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Abstract: Multi-project management and uncertain environment are very common factors, and they 

bring greater challenges to scheduling due to the increase of problem complexity and response 

efficiency requirements. In this paper, a novel hyper-heuristic based filtering genetic programming 

(HH-FGP) framework is proposed for evolving priority rules (PRs) to deal with a multi-project 

scheduling problem considering stochastic activity duration and new project insertion together, 

namely the Stochastic Resource Constrained Multi-Project Scheduling Problem under New Project 

Insertions (SRCMPSP-NPI), within heuristic computation time. HH-FGP is designed to divide 

traditional evolution into sampling and filtering evolution for simultaneously filtering two kinds of 

parameters constituting PRs, namely depth range and attribute, to obtain more effective PRs. Based 

on this, the existing genetic search and local search are improved to meet the depth constraints, and 

a multi-objective evaluation mechanism is designed to achieve effective filtering. Under the 

existing benchmark, HH-FGP is compared and analysed with the existing methods to verify its 

effectiveness. 

Key words: Filtering evolution; Genetic programming; Priority rule; Stochastic resource 

constrained multi-project scheduling 

 

1 Introduction 

As a core problem in the field of project management and scheduling, the Resource 

Constrained Project Scheduling Problem (RCPSP) has been a hot research topic for many years 

since it was described (Habibi, Barzinpour & Sadjadi, 2018; Pritsker, Watters & Wolfe, 1969). 

Considering the limited resource supply, RCPSP optimizes single or multiple objectives by 

generating the sequencing of activities in the project, and its important objectives include 

makespan and project delay minimization (Hartmann & Briskorn 2010). In the past decade, 

developing better optimization methods for RCPSP has attracted extensive attention, especially 

meta-heuristics-based (Pellerin, Perrier & Berthaut, 2020). However, the applications of RCPSP 

are still greatly limited due to the following two reasons. Firstly, in practice, up to 90% of project 

management is carried out in a multi-project environment, in which RCPSP needs to consider the 

resource competition among projects (Payne, 1995). As a result, RCPSP is extended to the 

Resource Constrained Multi-Project Scheduling Problem (RCMPSP), in which multiple projects 

are collectively regarded as a portfolio (Van Eynde & Vanhoucke, 2020). Secondly, the project 

execution is often in a stochastic and uncertain environment, such as stochastic activity duration, 

new project insertion and varying resource availabilities, so that only 40% of projects are 

completed within their planned time. This uncertainty furthers the scheduling complexity, and 

leads RCPSP to the Stochastic Resource Constrained Project Scheduling Problem (SRCPSP) 

being modelled and optimized (Satic, Jacko & Kirkbride, 2020). In actual production and 

engineering management, there are a lot of situations on which it is needed to consider these two 

extensions at the same time. For example, in aircraft assembly production, multiple aircrafts often 

assembled simultaneously, and the duration of each assembly operation is stochastic due to 

manual assembly and other factors, so multi-project and stochastic activity duration need to be 

considered in scheduling. 

For project scheduling under uncertainty, except for a few pure proactive scheduling studies 

(Lamas & Demeulemeester, 2016), there are mainly two problem solving strategies. The first one 



is called proactive-reactive scheduling with a two-step implementation (Van de Vonder & 

Demeulemeester, 2007). In the planning phase, the proactive part constructs a baseline schedule 

with adding some buffers based on extra anticipation to deal with the predictable variability or 

directly ignoring the future uncertainty. Then, in the response/reactive phase, the baseline is 

adjusted and repaired when unexpected events occur, so as to make it feasible again. In this stage, 

the optimization objective is always to make the new baseline as close to the original one as 

possible. The application of proactive-reactive scheduling is very limited, especially in a highly 

uncertain environment, because according to statistics, almost 95% of the time is spent on revising 

baseline schedules, which greatly increases the time cost (Wang et al., 2017). The second is 

stochastic scheduling, in which an activity duration in the project is regarded as a known 

distribution, and the most commonly used optimization objective is transformed into minimizing 

the expected makespan. In this strategy, there is no baseline generation, and the solution is not a 

deterministic schedule, but a so-called scheduling policy (Möhring, Radermacher & Weiss, 1984, 

1985).  

Based on the scheduling policy with the function of transforming activity sequence into 

schedule, how to sort activities is very important and critical. The existing researches for solving 

SRC(M)PSP mainly focus on heuristics represented by PRs and meta-heuristics (see Section 2.2 

for details). It is worth noting that when scheduling a project or portfolio in an uncertain 

environment, robustness and response efficiency are also very important objective indicators in 

addition to schedule quality. For an activity sequence strategy (a meta-heuristic or PR), its (rule) 

robustness metrics often depends on the deviation from expected value when it is used to schedule 

an instance in a stochastic environment (Wang et al., 2017). However, in order to consider the 

generality of a strategy, multiple different instances should be considered, and the comprehensive 

evaluation of scheduling multiple stochastic instances under this strategy should be built. 

