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Highlights
An Agent-Based Optimisation Approach for Vehicle Routing Problem with Unique Vehicle Loca-
tion and Depot
Anees Abu-Monshar,Ammar Al-Bazi,Vasile Palade

• A VRP where each vehicle has a unique location for starting and ending its route
• A hybrid agent interaction messaging protocol to construct feasible routes
• Higher quality solutions than popular for benchmarked MDVRPTW instances
• Results on missed customers are generated by the Modified MDVRPTW instances
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ABSTRACT
TheVehicle Routing Problem (VRP) is a well studied logistical problem alongwith its various variants
such as VRP with customer Time-Window (VRPTW). However, all the previously studied variants
assume that vehicles are mostly the same in terms of their capacity, location and home location (de-
pot). This study uses the agent-based approach for solving VRPTW with vehicle’s unique location
and depot. This is to minimise the number of used vehicles as the main target. Other targets including
total distance travelled, waiting time and time are also considered as criteria to evaluate the quality
of the generated vehicle routes. This is achieved by proposing a Messaging Protocol-based Heuris-
tics Optimisation (MPHO) model that balances between centrally-distributed agents’ interactions and
accommodates certain priority rules specifically developed for the problem. Furthermore, modifica-
tions to certain constraints checking techniques are introduced by implementing time Push Forward
(PF) checking recursively tailored to the route’s unique start/ending locations as well as calculating
the reduced waiting time to find and check the limit of the total route duration. In order to justify
the superiority of the proposed MPHO model, numerical tests have been conducted on benchmark
problems including single and multiple depot instances as well as modified instances tailored to the
problem. This is made possible by randomising vehicles’ capacities and their unique locations and
depots. Key results reveal that, in multiple depot instances, higher quality solutions compared with
previous benchmark outcomes are obtained in terms of minimising the total number of vehicles along
with fastest solution time (CPU) at the expense of total time and distance travelled.

1. Introduction
Vehicle Routing Problem (VRP) is one of the well-

known logistical problems that was extended from the Trav-
elling Salesman Problem (TSP) to accommodate additional
constraints. The problem was first introduced by Dantzig
and Ramser (1959) to provide routing plans for vehicles to
visit customers’ locations starting and ending at the same
depot. VRP is proven as an NP-hard problem (Lenstra and
Kan, 1981) and most of the previously used approaches are
mainly (meta)heuristics, that provide near-optimal solutions
(Laporte, 2009). An insertion heuristic was proposed by
Solomon (1987) to solve a Time-Window variant (VRPTW)
and Schneider (2016) adopted Tabu-Search to solve the same
problem.

Although VRP has been well-explored along with its
variants, predominantly those deal with the assumption of
all vehicles or groups of vehicles start their routes from a
specific depot and end at by the same depot. However, in re-
ality, each vehicle could have a different start/end location.
Savelsbergh and Sol (1995) highlighted the challenge in a
similar problem but with pickup and delivery operations.
Le et al. (2019) addressed the applicability of this paper’s
problem settings to the trending crowd-shipping applications
where matching and routing supply (vehicles) with demand
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(customers), especially when the supply are individuals hav-
ing different attributes. Therefore, in VRP, considering ev-
ery vehicle to be unique in terms of its route start and end
locations (independent depot) and heterogeneous capacities
of the fleet as well as Time-Windows of the customer is a
real challenge to most of the 3PL companies, and hence it is
the focus of this study.

Therefore, in this study, we propose an innovative Agent-
Based optimisation model for solving Vehicle Routing Prob-
lems with vehicles of unique start and end locations. Techni-
cal variants such as time-window and heterogeneous capac-
ity of each vehicle is considered when optimising the routing
plans of vehicles. This model is developed to assist trans-
portation planners and logistics operators working in 3PL
companies to manage effectively and efficiently their collec-
tion and delivery operations, and to achieve the best utilisa-
tion of their available vehicles for best customer satisfaction
practice.

The novelty of this paper is that it introduces a new agent
messaging protocol-based heuristics optimisation model,
following the hybrid cooperation approach, to tackle prob-
lems of routing of vehicles for best customer service includ-
ing collection and delivery operations given that each vehi-
cle has a unique start and end location.

The remainder of the paper is structured as follow: An
up-to-date review of relevant literature is provided in Sec-
tion 2. The statement of the problem under study is pre-
sented in Section 3. The agent-based conceptual model,
architecture and the proposed messaging protocol-based
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heuristics optimisation are presented in Section 4. Section 5
shows the model validation and test of accuracy of results
on benchmark instances as well as other modified ones. Fi-
nally, conclusion and future recommendations are stated in
Section 6.

2. Literature Review
This section reviews the literature of VRPTW cases that

considers a form of vehicle uniqueness, specifically in start
and end locations. The closest variants encountered are the
Multiple Depot (MDVRPTW) and open variants. The first
is where routes initiate from different start locations and end
there. However, certain vehicles are grouped in one of the
locations making some vehicle share their starting and end-
ing locations. The problem was first introduced by Cordeau
et al. (2001). Mancini (2016) modelled multiple depot prob-
lem that allows the vehicles to return to any depot loca-
tion; however, time-windows variant was not considered.
For a broad review on Multiple Depot VRP without time-
windows, please refer to Montoya-Torres et al. (2015). On
the other hand, the open variant does not dictate the vehicle
to return to a depot, and its route ends at the last customer
served. However, as this implies, this variant does not con-
sider a unique home location for every vehicle to return to,
contrary to what this paper is focused on. This variant was
introduced by Repoussis et al. (2007).

In multiple depot problems, Goel and Gruhn (2008)
and Goel (2010) introduced the generalised VRP combining
real-life constraints, which are customer/vehicle compatibil-
ity, customers with multiple locations of pickup and deliv-
ery, and vehicle fleets, each with different cost, travel time,
multi-dimensional capacity, operating time and start and end
locations. Bettinelli et al. (2011) analysed multiple depot
case where vehicles can freely associate with any depot with
the objective of minimising the total travelled cost, which
includes the vehicles fixed cost and routing costs, distance
and time using the branch-cut-price algorithm. Zarandi et al.
(2011) considered fuzzy travel times for a location routing
problem with Time-Window and multiple depot, where the
number of depots and their locations has to be determined in
parallel with the routes, to optimise the opening depots and
routing costs. A Simulated Annealing algorithm was used
to deliver this objective. Xu et al. (2012) considered a mul-
tiple depot case with heterogeneous capacity fleet aiming to
minimise the travel costs as well as time-window and vehi-
cle working time violations, using Variable Neighbourhood
Search (VNS) approach and they later introduced simulated
annealingwhen accepting solutions within VNS (Yang et al.,
2013). However, they only tested their method on single de-
pot instances while it was later applied to a case study of two
depots (Xu and Jiang, 2014). Adelzadeh et al. (2014) consid-
ered a multiple depot case with fuzzy time-windows and het-
erogeneous vehicles where each vehicle has different capac-
ity, speed and operating costs aiming to minimise the trav-
elled distance and maximise the customer service level, us-
ing the simulated annealing approach. Dayarian et al. (2015)
formulated a set partitioning for a case of multiple depot

with heterogeneous capacity vehicles aimed to minimise the
routes’ fixed and variable costs then solved by a proposed
branch-and-price algorithm with improved solution explo-
ration to reduce the computational expense. Afshar-Nadjafi
and Afshar-Nadjafi (2016) investigated the multiple depot
and heterogeneous capacity fleet with time-window prob-
lem considering time-dependent travel times, where they de-
pended on the time of departure, as it affects the travel vari-
able cost which is aimed to beminimised alongwith the fixed
cost associated with each vehicle. Additionally constraint of
limiting the number of vehicles in depots is introduced in a
later work of the same authors (Afshar-Nadjafi and Afshar-
Nadjafi, 2017). The Simulated Annealing approach was
used to solve the problem. Li et al. (2016) considered a vari-
ant of multiple depot where vehicles may end their routes at
any depot to minimise the total travel costs by adopting a hy-
brid evolutionary and local search approach. Kramer et al.
(2019) studied a case with multiple depot, heterogeneous
capacity vehicles, periodic demand, relaxed customer time-
window, specific vehicle-customer compatibility and maxi-
mum route duration as well as customers per route to min-
imise costs and travel distance using an Iterated Local Search
(ILS) algorithm. Alcaraz et al. (2019) investigated a case
with multiple depot, heterogeneous capacity fleet, customer
time-windows, vehicle-customer compatibility and manda-
tory route breaks and maximum duration with the possibil-
ity of outsourcing the last mile demand to minimise the total
costs involved in distance travelled and outsourcing using a
developed heuristic algorithm. Zhen et al. (2020) investi-
gated the multiple depot with time-window problem consid-
ering multiple trips per vehicle aiming to minimise the total
time by formulating a mathematical model then solved using
a hybrid PSO and Genetic Algorithm (GA).

