
Northumbria Research Link

Citation: Chen, Haojie, Ding, Guofu, Zhang, Jian, Li, Rong, Jiang, Lei and Qin, Sheng-feng
(2022) A filtering genetic programming framework for stochastic resource constrained
multi-project scheduling problem under new project insertions. Expert Systems with
Applications, 198. p. 116911. ISSN 0957-4174

Published by: Elsevier

URL: https://doi.org/10.1016/j.eswa.2022.116911
<https://doi.org/10.1016/j.eswa.2022.116911>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/48753/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

A Filtering Genetic Programming Framework for Stochastic Resource

Constrained Multi-Project Scheduling Problem under New Project Insertions

HaoJie Chen 1,Guofu Ding1, Jian Zhang1, Rong Li1, Lei Jiang1, Shengfeng Qin2

HaoJie Chen

e-mail: chenhaojie12138@163.com

Guofu Ding

e-mail: dingguofu@163.com

Jian Zhang(Correspondence author)

e-mail:jerrysmail@263.net

Rong Li

e-mail: bogiey@163.com

Lei Jiang

e-mail: jianglei0506@163.com

Shengfeng Qin

e-mail: sheng-feng.qin@northumbria.ac.uk

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031,

China

2. Department of Design, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

mailto:%20chenhaojie12138@163.com
mailto:jerrysmail@263.net

Abstract: Multi-project management and uncertain environment are very common factors, and they

bring greater challenges to scheduling due to the increase of problem complexity and response

efficiency requirements. In this paper, a novel hyper-heuristic based filtering genetic programming

(HH-FGP) framework is proposed for evolving priority rules (PRs) to deal with a multi-project

scheduling problem considering stochastic activity duration and new project insertion together,

namely the Stochastic Resource Constrained Multi-Project Scheduling Problem under New Project

Insertions (SRCMPSP-NPI), within heuristic computation time. HH-FGP is designed to divide

traditional evolution into sampling and filtering evolution for simultaneously filtering two kinds of

parameters constituting PRs, namely depth range and attribute, to obtain more effective PRs. Based

on this, the existing genetic search and local search are improved to meet the depth constraints, and

a multi-objective evaluation mechanism is designed to achieve effective filtering. Under the

existing benchmark, HH-FGP is compared and analysed with the existing methods to verify its

effectiveness.

Key words: Filtering evolution; Genetic programming; Priority rule; Stochastic resource

constrained multi-project scheduling

1 Introduction

As a core problem in the field of project management and scheduling, the Resource

Constrained Project Scheduling Problem (RCPSP) has been a hot research topic for many years

since it was described (Habibi, Barzinpour & Sadjadi, 2018; Pritsker, Watters & Wolfe, 1969).

Considering the limited resource supply, RCPSP optimizes single or multiple objectives by

generating the sequencing of activities in the project, and its important objectives include

makespan and project delay minimization (Hartmann & Briskorn 2010). In the past decade,

developing better optimization methods for RCPSP has attracted extensive attention, especially

meta-heuristics-based (Pellerin, Perrier & Berthaut, 2020). However, the applications of RCPSP

are still greatly limited due to the following two reasons. Firstly, in practice, up to 90% of project

management is carried out in a multi-project environment, in which RCPSP needs to consider the

resource competition among projects (Payne, 1995). As a result, RCPSP is extended to the

Resource Constrained Multi-Project Scheduling Problem (RCMPSP), in which multiple projects

are collectively regarded as a portfolio (Van Eynde & Vanhoucke, 2020). Secondly, the project

execution is often in a stochastic and uncertain environment, such as stochastic activity duration,

new project insertion and varying resource availabilities, so that only 40% of projects are

completed within their planned time. This uncertainty furthers the scheduling complexity, and

leads RCPSP to the Stochastic Resource Constrained Project Scheduling Problem (SRCPSP)

being modelled and optimized (Satic, Jacko & Kirkbride, 2020). In actual production and

engineering management, there are a lot of situations on which it is needed to consider these two

extensions at the same time. For example, in aircraft assembly production, multiple aircrafts often

assembled simultaneously, and the duration of each assembly operation is stochastic due to

manual assembly and other factors, so multi-project and stochastic activity duration need to be

considered in scheduling.

For project scheduling under uncertainty, except for a few pure proactive scheduling studies

(Lamas & Demeulemeester, 2016), there are mainly two problem solving strategies. The first one

is called proactive-reactive scheduling with a two-step implementation (Van de Vonder &

Demeulemeester, 2007). In the planning phase, the proactive part constructs a baseline schedule

with adding some buffers based on extra anticipation to deal with the predictable variability or

directly ignoring the future uncertainty. Then, in the response/reactive phase, the baseline is

adjusted and repaired when unexpected events occur, so as to make it feasible again. In this stage,

the optimization objective is always to make the new baseline as close to the original one as

possible. The application of proactive-reactive scheduling is very limited, especially in a highly

uncertain environment, because according to statistics, almost 95% of the time is spent on revising

baseline schedules, which greatly increases the time cost (Wang et al., 2017). The second is

stochastic scheduling, in which an activity duration in the project is regarded as a known

distribution, and the most commonly used optimization objective is transformed into minimizing

the expected makespan. In this strategy, there is no baseline generation, and the solution is not a

deterministic schedule, but a so-called scheduling policy (Möhring, Radermacher & Weiss, 1984,

1985).

Based on the scheduling policy with the function of transforming activity sequence into

schedule, how to sort activities is very important and critical. The existing researches for solving

SRC(M)PSP mainly focus on heuristics represented by PRs and meta-heuristics (see Section 2.2

for details). It is worth noting that when scheduling a project or portfolio in an uncertain

environment, robustness and response efficiency are also very important objective indicators in

addition to schedule quality. For an activity sequence strategy (a meta-heuristic or PR), its (rule)

robustness metrics often depends on the deviation from expected value when it is used to schedule

an instance in a stochastic environment (Wang et al., 2017). However, in order to consider the

generality of a strategy, multiple different instances should be considered, and the comprehensive

evaluation of scheduling multiple stochastic instances under this strategy should be built.

Therefore, the applicability of meta-heuristics in SRCPSP is limited because its iterative

calculation and a large number of random searches deteriorate the responsiveness and robustness

respectively. Conversely, PRs can avoid these problems, but the unavoidable defect of PRs is that

its lack of optimization ability and its dependence on problems, and it is difficult to artificially

select the optimal PR for different problems or construct a better hybrid PR. Hyper-heuristics are

proposed to improve this problem, which use the upper-level search mechanism to select the

low-level heuristics or automatically generate new heuristics by using the constituent elements of

original heuristics, so as to have better performance in the heuristic calculation time, that is, for an

input, the scheduling result is obtained directly by executing the generated or selected heuristics

without iteration or search time consumption (Burke et al., 2013). The heuristic calculation time

here refers to the time to get the scheduling result by executing a heuristic for an input, that is,

there is no time consumption of iteration or search. This technology has great potential and

recently becomes a research hotspot in the scheduling field, such as flow shop scheduling (Lin,

Wang & Li, 2017), job shop scheduling (Hildebrandt et al., 2010; Hildebrandt & Branke, 2015)

and project scheduling (see Section 2.3 for details).

In this paper, a novel HH-FGP is proposed to solve SRCMPSP-NPI with multi-objective

optimization, which is an extension of the Stochastic Resource Constrained Multi-Project

Scheduling Problem (SRCMPSP) considering both stochastic activity durations and random new

project insertions, so as to meet the actual needs of multiple projects scheduling with a stochastic

environment. In HH-FGP, in order to implement filtering operations to select two effective

parameters (i.e., attributes and depth range) of gene expression tree automatically that affect the

performance of evolved PRs, the genetic evolution is divided into two parts depending on the

parameters of generation number. The main function of the first part is sampling, in which the

population is divided into multiple sub-populations depending on the tree depth for independent

evolution. Based on the optimal PR set generated by each sub-population, the depth range and

attribute set constituting PRs are filtered and then input into filtering evolution, that is, the invalid

attributes and unreasonable depths disappear in the search of filtering evolution. After

benchmark-based testing and analysing, HH-FGP can get better results than the existing methods,

and the main contributions of this paper are:

1. A novel HH-FGP framework is proposed to solve SRCMPSP-NPI, which makes the

traditional genetic programming (GP) more effective by filtering both attribute set and depth range

of gene expression tree, and it provides a new idea for the subsequent hyper-heuristic solution to

project scheduling, especially in a stochastic environment.

2. A new filtering evaluation mechanism is proposed, which can evaluate the tree depth and

attributes under multi-objective optimization to realize effective filtering.

3. The crossover and local search operators in the existing GP are improved to ensure that the

PRs of each subpopulation maintain a fixed depth in the sampling evolution and to avoid the depth

of PRs exceeding the filtered range in filtering evolution.

The remainder of this study is structured as follows: Section 2 introduces the relevant

research and the motivation of this paper. In Section 3, the description and mathematical model of

SRCMPSP-NPI are introduced. Section 4 describes the HH-FGP framework and its optimization

in detail. In Section 5, numerical experiments with design and result analysis are reported, and the

conclusion of this work and some future research directions are given in Section 6.

2 Related work

The core investigation of this study is about depth length and attribute selections through

filtering when applying hyper-heuristics to solve SRCMPSP-NPI, the relevant research is thus

introduced from three aspects. The first is about existing (meta-) heuristics methods for stochastic

project scheduling (i.e., meta-heuristics and PR based heuristics), the second is about

hyper-heuristics methods for project scheduling, and the last is about applying filtering techniques

in hyper-heuristics methods for scheduling. On this basis, the motivation of this paper is

introduced in Section 2.4.

2.1 Existing (meta-) heuristics for stochastic project scheduling

As a more practical problem, the optimization of SRC(M)PSP is constantly being explored.

Due to the high demand on computation time, there are only a few studies on exact algorithms,

such as branch and bound (Stork, 2002), exact procedure based on Markov chain (Creemers, 2015)

and mixed integer linear programming (Alipouri et al., 2020), and they are only suitable for small

and medium scale SRC(M)PSP. More importantly, heuristics or meta-heuristics play a major role

in this optimization problem. The optimization research of heuristics or meta-heuristics can be

divided into two key parts, that is, how to realize activity sequencing and how to convert activity

sequence into schedule, leading the studies to explore new policy classes and improved search

methods. Based on these two parts, the research in SRC(M)PSP can be classified as shown in

Fig.1.