Therefore, the applicability of meta-heuristics in SRCPSP is limited because its iterative 

calculation and a large number of random searches deteriorate the responsiveness and robustness 

respectively. Conversely, PRs can avoid these problems, but the unavoidable defect of PRs is that 

its lack of optimization ability and its dependence on problems, and it is difficult to artificially 

select the optimal PR for different problems or construct a better hybrid PR. Hyper-heuristics are 

proposed to improve this problem, which use the upper-level search mechanism to select the 

low-level heuristics or automatically generate new heuristics by using the constituent elements of 

original heuristics, so as to have better performance in the heuristic calculation time, that is, for an 

input, the scheduling result is obtained directly by executing the generated or selected heuristics 

without iteration or search time consumption (Burke et al., 2013). The heuristic calculation time 

here refers to the time to get the scheduling result by executing a heuristic for an input, that is, 

there is no time consumption of iteration or search. This technology has great potential and 

recently becomes a research hotspot in the scheduling field, such as flow shop scheduling (Lin, 

Wang & Li, 2017), job shop scheduling (Hildebrandt et al., 2010; Hildebrandt & Branke, 2015) 

and project scheduling (see Section 2.3 for details). 

In this paper, a novel HH-FGP is proposed to solve SRCMPSP-NPI with multi-objective 

optimization, which is an extension of the Stochastic Resource Constrained Multi-Project 

Scheduling Problem (SRCMPSP) considering both stochastic activity durations and random new 

project insertions, so as to meet the actual needs of multiple projects scheduling with a stochastic 

environment. In HH-FGP, in order to implement filtering operations to select two effective 



parameters (i.e., attributes and depth range) of gene expression tree automatically that affect the 

performance of evolved PRs, the genetic evolution is divided into two parts depending on the 

parameters of generation number. The main function of the first part is sampling, in which the 

population is divided into multiple sub-populations depending on the tree depth for independent 

evolution. Based on the optimal PR set generated by each sub-population, the depth range and 

attribute set constituting PRs are filtered and then input into filtering evolution, that is, the invalid 

attributes and unreasonable depths disappear in the search of filtering evolution. After 

benchmark-based testing and analysing, HH-FGP can get better results than the existing methods, 

and the main contributions of this paper are: 

1. A novel HH-FGP framework is proposed to solve SRCMPSP-NPI, which makes the 

traditional genetic programming (GP) more effective by filtering both attribute set and depth range 

of gene expression tree, and it provides a new idea for the subsequent hyper-heuristic solution to 

project scheduling, especially in a stochastic environment. 

2. A new filtering evaluation mechanism is proposed, which can evaluate the tree depth and 

attributes under multi-objective optimization to realize effective filtering. 

3. The crossover and local search operators in the existing GP are improved to ensure that the 

PRs of each subpopulation maintain a fixed depth in the sampling evolution and to avoid the depth 

of PRs exceeding the filtered range in filtering evolution. 

The remainder of this study is structured as follows: Section 2 introduces the relevant 

research and the motivation of this paper. In Section 3, the description and mathematical model of 

SRCMPSP-NPI are introduced. Section 4 describes the HH-FGP framework and its optimization 

in detail. In Section 5, numerical experiments with design and result analysis are reported, and the 

conclusion of this work and some future research directions are given in Section 6. 

2 Related work 

The core investigation of this study is about depth length and attribute selections through 

filtering when applying hyper-heuristics to solve SRCMPSP-NPI, the relevant research is thus 

introduced from three aspects. The first is about existing (meta-) heuristics methods for stochastic 

project scheduling (i.e., meta-heuristics and PR based heuristics), the second is about 

hyper-heuristics methods for project scheduling, and the last is about applying filtering techniques 

in hyper-heuristics methods for scheduling. On this basis, the motivation of this paper is 

introduced in Section 2.4. 

2.1 Existing (meta-) heuristics for stochastic project scheduling 

As a more practical problem, the optimization of SRC(M)PSP is constantly being explored. 

Due to the high demand on computation time, there are only a few studies on exact algorithms, 

such as branch and bound (Stork, 2002), exact procedure based on Markov chain (Creemers, 2015) 

and mixed integer linear programming (Alipouri et al., 2020), and they are only suitable for small 

and medium scale SRC(M)PSP. More importantly, heuristics or meta-heuristics play a major role 

in this optimization problem. The optimization research of heuristics or meta-heuristics can be 

divided into two key parts, that is, how to realize activity sequencing and how to convert activity 

sequence into schedule, leading the studies to explore new policy classes and improved search 



methods. Based on these two parts, the research in SRC(M)PSP can be classified as shown in 

Fig.1. 

