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Abstract

Traffic prediction plays a crucial role in an intelligent transportation system

(ITS) for enabling advanced transportation management and services. In this

paper, we address the problem of multi-step traffic speed prediction, includ-

ing both short- and long-term predictions. We assert that it is important to

consider not just the fixed spatial dependency of the road network (i.e., the

connections between road segments) but also the dynamic spatial dependency

of traffic within the static topology that intertwines with the temporal evolu-

tion of traffic condition across the entire network. We propose a novel deep

learning model, named Self-Attention Graph Convolutional Network with Spa-

tial, Sub-spatial and Temporal blocks (SAGCN-SST) model, that specifically

capture such complex dynamic spatial-temporal processes. In SAGCN-SST,

we integrate self-attention mechanism into graph convolutional networks in a

novel framework design while using a sequence-to-sequence model in an encoder-

decoder architecture for extracting long-temporal dependency of traffic speed.

Two real-world datasets with frequent traffic congestion and accidents from

large-scale road networks (i.e., Seattle and Los Angeles) are used to train and

test our model. Our experiment results indicate that the proposed deep learn-

ing model consistently achieves the most accurate predictions (higher than 98%

accuracy on both datasets for the short- and long-term predictions) when com-

pared against well-known existing models in recent literature. The results also

indicate that SAGCN-SST is robust against emergent traffic situations.
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1. Introduction

Traffic prediction is an important function within an Intelligent Transporta-

tion System (ITS). Accurate traffic prediction offers ITS the ability to manage

the transportation network in a more efficient manner and thus alleviating traf-

fic congestion, reducing road accidents and protecting environment via carbon

emission reduction. Via synchronous traffic information system, it also allows

ITS to provide better services to public in terms of minimizing travel time and

cost (Wang, 2010). These are especially crucial as there is an increasing trend

in road traffic, exacerbating the traffic congestion problems. However, predict-

ing traffic is known to be a challenging task with complex inter-dependencies

temporally and spatially.

Temporally, it is found that there is non-linear temporal dynamics of traffic

flows over time depending on the changing road conditions (e.g., (Zhang, 2003)).

Furthermore, traffic data also show periodic patterns (e.g., weekly and seasonal

changes). Thus, current traffic status depends not only on the immediate pre-

vious epochs but may also be affected by longer periodic patterns or trends.

Hence, both long- and short-temporal dependencies in traffic time sequences

should be taken into account when making traffic predictions.

Since road networks are inherently spatial networks, the traffic flowing within

the network logically depends on the topological structure of the road intercon-

nections. Local spatial dependency can be seen from observing that the traffic

flow at one road segment is affected by both its immediate upstream and down-

stream road segments. Furthermore, since the vehicles are traveling within the

same physical road network, the traffic condition of different road segments

across the network are inter-dependent. This can be exemplified in various

gridlock phenomena taking place in urban cities during peak hours whereby

congestion at one road segment quickly cascade and spread to other locations.
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Early attempts on traffic prediction focus on temporal dependencies of traf-

fic over time. Both long- and short-term dependencies in traffic time sequences

were studied. Spatial dependencies were later jointly considered, initially fo-

cusing on capturing dependencies from immediate upstream and downstream

road segments and more recently, taking into account the influence of the entire

road network topology. We review the evolution of the prediction models in the

literature in Section 2. However, the literature has mostly considered that the

physical road network topology (i.e., the road segments and their connectivity)

is fixed and neighboring nodes contribute equally to the future traffic status of

the targeted node (we refer this as fixed spatial dependency). In this work, we

argue that each neighboring node is distinct and has different influence to the

targeted node (i.e., the degree of the spatial dependency varies from one neigh-

bor to another). In the space dimension, intuitively, closer neighboring nodes

have stronger influence while traffic status at road segments further away grad-

ually have less impact. However, this relationship is not strict as it also depends

on the local connectivity of the different neighboring nodes and it is possible

to have a node further away having greater influence on the targeted node. In

the time dimension, a congestion lasting longer period should have wider spatial

impact and thus, a road segment will be more influenced by neighboring nodes

further away if the network suffers comparatively long congestion period and

vice versa. As such, we assert that capturing and quantifying such dynamic

spatial dependency is important to further improve traffic prediction accuracy.

Building on the most recent developments in deep learning, we thus de-

velop a novel prediction model, named Self-Attention Graph Convolutional Net-

work with Spatial, Sub-spatial and Temporal blocks (SAGCN-SST), and address

multi-step traffic speed prediction problem for large-scale road networks. Apart

from considering fixed spatial and long temporal dependencies, the learning ar-

chitecture in our SAGCN-SST is designed to also simultaneously capture the

dynamic spatial dependency for both short- and long-term traffic prediction.

We integrate a self-attention mechanism into our graph convolutional layers to

capture how different neighboring nodes contribute to the future traffic status
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of the targeted node. In our framework, we use parallel sub-blocks for different

neighborhoods, avoiding increasing model depth and complexity. We validate

our proposed framework using two real-world traffic datasets from large-scale

road networks (Seattle and Los Angeles) and also conduct a comparative study

across well-known existing models in recent literature. The results indicate our

SAGCN-SST performs better than other leading models in the literature.

The rest of this paper is organized as follows. Firstly, we review in Section 2

the related work, highlighting how traffic prediction approaches have evolved

over time. We define our traffic prediction problem in Section 3. In Section 4.

we detail the design rationale and the architecture of our novel deep learning

framework. Section 5 evaluates our SAGCN-SST and compares it with well-

known existing models in recent literature on two real-world large-scale road

network datasets. Finally, we conclude our work in Section 6.

2. Related Work

Traffic prediction models in the literature have evolved over the years to

be increasingly sophisticated. Early studies were mostly based on statistical

models (Ahmed and Cook, 1979; Van Der Voort et al., 1996; Lee and Fambro,

1999; Williams and Hoel, 2003) and treated the traffic prediction problem as

a linear problem. AutoRegressive Integrated Moving-Average (ARIMA) devel-

oped in (Ahmed and Cook, 1979) was one of the earliest one to solve traffic

prediction problem adopting such approach. Thereafter, several variations of

ARIMA including ARIMA with Kohonen maps (Van Der Voort et al., 1996),

subset ARIMA (Lee and Fambro, 1999) and seasonal ARIMA (Williams and

Hoel, 2003), were built to improve traffic prediction accuracy by attempting to

extract more different traffic patterns (e.g., seasonal or cyclical patterns). Later,

researchers argued that the traffic prediction problem should be considered as

a non-linear problem (Zhang, 2003). Machine learning models with non-linear

kernels or activation functions were then used to solve traffic prediction problem

by first converting it to a linear problem. For example, Neural Networks (NNs)
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was used for traffic prediction in (Gowrishankar and Satyanarayana, 2008) while

Online Support Vector Regression (Online-SVR) was proposed for short-term

traffic prediction under different traffic conditions (Castro-Neto et al., 2009).

