+
7.75E+01

Std. 5.71E+04 6.19E+03 3.98E+02 1.46E+01 8.44E+00 3.73E+04 1.46E+01 1.19E+05 1.58E+01

f15
Mean 4.35E+02 = 9.41E+02

=
4.68E+02

–
9.62E+01

–
1.06E+02

–
1.17E+04

+
3.02E+02

–
3.76E+04

+
7.71E+02

Std. 7.55E+02 1.07E+03 1.47E+03 1.03E+02 9.34E+00 6.95E+03 6.97E+01 2.40E+04 7.94E+02

f16
Mean 8.25E+02 + 7.54E+02

+
9.94E+02

+
9.06E+02

+
1.06E+03

+
1.43E+03

+
8.24E+02

+
1.57E+03

+
5.96E+02

Std. 1.62E+02 2.21E+02 1.97E+02 2.28E+02 4.02E+02 4.49E+02 1.60E+02 3.89E+02 2.30E+02

f17
Mean 5.87E+02 + 3.59E+02

=
7.00E+02

+
5.56E+02

+
7.41E+02

+
1.14E+03

+
6.48E+02

+
1.16E+03

+
3.43E+02

Std. 1.39E+02 1.68E+02 1.27E+02 1.81E+02 2.76E+02 3.13E+02 1.39E+02 3.08E+02 1.64E+02

f18
Mean 7.80E+04 – 2.34E+05

+
2.87E+03

–
1.86E+03

–
5.46E+02

–
2.76E+05

+
1.33E+02

–
8.02E+05

+
4.42E+03

Std. 3.03E+05 1.97E+05 2.40E+03 2.14E+03 4.33E+02 2.51E+05 3.37E+01 4.39E+05 3.94E+03

f19
Mean 7.05E+02 + 6.77E+03

+
6.49E+01

–
2.02E+01

–
5.15E+01

+
2.07E+04

+
5.52E+01

+
3.34E+04

+
1.85E+03

Std. 3.37E+03 4.84E+03 2.51E+02 1.41E+01 1.33E+01 1.12E+04 1.28E+01 1.43E+04 4.21E+03

f20
Mean 4.51E+02 + 2.26E+02

=
5.20E+02

+
4.20E+02

+
5.23E+02

+
9.72E+02

+
3.91E+02

+
7.85E+02

+
2.01E+02

Std. 1.15E+02 1.41E+02 1.38E+02 1.67E+02 2.54E+02 3.45E+02 1.61E+02 2.55E+02 1.47E+02

f21
Mean 2.53E+02 + 2.65E+02

+
4.27E+02

+
2.92E+02

+
4.66E+02

+
3.55E+02

+
3.09E+02

+
3.60E+02

+
2.37E+02

Std. 9.43E+00 1.23E+01 1.45E+01 1.83E+01 1.21E+02 3.84E+01 1.82E+01 3.55E+01 8.33E+00

f22
Mean 3.61E+03 = 4.56E+03

+
7.93E+03

+
5.81E+03

+
6.51E+03

+
7.06E+03

+
1.26E+03

–
4.11E+03

+
3.29E+03

Std. 1.67E+03 1.81E+03 3.04E+03 3.88E+03 3.60E+03 9.69E+02 2.58E+03 3.24E+03 2.00E+03

f23
Mean 4.79E+02 + 4.81E+02

+
6.47E+02

+
5.17E+02

+
7.56E+02