SRC(M)PSP

Activity sequence Schedule generation

Search method Policy class

Resourc

e-based

Activity

-based

Preproce

ssor

Preselec

tive

Earliest-

start

Generalized 

Preprocessor
HeuristicMeta-heuristic

Priority 

rule
Local search

Swarm 

intelligence

Evolutionary 

algorithm
 

Fig.1 The research classification in SRC(M)PSP 

 

For activity sequencing in SRC(M)PSP, many effective heuristics or meta-heuristics have 

been proposed and analysed. Similar to the development of other scheduling optimization, the first 

meta-heuristic studied is greedy and local search. Golenko-Ginzburg & Gonik (1997) proposed 

three operators with functions of control, calculation and selection, and then combined them into a 

greedy meta-heuristic algorithm to optimize makespan of SRCPSP. In order to further improve the 

search ability in solving SRCPSP, Tsai & Gemmill (1998) designed a diversified tabu search 

algorithm based on multiple tabu lists, randomized short-term memory and multiple starting 

schedules. Ballestín & Leus (2009) described a GRASP-heuristic strategy combined with 

descriptive sampling. Then, the improved evolutionary algorithm and swarm intelligence are 

applied in SRC(M)PSP. By combining permutation-based local search, Fang et al. (2015) 

improved an estimation of distribution algorithm to solve SRCPSP with a clear dominance under a 

medium and high variance distribution. Ma et al. (2016) developed a genetic algorithm integrated 

with a 99-method based uncertain simulation for searching the quasi-optimal schedule of SRCPSP. 

Satic, Jacko & Kirkbride (2020) compared the optimization ability of five algorithms including 

genetic algorithm for SRCMPSP, and analysed their performance trend with the uncertainty 

increasing. Sallam, Chakrabortty & Ryan (2021) proposed a meta-heuristic switching approach 

based on Q-learning, that is, the reward mechanism is designed to control the alternating search of 

multi-operator differential evolution and discrete cuckoo search. Due to simplicity, rapidity, 

stability and intuition (Browning & Yassine, 2010), PR solving SRC(M)PSP has attracted more 

and more attention in recent years. Chen et al. (2018) summarized 17 PRs for scheduling SRCPSP. 

The experimental results not only show that the optimal PR is different in a deterministic 

environment and stochastic environment, but also verify that the optimal PR superior to multiple 

meta-heuristics with the goal of minimizing the expected makespan. By dividing the expected 

makespan into scheduling quality and robustness, Wang et al. (2017) and Chen et al. (2019) 

explored the performance of different PRs under SRCMPSP and SRCMPSP-NPI respectively.  

When an activity sequence is generated, it may not be able to be carried out at the same time 

due to resource constraints. The function of policy class under the schedule generation is to 

calculate the start and completion time for each activity by adding extra start-finish or start-start 

constraints, so as to convert resource constraints into the new precedence constraints other than 

the original ones (Chen et al., 2018). There are six main types in current policy classes. The initial 

related research involves adding constraints based on the minimum forbidden set, resulting in 



Earliest-start Policy Class (ES-policy) (Radermacher, 1981) and Pre-selective Policy Class 

(PS-policy) (Igelmund & Radermacher, 1983). The minimum forbidden set is defined in which 

there are no precedence constraints among activities, but the sum of all activity resource 

requirements exceeds the maximum supply for some resources, and any proper subset is resource 

feasible. However, the calculation of minimum forbidden set construction is very difficult. For 

example, in PSPLIB benchmark (Kolisch & Sprecher, 1996), the average minimum forbidden set 

number of J30 is 326, while J120 increases to 243,871, resulting in large calculation consumption 

of these two policy classes (Stork, 2002). In addition, Pre-processor Policy Class (PP-policy) 

(Ashtiani, Leus & Aryanezhad, 2011) and Generalized Preprocessor Policy Class (GP-policy) 

(Rostami, Creemers & Leus, 2018) are proposed, which automatically find start-finish and 

start-start constraints by constructing meta-heuristics. Although they have been verified to be 

effective, similarly, they bring large additional calculations and make the optimization more 

complex. Finally, two direct policy classes are proposed, including Resource-based Policy Class 

(RB-policy) (Chen et al., 2018) and Activity-based Policy Class (AB-policy) (Ballestín, 2007). 

The RB-policy is similar to the parallel schedule generation scheme in RCPSP (Kolisch, 1996), 

that is, at any decision-making time, the decision maker starts with all unimplemented activities 

without violating the resource and precedence constraints. The AB-policy adds a side start-start 

constraint on the basis of RB-policy. A large number of experiments show that RB-policy is 

superior to AB-policy in terms of efficiency and quality (Chen et al., 2018). 

To sum up, first, the PR based SRC(M)PSP scheduling method is better than the majority 

meta-heuristics in efficiency and quality, which leads to PR being an important research direction 

in stochastic problems, especially PR is more practical. Second, compared with other policy 

classes, the RB-policy with certain advantages is more likely to be selected. 