SRC(M)PSP

Activity sequence Schedule generation

Search method Policy class

Resourc

e-based

Activity

-based

Preproce

ssor

Preselec

tive

Earliest-

start

Generalized

Preprocessor
HeuristicMeta-heuristic

Priority

rule
Local search

Swarm

intelligence

Evolutionary

algorithm

Fig.1 The research classification in SRC(M)PSP

For activity sequencing in SRC(M)PSP, many effective heuristics or meta-heuristics have

been proposed and analysed. Similar to the development of other scheduling optimization, the first

meta-heuristic studied is greedy and local search. Golenko-Ginzburg & Gonik (1997) proposed

three operators with functions of control, calculation and selection, and then combined them into a

greedy meta-heuristic algorithm to optimize makespan of SRCPSP. In order to further improve the

search ability in solving SRCPSP, Tsai & Gemmill (1998) designed a diversified tabu search

algorithm based on multiple tabu lists, randomized short-term memory and multiple starting

schedules. Ballestín & Leus (2009) described a GRASP-heuristic strategy combined with

descriptive sampling. Then, the improved evolutionary algorithm and swarm intelligence are

applied in SRC(M)PSP. By combining permutation-based local search, Fang et al. (2015)

improved an estimation of distribution algorithm to solve SRCPSP with a clear dominance under a

medium and high variance distribution. Ma et al. (2016) developed a genetic algorithm integrated

with a 99-method based uncertain simulation for searching the quasi-optimal schedule of SRCPSP.

Satic, Jacko & Kirkbride (2020) compared the optimization ability of five algorithms including

genetic algorithm for SRCMPSP, and analysed their performance trend with the uncertainty

increasing. Sallam, Chakrabortty & Ryan (2021) proposed a meta-heuristic switching approach

based on Q-learning, that is, the reward mechanism is designed to control the alternating search of

multi-operator differential evolution and discrete cuckoo search. Due to simplicity, rapidity,

stability and intuition (Browning & Yassine, 2010), PR solving SRC(M)PSP has attracted more

and more attention in recent years. Chen et al. (2018) summarized 17 PRs for scheduling SRCPSP.

The experimental results not only show that the optimal PR is different in a deterministic

environment and stochastic environment, but also verify that the optimal PR superior to multiple

meta-heuristics with the goal of minimizing the expected makespan. By dividing the expected

makespan into scheduling quality and robustness, Wang et al. (2017) and Chen et al. (2019)

explored the performance of different PRs under SRCMPSP and SRCMPSP-NPI respectively.

When an activity sequence is generated, it may not be able to be carried out at the same time

due to resource constraints. The function of policy class under the schedule generation is to

calculate the start and completion time for each activity by adding extra start-finish or start-start

constraints, so as to convert resource constraints into the new precedence constraints other than

the original ones (Chen et al., 2018). There are six main types in current policy classes. The initial

related research involves adding constraints based on the minimum forbidden set, resulting in

Earliest-start Policy Class (ES-policy) (Radermacher, 1981) and Pre-selective Policy Class

(PS-policy) (Igelmund & Radermacher, 1983). The minimum forbidden set is defined in which

there are no precedence constraints among activities, but the sum of all activity resource

requirements exceeds the maximum supply for some resources, and any proper subset is resource

feasible. However, the calculation of minimum forbidden set construction is very difficult. For

example, in PSPLIB benchmark (Kolisch & Sprecher, 1996), the average minimum forbidden set

number of J30 is 326, while J120 increases to 243,871, resulting in large calculation consumption

of these two policy classes (Stork, 2002). In addition, Pre-processor Policy Class (PP-policy)

(Ashtiani, Leus & Aryanezhad, 2011) and Generalized Preprocessor Policy Class (GP-policy)

(Rostami, Creemers & Leus, 2018) are proposed, which automatically find start-finish and

start-start constraints by constructing meta-heuristics. Although they have been verified to be

effective, similarly, they bring large additional calculations and make the optimization more

complex. Finally, two direct policy classes are proposed, including Resource-based Policy Class

(RB-policy) (Chen et al., 2018) and Activity-based Policy Class (AB-policy) (Ballestín, 2007).

The RB-policy is similar to the parallel schedule generation scheme in RCPSP (Kolisch, 1996),

that is, at any decision-making time, the decision maker starts with all unimplemented activities

without violating the resource and precedence constraints. The AB-policy adds a side start-start

constraint on the basis of RB-policy. A large number of experiments show that RB-policy is

superior to AB-policy in terms of efficiency and quality (Chen et al., 2018).

To sum up, first, the PR based SRC(M)PSP scheduling method is better than the majority

meta-heuristics in efficiency and quality, which leads to PR being an important research direction

in stochastic problems, especially PR is more practical. Second, compared with other policy

classes, the RB-policy with certain advantages is more likely to be selected.

2.2 Hyper-heuristics in project scheduling

Over the past few years, hyper-heuristics algorithms have been applied in project scheduling,

but most of them are in a static environment, i.e., RCPSP and its extensions. The key features of

hyper-heuristics in comparing to meta-heuristics are…… Because meta-heuristics are often used

in the high-level search mechanism of hyper-heuristics, the development of hyper-heuristics for

project scheduling is also similar to meta-heuristics. At first, only some high-level optimization

frameworks based on local search were explored, such as greedy search (Anagnostopoulos &

Koulinas, 2012) and threshold accepting (Koulinas & Anagnostopoulos, 2012). Later, swarm

intelligence and evolutionary algorithm are gradually developed as the high-level of

hyper-heuristic. For example, Koulinas, Kotsikas & Anagnostopoulos (2014) designed a

hyper-heuristic based on particle swarm optimization algorithm to control several low-level

heuristics. Asta et al. (2016) integrated Monte-Carlo tree search, novel neighbourhood moves and

memetic algorithm into hyper-heuristic for improving the search ability of multi-mode RCPSP. In

addition, GP is the most extensive and mature in the research of hyper-heuristic for project

scheduling, especially in the last several years. Lin, Zhu & Gao (2020) designed a GP that controls

and manages ten heuristic rules to solve RCPSP considering multi-skills, and further proposed a

decomposition mechanism to improve population diversity (Zhu et al., 2021). Chand et al. (2018)

described a GP to evolve rules more suitable for RCPSP, and the results show that the evolved PRs

are superior to the existing state-of-the-art PRs. On that basis, they added dynamic resource

disruptions to expand RCPSP (Chand et al., 2019a) and combined Rollout-Justification procedure

to improve GP performance (Chand et al., 2019b). Different from the deterministic environment,

hyper-heuristics have only some preliminary explorations in solving SRC(M)PSP. Wang et al.

(2015) designed the scheduling process of SRCMPSP as a Markov decision process and used

dynamic programming to match the optimal PR for each state. Based on the similarity idea,

Alipouri et al. (2019) proposed a self-adaptive differential evolution to realize SRCPSP

optimization considering fuzziness. Kühn, Völker & Schmidt (2020) described a two-stage

hyper-heuristic, which assigns corresponding weights to different attributes by serially performing

training in deterministic and stochastic environments, so as to obtain the combined PRs. Chen et al.

(2021) introduced an ensemble genetic programming, in which ensemble learning is combined to

evolve a PR decision set to solve SRCPSP, and this is the first time to evolve PRs through GP for

solving project scheduling in a stochastic environment.

2.3 Hyper-heuristics with feature/attribute filtering in scheduling

For hyper-heuristics with evolving PRs, the relevant problem attributes are important

parameters. The proper selection of effective attributes can not only reduce the solution space, but

also improve the scheduling performance of evolved PRs (Branke et al., 2015a). Therefore,

applying feature/attribute filtering in selection has become one of the important research directions

in the scheduling field with hyper-heuristics and has achieved great success in other scheduling

problems represented by job shop scheduling (JSP). Branke et al. (2015b) ignored the attributes

that constitute the evolved PRs one by one and proved that some attributes play a significant role

in the performance of evolved PRs. For JSP, Mei et al. (2016) designed a GP with feature filtering

to select effective attributes by analysing the frequency of attributes in evolved PRs. Further, Mei

et al. (2017) found that the attribute frequency could not fully express the attribute importance due

to the particularity of tree coding structure and proposed a replacement method to calculate the

attribute contribution. Experiments show that this replacement method is more effective. Based on

this method, Zhang et al. (2019, 2020) not only extended the GP with feature filtering to the

application considering flexible and dynamic JSP (only new job arrive considered), but also

integrated the PR generation and feature evaluation into an evolutionary process. Masood et al.

(2021) introduced a GP combined with NSGA-III and feature filtering to evolve PRs for

multi-objective JSP. In the evaluation of this method, if a PR after replacement dominates the PR

before replacement (or dominated by the PR before replacement), a reward of 1 (-1) will be given,

while the non-dominated relationship before and after replacement is not handled.

2.4 Motivation

By analysing the above literature, the following conclusions can be obtained, which in turn

motivate this research:

(1) PRs are concerned and used in the scheduling of RC(M)PSP because they have the ability

of fast response, simplicity and stability. However, when the robustness indicator needs to be

considered for SRC(M)PSP, in addition to these advantages, PRs are verified to have better

comprehensive performance than meta-heuristics, especially in a high variance stochastic

environment. In actual project scheduling, multiple stochastic disturbances (such as stochastic

activity duration and new project insertion) often exist at the same time. Therefore, it is very

potential and meaningful to study the hyper-heuristics represented by GP to evolve PRs with

better performance for SRCMPSP-NPI.

(2) The existing GP with feature/attribute filtering is oriented to JSP optimization, but lack of

research on SRCMPSP(-NPI) to our best knowledge. When facing PR evolution under

SRCMPSP(-NPI), in addition to the inconsistency of attribute set composition, the following

changes need to be made, scheduling generation policy and objectives (adding the robustness

objectives) due to different optimization models, the attribute calculation and normalization and

PR performance evaluation caused by stochastic duration (see Section 4 for details). At the same

time, for an evolved PR, some attributes either having little effect or even being counterproductive

to its scheduling quality may further deteriorate its robustness, because their calculation depends

on stochastic duration or new project insertion, resulting in the increase of stochastic variables in

the whole priority calculation. Therefore, when optimizing SRCMPSP(-NPI), determining a

reasonable attribute set can not only reduce the search space, but also offer great help to improve

the PRs robustness, so the research of attribute filtering in SRCMPSP(-NPI) is very meaningful.

(3) Last but not least, the existing GP with filtering is only for attribute set. However, the

common gene expression of evolved PRs in GP is in a tree structure, so the depth range of the tree

is another important parameter because it determines the possible combination mode of evolved

PRs. If the tree depth is too shallow, the scheduling quality of evolved PRs may be poor due to

fewer factors considered in the PR structure. On the contrary, the complex PR structure may lead

to the robustness deterioration. The effective depth range can not only further reduce the search

space, but also improve the performance of evolved PRs. Therefore, it is valuable to study a novel

GP framework able to filter attributes and depth range simultaneously.