+
5.76E+02

+
5.31E+02

+
6.39E+02

+
4.59E+02

Std. 1.10E+01 1.59E+01 1.49E+01 2.03E+01 1.54E+01 3.81E+01 1.70E+01 5.24E+01 8.62E+00

f24
Mean 5.42E+02 + 5.50E+02

+
6.85E+02

+
5.78E+02

+
8.39E+02

+
6.43E+02

+
6.01E+02

+
6.82E+02

+
5.29E+02

Std. 9.44E+00 1.27E+01 5.34E+01 1.88E+01 1.42E+01 4.41E+01 1.80E+01 4.07E+01 1.14E+01

f25
Mean 5.33E+02 + 4.89E+02

–
5.18E+02

+
4.93E+02

=
5.08E+02

+
5.63E+02

+
5.44E+02

+
5.75E+02

+
4.80E+02

Std. 3.36E+01 2.50E+01 3.80E+01 2.49E+01 3.57E+01 3.94E+01 4.24E+01 2.77E+01 2.98E-02

f26
Mean 1.63E+03 + 1.60E+03

+
3.02E+03

+
2.08E+03

+
4.02E+03

+
2.92E+03

+
8.63E+02

–
1.68E+03

–
1.38E+03

Std. 1.14E+02 1.58E+02 1.46E+02 2.05E+02 6.47E+02 1.11E+03 8.24E+02 2.11E+03 1.38E+02

f27
Mean 5.51E+02 + 5.12E+02

–
5.13E+02

–
5.30E+02

+
5.13E+02

–
6.87E+02

+
6.35E+02

+
8.46E+02

+
5.22E+02

Std. 2.44E+01 6.82E+00 1.54E+01 1.19E+01 1.52E+01 7.50E+01 6.16E+01 1.11E+02 7.94E+00

f28
Mean 4.91E+02 + 4.60E+02

=
4.78E+02

+
4.59E+02

=
4.66E+02

+
5.00E+02

+
5.16E+02

+
5.29E+02

+
4.59E+02

Std. 2.38E+01 6.91E+00 2.31E+01 1.15E-13 1.68E+01 2.32E+01 3.68E+01 3.65E+01 1.15E-13

f29
Mean 4.78E+02 + 3.60E+02

–
6.06E+02

+
5.23E+02

+
4.72E+02

+
1.13E+03

+
7.41E+02

+
1.52E+03

+
4.02E+02

Std. 7.90E+01 4.39E+01 8.78E+01 1.22E+02 1.14E+02 4.35E+02 1.73E+02 2.95E+02 3.79E+01

f30
Mean 6.67E+05 + 6.94E+05

+
6.16E+05

=
6.13E+05

+
5.89E+05

–
1.07E+06

+
6.83E+05

+
6.89E+06

+
6.07E+05

Std. 6.90E+04 6.54E+04 3.74E+04 3.94E+04 1.81E+04 2.22E+05 8.28E+04 2.89E+06 3.63E+04
+/=/– 20/2/7 19/6/4 19/3/7 18/4/7 21/1/7 28/1/0 23/2/4 28/0/1 - - -
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Table 3. Comparison results between proposed DCDE variant and other algorithms on 100D test functions.