In open VRP problems, Brito et al. (2015) studied both
close and open variant, meaning that some vehicles require
a return to the depot while other outsourced ones are not,
with fuzzy capacities and time-windows. They used a hybrid
Ant Colony Optimisation with metaheuristics with the aim
of minimising total travelled distance. Schopka and Kopfer
(2016) introduced the reverse open VRP, where all vehicles
start their routes at their current position and end at a central
depot, considering vehicles with different capacities (hetero-
geneous). They formulated a Mixed Integer Program (MIP)
model to minimise vehicles fixed cost and travel time us-
ing an Adaptive Large Neighbourhood Search (ALNS) al-
gorithm. Shen et al. (2018) studied the open variant with
multiple depot, where vehicles start routes from more than
one depot. This problem was solved using a Particle Swarm
Optimisation (PSO) for routes construction then improving
the quality of solution further using a Tabu Search (TS) to
minimise the driver’s cost, time-window penalties, fuel and
emission costs. Babagolzadeh et al. (2019) formulated an
MIP for the Open variant with Two-Echelon, where goods
are delivered first to intermediate satellites (smaller depots)
then delivered to the end customer. Additionally, goods
become available for delivery at specific release times in
satellites and time-windows are relaxed with penalties. The
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model aims at minimising fuel emission costs, penalties and
total distance.
2.1. Research Gap

From the literature reviewed above, two technical vari-
ants can be seen as closely related to the problem under
study, the multiple depot open variant introduced by Shen
et al. (2018) and the reverse open variant introduced by
Schopka and Kopfer (2016). However, the first variant is
still considered as multiple depot, where certain vehicles can
share starting location and routing stops at the last customer
while the second variant limits all vehicles to return to one
centralised depot.

It can be concluded from the reviewed literature above
all VRPs dictate that vehicles are associated with depots ei-
ther at the start or end of their routes, apart from Goel and
Gruhn (2008) and Goel (2010), who considered the gen-
eralised VRP that combines a wide range of constraints as
stated above. However, this paper differs from Goel’s vari-
ant in terms of focusing more on the modelling aspect of
the unique vehicle location and home location along with
other relevant constraints such as vehicle capacity and time-
window of the customer to minimise the number of vehi-
cles as a main objective. This is contrary to previous re-
search in problem in the generalised VRP, which broadly
maximises profits of highly constrained problems. In ad-
dition, this study introduces a new agent-based optimisation
model that is specifically developed to solve VRP problems
with such additional features of location and capacity that are
required in crowd-shipping scenarios. This model aims at
maximising customer coverage while minimising the num-
ber of vehicles and total travelled distance.

3. Problem Statement

Figure 1: Problem Map

In the traditional Vehicle Routing Problem (VRP) vehi-
cles are assumed to have the same location for their routes
to start/end at their representative depots. However, this
might not be a practical case since the location availability of
the vehicles differs from one vehicle to another. Previously,

VRP dealt with different vehicles in terms of their capacity
but this problem adds to it the unique starting and ending
locations of each vehicle route and hence the complexity of
the problem appears. As a result, a vehicle route should start
from its current location and end at its home location/depot
while serving certain customers in between.

Figure 1 illustrates an example of such routes on a hy-
pothetical map. However, it does not reflect each customer
time-window constraint, which indicates the customer avail-
ability to receive the service, and the vehicles’ time-shifts
that indicate when the vehicle can move from its location
and the deadline by when it should arrive at its depot. Ad-
ditional timings are also considered in this problem which
are the travel time of each route arc, servicing time at each
customer node and the duration limit of the route. This pa-
per is concerned about finding feasible vehicle routes aiming
at maximising the covered customers while minimising the
vehicles used and the total distance travelled. The study also
considers the computational efficiency when solving such
NP-hard problems.

4. The Agent-Based Approach
The applications of agent-based optimisation approach

specifically in VRP is not new. Mes et al. (2007) used a com-
petitive agent-based approach for a Dial-A-Ride (DARP)
problem by considering an auction mechanism to govern the
order-vehicles’ communication. Barbucha and Jȩdrzejowicz
(2009) adopted a centralised agent-based architecture that
utilises a manager agent which governs parts of order-
vehicle interactions for better solutions that utilise intra/inter
routes improvements. In later works by the same authors
(2012; 2013), a hybrid agent-based approach with meta-
heuristics has been developed: Guided Local Search (GLS)
and population based optimisation mechanisms. Vokřínek
et al. (2010) utilised certain ordering rules and strategies
to achieve solutions with a minimum number of vehi-
cles. Rules are further extended in a time-window prob-
lem (Kalina and Vokřínek, 2012) by adapting Solomon’s in-
sertion (Solomon, 1987). Martin et al. (2016) utilised the
agent-based approach to improve the searching process for
promising solutions in a vast solution space, by running dif-
ferent metaheuristics agents while cooperating by exchang-
ing best moves. However, there is still a pressing need to
develop more sophisticated models including agent-based
to deal with the increasing number and changing themes of
complex real-life constraints.

The motivation of selecting the ABM approach in this
research is due to the fact that various logistics applica-
tions have characteristics that can be modelled using this ap-
proach; however, the evaluation studies of using it in such
application is still immature and limited (Davidsson et al.,
2005). In addition, the role of agents’ interaction design in
optimisation applications are highlighted by Barbati et al.
(2012), which can be classified into either competitive or
cooperative agents. The cooperative approach is believed
to suit this VRP problem settings in terms of selection of
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Figure 2: Model Inputs/Outputs and Agent-Based Architecture

customers and allocation of vehicles. It is worth mention-
ing that the agent-based approach in general is decentralised
by nature, so it is able to solve large-sized problems in a
reduced computational time. However, the drawback of
this approach is that it does not guarantee the optimality of
the solutions compared to traditional centralised optimisa-
tion approaches (Davidsson et al., 2007); therefore, a hy-
brid approach is considered. Monostori et al. (2006) high-
lighted the hybrid cooperative approach and stated its bene-
fits by considering both centralised and distributed interac-
tions by defining certain responsibilities for a manager agent
to guide/select sub-agents in their task execution for a better
balance in time and solution quality.
4.1. The Agent-Based Conceptual Model

It is vital to define the given inputs and the preferred
outcomes of the agent-based approach in order to define the
scope of the developed model and the agent-based architec-
ture including assignment, customer and vehicle agents. Fig-
ure 2 shows all the given inputs categorised in terms of cus-
tomers and vehicles, outputs which are the generated routes
along with a number of Key Performance Indicators (KPI).
The data given for each customer consist of location, quan-
tity demanded, time-window at which customer is available
and service time required per visit. Vehicles, on the other
hand, have given resource attributes which are capacity, the
location where it starts its route, home location or depot
where it should end it and the maximum duration allowed
for it to operate.

In this architecture, its core consists of the assignment
agent, customer agent and vehicle agent. The assignment
agent is designed to control certain priority rules that organ-
ise the communication amongst agents, customers and vehi-
cles. The customer agent mainly initiates requests then eval-
uates their responses from the vehicle agents and selects a
vehicle. Finally, the vehicle agent performs certain optimi-
sation tasks by evaluating customer requests (section 4.3).
Tasks and communication for all agent types are described
in detail under subsection 4.2.