To sum up, the HH-FGP framework proposed in this paper for solving SRCMPSP-NPI can

expand the existing research from both the problem and solution method perspectives, and provide

a novel idea for practising project scheduling in a stochastic environment.

3 Description and Mathematical model of SRCMPSP-NPI

In practice, many cases show that in addition to stochastic, new project insertion often needs

to be considered in project scheduling. Similarly, taking assembly production as an example, due

to the randomness of orders, some assembly tasks are unknown at the initial scheduling decision

time (e.g., at the beginning of each month), that is, some assembly tasks need to be inserted after

receiving relevant emergency orders. Therefore, Chen et al. (2019) proposed to extend SRCMPSP

to SRCMPSP-NPI for considering both dynamic factors of stochastic activity durations and new

project insertions on the basis of limited resources. In this problem, in addition to the fact that an

activity ai,j’s duration di,j satisfies a known distribution, there are three important constraints

described with the symbols shown in Table 1:

 Precedence constraint: this constraint is to express the logical relationship between

activities in the project, that is, ai,j can start only after all activities in Pi,j are completed. It should

be noted that there is no precedence constraint between activities from different projects.

 Resource constraint: this constraint expression is that when scheduling portfolio,

resources are limited, that is, the requirement of activities in At for resource k cannot exceed RSk.

The makespan lower bound of pi is equal to CPi without considering this constraint.

 Activity start constraint: this constraint is to express a new project insertion, that is, the

relevant information of pi is unknown before time psti, and all activities in Ai can start only after

time psti. If pi is the initial project, then psti equals 0.

Table 1 The symbols in SRCMPSP-NPI

Symbol Significance

PS the project set or portfolio

n the number of projects in the portfolio

pi the ith project in the portfolio, i={1,2,…,n}

CPi the critical path length of pi

ADi the expected makespan of pi, in which the activity duration in pi is the

expected value when calculating it

SADi the average makespan of project pi derived from Monte Carlo

simulations with stochastic activity durations

psti the insertion time of pi

At the execution activity set at time t

Ai the activity set in project pi

mi the number of non-dummy activities in project pi

ai,j The jth activity in the project i, j= {0, 1, …, mi+1}, where j is 0 (mi+1)

indicates the start (end) dummy activity

di,j the duration of ai,j

di,j
* the expected duration of ai,j

sti,j the start time of ai,j

Si,j the successor set of ai,j

TSi,j the total successor set of ai,j

Pi,j the predecessor set of ai,j

K the renewable resource set

RSk the maximum supply of the kth resource

ri,j,k the requirement of ai,j for resource k

t the execution time, t={1,2,…,T}, where T represents a maximum time.

At the same time, since SRCMPSP-NPI is a stochastic multi-project scheduling problem, the

scheduling quality and robustness both need to be considered from the perspective of project and

portfolio. To sum up, with reference to work in Wang et al. (2017) and Chen et al. (2019) the

mathematical expression of relevant constraints and objectives is as follows.

Objective:

1

1
=

i

i i

p i

AD CP
Q

n CP

−


PS

 (1)

2

max max
=

max

i i

i

i i
p p

i
p

AD CP
Q

CP

 



−
PS PS

PS

 (2)

1

1
= | |

i

i i

p i

SAD AD
R

n AD

−


PS

 (3)

2

max max
=| |

max

i i

i

i i
p p

i
p

SAD AD
R

AD

 



−
PS PS

PS

 (4)

s.t:

 , ' , , , 'i j i j i j i jst st d a−    i, jS (5)

,

, ,

,

,

i i j

i j k k

p a

r RS k t T
 

    
tP A

K
 (6)

 , ,i i j i jpst st a   iA (7)

 0, ,(1), ,0 ,(1)0; (0) (0) 1 ,i k i mi k i i mi ir r P d P d k p+ += = = = = =    ， K PS (8)

 ,(0) 0i jP d  = (9)

Eq.(1) and Eq.(2) represent the scheduling quality of the project and portfolio respectively,

which express the expected deviation percentage of the scheduling result from the CPi when PS is

the input. These two objectives can evaluate the scheduling ability of PRs, that is, assuming that

the activity duration meets the expected value, we can find which priority rule gets the better

scheduling result. However, it does make some errors when the actual activity durations are not

equal to the expected value. Therefore, the robustness related objectives R1 and R2 described in

Eq.(3) and Eq.(4) respectively are considered to deal with this problem, which represent the

deviation from the expectation under multiple simulations. Eq.(3) and Eq.(4) represent robustness

objectives, which represent the deviation of scheduling results from ADi under multiple Monte

Carlo simulations. The two objectives are used together to evaluate the deviation between the

actual makespan and the expected one by using PRs scheduling when the actual duration of the

activities is different from their expected value. Eq.(5) to Eq.(7) express the three important

constraints: precedence constraint, resource constraint and start constraint, respectively. Eq.(8)

shows the dummy activity constraint, that is, for a dummy activity, its duration is 0 and no

resources are required. Eq.(9) indicates that the duration of any activity in the portfolio cannot be

negative.

4 The framework and key implementation techniques of HH-FGP

Before describing the HH-FGP framework in detail, the gene expression of PRs in GP needs

to be introduced to further understand the significance of attributes and depth range filtering,

which often adopts the tree structure shown in Fig.2 (Chand et al. 2018). The PR is used to

calculate the corresponding priority value for sorting activities in project scheduling through its

own expression, which is represented by a functional function “f” such as “+” and “-” and

associated useful attributes such as duration and resource requirement, and their combination at

multiple levels. It can be seen that an evolved PR is expressed by combining the relevant attributes

“Att” with the functional function “f”. In addition, its top layer has a discriminant “Jud” to

determine whether the following priority expression is minimized or maximized. It can be seen

from Fig.2 that the performance of PR is affected by the combined attributes and the combination

mode, that is, the attribute set at each level (depth) and the maximum depth are two key

parameters. Therefore, how to avoid invalid attributes at each level and narrow the depth range of

the tree to achieve effective search is very meaningful.

Based on this gene structure and the motivation of this paper, the framework of HH-FGP is

shown in Fig.3, in which the highlighted part represents other contributions in addition to this

framework. It can be seen that HH-TGP divides the iterative process of traditional GP into two

parts, namely sampling and filtering evolution. Firstly, the population is divided into z

sub-populations equally depending on the initial depth range, and only PRs with the same

maximum depth are retained in each sub-population to fully explore the PR performance at

different depths. For example, assuming that the minimum depth of the hyper-parameter is 2, the

first sub-population only generates PRs with the maximum depth of 2 in the evolution. When the

termination condition is reached in sampling evolution, each sub-population output an optimal

(Pareto) PR set for multi-objective optimization. HH-FGP only divides the evolution of traditional

GP into two parts, so the termination condition of sampling evolution is set as part of the total

termination condition, which is designed to the top 50% in this paper to ensure sufficient sampling

and filtering evolution at the same time. Then, HH-FGP collects all PR sets and merges them

relying on non-dominated relationships. An attribute and depth evaluation mechanism under

multi-objective optimization is designed to realize filtering, and the filtered parameters are used as

input to perform the evolution of the second part until the maximum iteration is completed. The

implementation of HH-FGP is shown in Section 4.1, and the relevant technical details are

described below.

Jud

f

Att

Attf

Att Att

Priority expression

Discriminant

Fig.2 The gene expression of PR

4.1 Initialization and evaluation

The function of initialization is to generate PR individuals based on the gene shown in Fig.2,

in which each node represents the discriminant or function or attribute, and the keys are the

elements constituting PR and the tree structure generation method. Referring to Chand et al. (2018)

and Chen et al. (2021), the discriminant is only “fall” and “rise”. If the discriminant is “fall”, the

function is minimization, it means the smaller the value calculated by the priority expression, the

higher the priority. Otherwise, it is maximization. At the same time, the function set and attribute

set in the sampling evolution part are shown in Table 2 and Table 3 respectively. It is worth

mentioning that since SRCMPSP-NPI is a multi-project scheduling problem, the attribute

calculation equation in Table 3 has changed compared with the existing research (Chand et al.,

2018; Chen et al., 2021), where AEt represents the eligible activity set at time t, and the “CPLi”

attribute is added.

For the construction method in sampling evolution, the discriminant depends on the

probability of 0.5 to randomly generate “fall” or “rise”, while the priority expression adopts the

classical ramped half-and-half method (Luke & Panait, 2001), in which the maximum depth of

PRs is controlled in 2 to 6 (the depth of discriminant is 0). Compared with the sampling evolution

part, in the input of filtering evolution, only the attribute set and the maximum depth range are

obtained through filtering, and the others are completely consistent.

HH-FGP framework Start

Initialize the parameters and training set and divide the subpopulation

Contribution

Merge PR sets and filter attributes and depth ranges

End

Filtering evolution

Initialize

population

Evaluate

population

Genetic

search

Local

search

Iteration

termination

reached

Output

optimal

PR set
N

Y

...

Sampling evolution

Subpopulation 1

Initialize population

Evaluate population

Genetic search

Local search

Sampling termination

reached

Output optimal PR set

Y

N

Subpopulation 2

Initialize population

Evaluate population

Genetic search

Local search

Sampling termination

reached

Output optimal PR set

Y

N

Subpopulation z

Initialize population

Evaluate population

Genetic search

Local search

Sampling termination

reached

Output optimal PR set

Y

N

Control genetic search

and local search to ensure

PRs at a fixed depth in

each subpopulation

Design a filtering

evaluation mechanism to

filter attributes and depth

ranges simultaneously

Control genetic search

and local search to ensure

PRs within the filtered

depth range

Fig.3 The framework of HH-FGP

Table 2 The function set

Symbol Function Formula Symbol Function Formula

＋ Add(x,y) x y+ － Sub(x,y) x y−

× Mul(x,y) x y Neg Neg(x) -1 x

Exp Exp(x) xe Abs Abs(a)
0

1

a if a

a otherwise



− 

/ Div(x,y)
/ 0

0

x y if y

otherwise





 Max Max(a,b)
a if a b

b otherwise





Min Min(x,y)
x if x y

y otherwise





 If If(c,a,b)
0a if c

b otherwise

=



Table 3 The attribute set

Attribute Normalized calculation formula

Early Finish (EFi,j)
,

, ', '

', '

,
max

i j

i j i j

i j

EF
a a

EF
 tAE

Late Start (LSi,j)
,

, ', '

', '

,
max

i j

i j i j

i j

LS
a a

LS
 tAE

Late Finish (LFi,j)
,

, ', '

', '

,
max

i j

i j i j

i j

LF
a a

LF
 tAE

Total Successor (TSi,j) ,

| |

| |-1
i j

i

a 
i, j t

TS
AE

V

Total Successor Duration (TSDi,j)
, '

, '

, ' ,

, '

1

i j

i j

i j i j

ai j

a

d a
d 




 i, j

i

t

TS

V

AE

Duration (DTi,j)
,

, ', '

', '

,
max

i j

i j i j

i j

d
a a

d
 tAE

Resources Required (RRi,j)

| |
, ,

,

1

1 01

| | 0

i j k

i j

k

if r
a

otherwise=







K
tAE

K

Average Resource Requirement (AvgRRi,j)
| |

, ,

,

1

1

| |

i j k

i j

k k

r
a

RS=


K

tAE
K

Maximum Resource Requirement (MaxRRi,j)
, ,

,max
i j k

i j

k

r
a

RS
 tAE

Minimum Resource Requirement (MinRRi,j)
, ,

,min
i j k

i j

k

r
a

RS
 tAE

Critical Path Length (CPLi)
'

, ', '

' '

min
,

max min

i i
i j i j

i i

CP CP
a a

CP CP

−


−

tAE

By parsing a PR tree, the sequencing of activities can be realized at different decision times,

but two key technologies are still needed to obtain fitness in genetic evolution for evaluating PR.