Func. Metric JADE SinDE AGDE EFADE GODE EO MPA SGLSCA DCDE

f1
Mean 5.17E-14

–
4.52E+03

+
4.86E+02

+
1.91E+01

+
4.87E+03

+
8.29E+03

+
1.00E+09

+
6.20E+03

+
1.52E-04

Std. 1.18E-14 4.11E+03 8.41E+02 3.48E+01 5.14E+03 1.16E+04 4.65E+08 7.45E+03 4.98E-04

f3
Mean 1.85E+05

=
2.75E+05

+
2.45E+02

–
4.60E+03

–
3.41E+05

+
6.72E+04

–
4.57E+04

–
1.17E+05

=
1.17E+05

Std. 2.04E+05 2.37E+04 2.53E+02 1.87E+03 3.87E+04 1.47E+04 9.75E+03 1.48E+04 1.69E+04

f4
Mean 1.23E+02

–
2.18E+02

+
1.84E+02

–
2.01E+02

–
2.15E+02

=
2.07E+02

=
4.56E+02

+
2.91E+02

+
2.15E+02

Std. 6.75E+01 1.23E+01 3.45E+01 7.50E+00 2.29E+01 4.72E+01 8.34E+01 4.79E+01 1.34E+01

f5
Mean 2.60E+02

+
1.21E+02

+
7.26E+02

+
1.65E+02

+
5.72E+02

+
5.30E+02

+
5.30E+02

+
6.49E+02

+
6.37E+01

Std. 1.65E+01 1.93E+01 2.43E+01 7.89E+01 3.21E+02 7.07E+01 3.81E+01 1.33E+02 1.23E+01

f6
Mean 1.19E-05

–
2.46E-08

–
2.84E-13

–
2.10E-08

–
2.15E-03

+
2.22E+01

+
2.65E+01

+
3.70E+01

+
3.31E-05

Std. 7.48E-05 4.70E-08 5.74E-14 9.72E-09 4.20E-03 7.63E+00 2.43E+00 9.79E+00 2.11E-05

f7
Mean 3.74E+02

+
2.40E+02

+
8.48E+02

+
5.83E+02

+
9.36E+02

+
1.04E+03

+
1.09E+03

+
7.81E+02

+
1.67E+02

Std. 1.97E+01 2.34E+01 2.40E+01 2.48E+02 2.18E+01 2.27E+02 8.51E+01 8.36E+01 1.38E+01

f8
Mean 2.63E+02

+
1.28E+02

+
7.18E+02

+
1.98E+02

+
7.77E+02

+
5.49E+02

+
5.25E+02

+
5.42E+02

+
6.91E+01

Std. 2.10E+01 2.52E+01 2.79E+01 1.42E+02 1.59E+02 7.15E+01 3.18E+01 1.39E+02 1.26E+01

f9
Mean 2.19E+00

+
3.58E-03

=
1.01E+00

+
4.38E+00

+
9.79E+00

+
1.52E+04

+
1.16E+04

+
1.61E+04

+
1.03E-01

Std. 1.57E+00 1.77E-02 1.21E+00 4.63E+00 1.17E+01 3.26E+03 3.44E+03 3.60E+03 1.65E-01

f10
Mean 1.70E+04

+
1.54E+04

+
2.40E+04

+
2.46E+04

+
1.17E+04

–
1.47E+04

+
1.75E+04

+
1.32E+04

+
1.15E+04

Std. 4.66E+02 2.59E+03 5.81E+02 5.65E+02 5.63E+03 1.50E+03 1.03E+03 1.55E+03 2.46E+03

f11
Mean 1.62E+04

+
3.71E+02

–
1.52E+02

–
1.29E+02

–
6.25E+02

–
7.70E+02

=
1.41E+03

+
1.50E+03

+
7.00E+02

Std. 1.03E+04 9.18E+01 5.68E+01 5.25E+01 7.21E+01 2.43E+02 1.74E+02 2.15E+02 1.11E+02

f12
Mean 2.01E+04

–
1.71E+06

+
2.63E+05

=
2.29E+05

–
2.58E+05

=
1.27E+06

+
5.41E+07

+
1.10E+08

+
3.16E+05

Std. 6.76E+03 7.40E+05 1.07E+05 7.45E+04 1.04E+05 5.18E+05 2.30E+07 4.69E+07 1.54E+05

f13
Mean 2.05E+03

=
2.22E+03

=
4.08E+03

+
2.17E+03

+
3.08E+03

=
1.29E+04

+
8.32E+03

+
6.01E+04

+
1.63E+03

Std. 1.63E+03 1.52E+03 4.62E+03 1.34E+03 3.66E+03 7.61E+03 1.83E+03 2.62E+04 1.11E+03

f14
Mean 4.40E+02

–
3.76E+05

+
8.98E+03

–
6.08E+03

–
6.90E+03

–
2.26E+05

+
2.58E+02

–
3.52E+05

+
1.56E+04

Std. 8.09E+01 1.92E+05 9.76E+03 6.42E+03 6.61E+03 9.27E+04 3.40E+01 1.12E+05 8.23E+03

f15
Mean 2.95E+02

=
5.13E+02

=
2.39E+03

+
7.96E+02

=
3.05E+03

+
4.32E+03

+
8.72E+02

+
4.49E+04

+
4.27E+02