2.2 Hyper-heuristics in project scheduling 

Over the past few years, hyper-heuristics algorithms have been applied in project scheduling, 

but most of them are in a static environment, i.e., RCPSP and its extensions. The key features of 

hyper-heuristics in comparing to meta-heuristics are…… Because meta-heuristics are often used 

in the high-level search mechanism of hyper-heuristics, the development of hyper-heuristics for 

project scheduling is also similar to meta-heuristics. At first, only some high-level optimization 

frameworks based on local search were explored, such as greedy search (Anagnostopoulos & 

Koulinas, 2012) and threshold accepting (Koulinas & Anagnostopoulos, 2012). Later, swarm 

intelligence and evolutionary algorithm are gradually developed as the high-level of 

hyper-heuristic. For example, Koulinas, Kotsikas & Anagnostopoulos (2014) designed a 

hyper-heuristic based on particle swarm optimization algorithm to control several low-level 

heuristics. Asta et al. (2016) integrated Monte-Carlo tree search, novel neighbourhood moves and 

memetic algorithm into hyper-heuristic for improving the search ability of multi-mode RCPSP. In 

addition, GP is the most extensive and mature in the research of hyper-heuristic for project 

scheduling, especially in the last several years. Lin, Zhu & Gao (2020) designed a GP that controls 

and manages ten heuristic rules to solve RCPSP considering multi-skills, and further proposed a 

decomposition mechanism to improve population diversity (Zhu et al., 2021). Chand et al. (2018) 

described a GP to evolve rules more suitable for RCPSP, and the results show that the evolved PRs 

are superior to the existing state-of-the-art PRs. On that basis, they added dynamic resource 



disruptions to expand RCPSP (Chand et al., 2019a) and combined Rollout-Justification procedure 

to improve GP performance (Chand et al., 2019b). Different from the deterministic environment, 

hyper-heuristics have only some preliminary explorations in solving SRC(M)PSP. Wang et al. 

(2015) designed the scheduling process of SRCMPSP as a Markov decision process and used 

dynamic programming to match the optimal PR for each state. Based on the similarity idea, 

Alipouri et al. (2019) proposed a self-adaptive differential evolution to realize SRCPSP 

optimization considering fuzziness. Kühn, Völker & Schmidt (2020) described a two-stage 

hyper-heuristic, which assigns corresponding weights to different attributes by serially performing 

training in deterministic and stochastic environments, so as to obtain the combined PRs. Chen et al. 

(2021) introduced an ensemble genetic programming, in which ensemble learning is combined to 

evolve a PR decision set to solve SRCPSP, and this is the first time to evolve PRs through GP for 

solving project scheduling in a stochastic environment. 

2.3 Hyper-heuristics with feature/attribute filtering in scheduling 

For hyper-heuristics with evolving PRs, the relevant problem attributes are important 

parameters. The proper selection of effective attributes can not only reduce the solution space, but 

also improve the scheduling performance of evolved PRs (Branke et al., 2015a). Therefore, 

applying feature/attribute filtering in selection has become one of the important research directions 

in the scheduling field with hyper-heuristics and has achieved great success in other scheduling 

problems represented by job shop scheduling (JSP). Branke et al. (2015b) ignored the attributes 

that constitute the evolved PRs one by one and proved that some attributes play a significant role 

in the performance of evolved PRs. For JSP, Mei et al. (2016) designed a GP with feature filtering 

to select effective attributes by analysing the frequency of attributes in evolved PRs. Further, Mei 

et al. (2017) found that the attribute frequency could not fully express the attribute importance due 

to the particularity of tree coding structure and proposed a replacement method to calculate the 

attribute contribution. Experiments show that this replacement method is more effective. Based on 

this method, Zhang et al. (2019, 2020) not only extended the GP with feature filtering to the 

application considering flexible and dynamic JSP (only new job arrive considered), but also 

integrated the PR generation and feature evaluation into an evolutionary process. Masood et al. 

(2021) introduced a GP combined with NSGA-III and feature filtering to evolve PRs for 

multi-objective JSP. In the evaluation of this method, if a PR after replacement dominates the PR 

before replacement (or dominated by the PR before replacement), a reward of 1 (-1) will be given, 

while the non-dominated relationship before and after replacement is not handled. 

2.4 Motivation 

By analysing the above literature, the following conclusions can be obtained, which in turn 

motivate this research: 

(1) PRs are concerned and used in the scheduling of RC(M)PSP because they have the ability 

of fast response, simplicity and stability. However, when the robustness indicator needs to be 

considered for SRC(M)PSP, in addition to these advantages, PRs are verified to have better 

comprehensive performance than meta-heuristics, especially in a high variance stochastic 

environment. In actual project scheduling, multiple stochastic disturbances (such as stochastic 



activity duration and new project insertion) often exist at the same time. Therefore, it is very 

potential and meaningful to study the hyper-heuristics represented by GP to evolve PRs with 

better performance for SRCMPSP-NPI. 