Nevertheless, these models are shallow for capturing detailed information hid-

den in the raw traffic data. With the recent advancement in deep learning,

deep neural networks are increasingly used for predicting traffic since deeper

networks can more effectively learn high dimensional features and capture hid-

den information in the traffic data. Huang (Huang et al., 2014) developed a

deep architecture for traffic flow prediction using a Deep Belief Network (DBN)

for unsupervised feature learning before making the final prediction via a mul-

titask regression layer. On the other hand, (Jia et al., 2016) proposed a DBN

for the short-term traffic speed prediction. This DBN model is trained in a

greedy unsupervised fashion and fine-tuned using labelled data. Meanwhile,

Recurrent Neural Network (RNN) (Mikolov et al., 2010) and its variants (e.g.,

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and

Gated Recurrent Unit (GRU) (Chung et al., 2014)) emerged in the field of nat-

ural language processing for solving problems with long-term dependency. This

capability is attributed to the recycled units. These models were exploited in

(Tian and Pan, 2015) and (Kang et al., 2017) for short-term traffic flow predic-

tion while (Ma et al., 2015) and (Fu et al., 2016) proposed to use these models

for traffic speed prediction.

The aforementioned models only take temporal features into consideration.

However, (Lv et al., 2014) indicated that a large-scale transportation network

is spatially correlated and sharing information among neighboring stations can

improve prediction accuracy. Therefore, (Lv et al., 2014) proposed the Stacked

AutoEncoder (SAE) model to extract spatio-temporal features from real-world

traffic data. SAE uses a Softmax layer as a predictor for its final prediction.

Along the same line, Convolutional Neural Network (CNN), with the ability to

extract local spatial feature via its convolutional kernels, has also been used to

improve prediction performance on datasets with hidden spatial information.

Taking the advantage of CNN, (Ma et al., 2017) developed a CNN-based model
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that learns traffic as images that encode the time and space relation of traffic

speed data via a two dimensional time-space matrix and demonstrated that it

can accurately predict traffic speed on two real-world large-scale road networks.

Using a similar concept, (Yu et al., 2017) proposed a network grid representation

framework that converts network-wide traffic speed into a series of static images

for prediction. This framework was based on Deep Convolutional Neural Net-

works (DCNNs) and LSTM networks. DCNNs were used to extract the spatial

dependency of road networks while LSTMs were utilized to learn the dynamic-

temporal dependency. A similar model based on LSTM, CNN and Deep Au-

toEncoder (DAE) was developed in (Zheng et al., 2019) to analyze and extract

temporal-spatial features for short-term traffic prediction in smart city. The

Fusion Convolutional Long short-term memory Network (FCL-Net) (Ke et al.,

2017), another deep learning model, enhances the contribution of spatial and

temporal features towards the final prediction by stacking and fusing convolu-

tional layers, Convolutional LSTM layers (Conv-LSTM) and multiple standard

LSTM. On the other hand, (Lv et al., 2018) proposed the Look-up Convolu-

tion Recurrent Neural Network (LC-RNN) model by combining both RNN and

CNN models. In (Zheng et al., 2021b), a joint temporal-spatial ensemble model

combining ARIMA, LSTM, SAE and Capsule Network is proposed to analyze

and extract multiple features including short-, medium- and long-term temporal

features, and global- and local-spatial features.

CNN-based models consider road networks as regular grids and traffic data

having regular Euclidean structure. However, road networks are inherently ir-

regular and traffic data should instead be treated as non-Euclidean data (Ahmed

et al., 2019). To overcome this limitation, the Graph Convolutional Network

(GCN) (Kipf and Welling, 2017) was proposed. GCN allows convolutional op-

erations on non-Euclidean data structure and has been advocated for traffic

prediction problems. For example, (Li et al., 2018) developed the Diffusion

Convolutional Recurrent Neural Network (DCRNN) operating on a directed

graph, a deep learning framework based on the encoder-decoder architecture,

for traffic prediction on a transportation network graph. DCRNN extracts spa-
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tial dependency using bidirectional random walks on the network graph and

temporal dependency using the encoder-decoder architecture. GCN is also at

the heart of the design in the Spatio-Temporal Graph Convolutional Networks

(STGCN) (Yu et al., 2018) which is composed of two Spatio-Temporal Con-

volutional blocks (namely ST-Conv blocks) and a fully-connected output layer.

Each ST-Conv block contains two temporal gated convolution layers and one

spatial graph convolution layer in the middle. In (Cui et al., 2019), the road

network is abstracted as an undirected graph. The proposed Traffic Graph

Convolutional Long Short-Term (TGC-LSTM) deep learning framework uses

GCN to capture the spatial dependencies of neighboring stations of different

distances while LSTM is used to extract temporal dependencies. Instead of

LSTM, (Zhao et al., 2019) proposed to combine GCN with GRU to further

improve the prediction accuracy. Meanwhile, (Zhang et al., 2019) addresses

the problem of multi-step traffic speed prediction. The authors proposed to

use the sequence-to-sequence learning architecture with attention mechanism

for extracting dynamic temporal dependency by computing the different influ-

ences of each previous time step on the future time step. For capturing spatial

dependency, they have suggested the use of GCN. Furthermore, (Guo et al.,

2020) proposed an Optimized Graph Convolution Recurrent Neural Network

(OGCRNN) model for traffic predictions considering network-wide traffic flow,

speed and travel time. In this work, the proposed model learns an optimized

graph in a data-driven manner during the model training phase. This is said

to reveal the latent relationship among different road segments from the traffic

data.

On the other hand, (Vaswani et al., 2017) introduced a novel concept of

transformer which exploits the attention mechanism. Following this, (Shi et al.,

2020) suggested that the convolution operator in CNN-based and GCN-based

models may not adequately model the non-Euclidean pair-wise correlations of

road segments, and developed a novel Attention-based Periodic-Temporal neu-

ral Network (APTN) for traffic prediction by analysing spatial, short-term, and

long-term periodical dependencies using the attention mechanism. Meanwhile,
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Xu et al. (Xu et al., 2020) developed a Spatial-Temporal Transformer Network

(STTN) for long-term traffic prediction. STTN consists of spatial transformer

with self-attention mechanism for modelling spatial dependencies and tempo-

ral transformer for modelling long-range temporal dependencies across previous

time steps. Focusing on improving the accuracy for long-term traffic prediction,

(Zheng et al., 2021a) built a Sequence-to-Sequence architecture with an embed-

ded module based on GCN. This model uses the k−hop neighbourhood matrix

for local-spatial feature extraction and transformer for global-spatial feature ex-

traction. A Graph Multi-Attention Network (GMAN) (Zheng et al., 2020) is

another transformer-based model developed under the encoder-decoder architec-

ture. Both encoder and decoder consist of multiple spatial-temporal attention

blocks and they are used to model the impact of the spatial-temporal factors

on traffic state. In addition, it also includes a spatial-temporal embedding to

encode vertices into vectors using the node2vec approach introduced in (Grover

and Leskovec, 2016) for vertex representation learning. Based on these latest

models, we further advance the literature in this paper by advocating the need

to capture dynamic spatial features for traffic prediction and design a novel

SAGCN-SST for this purpose.

3. Problem Formulation

3.1. Road Network Representation

Graph theory is an effective tool to capture spatial features of data by an-

alyzing the connectivity between detectors or road segments (Adolf, 1990). In

this paper, we model the road network as an undirected graph since the traffic

speed propagates the downstream while the traffic congestion propagates up-

stream (Long et al., 2008) and the datasets used in this paper includes traffic

congestion. Considering a road network represented as G = (V, E) where V is

the set of nodes representing sensor locations or road segments with |V| = N .

E is the set of edges representing physical connectivity between sensor locations

or road segments. G can be represented by A ∈ RN×N , the N ×N symmetric
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adjacency matrix, with its element Ai,j = 1 if there exists a link between node

i and j and 0 otherwise. The degree matrix of graph G, D ∈ RN×N is then

defined as Di,i =
∑
j Ai,j , which sums the number of edges connected to each

node.