Std. 7.65E+01 4.99E+02 2.76E+03 9.26E+02 5.29E+03 3.35E+03 1.62E+02 2.02E+04 3.31E+02

f16
Mean 3.59E+03

+
2.51E+03

+
3.52E+03

+
3.74E+03

+
6.51E+03

+
3.76E+03

+
3.61E+03

+
3.77E+03

+
2.04E+03

Std. 3.12E+02 5.52E+02 2.78E+02 9.60E+02 1.79E+03 9.06E+02 4.29E+02 7.24E+02 7.17E+02

f17
Mean 2.73E+03

+
1.44E+03

=
2.43E+03

+
2.40E+03

+
2.59E+03

+
3.42E+03

+
2.37E+03

+
2.82E+03

+
1.30E+03

Std. 2.41E+02 3.16E+02 2.66E+02 5.81E+02 5.34E+02 7.00E+02 2.68E+02 5.54E+02 4.44E+02

f18
Mean 2.97E+02

–
1.03E+06

+
2.23E+04

–
4.19E+04

–
1.17E+05

=
5.60E+05

+
7.63E+02

–
6.24E+05

+
1.08E+05

Std. 6.63E+01 4.76E+05 1.20E+04 2.49E+04 5.65E+04 1.85E+05 2.14E+02 2.19E+05 4.19E+04

f19
Mean 2.15E+02

–
7.82E+02

=
2.64E+03

+
8.38E+02

=
6.26E+03

+
3.51E+03

+
2.62E+02

–
4.29E+05

+
6.76E+02

Std. 4.33E+01 9.18E+02 3.71E+03 1.01E+03 7.43E+03 4.44E+03 5.42E+01 3.73E+05 5.64E+02

f20
Mean 2.79E+03

+
1.58E+03

=
2.24E+03

+
2.42E+03

+
1.95E+03

+
3.03E+03

+
2.32E+03

+
2.48E+03

+
1.52E+03

Std. 2.26E+02 2.89E+02 2.42E+02 3.75E+02 4.31E+02 6.20E+02 2.43E+02 4.48E+02 3.03E+02

f21
Mean 4.81E+02

+
3.60E+02

+
9.53E+02

+
3.98E+02

+
1.03E+03

+
6.62E+02

+
6.98E+02

+
6.84E+02

+
2.96E+02

Std. 1.80E+01 2.16E+01 2.46E+01 6.65E+01 2.16E+01 8.85E+01 3.37E+01 6.48E+01 1.94E+01

f22
Mean 1.82E+04

+
1.62E+04

+
2.51E+04

+
2.57E+04

+
1.76E+04

=
1.59E+04

+
1.05E+04

=
7.31E+03

=
1.22E+04

Std. 4.39E+02 2.04E+03 5.19E+02 6.86E+02 9.24E+03 1.32E+03 1.02E+04 8.25E+03 1.41E+03

f23
Mean 7.44E+02

+
6.48E+02

+
1.04E+03

+
9.29E+02

+
6.13E+02

+
9.49E+02

+
1.00E+03

+
1.10E+03

+
6.03E+02

Std. 1.06E+01 2.24E+01 1.96E+01 1.88E+02 2.22E+01 7.85E+01 2.61E+01 1.00E+02 1.61E+01

f24
Mean 1.10E+03

+
9.75E+02

+
1.54E+03

+
1.04E+03

+
1.29E+03

+
1.32E+03

+
1.42E+03

+
1.45E+03

+
9.23E+02

Std. 1.97E+01 2.21E+01 2.43E+01 2.99E+01 3.31E+02 8.84E+01 8.92E+01 1.10E+02 1.16E+01

f25
Mean 7.44E+02

=
7.08E+02

–
7.33E+02

=
7.40E+02

=
7.51E+02

=
7.71E+02

+
1.00E+03

+
8.63E+02

+
7.30E+02

Std. 3.84E+01 4.80E+01 5.29E+01 3.48E+01 5.89E+01 5.40E+01 7.58E+01 5.89E+01 4.47E+01

f26
Mean 5.10E+03

+
4.00E+03

+
9.69E+03

+
4.47E+03

+
5.96E+03

+
8.89E+03

+
8.45E+03

+
8.88E+03

+
3.39E+03

Std. 1.69E+02 2.49E+02 2.93E+02 3.00E+02 3.08E+03 1.94E+03 8.93E+02 2.47E+03 1.94E+02

f27
Mean 6.42E+02

=
6.36E+02

=
6.27E+02

–
6.47E+02

+
6.03E+02

–
8.10E+02

+
7.81E+02

+
9.81E+02

+
6.39E+02

Std. 1.94E+01 1.38E+01 2.23E+01 1.41E+01 2.26E+01 6.43E+01 5.10E+01 1.10E+02 1.27E+01

f28
Mean 5.46E+02

=
5.33E+02

=
5.57E+02

+
5.51E+02

+
5.57E+02

+
5.62E+02

+
7.61E+02

+
6.28E+02

+
5.37E+02

Std. 3.90E+01 1.88E+01 2.84E+01 1.49E+01 2.97E+01 3.08E+01 4.69E+01 4.30E+01 1.81E+01

f29
Mean 2.55E+03

+
1.61E+03

=
2.77E+03

+
2.91E+03

+
1.89E+03

+
3.45E+03

+
3.76E+03