(2) The existing GP with feature/attribute filtering is oriented to JSP optimization, but lack of 

research on SRCMPSP(-NPI) to our best knowledge. When facing PR evolution under 

SRCMPSP(-NPI), in addition to the inconsistency of attribute set composition, the following 

changes need to be made, scheduling generation policy and objectives (adding the robustness 

objectives) due to different optimization models, the attribute calculation and normalization and 

PR performance evaluation caused by stochastic duration (see Section 4 for details). At the same 

time, for an evolved PR, some attributes either having little effect or even being counterproductive 

to its scheduling quality may further deteriorate its robustness, because their calculation depends 

on stochastic duration or new project insertion, resulting in the increase of stochastic variables in 

the whole priority calculation. Therefore, when optimizing SRCMPSP(-NPI), determining a 

reasonable attribute set can not only reduce the search space, but also offer great help to improve 

the PRs robustness, so the research of attribute filtering in SRCMPSP(-NPI) is very meaningful. 

(3) Last but not least, the existing GP with filtering is only for attribute set. However, the 

common gene expression of evolved PRs in GP is in a tree structure, so the depth range of the tree 

is another important parameter because it determines the possible combination mode of evolved 

PRs. If the tree depth is too shallow, the scheduling quality of evolved PRs may be poor due to 

fewer factors considered in the PR structure. On the contrary, the complex PR structure may lead 

to the robustness deterioration. The effective depth range can not only further reduce the search 

space, but also improve the performance of evolved PRs. Therefore, it is valuable to study a novel 

GP framework able to filter attributes and depth range simultaneously. 

To sum up, the HH-FGP framework proposed in this paper for solving SRCMPSP-NPI can 

expand the existing research from both the problem and solution method perspectives, and provide 

a novel idea for practising project scheduling in a stochastic environment. 

3 Description and Mathematical model of SRCMPSP-NPI 

In practice, many cases show that in addition to stochastic, new project insertion often needs 

to be considered in project scheduling. Similarly, taking assembly production as an example, due 

to the randomness of orders, some assembly tasks are unknown at the initial scheduling decision 

time (e.g., at the beginning of each month), that is, some assembly tasks need to be inserted after 

receiving relevant emergency orders. Therefore, Chen et al. (2019) proposed to extend SRCMPSP 

to SRCMPSP-NPI for considering both dynamic factors of stochastic activity durations and new 

project insertions on the basis of limited resources. In this problem, in addition to the fact that an 

activity ai,j’s  duration di,j satisfies a known distribution, there are three important constraints 

described with the symbols shown in Table 1: 

 Precedence constraint: this constraint is to express the logical relationship between 

activities in the project, that is, ai,j can start only after all activities in Pi,j are completed. It should 

be noted that there is no precedence constraint between activities from different projects. 

 Resource constraint: this constraint expression is that when scheduling portfolio, 

resources are limited, that is, the requirement of activities in At for resource k cannot exceed RSk. 

The makespan lower bound of pi is equal to CPi without considering this constraint. 



 Activity start constraint: this constraint is to express a new project insertion, that is, the 

relevant information of pi is unknown before time psti, and all activities in Ai can start only after 

time psti. If pi is the initial project, then psti equals 0. 

 

Table 1 The symbols in SRCMPSP-NPI 

Symbol Significance 

PS the project set or portfolio 

n the number of projects in the portfolio 

pi the ith project in the portfolio, i={1,2,…,n} 

CPi the critical path length of pi 

ADi the expected makespan of pi, in which the activity duration in pi is the 

expected value when calculating it 

SADi the average makespan of project pi derived from Monte Carlo 

simulations with stochastic activity durations 

psti the insertion time of pi 

At the execution activity set at time t 

Ai the activity set in project pi 

mi the number of non-dummy activities in project pi 

ai,j The jth activity in the project i, j= {0, 1, …, mi+1}, where j is 0 (mi+1) 

indicates the start (end) dummy activity 

di,j the duration of ai,j 

di,j
* the expected duration of ai,j 

sti,j the start time of ai,j 

Si,j the successor set of ai,j 

TSi,j the total successor set of ai,j 

Pi,j the predecessor set of ai,j 

K the renewable resource set 

RSk the maximum supply of the kth resource 

ri,j,k the requirement of ai,j for resource k 

t the execution time, t={1,2,…,T}, where T represents a maximum time. 

 

At the same time, since SRCMPSP-NPI is a stochastic multi-project scheduling problem, the 

scheduling quality and robustness both need to be considered from the perspective of project and 

portfolio. To sum up, with reference to work in Wang et al. (2017) and Chen et al. (2019) the 

mathematical expression of relevant constraints and objectives is as follows. 
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Eq.(1) and Eq.(2) represent the scheduling quality of the project and portfolio respectively, 

which express the expected deviation percentage of the scheduling result from the CPi when PS is 

the input. These two objectives can evaluate the scheduling ability of PRs, that is, assuming that 

the activity duration meets the expected value, we can find which priority rule gets the better 

scheduling result. However, it does make some errors when the actual activity durations are not 

equal to the expected value. Therefore, the robustness related objectives R1 and R2 described in 

Eq.(3) and Eq.(4) respectively are considered to deal with this problem, which represent the 

deviation from the expectation under multiple simulations. Eq.(3) and Eq.(4) represent robustness 

objectives, which represent the deviation of scheduling results from ADi under multiple Monte 

Carlo simulations. The two objectives are used together to evaluate the deviation between the 

actual makespan and the expected one by using PRs scheduling when the actual duration of the 

activities is different from their expected value. Eq.(5) to Eq.(7) express the three important 

constraints: precedence constraint, resource constraint and start constraint, respectively. Eq.(8) 

shows the dummy activity constraint, that is, for a dummy activity, its duration is 0 and no 

resources are required. Eq.(9) indicates that the duration of any activity in the portfolio cannot be 

negative. 