The first is how to transform the sequencing into schedule, that is, the selection of policy class.

Based on the analysis of Section 2.2 and Villafáñez et al. (2019), RB-policy combined with critical

path method is adopted in this paper. The function of critical path method is to generate a

temporary schedule before using RB-policy, so as to dynamically update the attribute values to

achieve better results. The second one is how to convert the scheduling results into the fitness

function in GP. The R1 and R2 in SRCMPSP-NPI are affected by different distributions, and the

calculation of R1 and R2 needs multiple simulations, resulting in a great increase in training time.

Therefore, during the evolution of HH-FGP, the fitness calculation of PRs only depends on the

average of Q1 and Q2 under multiple instances in the training set. Because there are only two

objectives and the calculation of crowding distance is simple, NSGA-II (Deb et al., 2002) is

adopted to realize the transformation from objective function value to fitness.

4.2 Genetic search

The iteration in GP is based on genetic evolution, so the genetic operators play an important

role in its search process, including selection, crossover and mutation. In HH-FGP, the selection

operator chooses tournament selection (Blickle, 2000). The mutation operator is designed to

discriminate mutation, because no other search causes the change of discriminant. The mutation

can be described as that when the generated random number is less than the mutation rate pm, the

original discriminant “fall” becomes “rise”, and the mutation rate is set larger than the traditional

GP. The crossover operator, as the main search of tree structure, adopts the commonly subtree

crossover (Chand et al., 2018) as shown in Fig.4. However, different from the existing GP, in

HH-FGP, the sampling evolution stage needs to control that the maximum depth of the parent tree

and the offspring tree in each sub-population is the same, and it also needs to control that the

maximum depth of the crossed tree should be within the effective range in the filtering evolution.

It leads to the design of a node verification procedure based on the traditional random node

selection, as shown in Algorithm I, that is, it is executed repeatedly until reasonable nodes are

selected. In Algorithm I, when the maximum depth is equal to the minimum depth in the

hyper-parameter, this verification is suitable for the sampling evolution.

parent PR

cross

part

Fall

×

RRNeg

TS

Rise

+

parent PR

LF DT

cross

part

offspring PR
Fall

×

RRLF

TS

Rise

+

Neg DT

offspring PR

Fig.4 The example of subtree crossover

Algorithm I The verification of node selection in crossover

1: Input: the maximum depth maxd, the minimum depth mind, the two parent PRs pr1 and pr2, the

nodes selected in two PRs no1 and no2.
2: Calculate the depth of no1 and no2 as nD1 and nD2

3: Calculate the subtrees of no1 and no2 as sub1 and sub2, and record their maximum depth as aD1

and aD2

4: Calculate the remaining subtrees of sub1 and sub2 deleted from pr1 and pr2, and record their

maximum depth as rD1 and rD2

5: if nD1+ aD2> maxd || nD2+ aD1> maxd

6: return false

7: end if

8: if rD1< mind

9: if nD1+ aD2< mind

10: return false

11: end if

12: end if

13: if rD2< mind

14: if nD2+ aD1< mind

15: return false

16: end if

17: end if

18: return true

4.3 Local search

Local search can further improve the search ability of GP, and three neighbourhood structures

suitable for the tree structure are proposed to control the search range shown in Fig.5. Like the

crossover operator, the requirements of PR depth range in sampling and filtering evolution should

be considered in local search. Therefore, this paper designs the relevant verifications. The first is

the verification of whether the deletion local search can be used, as shown in Algorithm II because

when some trees with special structure use the local search, PRs that meet the depth range cannot

be generated. For example, assuming the PR in Fig.5 faces the case in which the minimum depth

of hyper-parameter is 3, the deletion neighbourhood cannot be used. Then, three local searches are

described as follows.

 Subtree replacement local search: In this local search, a randomly generated subtree

replaces a part of the original PR, which may produce a new structure that does not exist in the

current population. In order to ensure that the new PR is still within the specified depth range, the

depth range of the generated subtree needs to be controlled according to Algorithm III.

 Node replacement local search: this local search replaces a node of the original PR by a

randomly generated node. In its execution, it only needs to ensure that the child node number of

the new node is the same as the original one without other verification. If the replacement node is

“If”, its first child node is changed from “0” to “1” to realize the calculation in Table 2.

 Subtree deletion local search: this local search deletes the part of the original PR on the

premise that two conditions are met. Firstly, the maximum depth of the new PR after being deleted

needs to be within the specified range. Secondly, when the parent node of the deleted node has

only one child node, an attribute node is randomly selected to replace the original node or subtree.

Algorithm II The verification of using deletion local search

1: Input: the minimum depth mind, the original PR pr, the attribute set Att.
2: Calculate the maximum depth of pr as Dmax

3: if Dmax== mind

4: Calculate the number of nodes in pr as numn

5: if numn == mind+1

6: return false

7: end if

8: Get the node set with depth 2 as set2

9: Calculate the child node number of the node with depth 1 as numd1

10: Set numcal=0

11: for no: set2

12: Gets the name of no as nameno

13: if Att.contains(nameno)

14: numcal= numcal+1

15: end if

16: end for

17: if numcal== numd1-1

18: return false

19: end if

20: end if

21: return true

original PR

cross

part

Fall

×

RRNeg

TS

new

subtree /

LFTSD

new PR

Fall

×

RR/ LFTSD

(a) subtree replacement local search

Abs

new

node

new PR

Fall

×

RRAbsTS

(b) node replacement local search

Fall

RR

(c) subtree deletion local search

Fig.5 The examples of three local search

Algorithm III The control of new subtree depth range in subtree replacement local search

1: Input: the maximum depth maxd, the minimum depth mind, the original PR pr, the selected

node no.
2: Set maxdnew=0, mindnew=0

3: Calculate the depth of no as nD, the subtree of no as sub

4: Calculate the maximum depth of sub as aD, the remaining subtree of sub deleted from pr as rD

5: if rD< mind

6: mindnew= mind-nD+1

7: else

8: mindnew=1

9: end if

10: maxdnew= maxd-nD

11: return maxdnew, mindnew

4.4 Filtering evaluation mechanism

As shown in Fig.3, after sampling evolution, each sub-population presents their sampling

results, i.e., the optimal PR set at a certain depth. HH-FGP again uses the non-dominated

relationship to eliminate some PRs, because PRs at different depths may dominate each other.

When the non-dominated set is obtained, how to use the characteristics of PRs to filter is a key

problem, especially in this paper, it is necessary to filter both the depth range and attribute set at

the same time. Meanwhile, based on the analysis of Mei et al. (2017) in job shop scheduling, the

contribution of attributes is more important than that of its occurrence frequency. Therefore, a new

filtering evaluation mechanism under multi-objective optimization is proposed in this paper. In

depth range filtering, the number of PR at each maximum depth from the obtained non-dominated

set is counted, and then upward and downward from the depth with the largest number of PRs is

extended until it exceeds the judgment threshold per. In attribute filtering, the contribution of

attribute is judged by replacement. When calculating this attribute, a minimal non-zero constant is

used. Then, the contribution weight of this attribute under a PR is calculated according to Eq.(10)

in minimization problem, and HH-FGP deletes the attribute in which contribution weight is lower

than the average value of all attributes. The detailed description is shown in Algorithm IV.

max min

| |

| |

old new

new old
pr

v

old new

if v v v

v v
value otherwise

v v

if v v v



   


−
= 

−
−   


V

V V

V V

 (10)

Where vnew and vold represent the values before and after replacement under the object v

respectively, and V represents the objective set.

Algorithm IV The filtering evaluation mechanism

1: Input: the PR non-dominated set Setpr, the attribute set Att, the judgment threshold per, the

maximum depth maxd, the minimum depth mind
// The filtering of depth range

2: Set maxdf=0, mindf=0, [] Setdepth=new int[maxd-mind]

3: for pr: Setpr

4: Obtain the maximum depth of pr as maxDpr

5: Setdepth[maxDpr-mind]= Setdepth[maxDpr-mind]+1

6: end for

7: Find the position of the maximum value in Setdepth as pos

8: Set num=pos, sum=0, maxd=0

9: if Setdepth.length-pos-1>num

10: num= Setdepth.length-pos-1

11: end if

12: for i=0:num

13: if i==0

14: sum=sum+ Setdepth[pos]

15: mindf=maxd+pos, maxdf=maxd+pos

16: else

17: if i<=pos

18: sum=sum+ Setdepth[pos-i]

19: mindf=maxd+pos-i

20: end if

21: if i<= Setdepth.length-pos-1

22: sum=sum+ Setdepth[pos+i]

23: maxdf=maxd+pos+i

24: end if

25: end if

26: if sum> Setpr.size()*per

27: break

28: end if

29: end for

// The filtering of attribute set

30: Set [] Setvalue=new double [Att.size()], avgvalue=0

31: for i=0: Att.size()

32: Set value=0, att=Att.get(i)

33: for pr: Setpr

34: if the attribute constituting pr contains att

35: Calculate valuepr according to Equation 10

36: value=value+ valuepr

37: end if

38: end for

39: Setvalue[i]= value, avgvalue = avgvalue +value

40: end for

41: Set Attre, avgvalue = avgvalue / Att.size()

42: for i=0: Att.size()

43: if Setvalue[i]< avgvalue

44: Attre.add(Att.get(i))

45: end if

46: end for

47: Att.removeall(Attre)

48: return maxdf, mindf, Att

5 Numerical experiments

The performance of HH-FGP is fully verified through experimental setup and three groups of

experiments, so there are four parts in this section. Firstly, the experimental setup in this study is

introduced, including experimental environment, parameter selection of HH-FGP, benchmark

composition and evaluation method. Secondly, because this research focuses on the scheduling

under heuristic computation time, and the existing meta-heuristics have been proved to be inferior

to the optimal PR in stochastic project scheduling (Chen et al., 2018), only the state-of-the-art PRs

participate in the comparison with HH-FGP, including 16 traditional PRs and two hybrid PRs.