+
4.48E+03

+
1.48E+03

Std. 2.05E+02 3.34E+02 2.33E+02 7.04E+02 9.00E+02 6.17E+02 2.97E+02 4.93E+02 2.61E+02

f30
Mean 3.31E+03

–
4.02E+03

+
5.12E+03

+
4.14E+03

+
3.58E+03

–
3.78E+04

+
1.20E+05

+
6.46E+06

+
3.51E+03

Std. 1.08E+03 8.34E+02 2.66E+03 1.27E+03 1.52E+03 7.09E+04 8.72E+04 2.60E+06 6.57E+02
+/=/– 15/6/8 17/9/3 20/2/7 19/3/7 18/6/5 26/2/1 24/1/4 27/2/0 - - -
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Table 4. Results of the multiple-problem Wilcoxon signed-rank test between DCDE and other algorithms at the 0.05
significance level for 30D, 50D and 100D functions.

Dimension DCDE VS. R+ R− Asymptotic p-value α = 0.05

30D

JADE 319.50 115.50 0.0247 YES

SinDE 393.50 41.50 0.0001 YES

AGDE 344.50 90.50 0.0058 YES

EFADE 302.50 132.50 0.0645 NO

GODE 344.50 90.50 0.0058 YES

EO 427.00 8.00 0.0000 YES

MPA 396.00 39.00 0.0001 YES

SGLSCA 406.00 0.00 0.0000 YES

50D

JADE 312.00 123.00 0.0394 YES

SinDE 405.00 30.00 0.0000 YES

AGDE 347.00 88.00 0.0049 YES

EFADE 313.00 93.00 0.0119 YES

GODE 314.00 121.0 0.0355 YES

EO 435.00 0.00 0.0000 YES

MPA 309.00 126.00 0.0443 YES

SGLSCA 435.00 0.00 0.0000 YES

100D

JADE 304.00 131.00 0.0599 NO

SinDE 399.50 35 .50 0.0001 YES

AGDE 307.00 128.00 0.0516 NO

EFADE 303.50 131.50 0.0607 NO

GODE 340.00 66.00 0.0017 YES

EO 408.00 27.00 0.0000 YES

MPA 334.00 101.00 0.0114 YES

SGLSCA 388.00 18.00 0.0000 YES

DCDE and other algorithms at the significance level of 0.05 and otherwise for “NO”. From the results in Table 4, we
can see that DCDE can provide higher R+ than R− compared with all the other algorithms when solving 30D, 50D

and 100D functions, which indicates that DCDE performs significantly better than other algorithms. Moreover, the
p values in different dimensions are less than the significance level 0.05 in most cases, which implies that there is
significant difference between DCDE and other algorithms for all the three kinds of dimensions. Besides, the average
ranking of DCDE and other compared algorithms by Friedman test at the 0.05 significance level for 30D, 50D and
100D functions is listed in Table 5, which is also obtained by the software tool KEEL (Alcalá-Fdez et al., 2009),
and the first ranking values are shown in boldface. The p value computed by Friedman test for different dimensional
functions are all approximately equal to zero, which indicates that there is significant difference in terms of the
performances of the test algorithms. From the ranking results, we can conclude that DCDE ranks the first position for
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all the three kinds of dimensional functions. The ranking on 50D and 100D is lower than that on 30D, which proves
that the performance of DCDE becomes better with the increase of problem’s dimension.