The future traffic status of a node is influenced by its own current status.

For this, we further define Ã = (A+ I) ∈ RN×N where I is the N ×N identity

matrix. This accounts for the fact that each node is also self-influenced. As

such, the trace tr(Ã) =
∑N
i=1Ai,i = N . Ã only describes the connectivity of

neighbors one hop away from each node (i.e., 1−hop neighborhood). We further

introduce the notion of k−hop neighborhood to represent the set of nodes that

are reachable within k hops from the targeted node. We define the k − hop

neighborhood matrix as Ãk ∈ RN×N . The reason for introducing the k − hop

matrix is to account for the fact that traffic congestion not only propagate to

its immediate upstream and downstream road segments but also often spread

in a certain area in the network (Nguyen et al., 2016).

3.2. Traffic information

Let vit denotes the traffic speed measured at node i at tth time step. Typi-

cally, a time step can represent 5, 15, 30, 45 and 60 mins (Bickel et al., 2007). In

our work, we use 5-min time step. Given a large-scale road network, the traffic

speed on N detectors is then written as vt = {v1t , v2t , . . . , vit, . . . , vN−1t , vNt }; vt ∈

RN , (i = 1, 2, 3, . . . , N). Then V = {vt−T+1, vt−T+2, . . . , vt−1, vt};V ∈ RT×N ,

(T = 1, 2, 3, . . . ) gives the traffic speed collected from N detectors in the net-

work for the past T time steps. Conversely, the traffic speed for the future

is written as V ′ = {vt+1, vt+2, . . . , vt+T ′} ∈ RT ′×N where T ′ is the prediction

horizon. Generally, traffic prediction problems can be categorized into short-

(T ′ < 30 mins) and long-term (T ′ ≥ 30 mins). Since we are addressing multi-

step prediction problem, our solution covers both timescales whereby T ′ = {1, 3}

for short-term and T ′ = {6, 9, 12} for long-term traffic speed prediction corre-

sponding to {5, 15} mins and {30, 45, 60} mins respectively (Min and Wynter,

2011).

9



3.3. Problem Definition

Given past traffic speed, V and the road network G, our aim is to predict

traffic speed, V ′, in the future T ′ time steps. The problem can then be repre-

sented as in Eq. (1).

V ′ = F

(
V ;G

(
V, E , Ãk

))
(1)

where the objective is to learn the mapping function F (.) and compute the

traffic speed in the next T ′ time steps given the traffic speed in the past T time

steps and network information including the different k neighborhood matrices

as input.

4. A Novel Proposed Framework

4.1. Design Overview

Figure 1 presents the overall learning architecture of our framework. It

consists of three main blocks:

• Input block – This block is responsible for preparing the raw traffic and

graph data into a trainable format as input to the spatial block.

• Spatial block – This block extracts both fixed and dynamic spatial fea-

tures. Based on GCN, we construct k− hop neighborhoods for each node

in the network and utilize a self-attention mechanism to learn the degree

of influence of different individual neighbor to the targeted node. The k

spatial features extracted in this block is concatenated (i.e., SAGCN =

{SAGCN1, SAGCN2, . . . , SAGCNk}) as input to the temporal block.

• Temporal block – This block then captures the temporal features. Its

inputs include the k spatial features and V ′. It aims to obtain the long-

temporal relationship of the past and future data. Specifically, we propose
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to integrate a sequence-to-sequence model within an encoder-decoder ar-

chitecture (Sutskever et al., 2014) for extracting the long-temporal depen-

dency of the traffic speed. The output of this block is the final prediction.

4.2. Input Block

The two input data are the past traffic speed measurements and the road

network graph data. The traffic speed data is V = {vt−T+1, vt−T+2, . . . , vt};V ∈

RT×N×B×F where B and F represent the batch size and the number of consid-

ered traffic features respectively. In our work, without loss of generality, traffic

feature only consists of traffic speed. Therefore, F = 1.

The road network graph data refers to the k − hop neighborhood matrices,

{Ã1, Ã2, . . . , Ãk}. Since we only need the connectivity information of nodes

within the neighborhood rather than the actual hop distance to the neighbors,

we follow (Cui et al., 2019) and clip all elements in Ãk to be within {0,1}. We

can then rewrite the k − hop neighborhood matrix Ãk hereafter as follows:

Ãk = Ci(Ãk) (2)

where Ci(.) is the clip function such that Ãki,j = min
(
Ãki,j , 1

)
. Note that

when k = 1, Ã1 = Ã reverts back to the adjacency matrix itself describing

the connectivity relationship of nodes in the 1 − hop neighborhood. All spa-

tial features from k − hop neighborhoods are concatenated as a matrix vector

SAGCN ∈ RB×T×N×k.

4.3. The Spatial Block

The spatial block is composed of k parallel sub-spatial blocks corresponding

to k different neighborhoods (see Figure 1). Each sub-spatial block consists of

m Graph Convolutional Network blocks (GCN blocks) where each GCN block

comprises a Graph Convolutional Neural layer with Self-Attention mechanism

(Veličković et al., 2018) (namely Self-AGCN) and a Feed Forward Neural Net-

work (FFNN) layer. The last GCN block is followed by an additional Self-

AGCN layer. At the end of parallel sub-spatial blocks, the k spatial features
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Figure 1: Our novel deep learning framework.
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Figure 2: The working principle of the mth Self-AGCN layer on the k − hop neighborhood.

(i.e., SAGCN1, SAGCN2, . . . , SAGCNk) corresponding to k different neigh-

borhoods are passed to the temporal block for extracting temporal features.

Figure 2 illustrates the working principle of the mth Self-AGCN layer on

the k − hop neighborhood where it has nk nodes. For example, traffic speed of

node 1 in Figure 2, as the targeted node, is affected by other (nk − 1) nodes

differently. As such, we need to quantify and compute the different weights of

these neighbors with respect to the targeted node (i.e., (a1−1, a1−2, . . . , a1−nk
)

(namely, attention weights)). To achieve this, the convolutional operation (i.e.,

Eq. (3)) is first conducted on the graph of the road network for fixed spatial

feature extraction:

GCm;k
t =

(
Wgcm;k

t
◦ Ãk

)
vt (3)

where ◦ is the Hadamard product operator, vt ∈ RN is the traffic speed at the

tth time step. Wgcm;k
t
∈ RN×N is a trainable weight matrix in the mth Self-

AGCN layer on the k − hop neighborhood. The output matrix GCm;k
t ∈ RN

represents the fixed spatial features at current time step.

As prior mentioned, each neighboring node contributes differently to the
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future traffic status of a targeted node due to its distance as well as its own

spatial neighborhood in relation with the targeted node. Intuitively, traffic

status of a targeted node within a road network is more heavily influenced by

their immediate adjacent neighbors and less affected by nodes further away.

However, this is not strictly so. Moreover, traffic volume in a road network also

affects the influence of neighboring nodes. For instance, neighboring nodes may

not have strong influence on the targeted node in a relatively quiet road network

with low traffic flow. Conversely, in a congestion-prone road network, the traffic

status of neighboring nodes will have impact on the future status of the targeted

node. In fact, neighboring nodes will have increasing influence as the congestion

period lengthens. To extract such dynamic spatial features, we apply the self-

attention mechanism at each GCN block to compute the contribution of each

node in the k−hop neighborhood and assign a weight to these neighboring nodes.