Third, since no other improvements to GP are found in multi-project scheduling to our best

knowledge, HH-FGP is compared with GP maintaining the same evolution, i.e., GP adopts

improved evolution search operators, such as genetic search and local search, so as to verify the

effectiveness of filtering. Finally, HH-FGP is an optimization framework for filtering attributes

and depth range at the same time, so the impact of different filtering operations on its performance

is further explored, that is, HH-FGP is compared with GP only filtering attributes and GP only

filtering depth range respectively.

5.1 Experimental setup

In this research, all experiments are performed on an Intel Core i5-4200 quadcore processor

computer with 2.50 GHz clock speed and 8 gigabyte RAM. The implement details of HH-FGP can

be divided into two parts. Firstly, based on Fig.3 and Algorithm I to Algorithms IV, the training of

HH-FGP is written in Java using MyEclipse 2017 compiler to obtain the evolved PRs, and the

example of evolved PR is shown in Fig.6. Secondly, during the test, Math3.jar is used in each

instance to generate simulation inputs under different distributions for PRs to perform scheduling

and calculate objectives Eq.(1) to Eq.(4). Meanwhile, referring to Chen et al. (2021), the

parameters of HH-FGP are shown in Table 4, including the population size popsize, the maximum

number of iterations maxgen, the crossover rate pc, the mutation rate pm and the judgment

probability per. It can be seen that the parameters of HH-FGP are simple, by which the usability

and practicability of HH-FGP are improved, and only the judgment probability is added. The

sensitivity of this parameter is not high, because the PRs at each depth in the optimal PR set

obtained by sampling evolution is fixed, when per floats up and down in a small range, the

filtering results will not be affected. We believe that for the depth range filtering, it is sufficient

when the effective PRs exceed 80% of the total PRs based on experience.

Fall

/
-TS

AvgRR Abs

-
Exp Max

TSD TS AvgRR

Fig.6 The example of evolved PR

Table 4 The parameters of HH-TGP

Variable popsize maxgen pc pm per

Value 300 50 0.9 0.2 0.8

In addition to the implementation and parameters of HH-FGP, another important part of the

experimental design is the benchmark verification and evaluation method. Since SRCMPSP-NPI

is established by Chen et al. (2019), these two parts are consistent with corresponding parts in that

paper. In order to consider new project insertion in different situations, this benchmark first

constructs 200 initial portfolios, in which each portfolio includes four projects with 30, 60, 90 and

120 non-dummy activities selected from PSPLIB (Kolisch & Sprecher, 1996) to simulate the

situation on which the activity number in different projects is often inconsistent in practice. Then,

each initial portfolio is scheduled under five different conditions, in which two new projects with

different structures are inserted at different random times under each condition, and the allocation

of four resources needs to be considered. Therefore, the benchmark has 1000 different instances,

and details such as the project selection, the new project insertion time and the maximum resource

supply need to refer to Chen et al. (2019). Finally, in order to simulate stochastic duration, for

each instance, the five most common distributions in SRC(M)PSP (Fang et al., 2015; Rostami et

al., 2017; Chen et al., 2018; Chen et al., 2019; Chen et al. 2021) are selected to fully consider the

stochastic environment under different variances shown in Table 5, including two low variance

distributions (U1 and B1), two medium variance distributions (U2 and B2) and one high variance

distribution (E).

Table 5 Five distributions of activity duration

Distribution type Code Range Variance

Uniform distribution

U1
* * * *

, , , ,U(,)i j i j i j i jd d d d− + d*
i,j/3

U2
*

,U(0, 2)i jd (d*
i,j)2/3

Beta distribution

B1
* * * *

, , , ,B(/ 2,2 , / 2 1/ 3, 2 / 3)i j i j i j i jd d d d− − d*
i,j/3

B2
* *

, ,B(/ 2,2 ,1/ 6,1/ 3)i j i jd d (d*
i,j)2/3

Exponential distribution E
*

,E()i jd (d*
i,j)2

In terms of evaluation methods, since SRCMPSP-NPI needs to evaluate the four objectives

Q1, Q2, R1 and R2 at the same time, and their values may vary greatly when facing different

objectives or different instances, the performance ranking is introduced (Wang et al., 2017; Chen

et al., 2019). It relies on relativity to achieve evaluation. For example, in the minimization

problem, for the objective v, the rulenum methods participating in the evaluation are sorted

according to the value obtained under the portfolio P, so as to be transformed into an integer

ranking value from 1 to rulenum. Then calculate the average ranking value under multiple instances

and multiple objectives, as shown in Eq.(11). In particular, in order to complete the ranking

calculation under R1 and R2, by referring to Chen et al. (2019), each distribution performs 10

simulations under each portfolio P to calculate SADi in Eq.(3) and Eq.(4). Although it is only

executed 10 times in each instance, it can be seen from Eq.(11) that the ranking of each PR depends

on the average value of 1000 instances, so it still has statistical accuracy.

 , , (/ | |) / | | {1,2,...., }rule rule v num

v

rk rk rule rule
 

= = 
total

P total

V P P

P V
 (11)

Where rkrule represents the average ranking value of the rule method, rkrule,v,P represents the

objective v value of the rule method under portfolio P, and Ptotal represents all portfolios.

5.2 Comparison with existing PRs

With the determination of benchmarks and evaluation method, in order to verify the

effectiveness of PRs evolved by HH-FGP, it is necessary to select existing PRs for comparison.

Firstly, 20 traditional PRs (Wang et al., 2017; Chen et al., 2019) for SRCMPSP are investigated,

but the RB-policy combined with critical path method adopted in this paper for generating

schedule dynamically updates the earliest start time of activities at each decision-making point, so

that the functions of some PRs are consistent. Therefore, there are only 16 PRs with different

functions by deleting the consistent PRs, as shown in Table 6.

Table 6 The traditional PRs for comparison

PR name Abbreviation PR name Abbreviation

Minimum slack MINSLK Shortest operation duration first SOF

Maximum slack MAXSLK Maximum operation duration first MOF

Shortest activity from shortest project SASP Minimum late finish time MINLFT

Longest activity from longest project LALP Maximum schedule pressure MAXSP

Minimum total work content MINTWK Minimum worst case slack MINWCS

Minimum total work content MAXTWK Criticality & resource utilization WACRU

MAXTWK & earliest late start time TWKLST Maximum total successors MS

First come first serve FCFS Maximum critical successors MCS

Based on the above information, HH-FGP is used to perform 10 evolutions, and an optimal

PR set is obtained under each evolution. Taking the first evolution as an example, in which 63

evolved PRs are obtained, the performance ranking is shown in Table 7, where rkavg and rkmin

respectively represent the average and minimum rkrule of 63 PRs when compared with traditional

PRs, and the comparison with the optimal traditional PR (OTPR) under five distributions is shown

in Fig.7. It is worth mentioning that since rkrule is the mean value under 1000 instances, the

difference of rkavg or rkmin between the two PRs in Table 7 is 0.1, indicating that their ranking is

100 different. Thus, the comparison of the performance ranking gap between two PRs in the test

set can depend on the gap of rkavg or rkmin in Table 7 multiplied by 1000. In addition, the statistical

table under 10 evolutions is shown in Table 8, where Num is the experiment number, PRnum and

PRper respectively represent the obtained number of evolved PRs and the percentage of evolved

PRs better than all traditional PRs in each evolution. The trend of average PRper under the five

distributions is shown in Fig.8.

Table 7 The rkmin and rkavg of HH-FGP and traditional PRs

PR
U1 U2 B1 B2 E

rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin

MINSLK 6.286 6.095 6.775 6.571 6.389 6.190 7.072 6.858 7.492 7.271

MAXSLK 12.759 12.707 12.068 12.032 12.664 12.621 11.808 11.768 11.306 11.230

SASP 8.376 8.330 8.690 8.653 8.369 8.320 9.008 8.976 9.202 9.163

LALP 9.788 9.723 10.134 10.036 9.923 9.852 10.494 10.385 10.838 10.695

MINTWK 8.018 7.873 7.897 7.772 8.075 7.937 7.978 7.851 7.794 7.685

MAXTWK 12.210 12.092 12.111 11.990 12.066 11.954 11.670 11.558 11.485 11.376

TWKLST 12.162 12.045 12.097 11.976 12.068 11.955 11.626 11.516 11.493 11.385

FCFS 7.382 7.059 7.882 7.544 7.543 7.225 8.082 7.727 8.594 8.203

SOF 11.627 11.507 11.195 11.076 11.565 11.448 10.670 10.553 10.137 10.031

MOF 11.964 11.894 11.549 11.486 11.509 11.449 11.480 11.419 11.473 11.377

MINLFT 8.686 8.536 8.466 8.307 8.651 8.505 8.018 7.851 7.966 7.777

MAXSP 7.267 7.103 7.641 7.453 7.374 7.209 8.022 7.820 8.061 7.834

MINWCS 6.294 6.107 6.792 6.591 6.411 6.221 7.103 6.891 7.515 7.298

WACRU 7.983 7.910 7.295 7.193 7.924 7.848 6.903 6.804 6.510 6.371

MS 6.654 6.519 7.000 6.847 6.803 6.665 7.294 7.125 7.255 7.065

MCS 7.035 6.882 7.288 7.126 7.100 6.951 7.596 7.421 7.926 7.729

HH-FGP 6.233 5.509 6.205 5.650 6.293 5.609 6.370 5.824 6.337 5.880

As can be seen from Table 7, when dealing with scheduling under different distributions, the

OTPR changes, so the OTPR under different distributions refers to different traditional PRs in

Fig.7 (U1, U2 and B1 are MINSLK, B2 and E are WACRU). However, no matter from the

perspective of rkmin or rkavg, HH-FGP is great superior to the OTPR. For example, under U1

distribution, although the percentage of HH-FGP in rkmin is only 9.6% higher than that of OTPR,

the actual ranking of HH-FGP is 586 higher than that of OTPR in 1000 instances, which means

that the PRs evolved by HH-FGP is better than OTPR in most instances. More importantly, it can

be analysed from Table 8 and Fig.8 that nearly 70 evolved PRs can be obtained in each evolution,

more than half of the PRs obtained by HH-FGP are better than all traditional PRs under low

variance distribution (U1 and B1), and this percentage reaches 80% or even 90% in medium or

high variance distribution. Undoubtedly, it can be concluded that compared with traditional PRs,

HH-FGP is an effective algorithm for stochastic multi-project scheduling, and is more suitable for

highly uncertain environments.