The main outcome of the developed agent-based model

is feasible routes of vehicles that determine the allocation of
customers to vehicles and their sequence. In order to test the
overall performance of the routes, certain KPIs are selected
which are as follows:

• The total number of vehicles used
• Total customers missed (coverage)
• The total demand missed which indicates the total de-

manded quantity from every customer missed by the
utilised capacity from all vehicles. The model only
considers meeting customer demand in full otherwise
all its demand is considered missed.

• Total travelled distance which is the summation of all
the distances travelled by each vehicle following their
travelled routes.

• Total time which is the summation of all allocated
time for every vehicle if they followed their routes.

• Total waiting time is the summation of all the waiting
times of every vehicle given if in their resulted routes,
a vehicle arrives at a location before the opening time-
window of the customer begins.

4.2. The Messaging Protocol-Based Heuristics
Optimisation (MPHO) Model

Adopting the hybrid cooperative approach as an agent-
based interaction base requires a degree of both distribu-
tion and centralisation. Such hybrid cooperative approaches
provide a level of tracking of global objectives through cer-
tain negotiation protocols with mediator or assignment agent
while still maintaining individual agent autonomy. A good
example of such cooperation protocols was presented byMes
et al. (2007) and Martin et al. (2016), which first modelled
the agents as requester (customer) agent and resource (vehi-
cle) agent coordinated according an auction approach while
the latest modelled the agents as metaheuristics, which ran
with different parameters while exchanging the best moves.
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Figure 3: Messaging Protocol-Based Heuristics Optimisation (MPHO) Model

This paper focuses on the first example approach. The rep-
resentation of the proposed cooperative messaging proto-
col follows the standard Agent Communication Language
(ACL) (FIPA, 2000).

The proposed Messaging Protocol-based Heuristics Op-
timisation (MPHO) model aims to solve VRPTW problems
and is inspired from Solomon’s Time-Windows Push For-
ward feasibility as well as the insertion method (Solomon,
1987). However, we have further improved Solomon’s in
the form of agents messaging-based optimisation with the
possibility to accommodate more priority rules that are not
limited to only prioritising customers based on their distance
or earliest deadline, especially in the case of scattered vehi-
cles as there is no central depot for customer distances to
be compared with, rather with all vehicles as a whole. In
the proposed agent-based messaging approach, optimisation
would be possible for different and various attributes of each
agent, especially vehicles.

The MPHO is presented in Figure 3, the protocol starts
with the Priority Routing phase where the assignment
agent initiates the routes construction process by firstly pri-
oritising customers by one of the rules proposed for priori-
tising customers shown in Table 1 then selects the top cus-
tomer agent to be a seed customer to be firstly considered.
The method of selecting a seed customer is adopted from

Solomon; however, various different rules are applied in or-
der to tailor it to the situation where vehicles have different
locations as well as different home locations. A customer
noted as a seed means that it has been given the priority to
initiate a vehicle route; therefore, at this stage of routing,
the seed is dubbed as "Priority Routing". The seed customer
agent issues a request to all non-utilised vehicle agents where
they all perform feasibility evaluation (more on how vehicle
agent evaluates a customer agent request in subsection 4.3),
in which it mainly checks if the customer agent will not vi-
olate any vehicle constraints, such as capacity, time or dura-
tion constraints. Then every vehicle agents return their re-
sponses to the seed customer agent and the latter selects a
vehicle based on a specific priority rule, shown in Table 1
for prioritising vehicles. If there is at least one vehicle it is
feasible; otherwise, it will be marked as missed. If a vehicle
agent has been selected by the seed agent then it accommo-
dates it in its route and notifies back to both assignment and
customer agents.

However, if all customers are prioritised as seed, then the
top prioritised customers will be allocated to all available ve-
hicles on a one-to-one basis. As a consequence, the optimi-
sation process will not achieve a good value for minimising
the number of vehicles. Therefore, the Non-Priority Rout-
ing phase is followed after the vehicle agent has routed a
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seed customer to further construct its route with other pos-
sible non-prioritised customers. This phase starts with the
assignment agent providing the vehicle agent with all un-
served customers to consider routing them as much as pos-
sible without any violations of constraints. The vehicle agent
requests individual customer information from all unserved
customer agents, then performs evaluation as described in
subsection 4.3 and adds customers to route one by one se-
quentially by choosing customers as per the evaluation de-
scribed. If a customer is added, then its agent is notified.
On the other hand, if the vehicle has been exhausted and
no more customers can be considered without constraints’
violations, then it refers to the assignment agent by return-
ing the remaining unserved customers, then the assignment
agent will repeatedly prioritise the unserved customers and
select a seed to repeat the cycle again.

With respect to priority rules, which govern the selection
of either a seed customer by the assigned agent or selecting
a vehicle by the seed customer agent, the rules are listed in
Table 1. In Table 1, customer selection is based on three
cases: earliest deadline, furthest minimum distance and fur-
thest average distance.

Table 1
Priority Rules

Rule Variations
Earliest Deadline

Customer Priority Farthest Min Distance
Farthest Avg Distance

Vehicle Priority Nearest Vehicle

A customer selection based on its deadline of visit means
that customers will be prioritised based on their late time-
window, for instance, if a customer i has a time-window
of (ei, li) then a priority customer u is selected as lu , its
late time-window, is minimum. For distance priority, two
measures have been implemented since vehicles are not cen-
tralised in one depot. One of the measures is to evaluate
each customer distances from all vehicles and choose the
minimum for each customer, therefore, customer with the
highest minimum distance value is prioritised first. Simi-
larly, with the furthest average distance measure; however,
instead of selecting the highest minimum, it averages all dis-
tances from all vehicles for a particular customer then se-
lects a customer with the highest average. Vehicle selection,
on the other hand, is only implemented through a customer
agent, selected as seed, since it has the priority to initiate a
vehicle route. The seed customer agent only prioritises ve-
hicles that are closest to it.

By describing both phases of the MPHO model, prior-
ity and non-priority routing, along with the adopted rules, it
can be realised that the developed MPHO model as a whole
has improved Solomon’s insertion heuristic in the way that it
sequentially constructs vehicle routes, therefore, the compu-
tational efficiency will tend to behave as insertion heuristics.

4.3. Vehicle Agent Evaluation
When a vehicle agent receives a customer re-

quest/information, it tries to evaluate the possibility of
accommodating it in its route by firstly checking its con-
straint when a customer is added then performs assessments
on every customer provided then chooses the best assessed,
the process is then repeated with the updated list of cus-
tomers. The vehicle agent will make sure that the customer
demand will not exceed its current available capacity and if
the customer’s time-window falls within its operating shifts
as indicated in the following two conditions:

qi +Qv cur <= Qv (1)

ev <= ei li <= lv (2)
where qi is customer i demanded quantity, Qv cur is thecurrent occupied capacity of vehicle v, Qv is the total ca-

pacity of the vehicle while (ei, li) and (ev, lv) are cus-
tomer i time-window and the vehicle operating shift, re-
spectively. Furthermore, each vehicle will perform fur-
ther checks on the best position within its route to insert
the customer. Solomon’s insertion techniques have been
proven to be highly effective in constructing routes with
time-window problems (Solomon, 1987). Therefore, in this
paper, searches of insertion’s best position in the vehicle
routes have been adapted from Solomon by utilising his Push
Forward (PF) technique for time-window feasibility check
of later customers in the route as well as the objective func-
tions of distance saving and urgency, where distance saving
is the change in distances due to the insertion while the ur-
gency is how much the next customer is delayed due to the
same insertion. However, the mentioned PF technique has
been tailored to be implemented within our vehicle agent as
part of the feasibility evaluation to take into consideration
the unique vehicle attributes, especially the different ending
from start locations of the routes. The PF is a time concept
of how much delay it would take for a vehicle to arrive at
the next customers in the route if a particular customer is in-
serted before. It is calculated iteratively for every customer
next in route through equation 3 while making sure that the
new arrival time at customer i is within its late time-window
in equation 4.