The weight is computed based on the similarity between the neighboring node

and the targeted node. Specifically, the similarity of traffic data between two

nodes i and j, um;k
t (i, j) ∈ RN×nk , is computed via a tanh function as follows:

um;k
t (i, j) = qT tanh

(
GCm;k

t (i)Wm;k
f GCm;k

t (j)

)
;

j = 1, 2, . . . , nk

(4)

where Wm;k
f ∈ RN×N is a trainable weight matrix and qT represents the trans-

position or reshaping operations that are utilized to adjust the dimensions. We

then compute the attention weights as probabilities (i.e., am;k
t (i, j) ∈ [0.0, 1.0])

via a Softmax function given in Eq. (5).

am;k
t (i, j) = Softmax

(
um;k
t (i, j)

)

=
exp
(
um;k
t (i, j)

)
∑nk

j=1 exp
(
um;k
t (i, j)

) (5)

After obtaining the attention weights am;k
t (i, j) ∈ RN×nk , it is used to map
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to fixed spatial traffic feature GCm;k
t (i) for achieving dynamic spatial traffic

feature SGCm;k
t ∈ RN .

SGCm;k
t =

nk∑
j=1

am;k
t (i, j)GCm;k

t (i). (6)

Each Self-AGCN layer is followed by a FFNN layer for improving the pre-

diction ability on learned traffic features. This layer consists of a tanh layer as

given in Eq. (7) and a dropout layer as given in Eq. (8).

SGCm;k
tanh;t = tanh(SGCm;k

t ) (7)

SGCm;k
drop;t = dropout(SGCm;k

tanh;t) (8)

Compared to (Kipf and Welling, 2017) which uses a ReLU layer and a

dropout layer, we propose to use a tanh layer in place of the ReLU layer.

The main reason is that ReLU function de-activates negative values and only

retains positive values. As such, it may miss some important information hidden

behind negative values.

4.4. The Temporal Block

For temporal feature extraction, we propose to use the sequence-to-sequence

architecture (Sutskever et al., 2014) which has already been found to offer good

performance in the area of natural language processing. The architecture con-

sists of an encoder and a decoder with a context C ∈ RB×N connecting the two

(see Figure 1).

The encoder takes the SAGCN produced by the spatial block as the input.

It encodes the spatially-fused time series using the following:

het−te =


fencoder(h

e
0, SAGCN t−te), te = T

fencoder(h
e
t−te−1, SAGCN t−te), te ∈ 0, . . . , T − 1

(9)

where het−te ∈ RB×N is the hidden state in the encoder at (t− te)th time

step. The initial hidden state is he0. The hidden state het−te−1 ∈ RB×N at
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(t− te − 1)
th

time step and the spatially-fused feature SAGCN t−te ∈ RN×k at

(t− te)th time step are used to calculate the hidden state het−te at the (t− te)th

time step.

The hidden state het (te = 0) at the tth time step is the context vector C

which encodes all information from the input SAGCN in the encoder.

C = het (10)

In the decoder, the context vector C as the initial hidden state hd0 ∈ RB×N

is decoded to the target sequence. The hidden state hdt+td−1 at (t+ td − 1)
th

time step and the target traffic speed vt+td at (t+ td)
th

time step are utilized

to calculate the hidden state hdt+td at the (t+ td)
th

time step. The hidden state

hdt+td at the (t+ td)
th

time step in the decoder is the final prediction ṽt+td .

The fencoder and fdecoder functions are two GRU modules (Chung et al.,

2014). While GRU is based on LSTM, it incurs shorter processing time and

less Central Processing Unit (CPU) cycles. The reason is that GRU combines

LSTM’s forget and input gates into a single “update gate”, and also merges

the memory cell and hidden state. This makes GRU simpler than the standard

LSTM but still efficient. Figure 3 depicts the working process and data flow in a

recycled unit of the GRU module. GRU consists of three parts: the update gate

zt, the reset gate rt and the hidden state het . The update gate, zt, extracts the

long-term dependency of the data. It decides how much information it needs

to update from the input SAGCN t and the hidden state at the previous time

step het−1 (see Eq. (11)).

zt = σ(Wz × SAGCN t + Uz × het−1 + bz) (11)

The reset gate, rt, captures the short-term dependency of traffic features. It

decides how much information from the hidden state at the previous time step

is retained for updating the current hidden state. It is computed in a similar
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Figure 3: Gated Recurrent Unit

manner as the update gate by Eq. (12).

rt = σ(Wr × SAGCN t + Ur × het−1 + br) (12)

Then, the input SAGCN t, the reset gate rt and the hidden state at the

previous time step het−1 are used to activate the candidate hidden state h̃et via

Eq. (13).

h̃et = tanh(Wh × SAGCN t + Uh × (rt ◦ het−1) + bh) (13)

where Wz, Wr and Wh are the weights of the update gate, the reset gate and the

candidate hidden state respectively while bz, br and bh are the corresponding

bias for each gate and state. Furthermore, Uz, Ur and Uh are the weights of the

hidden state at the previous time step het−1 in the update gate, the reset gate

and the candidate hidden state, respectively. Finally, the current hidden state

can be calculated using the update gate zt, the hidden state at the previous

time step het−1 and the current candidate hidden state h̃et using Eq. (14).

het = (1− zt) ◦ het−1 + zt ◦ h̃et (14)
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4.5. Loss Function

To train our SAGCN-SST model, the RMSprop optimizer (Tieleman and

Hinton, 2012) is used to minimize the error between the real and predicted

traffic. It restricts the oscillations in the vertical direction. The learning rate can

be adjusted to take larger steps in the horizontal direction for faster convergence

compared to Gradient Descent Optimizer (Bottou, 2010).

Mean Square Error (MSE) in Eq. (15) as loss function is adopted to train

our model as it learns faster than Mean Absolute Error (MAE).

Loss = L(vt, ṽt) =
1

N

N∑
i=1

(vit − ṽit)
2

(15)

where L(.) is the MSE loss function. It calculates the residual error between

the real traffic data vit and the predicted traffic data ṽit.

5. Performance Evaluation

5.1. Data Description

To train and test our proposed framework, two real-world datasets from

large-scale road networks are utilized: hereafter labelled as Loop-Seattle (Cui

et al., 2019) and METR-LA (Li et al., 2018). Loop-Seattle is collected from

inductive loop detectors deployed on four connected freeways (I-5, I-405, I-

90 and SR-520) in the Greater Seattle Area, and the locations of the loop

detectors are indicated by the red pins in Figure 4 (a). This dataset records

traffic information from 323 detectors over the entirety of year 2015 at 5-min

time step. We use unweighted undirected graph to represent this network.

The second real-world dataset, METR-LA, is collected from loop detectors in the

highways of Los Angeles County (Jagadish et al., 2014). Similarly, the locations

of detectors in this network are shown via the red pins in Figure 4 (b). It

includes 207 detectors and covers 4 months of traffic speed data from the 1st

of March to the 30th of June in 2012. In this dataset, an undirected graph

with edge weights is used to construct the adjacency matrix. The pairwise road
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distances between detectors are first computed and then a thresholded Gaussian

Kernel (Shuman et al., 2013) is used to build the adjacency matrix. The edge

weights are calculated by Eq. (16) below:

(a)

(b)

Figure 4: Locations of loop detectors in (a) Loop-Seattle and (b) METR-LA datasets.