Fig.7 The rkavg and rkmin of HH-FGP and the best traditional PR

 Table 8 The statistical results of HH-FGP in comparison with traditional PRs

Num PRnum

U1 U2 B1 B2 E

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper

1 63 6.233 5.509 58.73% 6.205 5.650 95.24% 6.293 5.609 60.32% 6.370 5.824 95.24% 6.337 5.880 87.30%

2 59 6.273 5.472 50.85% 6.318 5.632 86.44% 6.354 5.596 49.15% 6.435 5.771 89.83% 6.382 5.792 86.44%

3 71 6.240 5.517 54.93% 6.312 5.681 91.55% 6.326 5.553 57.75% 6.417 5.787 91.55% 6.311 5.720 83.10%

4 60 6.228 5.537 53.33% 6.280 5.679 86.67% 6.296 5.585 53.33% 6.528 5.912 83.33% 6.403 5.771 80.00%

5 86 6.250 5.617 55.81% 6.332 5.730 86.05% 6.321 5.664 55.81% 6.445 5.818 94.19% 6.401 5.680 74.42%

6 73 6.292 5.476 52.05% 6.328 5.639 84.93% 6.366 5.588 52.05% 6.456 5.798 87.67% 6.378 5.765 83.56%

7 69 6.285 5.460 49.28% 6.330 5.640 92.75% 6.384 5.635 49.28% 6.492 5.863 92.75% 6.458 5.891 78.26%

8 67 6.312 5.544 47.76% 6.300 5.684 92.54% 6.383 5.657 49.25% 6.385 5.764 95.52% 6.317 5.710 82.09%

9 68 6.311 5.584 45.59% 6.324 5.668 85.29% 6.378 5.637 47.06% 6.427 5.746 92.56% 6.324 5.726 85.29%

10 69 6.291 5.491 46.38% 6.275 5.603 89.86% 6.369 5.566 47.83% 6.429 5.774 92.75% 6.387 5.829 82.61%

avg 68.5 6.272 5.521 51.47% 6.300 5.661 89.13% 6.347 5.609 52.18% 6.438 5.806 91.54% 6.370 5.776 82.31%

Fig.8 The variation trend of average PRper in HH-FGP compared with traditional PRs under

different distributions

In addition to the traditional PRs, Chen et al. (2019) proposed a hybrid method and obtained

six effective hybrid PRs, which are state-of-the-art PRs for SRCMPSP. With similar steps,

HH-FGP is compared with two hybrid PRs after deleting the same function to further verify its

effectiveness, and this is also a comparison between HH-FGP and the hybrid method proposed by

Chen et al. (2019). The comparison of HH-FGP and two hybrid PRs under the first evolution is

shown in Table 9 and Fig.9, where WCS-SLK(FCFS-SLK) represents the mixture of

MINWCS(FCFS) and MINSLK at different decision points, and the statistical results under the 10

evolutions are shown in Table 10 and Fig.10.

Table 9 The rkmin and rkavg of HH-FGP and hybrid PRs

PR
U1 U2 B1 B2 E

rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin

WCS-SLK 2.061 1.870 2.085 1.882 2.063 1.869 2.109 1.900 2.135 1.915

FCFS-SLK 1.995 1.822 2.033 1.841 1.990 1.809 2.034 1.823 2.054 1.813

HH-FGP 1.890 1.742 1.841 1.732 1.894 1.760 1.822 1.709 1.780 1.698

Fig.9 The rkavg and rkmin of HH-FGP and the best hybrid PR

Table 10 The statistical results of HH-FGP in comparison with hybrid PRs

Num

U1 U2 B1 B2 E

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper

1 1.890 1.742 87.30% 1.841 1.732 95.24% 1.894 1.760 88.89% 1.822 1.709 95.24% 1.780 1.698 95.24%

2 1.897 1.753 77.97% 1.860 1.726 89.83% 1.908 1.765 76.27% 1.836 1.703 89.83% 1.788 1.672 89.83%

3 1.877 1.756 91.55% 1.841 1.736 97.18% 1.885 1.754 85.92% 1.816 1.708 97.18% 1.766 1.691 97.18%

4 1.901 1.757 77.67% 1.865 1.742 90.00% 1.908 1.766 75.00% 1.861 1.742 88.83% 1.800 1.707 90.00%

5 1.882 1.768 89.53% 1.851 1.741 95.35% 1.890 1.767 77.91% 1.829 1.735 95.35% 1.780 1.700 95.35%

6 1.903 1.749 83.56% 1.867 1.728 89.04% 1.911 1.762 80.82% 1.845 1.713 89.04% 1.791 1.684 89.04%

7 1.892 1.737 82.61% 1.854 1.727 92.75% 1.901 1.761 75.36% 1.839 1.722 92.75% 1.792 1.697 92.75%

8 1.893 1.754 82.09% 1.849 1.727 95.52% 1.900 1.764 76.12% 1.820 1.708 95.52% 1.766 1.676 95.52%

9 1.891 1.77 76.74% 1.848 1.736 91.18% 1.896 1.778 76.47% 1.825 1.719 91.18% 1.768 1.686 91.18%

10 1.887 1.75 81.16% 1.839 1.719 92.75% 1.893 1.759 76.81% 1.821 1.707 92.75% 1.776 1.674 92.75%

avg 1.891 1.754 83.02% 1.852 1.731 92.88% 1.899 1.764 78.96% 1.831 1.717 92.77% 1.781 1.689 92.88%

Fig.10 The variation trend of average PRper in HH-FGP compared with hybrid PRs under different

distributions

By analysing the information in Table 9 and Fig.9, it can be obtained that HH-FGP is still

superior to the optimal hybrid PR under any distribution. For example, under U1, the rkmin of

HH-FGP is 128 higher than that of the FCFS-SLK in 1000 instances. However, the difference is

that the average PRper in low variance distribution is about 80%, and it has consistently exceeded

90% compared with hybrid PRs under medium and high variance distribution shown in Table 10

and Fig.10, which can further prove that HH-FGP is still effective compared with hybrid PRs for

SRCMPSP-NPI.

5.3 The validation of attributes and depth range filtering

From the Section 5.2, it can be seen that HH-FGP is a very effective algorithm to solve

SRCMPSP-NPI, but the effectiveness of the depth range control and attributes filtering, which are

the core contribution in this paper, needs to be further verified. Therefore, GP is used to realize

PRs evolution for comparison with HH-FGP. In order to ensure the fairness of comparison, GP

evolution applied in this section also has other improved search operators except the filtering of

attributes and depth range to ensure the same evolution process as HH-FGP, such as three local

searches. At the same time, in order to ensure the same search, the parameters of GP should also

be consistent with HH-FGP, so as to ensure that the training amount of the two algorithms is the

same. The difference is that all 50 generations of GP are to obtain the optimal PR set, while the

sampling and filtering evolution of HH-FGP occupy 25 generations respectively. Based on the

comparison with traditional PRs, the statistical results of single GP under 10 evolutions are shown

in Table 11, and the comparison with HH-FGP in average rkavg, rkmin and PRper is shown in Fig.11

and Fig.12.

Table 11 The statistical results of single GP in comparison with traditional PRs

Num PRnum

U1 U2 B1 B2 E

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper

1 68 6.483 5.520 42.65% 6.553 5.696 77.94% 6.530 5.567 45.49% 6.531 5.750 82.35% 6.581 5.678 64.71%

2 62 6.673 5.687 19.35% 6.804 5.746 54.84% 6.682 5.799 25.81% 6.747 5.810 66.13% 6.867 5.783 41.94%

3 39 6.575 5.632 28.21% 6.695 5.758 74.36% 6.600 5.740 38.64% 6.603 5.619 82.05% 6.774 5.900 61.54%

4 52 6.596 5.708 26.92% 6.652 5.728 78.85% 6.597 5.743 38.46% 6.579 5.599 86.54% 6.630 5.662 63.46%

5 76 6.508 5.692 39.47% 6.579 5.860 81.58% 6.546 5.713 47.37% 6.561 5.816 86.84% 6.531 5.797 72.37%

6 48 6.474 5.727 50.00% 6.627 5.803 75.00% 6.517 5.817 54.17% 6.543 5.721 79.17% 6.715 5.716 50.00%

7 56 6.496 5.586 41.07% 6.555 5.605 82.14% 6.521 5.684 51.79% 6.542 5.652 83.93% 6.549 5.726 69.64%

8 74 6.831 5.913 12.16% 7.019 5.991 51.35% 6.836 5.943 27.03% 6.919 5.994 59.46% 7.080 6.011 21.62%

9 49 6.664 5.826 22.45% 6.855 5.972 51.02% 6.707 5.839 30.61% 6.753 5.780 67.35% 6.895 6.057 38.78%

10 54 6.488 5.639 38.89% 6.571 5.707 77.78% 6.508 5.638 48.15% 6.564 5.729 83.33% 6.681 5.749 48.15%

avg 57.8 6.579 5.693 32.18% 6.691 5.787 70.49% 6.604 5.748 40.75% 6.634 5.747 77.72% 6.730 5.808 53.22%

Fig.11 The average rkavg and rkmin comparison between HH-FGP and GP

Through the data comparison at different levels, it can be seen that HH-FGP is more effective

than GP. By comparing the average PRnum in Table 8 and Table 11, it can be seen that GP can get

about 58 PRs on average under 10 evolutions, while HH-FGP can get about 68 PRs, which

indicates that more evolved PRs can be obtained after filtering for decision makers to choose.