4 The framework and key implementation techniques of HH-FGP 

Before describing the HH-FGP framework in detail, the gene expression of PRs in GP needs 

to be introduced to further understand the significance of attributes and depth range filtering, 

which often adopts the tree structure shown in Fig.2 (Chand et al. 2018). The PR is used to 

calculate the corresponding priority value for sorting activities in project scheduling through its 

own expression, which is represented by a functional function “f” such as “+” and “-” and 

associated useful attributes such as duration and resource requirement, and their combination at 

multiple levels. It can be seen that an evolved PR is expressed by combining the relevant attributes 

“Att” with the functional function “f”. In addition, its top layer has a discriminant “Jud” to 

determine whether the following priority expression is minimized or maximized. It can be seen 

from Fig.2 that the performance of PR is affected by the combined attributes and the combination 

mode, that is, the attribute set at each level (depth) and the maximum depth are two key 



parameters. Therefore, how to avoid invalid attributes at each level and narrow the depth range of 

the tree to achieve effective search is very meaningful.  

Based on this gene structure and the motivation of this paper, the framework of HH-FGP is 

shown in Fig.3, in which the highlighted part represents other contributions in addition to this 

framework. It can be seen that HH-TGP divides the iterative process of traditional GP into two 

parts, namely sampling and filtering evolution. Firstly, the population is divided into z 

sub-populations equally depending on the initial depth range, and only PRs with the same 

maximum depth are retained in each sub-population to fully explore the PR performance at 

different depths. For example, assuming that the minimum depth of the hyper-parameter is 2, the 

first sub-population only generates PRs with the maximum depth of 2 in the evolution. When the 

termination condition is reached in sampling evolution, each sub-population output an optimal 

(Pareto) PR set for multi-objective optimization. HH-FGP only divides the evolution of traditional 

GP into two parts, so the termination condition of sampling evolution is set as part of the total 

termination condition, which is designed to the top 50% in this paper to ensure sufficient sampling 

and filtering evolution at the same time. Then, HH-FGP collects all PR sets and merges them 

relying on non-dominated relationships. An attribute and depth evaluation mechanism under 

multi-objective optimization is designed to realize filtering, and the filtered parameters are used as 

input to perform the evolution of the second part until the maximum iteration is completed. The 

implementation of HH-FGP is shown in Section 4.1, and the relevant technical details are 

described below.  

Jud

f

Att

Attf

Att Att

Priority expression

Discriminant

 

Fig.2 The gene expression of PR 

4.1 Initialization and evaluation 

The function of initialization is to generate PR individuals based on the gene shown in Fig.2, 

in which each node represents the discriminant or function or attribute, and the keys are the 

elements constituting PR and the tree structure generation method. Referring to Chand et al. (2018) 

and Chen et al. (2021), the discriminant is only “fall” and “rise”. If the discriminant is “fall”, the 

function is minimization, it means the smaller the value calculated by the priority expression, the 

higher the priority. Otherwise, it is maximization. At the same time, the function set and attribute 

set in the sampling evolution part are shown in Table 2 and Table 3 respectively. It is worth 

mentioning that since SRCMPSP-NPI is a multi-project scheduling problem, the attribute 



calculation equation in Table 3 has changed compared with the existing research (Chand et al., 

2018; Chen et al., 2021), where AEt represents the eligible activity set at time t, and the “CPLi” 

attribute is added.  

For the construction method in sampling evolution, the discriminant depends on the 

probability of 0.5 to randomly generate “fall” or “rise”, while the priority expression adopts the 

classical ramped half-and-half method (Luke & Panait, 2001), in which the maximum depth of 

PRs is controlled in 2 to 6 (the depth of discriminant is 0). Compared with the sampling evolution 

part, in the input of filtering evolution, only the attribute set and the maximum depth range are 

obtained through filtering, and the others are completely consistent. 
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Fig.3 The framework of HH-FGP 

 

Table 2 The function set 

Symbol Function Formula Symbol Function Formula 

＋ Add(x,y) x y+  － Sub(x,y) x y−  

× Mul(x,y) x y  Neg Neg(x) -1 x  

Exp Exp(x) xe  Abs Abs(a) 
0

1

a if a

a otherwise



− 

 

/ Div(x,y) 
/ 0

0

x y if y

otherwise





 Max Max(a,b) 
a if a b

b otherwise





 

Min Min(x,y) 
x if x y

y otherwise





 If If(c,a,b) 
0a if c

b otherwise

=



 

 

Table 3 The attribute set 

Attribute Normalized calculation formula 
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By parsing a PR tree, the sequencing of activities can be realized at different decision times, 

but two key technologies are still needed to obtain fitness in genetic evolution for evaluating PR. 