Wi,j =


exp(−dist(i,j)

2

2σ2 ), if dist(i, j) < dthreshold

0, otherwise

(16)
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where Wi,j is the edge weight between node i and node j, and dist(i, j) repre-

sents the actual physical road distance between node i and node j in the road

network. The standard deviation of the distances is denoted by σ and dthreshold

is the threshold. Table 1 provides the basic statistics of both datasets includ-

ing maximum (Max), minimum (Min), mean value (Mean), standard deviation

(Std) and variance (Var) of traffic speed data as well as the dataset size (in

MByte). From the table, we note that METR-LA has higher traffic fluctuations

with larger standard deviation and variance than Loop-Seattle.

Table 1: Characteristics of both traffic speed (miles/hour) datasets

Dataset Max Min Mean Std Var Size

Loop-Seattle 158.19 0.74 56.57 11.43 147.25 274.40 MB

METR-LA 70.00 0.00 53.72 19.19 374.85 57.00 MB

5.2. Evaluation Metrics

To evaluate our model, we follow the evaluation metrics used in (Huang

et al., 2014; Lv et al., 2015) and define the accuracy of the multi-step traffic

prediction as (100%−MAPE) where Mean Absolute Percentage Error (MAPE)

is given as

MAPE =
1

N × T ′
·
N∑
i=1

T ′∑
t=1

|vit − ṽit|
vit

× 100%. (17)

MAPE is the absolute difference between the real and predicted traffic data and

is utilized to measure the prediction error.

Furthermore, we complement this with two other conventional performance

metrics commonly used in the literature (Tan et al., 2009; Lv et al., 2015) namely

Mean Absolute Error (MAE) and Root-Mean Square Error (RMSE) which are

computed as follows:

MAE =
1

N × T ′
·
N∑
i=1

T ′∑
t=1

|vit − ṽit| (18)

20



RMSE =

 1

N × T ′
·
N∑
i=1

T ′∑
t=1

(vit − ṽit)2


1
2

. (19)

MAE presents the average absolute difference between the real and predicted

traffic data. It is used to measure absolute prediction error. RMSE is the

standard deviation of the residuals, which is the difference between the real and

predicted traffic data.

5.3. Parameter settings

In our SAGCN-SST model, there are several parameters that need to be

set for achieving accurate predictions. The parameters mainly relate to the

training process. Specifically, the parameters are the learning rate r, batch size

B, observed time steps T , targeted time steps T ′ and the number of epochs.

We follow (Zang et al., 2018; Cui et al., 2019) and set the learning rate r, batch

size B and observed time steps T as 10−3, 40 and 10 respectively. As prior

mentioned, since we are addressing multi-step traffic prediction problem, we set

the targeted time steps T ′ as 1, 3, 6, 9 and 12, corresponding to 5, 15, 30, 45

and 60 mins as prediction horizons respectively (Li et al., 2018; Yu et al., 2018).

To find the number of epochs, we use stop early strategy in which the training

process will be stopped when the training loss continues to decrease in 10 epochs

while the validation loss increases. This avoids the problem of over-fitting.

Finally, we follow the convention and use 70% of the data for training, 20%

for validation and 10% for testing. All experiments are conducted on a GeForce

GTX 1080 Ti GPU with 11 GB physical memory, and Pytorch is used to pro-

gram this work.

5.4. Performance Evaluation of SAGCN-SST

To evaluate our proposed SAGCN-SST, we first conduct experiments with

different number of GCN blocks (within the m = [1..6] interval) for T ′ = 1 (i.e.,

prediction for 5 mins in advance) for the 1 − hop neighborhood (i.e., k = 1).
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Table 2 presents the prediction results achieved by our SAGCN-SST model for

both Loop-Seattle and METRA-LA datasets.

Table 2: Results of SAGCN-SST with m = [1..6] GCN blocks for Loop-Seattle and METR-LA

Loop-Seattle (T ′ = 1) METR-LA (T ′ = 1)

Layers MAE MAPE RMSE MAE MAPE RMSE

m = 1 0.8435 1.98 1.1175 0.9858 2.05 1.4051

m = 2 0.8186 1.91 1.0851 0.9672 2.01 1.3638

m = 3 0.8031 1.89 1.0686 0.9134 1.90 1.2894

m = 4 0.8181 1.92 1.0872 0.9499 1.98 1.3471

m = 5 0.8219 1.96 1.2140 0.9353 1.93 1.3209

m = 6 0.8102 1.89 1.0759 0.9340 1.93 1.3144

For Loop-Seattle, our SAGCN-SST model achieves MAPE below 2% for

m between 1 and 6. The lowest MAPE is achieved (i.e., 1.89%) when SAGCN-

SST has 3 and 6 GCN blocks. In these two cases (i.e., m = 3 and m = 6), the

errors in MAE and RMSE for m = 3 are lower. Furthermore, considering that

having a deeper model with more GCN blocks costs more in terms of physical

memory and GPU cycles, incurs longer running time, and may even result in

over-fitting, we set m = 3 in the ensuing experiments for Loop-Seattle. For

METR-LA, the best result (i.e., MAPE = 1.90%) is achieved when m is also set as

3. In addition, the average MAE and RMSE for both datasets are respectively

below 1.00 and 1.50. Compared to results achieved from Loop-Seattle, these

three types of errors obtained from METR-LA are larger. This indicates that

traffic pattern in METR-LA is more complex.

Next, we proceed with experiments for multi-step traffic speed prediction

with prediction horizon, T ′ = {1, 3, 6, 9, 12} with different neighborhoods (i.e.,

k = [1..5]) on both datasets. The results are summarized in Table 3. For

Loop-Seattle, our SAGCN-SST consistently achieves MAPE less than 2% for

the different k−hop neighborhoods across all prediction horizons. This indicates

that longer prediction horizons (i.e., T ′ = {6, 9, 12}) does not affect SAGCN-
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SST’s prediction performance. This is mainly due to our design which integrated

the sequence-to-sequence architecture in our temporal block that effectively cap-

tures long-temporal dependency of the data. Figure 5 (a) presents the best

prediction results achieved on Loop-Seattle for different neighborhoods (i.e.,

k = {1, 2, 3, 4, 5}) over different prediction horizons (T ′ = {1, 3, 6, 9, 12}). It

is clear that short-term predictions mainly depend on adjacent neighbors while

long-term predictions need to take into account the influence on a wider neigh-

borhood. Specifically, for T ′ = 1 and 3, the best results are obtained when k is

equal to 1 and 2, respectively. In contrast, for T ′ = {6, 9, 12}, the best perfor-

mances are achieved when k is higher (i.e., when k = 5, 4 and 5, respectively).

The observations are quite different for the METR-LA dataset. The best pre-

dictions are always obtained when k = 1 (see Figure 5(b)). This is due to the

different nature of the traffic patterns in the two datasets. Specifically, we ob-

serve that congestion duration in Loop-Seattle tends to be significantly longer

than that recorded in METR-LA. We use Figure 6 to exemplify this. The figure

shows the real (black solid line) and predicted (red dashed line) traffic speed

in a day with 288 time steps from two randomly selected detectors retrieved

from Loop-Seattle (left column) and METR-LA (right column), respectively.