More importantly, it can be seen from the following two accounts that the PRs obtained by

HH-FGP is more effective. Firstly, it can be seen from Fig.11 that in terms of average rkmin,

HH-FGP is better than GP except for B2 distribution, so it can be concluded that the better PR can

be obtained after filtering in most distributions. Secondly and more significantly, from the

perspective of average rkavg, HH-FGP is 0.3 better than GP in different distributions, and even

reaches 0.36 in high variance distribution, which means that the average ranking of PRs obtained

by HH-FGP is 360 higher than GP in 1000 instances. Similar conclusions can also be drawn from

Fig.12. For example, under the medium and low variance distribution, the average PRper of

HH-FGP is almost 20% higher than that of GP, which means that although HH-FGP obtains more

PRs, the proportion of evolved PRs better than all traditional PRs is increased. At the same time,

this proportion gap reaches 30% under the high variance distribution, which indicates that

HH-FGP is more suitable for SRCMPSP-NPI with high variance distribution. It is worth

mentioning that through HH-FGP evaluation, the important attributes applicable to SRCMPSP-NPI

are “TS”, “TSD”, “AvgRR” and “MaxRR”, and the appropriate depth range is 4 to 6. Through this

part of the experiment, it can be shown that HH-FGP can obtain more effective PRs under the

same search (even its evolution of 25 generations is for sampling), so that the effectiveness of

depth range and attribute filtering is verified.

Fig.12 The average PRper comparison between HH-FGP and GP under different variance

distributions

5.4 The effect analysis of the depth range and attributes filtering

The effectiveness of attribute and depth range filtering is verified in Section 5.3, but the

evolution of HH-FGP filters two parameters at the same time, so the necessity of filtering two

parameters needs to be further explored, that is, assuming only depth range or attribute filtering,

how does the performance of HH-FGP change. Therefore, in this section, the filtering in HH-FGP

is divided into two parts, namely GP only with the depth range filtering (HH-DFGP) and GP only

with the attributes filtering (HH-AFGP), to complete PRs evolution. Similarly, except that

HH-DFGP and HH-AFGP only perform depth range and attributes filtering when executing

Algorithm IV, other evolution processes and parameters are consistent with HH-FGP. With the

same experimental process, the statistical results of HH-DFGP and HH-AFGP under 10 evolutions

are shown in Table 12 and Table 13, and their comparisons on the average rkavg, rkmin and PRper are

shown in Fig.13 and Fig.14.

Table 12 The statistical results of HH-DFGP in comparison with traditional PRs

Num PRnum

U1 U2 B1 B2 E

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper

1 41 6.663 5.653 21.95% 6.699 5.831 63.41% 6.704 5.786 21.95% 6.735 5.837 75.61% 6.688 5.852 41.46%

2 37 6.580 5.876 35.14% 6.539 5.871 83.78% 6.601 5.951 37.84% 6.556 5.853 86.49% 6.541 5.821 64.86%

3 37 6.425 5.632 45.95% 6.513 5.738 81.08% 6.471 5.695 51.35% 6.516 5.765 83.78% 6.549 5.699 64.86%

4 53 6.555 5.693 32.08% 6.597 5.810 81.13% 6.606 5.781 39.62% 6.656 5.842 77.36% 6.623 5.699 47.17%

5 48 6.597 5.784 18.75% 6.656 5.834 83.33% 6.639 5.837 35.42% 6.695 5.746 89.58% 6.608 5.764 75.00%

6 49 6.549 5.586 32.65% 6.611 5.696 75.51% 6.616 5.690 36.73% 6.678 5.908 75.51% 6.621 5.849 57.14%

7 39 6.525 5.687 41.03% 6.570 5.728 84.62% 6.595 5.780 48.72% 6.560 5.691 84.62% 6.619 5.780 53.85%

8 39 6.660 5.745 35.90% 6.751 5.862 74.36% 6.699 5.868 41.03% 6.784 5.919 74.36% 6.824 5.995 64.10%

9 47 6.468 5.676 38.30% 6.521 5.750 80.85% 6.508 5.759 42.55% 6.528 5.689 87.23% 6.498 5.666 68.09%

10 50 6.359 5.438 36.00% 6.405 5.523 90.00% 6.431 5.547 42.00% 6.511 5.697 84.00% 6.436 5.616 52.00%

avg 44 6.538 5.677 33.78% 6.586 5.764 79.81% 6.587 5.769 39.72% 6.622 5.795 81.85% 6.601 5.774 58.85%

Table 13 The statistical results of HH-AFGP in comparison with traditional PRs

Num PRnum

U1 U2 B1 B2 E

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper

1 39 6.500 5.684 33.33% 6.552 5.624 87.18% 6.541 5.790 41.03% 6.555 5.667 89.74% 6.553 5.554 71.79%

2 47 6.620 5.663 40.43% 6.758 5.813 74.47% 6.652 5.720 46.81% 6.720 5.761 78.72% 6.792 5.736 55.32%

3 37 6.393 5.752 43.24% 6.412 5.790 86.49% 6.431 5.881 45.95% 6.481 5.956 89.19% 6.491 5.837 64.86%

4 46 6.472 5.626 23.91% 6.453 5.733 89.13% 6.530 5.767 30.43% 6.540 5.832 93.48% 6.461 5.764 60.87%

5 38 6.491 5.642 50.00% 6.644 5.810 71.05% 6.540 5.684 50.00% 6.597 5.887 73.68% 6.701 5.836 52.63%

6 43 6.628 5.739 30.23% 6.687 5.797 67.44% 6.665 5.783 34.88% 6.703 5.881 72.09% 6.698 5.853 62.79%

7 36 6.387 5.639 36.11% 6.438 5.702 80.56% 6.435 5.758 36.11% 6.490 5.692 80.56% 6.466 5.789 55.56%

8 46 6.465 5.709 41.30% 6.456 5.695 86.96% 6.501 5.788 45.65% 6.507 5.731 84.78% 6.396 5.575 76.09%

9 38 6.619 5.957 28.95% 6.669 5.938 76.32% 6.672 6.022 31.58% 6.710 6.037 71.05% 6.673 5.987 34.21%

10 46 6.525 5.510 32.61% 6.579 5.695 71.74% 6.560 5.567 36.96% 6.635 5.796 78.26% 6.617 5.758 39.13%

avg 41.6 6.510 5.692 36.01% 6.565 5.760 79.13% 6.553 5.776 39.94% 6.594 5.824 81.16% 6.585 5.769 57.33%

Through the analysis and comparison of relevant data, the following results can be obtained.

Firstly, based on the PRnum in Table 8, Table 12 and Table 13, it can be seen that the number of

PRs obtained by both HH-DFGP and HH-AFGP decreases sharply, that is, they only reach about

60% of HH-FGP or even worse than GP. Therefore, it can be concluded that if only a single

parameter (attributes or depth range) is filtered, less PRs will be obtained. Secondly, it can be seen

from Fig.13 that with respect to average rkmin, HH-DFGP and HH-AFGP can achieve the effect

similar to HH-FGP under B2 and E distributions, but inferior to HH-FGP in other distributions.

From the perspective of average rkavg, HH-FGP is still better than HH-DFGP and HH-AFGP in all

distributions, and it is found that HH-DFGP and HH-AFGP are even similar to GP by comparing

Fig.11 and Fig.13. Thus, it can be obtained that only filtering either depth range or attributes can

only improve the ability to obtain the optimal PR under medium or high variance distribution, but

the average performance of the evolved PRs is not improved. Finally, as can be seen from Fig.14,

compared with GP, although the average PRper of HH-DFGP and HH-AFGP is better than GP

under different variance distributions, the number of effective PRs obtained by them is not much

different from GP due to the reduction of PRnum. On the contrary, HH-FGP can not only increase

the number of evolved PRs, but also greatly improve average PRper as shown in Fig.14. In a word,

if only depth range or attributes filtering is adopted, the effect is just that it is easy to select an

effective PR in a small range and improve the performance of the evolved optimal PR under

medium or high variance distribution. Therefore, the experiments in this section show the

necessity of simultaneous filtering of both depth range and attributes, and verify the effectiveness

of HH-FGP again.

Fig.13 The average rkavg and rkmin comparison of HH-FGP, HH-DFGP and HH-AFGP

Fig.14 The average PRper comparison of HH-FGP, HH-DFGP and HH-AFGP under different

variance distributions

5.5 Discussion on performance indicator

It is well-noticed that efficiency is an important performance indicator of an optimization

algorithm beside the quality of solutions, but it is difficult to qualitatively compare the

convergence and efficiency due to the following two factors. From the perspective of convergence,

since the result of each generation in HH-FGP is a set of PRs with non-dominated performance

(Pareto frontier), there is no suitable evaluation or intuitive curve to describe the change of Pareto

frontier with generation. For example, the iteration result of a certain generation maybe adds a

non-dominated PR, updates a PR in the previous generation PR set, or even deletes a variety of

PRs in the previous generation PR set due to the acquisition of a new dominant PR.

On the other hand, it is also very difficult to qualitatively prove the efficiency of HH-FGP

through training time, because the gap between GP, HH-FGP, HH-DFGP and HH-AFGP in

Section 5.3 and Section 5.4 can be ignored due to the same training parameters and search amount.

For example, in our current results, each training process takes nearly 18 hours due to the very

large training data, and the time difference between them is no more than 5 minutes. However,

when using evolved PRs for decision-making, the response is very rapid. For example, in our

results, the time consumption of a PR scheduling of an instance is less than 50ms.

Thus, how to evaluate efficiency performance of the proposed algorithm is a future

investigation question, though it can be seen from Sections 5.3 and 5.4 that HH-FGP has a good

quality of solutions.

6 Conclusion

In this paper, a novel HH-FGP framework is proposed to solve SRCMPSP-NPI more

effectively by filtering both the depth range and attributes simultaneously. After exploring and

implementing the framework, the existing research is extended from the following two aspects.

Firstly, it provides a hyper-heuristic method for evolving PR to solve the multi-disturbance

multi-objective stochastic scheduling problem through obtaining more effective PRs, especially

the stochastic project scheduling, which is helpful for the scheduling optimization in the heuristic

computation time. Secondly, it extends the existing hyper-heuristic filtering method, that is, it

should filter two parts at the same time, rather than only considering attributes.

As for innovations in implementation, firstly, under ensuring the same search, this unique

framework divides the evolution of traditional GP into two parts, namely sampling and filtering

evolution, so as to obtain an optimal PR set under the consideration of the depth range and

attributes and realize the filtering PR evolution. Secondly, in the sampling and filtering evolution,

the existing genetic search and local search are improved to control evolved PRs without violating

the depth constraint, and they also provide a search method to meet the need of controlling the

depth range. Finally, a multi-objective filtering evaluation mechanism is designed, which realizes

the depth range and attribute filtering under sampling by designing judgment threshold and

combining contribution weight. Tested with a large number of experiments, HH-FGP verifies its

effectiveness by comparing with the existing PRs and GP and impacts of applying the two filtering

methods separately.

It is worth mentioning that when HH-FGP is applied to the actual SRCMPSP-NPI

represented by assembly production, it only needs to perform training regularly on the basis of

collecting duration and new project insertion information (in order to realize the fitting of

distribution), and the scheduling PRs can be selected and updated to realize the decision-making

in this cycle. Meanwhile, if the schedule generation policy and basic attributes in Table 3 are

replaced, HH-FGP can easily realize PR evolution for other scheduling problems in stochastic

environment, such as job shop and flow shop. It can be shown that the study of HH-FGP is very

meaningful.