The first is how to transform the sequencing into schedule, that is, the selection of policy class. 

Based on the analysis of Section 2.2 and Villafáñez et al. (2019), RB-policy combined with critical 

path method is adopted in this paper. The function of critical path method is to generate a 

temporary schedule before using RB-policy, so as to dynamically update the attribute values to 

achieve better results. The second one is how to convert the scheduling results into the fitness 

function in GP. The R1 and R2 in SRCMPSP-NPI are affected by different distributions, and the 

calculation of R1 and R2 needs multiple simulations, resulting in a great increase in training time. 

Therefore, during the evolution of HH-FGP, the fitness calculation of PRs only depends on the 

average of Q1 and Q2 under multiple instances in the training set. Because there are only two 

objectives and the calculation of crowding distance is simple, NSGA-II (Deb et al., 2002) is 

adopted to realize the transformation from objective function value to fitness. 

4.2 Genetic search 

The iteration in GP is based on genetic evolution, so the genetic operators play an important 

role in its search process, including selection, crossover and mutation. In HH-FGP, the selection 

operator chooses tournament selection (Blickle, 2000). The mutation operator is designed to 



discriminate mutation, because no other search causes the change of discriminant. The mutation 

can be described as that when the generated random number is less than the mutation rate pm, the 

original discriminant “fall” becomes “rise”, and the mutation rate is set larger than the traditional 

GP. The crossover operator, as the main search of tree structure, adopts the commonly subtree 

crossover (Chand et al., 2018) as shown in Fig.4. However, different from the existing GP, in 

HH-FGP, the sampling evolution stage needs to control that the maximum depth of the parent tree 

and the offspring tree in each sub-population is the same, and it also needs to control that the 

maximum depth of the crossed tree should be within the effective range in the filtering evolution. 

It leads to the design of a node verification procedure based on the traditional random node 

selection, as shown in Algorithm I, that is, it is executed repeatedly until reasonable nodes are 

selected. In Algorithm I, when the maximum depth is equal to the minimum depth in the 

hyper-parameter, this verification is suitable for the sampling evolution. 
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Fig.4 The example of subtree crossover 

 

Algorithm I The verification of node selection in crossover 

1: Input: the maximum depth maxd, the minimum depth mind, the two parent PRs pr1 and pr2, the 

nodes selected in two PRs no1 and no2.  
2: Calculate the depth of no1 and no2 as nD1 and nD2 

3: Calculate the subtrees of no1 and no2 as sub1 and sub2, and record their maximum depth as aD1 

and aD2 

4: Calculate the remaining subtrees of sub1 and sub2 deleted from pr1 and pr2, and record their 

maximum depth as rD1 and rD2 

5: if nD1+ aD2> maxd || nD2+ aD1> maxd 

6:   return false 

7: end if 

8: if rD1< mind 

9:   if nD1+ aD2< mind 

10:     return false 

11:  end if 

12: end if 

13: if rD2< mind 

14:   if nD2+ aD1< mind 

15:     return false 

16:  end if 

17: end if 



18: return true 

4.3 Local search 

Local search can further improve the search ability of GP, and three neighbourhood structures 

suitable for the tree structure are proposed to control the search range shown in Fig.5. Like the 

crossover operator, the requirements of PR depth range in sampling and filtering evolution should 

be considered in local search. Therefore, this paper designs the relevant verifications. The first is 

the verification of whether the deletion local search can be used, as shown in Algorithm II because 

when some trees with special structure use the local search, PRs that meet the depth range cannot 

be generated. For example, assuming the PR in Fig.5 faces the case in which the minimum depth 

of hyper-parameter is 3, the deletion neighbourhood cannot be used. Then, three local searches are 

described as follows. 

 Subtree replacement local search: In this local search, a randomly generated subtree 

replaces a part of the original PR, which may produce a new structure that does not exist in the 

current population. In order to ensure that the new PR is still within the specified depth range, the 

depth range of the generated subtree needs to be controlled according to Algorithm III. 

 Node replacement local search: this local search replaces a node of the original PR by a 

randomly generated node. In its execution, it only needs to ensure that the child node number of 

the new node is the same as the original one without other verification. If the replacement node is 

“If”, its first child node is changed from “0” to “1” to realize the calculation in Table 2. 

 Subtree deletion local search: this local search deletes the part of the original PR on the 

premise that two conditions are met. Firstly, the maximum depth of the new PR after being deleted 

needs to be within the specified range. Secondly, when the parent node of the deleted node has 

only one child node, an attribute node is randomly selected to replace the original node or subtree. 