PF = bnewi − bi (3)

bnewi <= li (4)
where bnewi , bi are the new and original arrival time of

customer i next in route, respectively. Other customers next
in route also depend on the push forward of the previous one,
therefore, the implementation of PF was done in a recursive
manner within each vehicle agent and is represented in Al-
gorithm 1.

where wi is the waiting time for customer i. Algorithm
1 takes the previously calculated PF and the next customer
in route to its PF while checking any possible time-window
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Algorithm 1: Push Forward Recursive
Data: customer i, Previous PFi−1
Result: feasible or not
PFi = max(0, PFi−1 −wi);
if PFi = 0 thenstop, feasible;
else

if bi + PFi > li thenstop, violation;
else

if next i is Home Location then
stop, feasible;

else
Push Forward Recursive (next customer
i, PFi);

end
end

end

violation in that customer. If the next customer in route hap-
pens to be the last visit location (vehicle home depot), then
the recursion stops. At the end, such recursive function will
indicate if the inserted customer could result in a violation
or not.

The previous equations 1 and 2 as well as the imple-
mented PF in Algorithm 1 all perform feasibility checks that
ensures no constraints violations, however, they do not eval-
uate the cost or saving of customer potential insertion in a
specific position to compare it with other position within the
vehicle route. Therefore, each vehicle agent will assess the
inserted customer position through equation 5 and selects
the position with the maximum value.

�
2
(dvu + duℎ) − �1(dvu + duℎ − �dvℎ) − �2(bju − bj)

(5)

�, � >= 0 (6)

�1, �2 >= 0 �1 + �2 = 1 (7)
where �, �, �1 and �2 are parameters while dvu, duℎ and

dvℎ are distances between vehicle to customer, customer to
vehicle’s home location and vehicle and its home location,
respectively. bju is the the new arrival time at customer j
when customer u is inserted in position (i, j). The first term
in equation 5 has been improved to suit the modelling of the
research problem where vehicle’s start location is different
than its depot. Therefore, the parameter � was divided in
half and the distance is added with the extra distance from
customer to the particular vehicle’s home location, contrary
to what Solomon previously used where the term was equiv-
alent to �dvu as it only considers the distance from the ve-
hicle to customer, based on the assumption that the vehicle
location is the same as its home depot. The second term is

the distance saving function from Clarke and Wright (1964)
weighted along with the cost of pushing forward of customer
j in the third term.

One of the drawbacks of Solomon’s insertion method is
that it assumes that all vehicle should initiate their routes as
early as possible. As a consequence, this would lead to un-
necessary waiting times especially at the first customer to
visit in a vehicle’s route (Chiu et al., 2006). This will affect
the calculation of the total time of each vehicle if the max-
imum duration constraint is applied. Solomon designed his
benchmark problems without such constraint; however, in
multiple depot benchmarks with time-window by Cordeau
et al. (2001) the constraint was introduced. As a result, there
is a need to eliminate such unnecessary waiting time, in or-
der to check this constraint of maximum duration for every
possible insertion. The proposed MPHO model overcomes
this issue by calculating the waiting times sequentially for
every node in route starting from the vehicle to its node in
route which is its home depot. The first step is to calculate
the departure time from the vehicle’s current location to the
first customer in route, shown in equation 8, tvi where i = 1is travel time needed from the vehicle location to the first
customer in route. It takes the maximum between zero and
the difference between the first customer early time-window
ei and the travel time for the purpose of eliminating the wait-
ing time for the first customer.

depv = max(0, ei − tvi ) i = 1 (8)
Secondly, the arrival time at every customer is found. It

is governed by the departure time, service time and travel
time from the previous node, either the vehicle’s initial loca-
tion or previous customer in route. It is worth noting that in
case the previous node is the vehicle initial location, then its
serving time is set to zero. Arrival time calculation is rep-
resented in equation 9, where depi−1, si−1 and ti−1i are theprevious node departure time, servicing time and the travel
time, respectively. Finally, the waiting time at customer i
can now be easily calculated by equation 10 by taking the
maximum between 0 and its difference between the arrival
time and its early time-window ei.

bi = depi−1 + si−1 + ti−1i (9)

wi = max(0, ei − bi) (10)
In order to calculate the total waiting time for a route,

calculating the waiting time for every customer in a route is
necessary. Therefore, Algorithm 2 is developed to calculate
the total waiting time Wvu for a vehicle v if customer u is
inserted in its route.

Upon the calculation of route total waiting time, it is pos-
sible to check for the maximum duration constraint for each
vehicle route. The duration is defined by the travel, service
and waiting times. When customer u is inserted between a
position (i, j), additional travel and servicing time should be
added while waiting time has to be recalculated as shown
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Algorithm 2: Calculating Total Waiting Time
Data: customer u, position (i, j)
Result: route total waiting timeWvuAdd customer u in the position (i, j);
Calculate departure time depv from the vehicle;
while remaining customers in route do

Calculate arrival time bi for customer i;
Calculate waiting time wi for customer i;
Add wi to the totalWvu ;

end

in Algorithm 2. The additional travelling time can be cal-
culated in a similar way as the distance saving from Clarke
and Wright (1964) but with times instead of distances and is
represented in equation 11.

Δtu ij = tiu + tuj − tij (11)
where tiu, tuj and tij are the travel times between cus-

tomers (i, u), (u, j) and (i, j), respectively. The time sav-
ing equation adds the extra times due to the inserted node
while eliminating the previously defined time between (i, j).
Accordingly, the new route duration after the insertion will
be easily calculated from the equation 12 given the previous
route total travel Tv and serving times Sv.

durvu = (Tv + Δtu) + (Sv + su) +Wvu (12)
The first term in the equation relates to the new total

travel time given the change in it with Δt. The second term
updates the change of the servicing time by adding the ser-
vicing time su of the inserted customer. The last term is the
calculated total waiting time from Algorithm 2.

durvu <= durv max (13)
In order to check the new duration durvu with the in-

serted customer u against the duration constraint, it can be
simply compared to the maximum limited duration of a par-
ticular vehicle v as seen in equation 13.

5. Experimental Analysis
5.1. Implementation and Hardware

In this section, the proposed MPHO model is tested
on benchmark problems, VRPTW instances from Solomon
(1987) and MDVRPTW instances from Cordeau et al.
(2001). These benchmarks, however, are for homogenous
vehicles located at depots, as there are no instances where
vehicles are scattered and heterogeneous. It will still be ben-
eficial to test and validate the approach on these well-known
instances. In order to test the proposed model on scattered
vehicles and heterogeneous problems, certain modifications
are done to MDVRPTW benchmarks to make it applicable
to the problem settings.

The output criteria studied are: the number of vehicles
used (V), the Total Travelled Distance (TD), Total Waiting

Time (WT), Total Time (TT) and the CPU core time in sec-
onds. With respect to the parametric settings, extensive ex-
periments are done while only the best outputs are reported
along with their parametric setting. The range and values
of each parameter are: � is either 1 or 2, �1 and �2 are be-tween 0.0 and 1.0 while � is always set to 1. On the other
hand, the rules settings for customers prioritisation were ei-
ther by latest deadline (LTW) or farthest distance, which is
also split in to two rules either average (Far_Avg) or mini-
mum (Far_Min) distance of all vehicles. The experiments
are conducted by considering all the combinations of these
parameters and rules, except experiments on single depot
benchmarks as the distance rule is only considered to be far-
thest distance (Far) as all vehicles are stationed in the same
location/depot. In this section, each table shows the best so-
lutions selected based on prioritising the minimum number
of vehicles used objective then the total distance, asminimis-
ing the total distance is not the primary focus of this paper
contrary to what most of MDVRPTW papers have consid-
ered. It is worth mentioning, that the current proposed ap-
proach is only for route construction, compared to what ex-
tensively studied in previous literature that also used route
improvements strategies such as local search or metaheuris-
tics, this may explain the costly distance deviations in the
following results.