In the future work, HH-FGP will be studied from two aspects to realize its expansion. Firstly,

SRCMPSP-NPI is a stochastic project scheduling problem considering two disturbances. When

facing more disturbance factors such as resource disruptions and more scheduling scenarios such

as multi-skill resource constrained project scheduling, whether HH-FGP can ensure the same

effectiveness or further improve the framework needs to be explored. Second, HH-FGP is a search

framework connected by two parts. For the filtering evolution, the search process in sampling

evolution is unknown, but it may produce effective guidance information. Therefore,

reinforcement learning can be combined into HH-FGP to realize synchronous dynamic update of

sampling and filtering evolution, resulting in its further improvement.

Acknowledgements

This research is supported by Sichuan Science and Technology Program (Grant number

2020ZDZX0015).

References

Alipouri, Y., Sebt, M. H., Ardeshir, A., & Zarandi, M. H. F. (2020). A mixed-integer linear

programming model for solving fuzzy stochastic resource constrained project scheduling problem.

Operational Research, 20(1), 197-217.

Alipouri, Y., Sebt, M. H., Ardeshir, A., & Chan, W. T. (2019). Solving the FS-RCPSP with

hyper-heuristics: A policy-driven approach. Journal of the Operational Research Society, 70(3),

403-419.

Anagnostopoulos, K., & Koulinas, G. (2012). Resource-constrained critical path scheduling by a

GRASP-based hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213.

Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the stochastic

resource-constrained project scheduling problem: Exploring the benefits of pre-processing.

Journal of Scheduling, 14(2), 157-171.

Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., & Parkes, A. J. (2016). Combining Monte-Carlo

and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling

problem. Information Sciences, 373, 476-498.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP?. Journal of

Scheduling, 10(3), 153-166.

Ballestin, F., & Leus, R. (2009). Resource‐constrained project scheduling for timely project

completion with stochastic activity durations. Production and Operations Management, 18(4),

459-474.

Blickle, T. (2000). Tournament selection. Evolutionary Computation, 1, 181-186.

Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2015a). Automated design of production

scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation, 20(1), 110-124.

Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2015b). Hyper-heuristic evolution of dispatching

rules: A comparison of rule representations. Evolutionary Computation, 23(2), 249-277.

Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Priority

rule performance revisited. International Journal of Production Economics, 126(2), 212-228.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013).

Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society,

64(12), 1695-1724.

Chand, S., Huynh, Q., Singh, H., Ray, T., & Wagner, M. (2018). On the use of genetic

programming to evolve priority rules for resource constrained project scheduling problems.

Information Sciences, 432, 146-163.

Chand, S., Singh, H., & Ray, T. (2019a). Evolving heuristics for the resource constrained project

scheduling problem with dynamic resource disruptions. Swarm and Evolutionary Computation, 44,

897-912.

Chand, S., Singh, H., & Ray, T. (2019b). Evolving rollout-justification based heuristics for

resource constrained project scheduling problems. Swarm and Evolutionary Computation, 50,

100556.

Chen, H., Ding, G., Zhang, J., & Qin, S. (2019). Research on priority rules for the stochastic

resource constrained multi-project scheduling problem with new project arrival. Computers &

Industrial Engineering, 137, 106060.

Chen, H., Ding, G., Qin, S., & Zhang, J. (2021). A hyper-heuristic based ensemble genetic

programming approach for stochastic resource constrained project scheduling problem. Expert

Systems with Applications, 167, 114174.

Chen, Z., Demeulemeester, E., Bai, S., & Guo, Y. (2018). Efficient priority rules for the stochastic

resource-constrained project scheduling problem. European Journal of Operational Research,

270(3), 957-967.

Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity

durations under resource constraints. Journal of Scheduling, 18(3), 263-273.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation of distribution algorithm and

new computational results for the stochastic resource-constrained project scheduling problem.

Flexible Services and Manufacturing Journal, 27(4), 585-605.

Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling with

non-consumable limited resources. International Journal of Production Economics, 48(1), 29-37.

Habibi, F., Barzinpour, F., & Sadjadi, S. (2018). Resource-constrained project scheduling problem:

review of past and recent developments. Journal of Project Management, 3(2), 55-88.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of Operational Research,

207(1), 1-14.

Hildebrandt, T., & Branke, J. (2015). On using surrogates with genetic programming.

Evolutionary Computation, 23(3), 343-367.

Hildebrandt, T., Heger, J., & Scholz-Reiter, B. (2010, July). Towards improved dispatching rules

for complex shop floor scenarios: a genetic programming approach. In Proceedings of the 12th

Annual Conference on Genetic and Evolutionary Computation (pp. 257-264).

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of

stochastic project networks under resource constraints. Networks, 13(1), 1-28.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited:

Theory and computation. European Journal of Operational Research, 90(2), 320-333.

Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling problem library. European

Journal of Operational Research, 96, 205–216.

Koulinas, G. K., & Anagnostopoulos, K. P. (2012). Construction resource allocation and leveling

using a threshold accepting–based hyperheuristic algorithm. Journal of Construction Engineering

and Management, 138(7), 854-863.

Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based

hyper-heuristic algorithm for the classic resource constrained project scheduling problem.

Information Sciences, 277, 680-693.

Kühn, M., Völker, M., & Schmidt, T. (2020). An Algorithm for Efficient Generation of

Customized Priority Rules for Production Control in Project Manufacturing with Stochastic Job

Processing Times. Algorithms, 13(12), 337.

Lamas, P., & Demeulemeester, E. (2016). A purely proactive scheduling procedure for the

resource-constrained project scheduling problem with stochastic activity durations. Journal of

Scheduling, 19(4), 409-428.

Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic approach for the

multi-skill resource constrained project scheduling problem. Expert Systems with Applications,

140, 112915.

Lin, J., Wang, Z. J., & Li, X. (2017). A backtracking search hyper-heuristic for the distributed

assembly flow-shop scheduling problem. Swarm and Evolutionary Computation, 36, 124-135.

Luke, S., & Panait, L. (2001, July). A survey and comparison of tree generation algorithms. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (pp.

81-88). Morgan Kaufmann San Francisco, California, USA.

Mei, Y., Zhang, M., & Nyugen, S. (2016, July). Feature selection in evolving job shop dispatching

rules with genetic programming. In Proceedings of the Genetic and Evolutionary Computation

Conference 2016 (pp. 365-372).

Mei, Y., Nguyen, S., Xue, B., & Zhang, M. (2017). An efficient feature selection algorithm for

evolving job shop scheduling rules with genetic programming. IEEE Transactions on Emerging

Topics in Computational Intelligence, 1(5), 339-353.

Ma, W., Che, Y., Huang, H., & Ke, H. (2016). Resource-constrained project scheduling problem

with uncertain durations and renewable resources. International Journal of Machine Learning and

Cybernetics, 7(4), 613-621.

Masood, A., Chen, G., & Zhang, M. (2021, June). Feature Selection for Evolving Many-Objective

Job Shop Scheduling Dispatching Rules with Genetic Programming. In 2021 IEEE Congress on

Evolutionary Computation (CEC) (pp. 644-651).

Möhring, R. H., Radermacher, F. J., & Weiss, G. (1984). Stochastic scheduling problems

I—General strategies. Mathematical Methods of Operations Research, 28(7), 193-260.

Möhring, R. H., Radermacher, F. J., & Weiss, G. (1985). Stochastic scheduling problems II-set

strategies. Mathematical Methods of Operations Research, 29(3), 65-104.

Payne, J. H. (1995). Management of multiple simultaneous projects: a state-of-the-art review.

International Journal of Project Management, 13(3), 163-168.

Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the

resource-constrained project scheduling problem. European Journal of Operational Research,

280(2), 395-416.

Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited

resources: A zero-one programming approach. Management Science, 16(1), 93-108.

Radermacher, F. J. (1981). Cost-dependent essential systems of ES-strategies for stochastic

scheduling problems. Methods of Operations Research, 42, 17-31.

Rostami, S., Creemers, S., & Leus, R. (2018). New strategies for stochastic resource-constrained

project scheduling. Journal of Scheduling, 21(3), 349-365.

Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2021). A reinforcement learning based

multi-method approach for stochastic resource constrained project scheduling problems. Expert

Systems with Applications, 169, 114479.

Satic, U., Jacko, P., & Kirkbride, C. (2020). Performance evaluation of scheduling policies for the

dynamic and stochastic resource-constrained multi-project scheduling problem. International

Journal of Production Research, 1-13.

Stork, F. (2001) Stochastic resource-constrained project scheduling (Ph.D. thesis), Technical

University of Berlin.

Tsai, Y. W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochastic

resource-constrained projects. European Journal of Operational Research, 111(1), 129-141.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007). A classification of

predictive-reactive project scheduling procedures. Journal of Scheduling, 10(3), 195-207.

Van Eynde, R., & Vanhoucke, M. (2020). Resource-constrained multi-project scheduling:

benchmark datasets and decoupled scheduling. Journal of Scheduling, 23(3), 301-325.

Villafáñez, F., Poza, D., López-Paredes, A., Pajares, J., & del Olmo, R. (2019). A generic heuristic

for multi-project scheduling problems with global and local resource constraints (RCMPSP). Soft

Computing, 23(10), 3465-3479.

Wang, X., Chen, Q., Mao, N., Chen, X., & Li, Z. (2015). Proactive approach for stochastic

RCMPSP based on multi-priority rule combinations. International Journal of Production

Research, 53(4), 1098-1110.

Wang, Y., He, Z., Kerkhove, L. P., & Vanhoucke, M. (2017). On the performance of priority rules

for the stochastic resource constrained multi-project scheduling problem. Computers & Industrial

Engineering, 114, 223-234.

Zhu, L., Lin, J., Li, Y. Y., & Wang, Z. J. (2021). A decomposition-based multi-objective genetic

programming hyper-heuristic approach for the multi-skill resource constrained project scheduling

problem. Knowledge-Based Systems, 225, 107099.

Zhang, F., Mei, Y., & Zhang, M. (2019, July). A two-stage genetic programming hyper-heuristic

approach with feature selection for dynamic flexible job shop scheduling. In Proceedings of the

Genetic and Evolutionary Computation Conference (pp. 347-355).

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2020). Evolving scheduling heuristics via genetic

programming with feature selection in dynamic flexible job-shop scheduling. IEEE Transactions

on Cybernetics, 51(4), 1797-1811.