The mean and variance of real traffic speed from this day are 50.92 and 203.19

on Loop-Seattle and 65.87 and 8.44 on METR-LA, respectively. Its predicted

mean and variance are 50.60 and 210.16 on Loop-Seattle and 66.34 and 2.80

on METR-LA, respectively. The x-axis represents the time step and the y-axis

is traffic speed. The coordinates indicated by the arrows show the start and

end of a congestion incident. From the figure, we see that the traffic congestion

duration is 120 mins (= (150− 126)× 5) on METR-LA while for Loop-Seattle,

the congestion lasts for 330 mins (= (181− 115)× 5). From these observations

from the two datasets, we can see that higher k (i.e., considering wider neigh-

borhood) offers better prediction accuracy for traffic congestion that tends to

last longer (i.e., long-term prediction) and vice versa.

In Figure 6, prediction horizon T ′ increases in the range {1, 3, 6, 9, 12} from

top to bottom. From the figure, it is clear that our model is able to accurately
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Table 3: Results of SAGCN-SST on the k − hop neighbourhoods for both datasets

Model Loop-Seattle METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

k=1 0.8156 1.90 1.0802 0.9256 1.92 1.3090

k=2 1.0562 2.55 1.4301 1.0494 2.18 1.5103

k=3 0.8320 1.96 1.1041 1.0091 2.11 1.4417

k=4 0.8021 1.90 1.0735 1.0706 2.23 1.5290

k=5 0.8277 1.94 1.1012 1.0375 2.14 1.4714

(b) 15-min future prediction (T’=3)

k=1 0.8627 2.03 1.1528 0.9392 1.93 1.3260

k=2 0.8280 1.96 1.0982 1.0085 2.12 1.4313

k=3 0.8702 2.08 1.1692 1.0619 2.21 1.5153

k=4 0.8453 2.02 1.1300 1.0295 2.12 1.4467

k=5 0.8643 2.05 1.1540 1.0468 2.16 1.4894

(c) 30-min future prediction (T’=6)

k=1 0.8500 2.02 1.1310 0.9242 1.91 1.3049

k=2 0.8767 2.08 1.1585 1.0471 2.19 1.5045

k=3 0.8745 2.07 1.1618 1.0023 2.08 1.4239

k=4 0.8651 2.04 1.1469 1.0488 2.17 1.4849

k=5 0.8332 1.97 1.1147 1.0577 2.21 1.5047

(d) 45-min future prediction (T’=9)

k=1 0.8358 1.99 1.1197 0.9198 1.93 1.2976

k=2 0.8432 2.01 1.1287 1.0640 2.20 1.5159

k=3 0.8507 2.01 1.1332 1.0569 2.20 1.5159

k=4 0.8221 1.94 1.0921 1.0256 2.12 1.4603

k=5 0.8344 1.96 1.1082 1.0671 2.25 1.5244

(e) 60-min future prediction (T’=12)

k=1 0.8613 2.03 1.1459 0.9033 1.86 1.2701

k=2 0.8577 2.03 1.1422 1.0399 2.19 1.4726

k=3 0.8382 2.00 1.1129 1.0510 2.19 1.4896

k=4 0.8271 1.97 1.1065 1.0671 2.25 1.5182

k=5 0.8266 1.96 1.0985 0.9890 2.04 1.3956
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(a)

(b)

Figure 5: Relationship of the k − hop neighbourhoods and the prediction horizon with

accuracy from SAGCN-SST model on Loop-Seattle (a) and METR-LA (b). The x-axis is the

prediction horizon and the y-axis is the prediction accuracy.

predict traffic speed across the entire duration including during peak hours

(traffic speed is lower) and off-peak hours (traffic speed is higher). Specifically

for more challenging tasks T ′ = {6, 9, 12} compared to T ′ = {1, 3}, SAGCN-SST

can not only accurately follow the overall trends but also capture the details of

rapid fluctuations.
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Figure 7 and Figure 8 visualize the real (sub-figure (a)) and predicted (sub-

figure (b)) traffic speed at a randomly selected time step from our SAGCN-

SST model on the road network of Loop-Seattle and METR-LA, respectively.

From the figures, it can be observed that the real traffic on the road network

are closely predicted across the entire map and thus, further validating the

capability of our SAGCN-SST model in computing accurate predictions on large-

scale road networks. Furthermore, both Figure 7 and Figure 8 also show that

very low or high traffic speed are recorded on several continuous detectors for

both road networks. It indicates that traffic state recorded by a detector is

influenced by its neighbours. This information should be considered in traffic

prediction models. Our SAGCN-SST, that defines k − hop neighborhoods for

each detector and analyzes spatial features from its neighborhood, captures

exactly this information to achieve accurate predictions.

Let the residuals of traffic speed predictions be defined as (vit − ṽit). Con-

sidering that the residual as an indicator on whether the results of a model

are statistically correct, we show in Figure 9 the residuals of traffic speed pre-

dictions by our proposed model on both datasets. From top to bottom, the

prediction horizons are 5, 30 and 60 mins, respectively. The x-axis represents

the residuals (i.e., vit − ṽit) and the y-axis represents the probability density of

the residuals. For both datasets with 5 mins as prediction horizon (top row of

the figure), we see that the residual distributions follow normal distributions

with zero means. For longer prediction horizons (i.e., 30 and 60 mins), while

the residual distributions still resemble that of a normal distribution, the means

shift away from zero. This is because longer prediction horizons are less im-

pacted by historical traffic data compared to short prediction horizons. The

residual’s normal distributions in Figure 9 again suggests that our proposed

model is capable of capturing dynamic spatial-temporal features and provide

more accurate predictions.
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Loop-Seattle (left) vs METR-LA (right)

Figure 6: (Color Online) Real and predicted traffic speed (miles/hour) in a day with 288

(= 24h∗60mins
5mins

) time steps from SAGCN-SST on Loop-Seattle (left) and METR-LA (right)

with a time step = 5 mins.
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(a)

(b)

Figure 7: (Color Online) Visualization of real (a) and predicted (b) traffic speed at a

randomly selected time step on the road network of Loop-Seattle. Darker color represent

lower traffic speed.

5.5. Comparison Study

We compare our proposed model, SAGCN-SST, to well-known existing mod-

els in recent literature. The chosen representative models from the state-of-the-

art adopt one of four different approach to treat traffic prediction problem.

These four approaches respectively consider traffic prediction as 1) a temporal,

2) a spatial, 3) a spatial-temporal and 4) a fixed spatial dynamic-temporal pro-

cess. The seven models that are used for our comparison study based on the
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(a)

(b)

Figure 8: (Color Online) Visualization of real (a) and predicted (b) traffic speed at a

randomly selected time step on the road network of METR-LA. Darker color represent lower

traffic speed.

abovementioned approaches are the following:

1) Gate Recurrent Unit (GRU) (Chung et al., 2014): See Section 4.4 for

details.
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prediction horizon = 5 mins

prediction horizon = 30 mins

prediction horizon = 60 mins

Loop-Seattle (left) VS METR-LA (right)

Figure 9: The prediction residuals of our proposed model on two datasets: Loop-Seattle

(left column) and METR-LA (right column).
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2) Graph Convolutional Network (GCN) reported in (Zhang et al., 2019)

consists of two graph convolutional layers, and each layer is followed by a

ReLU and a dropout layer. Another work following this approach is Graph

Convolutional Network with Self-Attention mechanism (namely SAGCN)

which is treated as a sub-spatial block in our SAGCN-SST model.