The agent-based model is flexibility programmed on
Python to accommodate the different types of problem,
the single depot, multiple depot, scattered vehicles with
each different depot and the heterogeneous vehicles. Each
problem run is conducted on a single core of an Intel(R)
Xeon(R) Broadwell CPUs E5-2683 v4 @ 2.10GHz (32
CPU-cores/node) with the availability of 128GB of RAM,
the multiple cores of the CPU are utilised to conduct multi-
ple problem instance with different parametric setting all at
once.
5.2. Results on Single Depot Benchmarks

Although the study is focused on multiple de-
pot/scattered vehicles variants, a better judgement about the
solution quality can be concluded when testing the method
on the well-known Solomon’s benchmark 100 customer in-
stances. Solomon designed six sets of benchmark instances,
generated based on two criteria: geographical location and
length of routing horizon. The geographical data generated
could be Clustered (C), uniformly Randomised (R) or
hybrid (RC) while the horizon length can be either short (1)
or long (2). For example, an instance C202 indicates that it
is clustered with long time horizon while the last two digits
show the instance number. The output on these benchmark
instances are only measured in terms the number of Vehicles
(V) and the total Travelled Distance (TD) as these are the
only criteria known to be compared with best previous
solutions. Best known solutions to Solomon instances are
taken from SINTEF (2017) research foundation website.
Results are reported in the Appendix A in Table A.1.

Regarding clustered instances, optimal solutions for
short horizon instances are produced with an average of 1.2
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Table 2
Optimisation Results on MDVRPTW Instances Compared to Best Known Solutions

V% TD% WT% TT%
Instance Cordeau Chiu Cordeau Chiu Cordeau Chiu Cordeau Chiu
pr01 -25.00% 0.00% 37.82% -3.04% -64.93% 1837.43% 0.85% 7.29%
pr02 -25.00% 0.00% 40.14% 7.02% -90.79% 289.51% -7.59% 6.61%
pr03 -18.75% -13.33% 40.20% 4.79% -92.21% 89.11% -17.03% 4.62%
pr04 -15.00% -5.56% 38.48% 7.42% -75.87% 139.87% -3.50% 8.33%
pr05 -4.35% -4.35% 39.86% -1.61% -81.00% 771.74% -6.45% 3.95%
pr06 -3.57% -3.57% 37.35% 6.21% -75.02% 811.22% -4.12% 9.73%
pr07 -30.00% -12.50% 46.93% 7.91% -97.27% 320.79% -17.56% 6.15%
pr08 -23.53% -7.14% 54.07% 13.04% -86.24% 175.06% -14.33% 12.01%
pr09 -21.74% -10.00% 55.08% 9.50% -80.70% 797.79% -7.59% 12.55%
pr10 -10.34% -7.14% 46.06% 4.66% -75.63% 1192.61% -3.62% 9.78%
Avg -17.73% -6.36% 43.60% 5.59% -81.97% 642.51% -8.09% 8.10%
pr11 0.00% 0.00% 18.53% -3.41% -58.67% 388.48% 7.20% -0.25%
pr12 0.00% 0.00% 31.60% 11.73% -30.35% ∞ 12.49% 13.50%
pr13 -8.33% -8.33% 34.80% 6.61% -54.35% ∞ 12.91% 7.14%
pr14 -6.25% -6.25% 35.51% 11.11% -74.92% ∞ 5.12% 9.19%
pr15 -5.00% -5.00% 39.99% 11.09% -68.69% ∞ 8.09% 9.06%
pr16 -4.17% -4.17% 36.83% 10.61% -63.50% ∞ 6.62% 9.60%
pr17 0.00% 0.00% 30.13% 1.54% 42.83% 1214.85% 17.38% 4.10%
pr18 0.00% 0.00% 39.96% 6.80% -41.34% 1445.00% 15.69% 6.94%
pr19 -11.11% -11.11% 42.07% 14.91% -73.23% ∞ 7.11% 11.48%
pr20 0.00% 0.00% 33.60% 2.61% -45.60% 3341.44% 9.54% 6.57%
Avg -3.49% -3.49% 34.30% 7.36% -46.78% ∞ 10.22% 7.73%

seconds of CPU time along with 13.6% increase in distance
cost, while solutions on long horizon instances has seen
slight increase of 3.3% on the number of vehicles coupled
with 16.5% increase in the total distance, given that the av-
erage time required is 11.5 seconds. The parameters � = 1,
�1 = 0.9 and �2 = 0.1 can be noticed as the most frequent in
producing best solutions in addition to the late time-window
priority rule applied in most of the instances to produce the
best solution found by the method.

In the uniformly randomised locations instances, the
method resulted, with respect to the short routing horizon
instances, in around 18% increase in both the number of ve-
hicles and distance travelled given the average optimisation
time is 1.3 seconds. More increased deviations are seen on
the long horizon instances where it increased the vehicles
by around 23% and distances by 36% with an average 35.5
seconds of optimisation time. Mainly, the far distance rule
has resulted in the best solutions with exception of only three
long time horizon instances where the late time-window rule
resulted in the best results. With respect to the parameters,
� is seen to be mostly set to 1 while �1 is mostly above 0.7
with exception in four instances.

Similar behaviour to the randomised instance can also be
seen in the hybrid or semi-clustered instances. A costly in-
crease in both short and long time horizon instances with
around 15% deviations in both criteria for short horizon
problems while around 17% and 47% deviation in the ve-
hicles used and distance travelled, respectively, in the long
horizon problem. The average optimisation time required for
each is 1.1 and 22.7 seconds for short and long horizon prob-
lem, respectively. Similarly to the randomised instance, the

far distance rules have mainly resulted in most of the best re-
sults. � is mostly seen to be set to one with exception of four
instance while �1 is mainly set above 0.7 with exceptions on
five instances.
5.3. Results on Multiple Depot Benchmarks

In this subsection, the approach is tested onMDVRPTW
benchmark instances from Cordeau et al. (2001), generated
instances with different problem sizes and number of depots,
then compared with the best known solutions. Table A.2
shows the MPHO model’s results on the 20 benchmark in-
stances. As a general overview of the results it can be seen
that the approach was able to produce optimal solutions on
every instance and takes 20 seconds at most. As our primary
objective is to minimise the number of vehicles, comparison
to other known solutions that have considered this objec-
tive is made. MDVRPTW was mainly focused on minimis-
ing the total travelled distance. However, Chiu et al. (2006)
have considered minimising the number of vehicles by con-
sidering the minimising of the total waiting time and com-
pared their approach to Cordeau et al. (2001) by adapting
their Tabu search with the new objective. Table 2 compares
the solutions produced to Chiu’s and Cordeau’s results in de-
viation percentages. It is worth mentioning that Chiu et al.
managed to reduce waiting time to zero which explain the
infinite deviation percentages in some of the instances.

From the comparison table, results in most instances
have shown improvement on minimising the number of ve-
hicle. For instances with tight time-windows (pr01-10), 17%
reduction was achieved compared to Cordeau’s solutions in
terms of the vehicles used and 6% reduction to the best know
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Table 3
Modification Scenarios to Cordeau’s Instances

Scenario Change Vehicles’ locations Depots’ Locations Capacities
1 Locations Uniform Dist [−100, 100]2 Uniform Dist [−50, 50]2 Not Changed
2 Capacities Not Changed Not Changed ∼ N(Q, 0.1Q)
3 Both Uniform Dist [−100, 100]2 Uniform Dist [−50, 50]2 ∼ N(Q, 0.1Q)

solution. However, this has resulted at the expense of the to-
tal distance which has increased 43% and 5% compared to
Cordeau’s and Chiu’s solutions, respectively. Waiting times,
on the other hand, have shown significant reduction, around
82%, compared to Cordeau’s results while worsened with
respect to Chiu’s. The significant deviation from Chiu is at-
tributed to their ability to achieve near zero total waiting time
which inflated the deviation percentages. A better represen-
tation of time can be seen in the total time, which shows that
it has improved 8% on Cordeau’s while resulting in an 8%
increase compared to Chiu’s.