Table 5. Results of the multi-problem Friedman test between DCDE and other algorithms at the 0.05 significance
level for 30D, 50D and 100D functions.

Dimension JADE SinDE AGDE EFADE GODE EO MPA SGLSCA DCDE p-value

30D 3.7931 4.3276 4.5345 3.4483 4.8621 7.0345 5.8276 8.4138 2.7586 0.0000

50D 3.7586 3.8621 5.4655 3.6552 5.3966 7.2069 5.2069 8.0000 2.4483 0.0000

100D 3.8276 3.5862 5.1897 4.1379 5.4483 6.7069 6.1207 7.5000 2.4828 0.0000

Figs. 2-4 respectively depicts the convergence progress of DCDE and corresponding compared DE variants and
non-DE algorithms on several typical 30D, 50D and 100D functions which are all selected from IEEE CEC 2017
benchmark test suite with different characteristics. As we can see in these graphics, the performance of DCDE is not
remarkable in the early stage of evolution but it has the best performance among all these competitors in terms of the
convergence speed and the final accuracy during the latter evolutionary process for most cases. The reason for this
situation is that the design philosophy of both mutation operator and core parameters in DCDE is to focus on global
exploration ability in the early stages and on local exploitation ability in the later stage during the searching process.

Through the comparison results of the function error value, non-parametric statistical analysis and the convergence
figures, we can draw a conclusion that the proposed DCDE surpasses all the eight comparison algorithms and keeps
the leading position on solving optimization problems in IEEE CEC 2017, and as the dimensionality of the problem
increases, the advantage of DCDE becomes more obvious.

5.5. Parametric sensitivity analysis

The mutation operator, scale factor F and crossover rate CR in the DCDE algorithm involve two parameters that
need to be set in advance, i.e., m in Eq. (11) and n in Eq. (12), and they have a certain impact on the performance of the
algorithm. In fact, the value of parameter m directly affects the changing speed of the weight parameter w, which in
turn affects the specific performance of the designed mutation operator (shown in Eq. (10)) in the optimization process,
while the value of parameter n directly affects the changing speed of the macro parameter GP, which in turn affects
the specific value of the core parameters F and CR in the optimization process, resulting in both the parameters m and
n indirectly influencing the DCDE’s focus on global exploration work and local exploitation work in the optimization
process. Besides, the population size NP is another significant parameter that will affect the performance of our
proposed DCDE algorithm. According to Ref. (Yang et al., 2014), the population size in DE is problem-dependent.
If population size is small, the population diversity will be reduced and the population has a weak exploration ability
which increases the probability of premature convergence and stagnation. On the other hand, a large population size
may decreases the probability of finding correct search directions and increases the risk of losing the exploitation
ability. Based on the survey of Ref. (Piotrowski, 2017), since DE was introduced, many researchers have suggested
that NP should be related to the problem dimensionality.

In order to determine the best setting of these three parameters (i.e., m, n and NP) and analyze the sensitivity
of DCDE regarding these parameters, comparison experiments are carried out based on IEEE CEC 2017 benchmark
functions by setting different parameter combination schemes. Specifically, both m and n are independently set to 1,
2 and 3; population size NP is set to equal to or twice to the problem dimension, i.e., NP = 1 · D or NP = 2 · D.
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Fig. 2. The convergence characteristic of the mean fitness errors derived from proposed DCDE and other compared
algorithms on 30D benchmarks functions f1, f5, f8, f9, f16, f21.
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Fig. 3. The convergence characteristic of the mean fitness errors derived from proposed DCDE and other compared
algorithms on 50D benchmarks functions f5, f7, f8, f16, f20, f23.
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Fig. 4. The convergence characteristic of the mean fitness errors derived from proposed DCDE and other compared
algorithms on 100D benchmarks functions f5, f7, f8, f16, f20, f21.
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Table 6. Ranking results of all combination schemes by Friedman test at the 0.05 significance level for 30D, 50D
and 100D functions.