3) CNN-LSTM (also known as SRCNs in (Yu et al., 2017)) consists of Deep

Convolutional Neural Networks (DCNNs) and LSTMs. DCNNs are used

to capture the spatial dependency of network-wide traffic and LSTMs are

utilized to learn the temporal dynamics. Temporal Graph Convolutional

Network (T-GCN) (Zhao et al., 2019) combines GCN and GRU. GCN cap-

tures the spatial dependency and GRU focuses on learning the temporal

dependency. Traffic Graph Convolutional Long Short-Term (TGC-LSTM)

model (Cui et al., 2019) consists of GCN and LSTM corresponding to cap-

ture spatial and temporal features, respectively. An L1-norm on the graph

convolution weights and an L2-norm on the graph convolution features are

added to the loss function for enhancing the interpretability of the model.

4) AGC-Seq2Seq-Attn model in (Zhang et al., 2019) includes two parts: the

Graph Convolutional network and the Sequence-to-Sequence architecture

consisting of an encoder and a decoder with the Attention mechanism.

Two GRUs are used to build the encoder and the decoder. The graph con-

volution operation is firstly utilized to capture the spatial characteristics

based on the topology of the underlying road network, and then its output

is treated as the input of the encoder that encodes the spatially-fused time

series to a context vector. After that, the context vector is decoded to the

target multi-step outputs in the decoder with the attention mechanism.

Another work following this approach is the Seq2Seq-Attn model reported

in (Zhang et al., 2019), and the main difference between Seq2Seq-Attn and

AGCN-Seq2Seq-Attn (Zhang et al., 2019) is the graph convolution layer.
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Table 4: Comparison of all models for both datasets

Model Loop-Seattle METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

GRU 3.0796 8.10 4.5349 3.3181 7.87 5.2300

GCN 3.7696 11.00 5.8426 4.1113 10.00 6.4648

SAGCN 3.6297 10.38 5.4396 4.1258 9.86 6.3436

CNN-LSTM 3.0753 8.19 4.5690 3.2930 7.88 5.3107

T-GCN 3.3568 9.07 4.9371 3.8915 9.77 6.2140

TGC-LSTM 3.0007 7.90 4.4650 3.5857 8.31 5.5387

Seq2Seq-Attn 1.1724 2.75 1.5625 1.0344 2.10 1.4552

AGCN-Seq2Seq-Attn 1.2167 2.86 1.6378 1.2690 2.63 1.8230

SAGCN-SST 0.8156 1.90 1.0802 0.9256 1.92 1.3090

(b) 15-min future prediction (T’=3)

GRU 3.5166 9.86 5.3336 3.8002 9.28 5.9989

GCN 3.9293 11.82 6.1877 4.4120 10.92 6.8530

SAGCN 3.8825 11.74 5.9793 4.3333 10.59 6.7672

CNN-LSTM 3.4752 9.77 5.3258 3.8441 9.42 6.1117

T-GCN 3.6482 10.36 5.5533 4.3111 10.97 6.7720

TGC-LSTM 3.4051 9.51 5.2335 3.7832 9.25 6.0438

Seq2Seq-Attn 1.1577 2.69 1.5352 1.0419 2.13 1.4614

AGCN-Seq2Seq-Attn 1.2134 2.82 1.6206 1.2925 2.67 1.8408

SAGCN-SST 0.8280 1.96 1.0982 0.9392 1.93 1.3260

(c) 30-min future prediction (T’=6)

GRU 3.9625 11.73 6.0602 4.4496 10.92 6.8299

GCN 4.1249 12.62 6.5210 4.9551 12.24 7.4193

SAGCN 4.1371 12.63 6.4485 4.6797 11.63 7.1876

CNN-LSTM 3.8874 11.55 6.0237 4.3388 10.90 6.8113

T-GCN 3.9805 11.54 6.1095 4.6214 11.44 7.1553

TGC-LSTM 3.8570 11.17 5.9748 4.4771 11.03 6.9709
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Seq2Seq-Attn 1.2281 2.87 1.6327 0.9741 1.97 1.5757

AGCN-Seq2Seq-Attn 1.2438 2.89 1.6425 1.2431 2.57 1.7826

SAGCN-SST 0.8332 1.97 1.1147 0.9242 1.91 1.3049

(d) 45-min future prediction (T’=9)

GRU 4.2900 13.04 6.5693 4.9017 12.03 7.4453

GCN 4.2786 13.00 6.7792 5.2008 12.94 7.7243

SAGCN 4.2671 12.80 6.6604 5.1772 12.75 7.7956

CNN-LSTM 4.0928 12.73 6.4350 4.7360 12.25 7.3165

T-GCN 4.2564 12.67 6.5664 4.9924 12.53 7.5092

TGC-LSTM 4.0914 12.51 6.4900 4.6058 11.84 7.2901

Seq2Seq-Attn 1.2129 2.83 1.6082 1.5080 3.19 2.1990

AGCN-Seq2Seq-Attn 1.2002 2.82 1.6132 1.2759 2.61 1.8303

SAGCN-SST 0.8221 1.94 1.0921 0.9198 1.93 1.2976

(e) 60-min future prediction (T’=12)

GRU 4.5500 14.42 6.9905 5.1421 12.86 7.6679

GCN 4.4920 14.44 7.1989 5.4567 13.69 8.1325

SAGCN 4.4873 13.67 7.0132 5.2514 13.11 8.0610

CNN-LSTM 4.3054 13.38 6.7549 5.0391 12.67 7.7585

T-GCN 4.5414 13.90 7.0176 5.1833 13.02 7.7762

TGC-LSTM 4.3459 13.44 6.9132 5.0078 12.73 7.7247

Seq2Seq-Attn 1.1607 2.70 1.5469 0.9079 1.82 1.2839

AGCN-Seq2Seq-Attn 1.2172 2.85 1.6270 1.3181 2.73 1.8674

SAGCN-SST 0.8266 1.96 1.0985 0.9033 1.86 1.2701

Table 4 presents achieved results of all chosen models for T ′ = {1, 3, 6, 9, 12}

on both datasets while Figure 10 shows the corresponding accuracy for T ′ =

{1, 3} and T ′ = {6, 9, 12}. From Table 4 and Figure 10, the following attributes

can be observed with regards to the different approaches to resolve the traffic

prediction problem.
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(a)

(b)

Figure 10: Comparison of prediction accuracy (100%-MAPE) on short- and long-term

prediction tasks for all models on Loop-Seattle (a) and METR-LA (b).

• The three types of error achieved by GRU increase when the prediction

horizon is longer, as shown in Table 4. For example, from T ′ = 1 to

T ′ = 12, the MAE, MAPE and RMSE of GRU on Loop-Seattle increase
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from 3.0796, 8.10% and 4.5349 to 4.5500, 14.42% and 6.9905 respectively.

The same applies to the METR-LA dataset. This indicates that GRU, which

mainly works for the temporal feature extraction, can offer higher predic-

tion accuracy for short-term prediction while the performance deteriorates

when the prediction horizon is longer.

• From Table 4, GCN and SAGCN are the two worst performing models.

This is due to the fact that GCN and SAGCN are generally used to capture

spatial features. They are unable to capture temporal features. Compared

to GRU that presents a large increase of MAE, MAPE and RMSE from

T ′ = 1 to T ′ = 12 on both datasets, GCN and SAGCN models only present

a small increase. For example, on Loop-Seattle, the MAPEs of GCN and

SAGCN increase by 3.44% and 2.29%, respectively, while the MAPE of

GRU grows by 6.32%. The reason is that the spatial feature starts to play

an increasingly more important role when the prediction horizon is longer.