Similarly for wide time-window instances (pr11-20), the
number of vehicles have been also reduced with around 3.5%
reduction to both approaches with the expense on the total
distance of 34% and 7.4% increase from both Cordeau’s and
Chiu’s, respectively. Similarly to the previous tight time-
window instances, significant reduction in waiting times has
resulted compared to Cordeau’s with around 47% decrease
while very significant deviation compared to Chiu’s because
of their model’s ability to achieve zero waiting time in in-
stances 12, 13, 14, 15, 16 and 19. Total time deviations have
shown increase compared to both Cordeau’s and Chiu’s ap-
proaches with 10.22% and 7.73% increase, respectively, con-
trary to the previous tight time-window instances where at
least it has improved compared to Cordeau’s. In general, the
results of the proposed approach have produced better results
in terms of the number of vehicles used at the expense of the
total distance.
5.4. Results on Modified Multiple Depot

Benchmarks
The previous benchmark instances were selected, how-

ever, differently than the main research problem settings.
They are based on the assumption that vehicles start and end
their routes at a single depot, in addition to them having sim-
ilar capacity. Therefore, slight changes to the benchmark in-
stances are needed to suit the faced problem settings and to
make the proposed method applicable in term of solution.
Cordeau’s 20 benchmark instances are chosen to be modi-
fied by randomising each vehicle’s location, their depots’ lo-
cation as well as their capacities. Statistical distributions are
assumed for each of the randomised attributes. Previously
when these benchmarks are introduced, location coordi-
nates are assumed to follow continuous uniform distribution
where depots’ coordinates should be within the [−50, 50]2
square while customers are within the [−100, 100]2 square
(Cordeau et al., 1997). Therefore, location coordinates mod-
ification will aim to randomise uniformly each vehicle loca-
tion within the [−100, 100]2 square and their depots to be

within the [−50, 50]2 square. Furthermore, the capacity of
each vehicle is also considered to be random as it is assumed
to follow a discrete approximation from normal distribution
with a mean of the original vehicle capacity Q and standard
deviation of 10% from the mean.

In order to apply the location and capacity modifications
for a numerical analysis, they have been applied individually
first then combined. First, each vehicle location and a new
special depot for it have been randomised for every instance.
Second, the capacity of each vehicle is randomised. Finally,
combining the first and second modifications. Table 3 sum-
marises these modification scenarios.

With such modifications, however, serving all customers
is not guaranteed as the availability of the resources (vehi-
cle) is changed due to changes to their capacity and locations,
with the latter affecting travelling time. In addition, Cordeau
et al. (1997) experimented when generating the problem pa-
rameters in order to ensure the feasibility of each instance.
This research approach, on the other hand, is more prag-
matic when serving the customers as it considers missing
customers when the vehicles’ constraints are exhausted. As
a result, 2 new output parameters are introduced to mea-
sure the missing customers (C Missed) as well as their total
missed demanded quantities (D Missed).

The results of these three scenarios are compared with
the method’s output on the original instances from Table A.2
by calculating the deviation on the five output criteria: V,
TD,WT, TT and CPU time. All customers have been served
by the method on the original instance and comparing with
percent deviation will be inflated, therefore, the missed cus-
tomer and demand in the modified scenarios are reported as
it is.

Table 4 presents the results of scenario 1 where vehicles
locations are modified as well as their depots. Instances with
tight time-window (pr01-10) showed, on average, increase in
the solution criteria and very slight decrease of 2.6% in the
CPU time compared when applied to the original instances.
Number of vehicles, travelled distance, waiting time and to-
tal time all have increased around 10%, 17%, 46% and 8.9%,
respectively. The waiting time showed reductions in 7 in-
stances; however, two instances have resulted in significant
increase, therefore, skewing the average. Only in one in-
stance (pr06), the method could not serve all the customers
where it missed 7 with total demand of 84. On the other
hand, wide time-window instances showed similar results in
terms of increasing the vehicles used, total distance and total
time, however, with lesser extent with around 2%, 14% and
7% deviations, respectively. Waiting time, on the contrary,
showed a reduction of 19.2%. These instances resulted also
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Table 4
Optimisation Results on Scenario 1

Parameters Output
Inst. C Rule � �1 �2 V% TD% WT% TT% C Missed D Missed CPU(s)
pr01 Far_Min 1 0.6 0.4 0.0% 14.7% -66.1% 3.5% 0 0 14.7%
pr02 Far_Avg 2 0.9 0.1 11.1% 14.5% 127.6% 12.7% 0 0 -8.7%
pr03 Far_Avg 1 1.0 0.0 23.1% 24.2% 17.9% 15.8% 0 0 -11.4%
pr04 Far_Avg 1 0.8 0.2 11.8% 16.2% -42.9% 6.7% 0 0 4.2%
pr05 Far_Avg 2 1.0 0.0 9.1% 26.0% -26.5% 13.0% 0 0 -3.3%
pr06 LTW 2 1.0 0.0 3.7% 23.5% -54.0% 8.1% 7 84 -6.3%
pr07 LTW 1 0.7 0.3 14.3% 2.1% 589.7% 8.4% 0 0 4.0%
pr08 LTW 1 0.8 0.2 7.7% 7.5% -6.3% 4.1% 0 0 -3.5%
pr09 Far_Avg 1 1.0 0.0 16.7% 20.6% -48.9% 8.7% 0 0 -10.7%
pr10 Far_Avg 1 1.0 0.0 7.7% 18.9% -35.4% 8.0% 0 0 -5.4%
Avg 10.5% 16.8% 45.5% 8.9% 0.7 8.4 -2.6%
pr11 Far_Min 1 0.7 0.3 0.0% 8.2% -91.5% 2.4% 1 3 65.7%
pr12 Far_Avg 1 0.9 0.1 0.0% 12.8% -58.6% 3.8% 0 0 19.4%
pr13 Far_Avg 2 0.5 0.5 9.1% 17.8% -30.5% 9.2% 1 3 -13.0%
pr14 Far_Avg 2 1.0 0.0 0.0% 7.6% 25.4% 4.8% 0 0 -23.9%
pr15 Far_Avg 1 0.9 0.1 0.0% 9.2% -43.8% 3.3% 0 0 -6.5%
pr16 Far_Avg 1 0.9 0.1 4.3% 16.3% -15.8% 7.4% 0 0 -1.6%
pr17 LTW 1 0.7 0.3 0.0% 7.3% 30.9% 4.0% 2 32 56.6%
pr18 Far_Avg 1 0.9 0.1 0.0% 14.4% -2.2% 7.9% 0 0 0.3%
pr19 Far_Avg 2 1.0 0.0 6.3% 22.8% -6.2% 12.1% 0 0 -10.1%
pr20 Far_Avg 1 0.9 0.1 0.0% 28.0% 0.1% 14.1% 0 0 1.2%
Avg 2.0% 14.4% -19.2% 6.9% 0.4 3.8 8.8%

Table 5
Optimisation Results on Scenario 2

Parameters Output
Inst. C Rule � �1 �2 V% TD% WT% TT% C Missed D Missed CPU(s)
pr01 LTW 2 0.9 0.1 0.0% 0.0% 0.0% 0.0% 0 0 2.5%
pr02 Far_Min 1 0.9 0.1 0.0% 0.0% 0.0% 0.0% 0 0 2.4%
pr03 Far_Avg 1 0.8 0.2 0.0% 2.3% -25.9% 0.6% 0 0 -0.6%
pr04 Far_Avg 2 0.6 0.4 0.0% 6.8% -16.9% 2.9% 0 0 1.8%
pr05 Far_Avg 1 0.9 0.1 0.0% 1.4% 31.1% 2.4% 0 0 -2.9%
pr06 Far_Avg 2 1.0 0.0 -3.7% -0.9% -34.6% -2.7% 0 0 -0.6%
pr07 Far_Avg 2 0.9 0.1 0.0% -0.1% 0.0% -0.1% 0 0 -2.6%
pr08 Far_Avg 1 1.0 0.0 0.0% -4.7% 15.2% -1.9% 0 0 -0.7%
pr09 Far_Avg 1 0.9 0.1 5.6% 2.3% -3.6% 1.1% 0 0 -8.1%
pr10 Far_Avg 1 0.8 0.2 -3.8% 3.5% -54.0% -1.8% 0 0 0.9%
Avg -0.2% 1.1% -8.9% 0.1% 0 0 -0.8%
pr11 Far_Min 1 0.9 0.1 0.0% 1.3% 56.1% 2.4% 0 0 6.1%
pr12 Far_Min 1 0.7 0.3 0.0% -1.0% -37.1% -2.8% 0 0 5.4%
pr13 Far_Avg 1 1.0 0.0 0.0% -0.1% -51.0% -1.6% 0 0 -16.0%
pr14 Far_Min 2 1.0 0.0 -6.7% 0.7% -54.7% -1.3% 0 0 -4.7%
pr15 Far_Min 2 1.0 0.0 0.0% 0.3% 73.7% 2.5% 0 0 -2.6%
pr16 Far_Avg 1 0.9 0.1 0.0% 1.4% 10.3% 1.1% 0 0 -3.5%
pr17 Far_Avg 2 0.9 0.1 0.0% 2.4% 50.7% 3.1% 0 0 6.3%
pr18 Far_Avg 1 1.0 0.0 0.0% 1.0% -14.2% 0.1% 0 0 3.8%
pr19 Far_Min 1 1.0 0.0 0.0% -2.4% 26.0% -0.4% 0 0 15.2%
pr20 Far_Avg 1 1.0 0.0 0.0% 0.0% 1.9% 0.1% 0 0 4.8%
Avg -0.7% 0.4% 6.2% 0.3% 0 0 1.5%