Index
Combination Schemes

(NP–m–n) 30D 50D 100D Average Rank Final Rank

1 1 · D–1–1 12.3621 10.8793 11.0000 11.4138 13

2 1 · D–1–2 8.7759 7.7586 6.0000 7.5115 4

3 1 · D–1–3 8.6207 7.4483 7.3103 7.7931 7

4 1 · D–2–1 12.1034 12.1379 10.6552 11.6322 14

5 1 · D–2–2 8.4828 7.9138 8.2586 8.2184 8

6 1 · D–2–3 10.1552 8.9138 7.6897 8.9196 11

7 1 · D–3–1 13.5000 12.431 11.3276 12.4195 15

8 1 · D–3–2 8.8621 8.6897 8.6379 8.7299 10

9 1 · D–3–3 9.9828 10.1552 8.5345 9.5575 12

10 2 · D–1–1 14.2931 13.4138 14.8276 14.1782 16

11 2 · D–1–2 5.3103 6.2414 6.8103 6.1207 2

12 2 · D–1–3 4.6379 5.069 6.0172 5.2414 1

13 2 · D–2–1 14.8966 13.9828 14.7931 14.5575 17

14 2 · D–2–2 5.9828 8.3103 8.2586 7.5172 5

15 2 · D–2–3 6.2759 7.0517 6.0345 6.4540 3

16 2 · D–3–1 14.3103 13.9138 15.7931 14.6724 18

17 2 · D–3–2 6.2759 8.6379 10.1724 8.3621 9

18 2 · D–3–3 6.1724 8.0517 8.8793 7.7011 6

Therefore, three are altogether 18 (3 × 3 × 2) combination schemes, and these schemes are discriminated by the
marker “NP − m − n”. Each scheme is incorporated into DCDE to optimize the 29 functions in IEEE CEC 2017.
The non-parametric Friedman test is utilized to obtain the performance ranking for each combination scheme and the
results are listed in Table 6. In this table, the best-performing combination scheme for each kind of dimension is
highlighted in bold, and “Average Rank” means the average ranking value of each scheme for three different kinds of
dimensions, which derives the final ranking results. From the results list in Table 6, we can see that the combination
scheme (2 ·D–1–3) won first place for the 30D and 50D test problems, and second place (only a small difference from
the first place) for the 100D test problem, giving it a first place overall ranking. Thus, based on the experimental results
and from a comprehensive consideration, the parameter combination scheme 2 · D–1–3 is the best choice for DCDE.
More specifically, setting preset parameter m in Eq. (11) to 1, preset parameter n in Eq. (12) to 3 and population size
NP equaling to 2 · D is the most appropriate parameter setting for DCDE.
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6. Conclusions and Future Work

Given that appropriate mutation operators and parameter settings can effectively improve the optimization perfor-
mance of the DE algorithm, we propose a novel DE variant (named DCDE) based on the basic design philosophy of
balancing the global exploration ability and the local exploitation ability in the optimization process. In the DCDE
algorithm, we design a base vector with dynamic change characteristics using the synergistic utility of the optimal
individual and a randomly selected elite individual, and then propose a mutation operator that can take into account
both global exploration work and local exploitation work. In addition, a macro parameter GP at the population level
and micro parameters (ES and IS ) at individual level are used to jointly regulate the scale factor F and crossover rate
CR, and thus control the search focus of the DCDE algorithm at different stages of optimization process. The com-
parison experiments with five state-of-the-art DE variants: JADE, SinDE, AGDE, EFADE, GODE and three non-DE
algorithms: EO, MPA, SGLSCA on solving 30D, 50D and 100D test functions in IEEE CEC 2017 demonstrate that
the proposed DCDE has a significantly better performance than all competitors.

In general, the DCDE algorithm proposed in this paper has a clear design philosophy, simple operation and struc-
ture, and excellent performance in continuous optimization problems with a single objective. However, the specific
strategies employed in DCDE are expected to fail when dealing with discrete optimization problems, multi-objective
optimization problems, or multimodal optimization problems. Our subsequent research will target modifications to the
specific operations of DCDE for handling other types of optimization problems based on the basic design philosophy
of balancing the global exploration ability and the local exploitation ability.
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