In addition, on both datasets, SAGCN performs slightly better than GCN

for the same prediction horizon. This is because the self-attention mecha-

nism in SAGCN is able to derive the different contributions of neighboring

nodes via distribution of different weights to each of them.

• Spatial-temporal models (including CNN-LSTM, T-GCN and TGC-LSTM)

achieve better performances on both datasets compared to spatial mod-

els (i.e., GCN and SAGCN). For example, for T ′ = 1, the average MAE,

MAPE and RMSE of spatial-temporal models on Loop-Seattle are 3.1443,

8.39% and 4.6570, respectively, while the average MAE, MAPE and RMSE

achieved by spatial models are 3.6997, 10.69% and 5.6411, respectively.

This is due to the fact that CNN-LSTM, T-GCN and TGC-LSTM are

able to capture both spatial and temporal features for their final predic-

tion while GCN and SAGCN only rely on extracting spatial features. This

phenomenon is more obvious for short-term prediction. For instance, for

T ′ = 1, the average MAE, MAPE and RMSE of CNN-LSTM, T-GCN

and TGC-LSTM decrease by 0.5554, 2.30% and 0.9841, respectively, com-
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pared to the average MAE (3.6997), MAPE (10.69%) and RMSE (5.6411)

of GCN and SAGCN. For T ′ = 12, the three types of error only decrease

by 0.0921, 0.48% and 0.2109, respectively, compared to GCN and SAGCN

with 4.4897, 14.06% and 7.1061 of these errors. This is because the spa-

tial feature starts to play an increasingly more important role when the

prediction horizon is longer. Similar observations can also be found in

METR-LA.

• Seq2Seq-Attn and AGCN-Seq2Seq-Attn perform better than CNN-LSTM,

T-GCN and TGC-LSTM. Their MAE, MAPE and RMSE over all different

prediction horizons on two datasets are less than 1.5080, 3.19% and 2.1990,

respectively. The accuracy for short-term prediction by Seq2Seq-Attn

and AGCN-Seq2Seq-Attn are similar for long-term prediction. Between

Seq2Seq-Attn and AGCN-Seq2Seq-Attn, the results achieved by Seq2Seq-

Attn are slightly better. This observation does not agree with the results

reported in (Zhang et al., 2019) where the reversed is observed. The

main reason for this phenomenon is that AGCN-Seq2Seq-Attn is a more

complex model that requires large datasets and higher number of features

for achieving better results. In (Zhang et al., 2019), AGCN-Seq2Seq-

Attn is tested utilizing several features including maximum, minimum

and median of traffic speed as opposed to our experiments here where

despite similar size datasets, only use the original traffic speed as the sole

feature. Therefore, Seq2Seq-Attn performs slightly better than AGCN-

Seq2Seq-Attn in our work.

• Our SAGCN-SST model achieves the best results on both datasets over

all different prediction horizons with an average MAPE less than 2%

(i.e., prediction accuracy > 98%). In addition, the MAE and RMSE are

0.8156 and 1.0802, respectively. The closest rivals are Seq2Seq-Attn and

AGCN-Seq2Seq-Attn. These models consider the dynamics on temporal

feature extraction by taking attention mechanism in the decoder of the

sequence-to-sequence architecture. On the other hand, our SAGCN-SST
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considers the dynamic process on spatial feature extraction by adopting

self-attention mechanism on the graph convolutional layer that can more

effectively capture the dynamic spatial dependency between the targeted

node and their neighbors in different neighborhoods. The experimental re-

sults in this paper also indicate that adopting self-attention mechanism on

the graph convolutional layer is more efficient than including it in the de-

coder of the sequence-to-sequence architecture for traffic prediction. For

example, comparing with less than 2% of MAPE achieved by SAGCN-

SST, Seq2Seq-Attn and AGCN-Seq2Seq-Attn only obtain less than 3% of

MAPE.

In addition, our SAGCN-SST can obtain accurate predictions with small

number of features. Between AGCN-Seq2Seq-Attn and SAGCN-SST, our

SAGCN-SST model obtains the higher prediction accuracy (> 98%) com-

pared to the 97% accuracy achieved by the AGCN-Seq2Seq-Attn when

the experiments are conducted on the same datasets. The main reason is

that sub-spatial blocks in SAGCN-SST are paralleled, rather than stacked.

This avoids increasing the depth of our model so as to improves scalability

and avoid over-fitting at the early stage of training.

Overall, models can achieve more accurate predictions when the traffic pre-

diction problem is treated as a dynamic spatial-temporal process as opposed to

considering the problem as 1) a temporal, 2) a spatial or 3) a spatial-temporal

and 4) a fixed spatial dynamic-temporal process. This can be clearly observed in

Figure 10 where SAGCN-SST, Seq2Seq-Attn and AGCN-Seq2Seq-Attn perform

significantly better than the other six models. From the results, we also see that

our SAGCN-SST, that is able to capture dynamic spatial features, achieves the

best results for both short- and long-term predictions. For T ′ = {1, 3}, the next

best batch of models are GRU, CNN-LSTM, T-GCN and TGC-LSTM, followed

by GCN and SAGCN. This is because GRU, CNN-LSTM, T-GCN and TGC-

LSTM are able to capture temporal features, which play a more important role

for short-term prediction. For T ′ = {6, 9, 12}, CNN-LSTM, T-GCN and TGC-

37



LSTM still forms the group of models offering the next best results, followed

by GRU that has performance similar to GCN and SAGCN, but the difference

between all models is smaller than for T ′ = {1, 3}. This can be attributed to

the increased importance of spatial features in longer prediction horizons.

6. Conclusion

In this paper, we present a novel deep learning model, namely SAGCN-SST,

for addressing the multi-step traffic speed prediction problem on large-scale

road networks. We claim that the influence of different neighboring road seg-

ments towards the future traffic state of a specific road segment of interest are

unique and should be considered into the prediction process. Considering traffic

speed prediction as a dynamic spatial-temporal process, our model takes advan-

tage of graph convolutional networks, the graph convolutional layer with self-

attention mechanism and the sequence-to-sequence architecture, respectively

for the fixed spatial, dynamic spatial and long-temporal feature extractions,

to make our predictions. We examine our proposed model, SAGCN-SST, on

two real-world large-scale road networks: Loop-Seattle and METR-LA. Traffic

congestion frequently occurs for a short duration in METR-LA and for longer

duration in Loop-Seattle. We compare our SAGCN-SST against well-known

models in recent literature including: 1) one model treating traffic prediction

as a temporal process (i.e., GRU), 2) two models treating traffic prediction as a

spatial process (i.e., GCN and SAGCN), 3) three models treating treating traffic

prediction as a spatial-temporal process (i.e., CNN-LSTM, T-GCN and TGC-

LSTM), and 4) two models treating traffic prediction as fixed spatial dynamic

temporal process (i.e., Seq2Seq-Attn and AGCN-Seq2Seq-Attn). Our SAGCN-

SST model achieves the highest accuracy among all competing models for both

short- and long-term predictions. The average MAE, MAPE and RMSE on

both datasets with frequent traffic congestion and accidents are less than 1,

2% and 1.4, respectively, which translate to prediction accuracy being higher

than 98%. This results show our SAGCN-SST model is not only accurate but
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also robust, recording similar accuracy when making predictions for different

prediction horizons including the more challenging long-term prediction.
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