in missed customers and demand, on average 0.4 and 3.8,
respectively, where three instances (pr11-13-17), could not
achieve the maximum satisfaction of all customers. Con-
trary to tight time-window instance, solution times have in-
creased 8.8%. With respect to the solution parameters, the

most frequent rule that resulted in best solution is the average
distance priority while the minimum and late time-window
where considered in 8 instances. � is seen to be frequently
set to 1while �1 is set to be above 0.6 except in two instances.The results of the second scenario where only capaci-
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Table 6
Optimisation Results on Scenario 3

Parameters Output
Inst. C Rule � �1 �2 V% TD% WT% TT% C Missed D Missed CPU(s)
pr01 Far_Min 1 0.6 0.4 0.0% 14.7% -66.1% 3.5% 0 0 13.3%
pr02 Far_Avg 1 0.9 0.1 11.1% 18.0% -34.1% 10.6% 0 0 26.3%
pr03 Far_Avg 2 0.6 0.4 23.1% 29.9% -34.4% 17.8% 0 0 -3.1%
pr04 Far_Avg 1 1.0 0.0 11.8% 9.2% -60.7% 1.5% 0 0 -4.5%
pr05 Far_Avg 1 1.0 0.0 9.1% 23.6% -10.0% 12.5% 0 0 -5.4%
pr06 Far_Avg 1 0.9 0.1 3.7% 20.2% -71.4% 5.5% 5 65 -6.1%
pr07 LTW 1 0.9 0.1 0.0% 2.2% 108.4% 2.8% 0 0 6.9%
pr08 Far_Avg 1 0.8 0.2 15.4% 18.2% -40.0% 8.5% 0 0 -24.5%
pr09 Far_Avg 1 0.6 0.4 16.7% 21.4% -59.7% 8.4% 0 0 -9.4%
pr10 LTW 1 0.9 0.1 7.7% 7.3% -16.4% 2.9% 0 0 -1.7%
Avg 9.8% 16.5% -28.4% 7.4% 0.5 6.5 -0.8%
pr11 Far_Min 1 0.8 0.2 0.0% -0.2% -25.8% -2.5% 2 22 41.7%
pr12 Far_Avg 2 0.6 0.4 0.0% 11.8% -74.1% 2.3% 0 0 34.8%
pr13 Far_Avg 2 1.0 0.0 9.1% 27.0% -72.0% 13.4% 1 12 -26.6%
pr14 Far_Avg 1 1.0 0.0 0.0% 7.6% 16.3% 4.5% 0 0 -21.5%
pr15 Far_Avg 1 1.0 0.0 0.0% 11.9% -19.2% 5.5% 0 0 -21.2%
pr16 Far_Avg 2 1.0 0.0 4.3% 23.9% 0.2% 11.6% 1 12 -14.5%
pr17 LTW 2 0.9 0.1 0.0% 4.2% -46.3% -0.6% 2 32 20.7%
pr18 Far_Avg 1 0.9 0.1 0.0% 14.6% 18.1% 8.6% 0 0 3.2%
pr19 Far_Min 2 0.8 0.2 6.3% 31.3% -26.5% 16.0% 0 0 27.9%
pr20 Far_Avg 2 0.5 0.5 0.0% 32.5% -57.0% 13.6% 0 0 -0.4%
Avg 2.0% 16.4% -28.6% 7.3% 0.6 7.8 4.4%

ties are randomised are shown in Table 5. Overall, there
have been very slight deviations on the outputs compared
to the original instances and all customers have been satis-
fied. For tight time-window instances, vehicles have been
marginally reduced while waiting times have shown fair re-
duction of 8.9%. Total distance and time criteria have shown
a very slight increase while the CPU time has reduced with
less than 1%. Similarly, wide time-window instances have
shown very slight deviations, however, waiting times have
shown a fair increase of around 6%. � has been mostly set
to 1, however, fair share of instances has resulted in best so-
lution where this parameter is set to 2. �1 has been set to
value above 0.6 except for only one instance. It can be also
deduced that the distance sorting rule is used in all instances
expect for the first one and the average distance priority is
the most frequent.

Table 6 represents the results of scenario 3 when both lo-
cations and capacities are randomised. Tight time-window
instances have seen increase in all criteria except for thewait-
ing times and, similarly to scenario 1, one instance (pr06)
has faced missed customers. Vehicles, total distance and
time have increased around 10%, 17% and 7%, respectively,
while waiting time decreased by 28.4%. The total customers
missed and their demands are 5 and 65, respectively. CPU
time has marginally reduced with less than 1%. Similar out-
put resulted for wide time-window instances, however, with
only slight increase of 2% for the vehicles used, with much
distributed missed customer across 4 instances with an av-
erage of missed customer and demand of 0.6 and 7.8, re-
spectively, in addition to around 4% increase in the solution
time. � in these instances can be mostly seen to be set to

1, however, when looking at wide time-window instances it
was mostly set to 2. �1 is above 0.6 with exceptions in five
instances. Similarly, to the previous scenarios, the distance
rule is adopted mostly with the average distance rule being
the most commonly used.

6. Conclusion
The VRPTW studied in this paper is different from the

most previous variants, given that vehicles could have dif-
ferent attributes in terms of their capacities, locations and
home locations. The agent-based approach has been adopted
in order to flexibly solve such problems where each entity
of either demand or resource; (in this paper: customer or
vehicle), can have unique attributes, which is more applica-
ble for practical scenarios. This paper proposed Messaging
a Protocol-based Heuristics Optimisation (MPHO) model
which adopted a hybrid approach between centralised and
distributed agents’ interactions for the purpose of construct-
ing routes sequentially. In order to evaluate the performance
of MPHO, it has been tested on VRPTW and MDVRPTW
benchmark instances as well as modifiedMDVRPTWwhere
locations and capacites are randomised. In VRPTW in-
stances, the MPHO model can generate routes quickly with
up to 1.5 minute of solution time, however, at the expense
of increasing the number of vehicle and total distance espe-
cially when the instances are randomised (R or RC) with a
long scheduling horizon. ComparingMPHO’s output to best
solutions in MDVRPTW, it has been concluded that the pro-
posedmethod is very fast in generating routes withminimum
number of vehicles at the expense of increasing the total
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time and distance travelled. Results on modified instances
where locations are randomised have mainly increased solu-
tion costs in all criteria and some customers were not cov-
ered, however, with minimum effect in the solution time.
Capacity modified instances have resulted in very minor
changes in solution quality. On the other hand, when ca-
pacity and locations are both randomised, tight time-window
instances have shown a slight reduction in missed customers
compared to location-only modified instances while in wide
time-window instances they have been increased. With re-
spect to the parametric settings, most of the best solutions
were achieved when � is 1, �1 is above 0.7 while the priorityrule is set to far average distance, only distance in the case
of VRPTW instances.

For future research, other vehicle attributes can be con-
sidered such as different vehicles’ shifts and operating times.
In addition, the dynamic problemwhere updates are required
to routes during their executionwill be investigated. In terms
of the solution approach, the introduction of route improve-
ment and Multiple Objectives Optimisation methods is nec-
essary to improve the solution quality. More tests can be
conducted and experimenting with different randomisation
parameters as well as designing a systematic parametric test-
ing in order to better conclude the effect of these parameter
on the solution quality.

A. Optimisation Results for Benchmark
Instances
Results for VRPTWare shown in Table A.1 while results

for MDVRPTW are represented in Table A.2.
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Table A.1
Optimisation Results on VRPTW Instances

Parameters Output
Inst. C Rule � �1 �2 V V% TD TD% CPU(s)
C101 LTW 1 1.0 0.0 10 0.0% 853.0 2.9% 0.9
C102 LTW 1 0.9 0.1 10 0.0% 980.6 18.3% 1.0
C103 LTW 1 1.0 0.0 10 0.0% 1061.2 28.2% 1.2
C104 LTW 1 1.0 0.0 10 0.0% 1118.1 35.6% 1.7
C105 LTW 1 0.9 0.1 10 0.0% 860.8 3.8% 0.9
C106 LTW 1 0.9 0.1 10 0.0% 896.7 8.2% 0.9
C107 Far 1 1.0 0.0 10 0.0% 914.6 10.3% 1.1
C108 Far 1 0.9 0.1 10 0.0% 854.8 3.1% 1.4
C109 Far 2 0.6 0.4 10 0.0% 925.3 11.6% 2.0
Avg 0.0% 13.6% 1.2
C201 LTW 1 0.9 0.1 3 0.0% 591.6 0.0% 5.8
C202 LTW 1 0.9 0.1 3 0.0% 713.8 20.7% 9.3
C203 LTW 1 0.9 0.1 3 0.0% 795.5 34.6% 10.8
C204 LTW 1 1.0 0.0 4 33.3% 868.6 47.1% 20.3
C205 Far 1 0.9 0.1 3 0.0% 611.6 3.9% 13.2
C206 Far 2 0.9 0.1 3 0.0% 651.0 10.6% 14.8
C207 Far 1 1.0 0.0 3 0.0% 683.1 16.1% 13.2
C208 Far 2 0.6 0.4 3 0.0% 627.9 6.7% 24.3
Avg 3.3% 16.5% 11.5
R101 Far 1 0.9 0.1 20 5.3% 1847.8 11.9% 0.6
R102 Far 2 0.8 0.2 19 11.8% 1723.0 15.9% 0.9
R103 Far 1 0.9 0.1 15 15.4% 1488.6 15.2% 1.1
R104 Far 1 1.0 0.0 12 33.3% 1275.2 26.6% 1.7
R105 Far 1 0.8 0.2 14 0.0% 1523.9 10.7% 0.8
R106 Far 1 0.4 0.6 13 8.3% 1468.1 17.3% 1.0
R107 Far 1 1.0 0.0 12 20.0% 1339.4 21.3% 1.3
R108 Far 1 1.0 0.0 11 22.2% 1185.1 23.3% 1.8
R109 Far 1 0.5 0.5 13 18.2% 1412.3 18.2% 1.0
R110 Far 2 0.8 0.2 12 20.0% 1270.9 13.6% 1.5
R111 Far 1 0.9 0.1 12 20.0% 1283.4 17.0% 1.3
R112 Far 2 0.6 0.4 11 22.2% 1136.3 15.7% 1.9
Avg 18.0% 17.9% 1.3
R201 Far 2 0.8 0.2 4 0.0% 1656.8 32.3% 6.9
R202 LTW 1 0.9 0.1 4 33.3% 1577.0 32.3% 16.9
R203 Far 2 1.0 0.0 3 0.0% 1313.0 39.7% 22.4
R204 Far 1 0.7 0.3 3 50.0% 1027.9 24.5% 58.1
R205 LTW 1 0.6 0.4 3 0.0% 1470.3 47.9% 15.4
R206 Far 2 0.7 0.3 3 0.0% 1217.8 34.4% 21.4
R207 Far 1 1.0 0.0 3 50.0% 1200.3 34.8% 24.1
R208 Far 1 1.0 0.0 3 50.0% 930.4 28.0% 88.8
R209 Far 2 0.7 0.3 3 0.0% 1310.9 44.2% 22.8
R210 LTW 1 0.8 0.2 3 0.0% 1440.2 53.3% 22.2
R211 Far 2 0.8 0.2 3 50.0% 1080.2 22.0% 62.5
Avg 23.3% 36.1% 35.5
RC101 Far 1 0.8 0.2 16 14.3% 1808.2 6.6% 0.8
RC102 Far 1 0.1 0.9 14 16.7% 1771.4 13.9% 1.0
RC103 Far 1 1.0 0.0 13 18.2% 1549.7 22.8% 1.1
RC104 Far 1 0.0 1.0 11 10.0% 1350.2 18.9% 1.5
RC105 Far 1 0.2 0.8 16 23.1% 1838.3 12.8% 0.9
RC106 Far 1 0.8 0.2 13 18.2% 1522.5 6.9% 0.9
RC107 Far 1 0.8 0.2 12 9.1% 1538.7 25.0% 1.2
RC108 Far 2 0.7 0.3 11 10.0% 1326.6 16.4% 1.4
Avg 14.9% 15.4% 1.1
RC201 Far 2 0.6 0.4 4 0.0% 2132.6 51.6% 5.8
RC202 Far 1 0.9 0.1 4 33.3% 1764.2 29.2% 11.8
RC203 LTW 2 1.0 0.0 4 33.3% 1586.8 51.2% 20.6
RC204 LTW 2 0.7 0.3 3 0.0% 1206.3 51.1% 67.0
RC205 Far 1 1.0 0.0 5 25.0% 1908.8 47.1% 8.1
RC206 Far 1 0.9 0.1 4 33.3% 1734.8 51.3% 9.2
RC207 Far 1 1.0 0.0 4 33.3% 1497.2 41.1% 16.4
RC208 Far 1 1.0 0.0 3 0.0% 1244.5 50.3% 42.9
Avg 17.2% 46.6% 22.7
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Table A.2
Optimisation Results on MDVRPTW Instances

Parameters Output
Inst. C Rule � �1 �2 V TD WT TT CPU(s)
pr01 LTW 2 0.9 0.1 6 1494.0 211.2 2258.2 0.3
pr02 Far_Min 1 0.9 0.1 9 2470.8 104.0 3860.8 1.3
pr03 Far_Avg 1 0.8 0.2 13 3376.5 174.6 5354.1 2.9
pr04 Far_Avg 2 1.0 0.0 17 4096.6 443.0 7037.7 5.4
pr05 Far_Avg 1 0.9 0.1 22 4383.2 421.1 7927.3 7.7
pr06 Far_Avg 2 1.0 0.0 27 5362.3 626.0 9821.3 11.7
pr07 Far_Avg 2 0.9 0.1 7 2091.4 37.5 3136.9 0.7
pr08 Far_Avg 1 1.0 0.0 13 3312.8 333.7 5546.5 3.0
pr09 Far_Avg 2 1.0 0.0 18 4394.7 518.9 7489.6 7.0
pr10 Far_Avg 2 1.0 0.0 26 5429.5 673.5 9800.0 10.4
pr11 Far_Min 2 0.7 0.3 4 1222.7 48.4 1824.0 0.5
pr12 Far_Min 1 0.7 0.3 8 1974.6 204.8 3465.4 2.3
pr13 Far_Min 2 0.9 0.1 11 2723.8 142.3 4669.1 6.1
pr14 Far_Avg 2 0.9 0.1 15 3045.3 173.9 5717.2 12.1
pr15 Far_Min 2 1.0 0.0 19 3513.5 223.4 6859.9 13.6
pr16 Far_Avg 1 0.9 0.1 23 4028.2 330.9 8192.1 20.2
pr17 Far_Avg 2 0.9 0.1 6 1626.7 89.4 2724.1 1.1
pr18 Far_Avg 1 1.0 0.0 12 2532.4 145.2 4577.6 4.7
pr19 Far_Avg 1 1.0 0.0 16 3283.1 205.5 6064.6 11.7
pr20 Far_Avg 1 1.0 0.0 24 4184.3 406.1 8287.4 17.4
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