 

Algorithm II The verification of using deletion local search 

1: Input: the minimum depth mind, the original PR pr, the attribute set Att.  
2: Calculate the maximum depth of pr as Dmax 

3: if Dmax== mind 

4:   Calculate the number of nodes in pr as numn 

5:   if numn == mind+1 

6:      return false 

7:   end if 

8:   Get the node set with depth 2 as set2 

9:   Calculate the child node number of the node with depth 1 as numd1 

10:  Set numcal=0 

11:  for no: set2 

12:     Gets the name of no as nameno 

13:     if Att.contains(nameno) 

14:        numcal= numcal+1 

15:     end if 

16:  end for 

17:  if numcal== numd1-1 



18:     return false 

19:  end if 

20: end if 

21: return true 
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Fig.5 The examples of three local search 

 

Algorithm III The control of new subtree depth range in subtree replacement local search 

1: Input: the maximum depth maxd, the minimum depth mind, the original PR pr, the selected 

node no.  
2: Set maxdnew=0, mindnew=0 

3: Calculate the depth of no as nD, the subtree of no as sub 

4: Calculate the maximum depth of sub as aD, the remaining subtree of sub deleted from pr as rD 

5: if rD< mind 

6:  mindnew= mind-nD+1 

7: else 

8:  mindnew=1 

9: end if 

10: maxdnew= maxd-nD 

11: return maxdnew, mindnew 

4.4 Filtering evaluation mechanism 

As shown in Fig.3, after sampling evolution, each sub-population presents their sampling 

results, i.e., the optimal PR set at a certain depth. HH-FGP again uses the non-dominated 

relationship to eliminate some PRs, because PRs at different depths may dominate each other. 

When the non-dominated set is obtained, how to use the characteristics of PRs to filter is a key 

problem, especially in this paper, it is necessary to filter both the depth range and attribute set at 

the same time. Meanwhile, based on the analysis of Mei et al. (2017) in job shop scheduling, the 



contribution of attributes is more important than that of its occurrence frequency. Therefore, a new 

filtering evaluation mechanism under multi-objective optimization is proposed in this paper. In 

depth range filtering, the number of PR at each maximum depth from the obtained non-dominated 

set is counted, and then upward and downward from the depth with the largest number of PRs is 

extended until it exceeds the judgment threshold per. In attribute filtering, the contribution of 

attribute is judged by replacement. When calculating this attribute, a minimal non-zero constant is 

used. Then, the contribution weight of this attribute under a PR is calculated according to Eq.(10) 

in minimization problem, and HH-FGP deletes the attribute in which contribution weight is lower 

than the average value of all attributes. The detailed description is shown in Algorithm IV.  
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Where vnew and vold represent the values before and after replacement under the object v 

respectively, and V represents the objective set. 

 

Algorithm IV The filtering evaluation mechanism 

1: Input: the PR non-dominated set Setpr, the attribute set Att, the judgment threshold per, the 

maximum depth maxd, the minimum depth mind  
// The filtering of depth range 

2: Set maxdf=0, mindf=0, [] Setdepth=new int[maxd-mind] 

3: for pr: Setpr 

4:   Obtain the maximum depth of pr as maxDpr 

5:   Setdepth[maxDpr-mind]= Setdepth[maxDpr-mind]+1 

6: end for 

7: Find the position of the maximum value in Setdepth as pos 

8: Set num=pos, sum=0, maxd=0 

9: if Setdepth.length-pos-1>num 

10:  num= Setdepth.length-pos-1 

11: end if 

12: for i=0:num 

13:   if i==0 

14:      sum=sum+ Setdepth[pos] 

15:      mindf=maxd+pos, maxdf=maxd+pos 

16:   else 

17:      if i<=pos 

18:        sum=sum+ Setdepth[pos-i] 

19:        mindf=maxd+pos-i 

20:      end if 

21:      if i<= Setdepth.length-pos-1 

22:        sum=sum+ Setdepth[pos+i] 

23:        maxdf=maxd+pos+i 

24:      end if 



25:   end if 

26:   if sum> Setpr.size()*per 

27:      break 

28:   end if 

29: end for 

// The filtering of attribute set 

30: Set [] Setvalue=new double [Att.size()], avgvalue=0 

31: for i=0: Att.size() 

32:   Set value=0, att=Att.get(i) 

33:   for pr: Setpr 

34:      if the attribute constituting pr contains att 

35:        Calculate valuepr according to Equation 10 

36:        value=value+ valuepr 

37:      end if 

38:    end for 

39:    Setvalue[i]= value, avgvalue = avgvalue +value 

40: end for 

41: Set Attre, avgvalue = avgvalue / Att.size() 

42: for i=0: Att.size() 

43:    if Setvalue[i]< avgvalue 

44:        Attre.add(Att.get(i)) 

45:    end if 

46: end for 

47: Att.removeall(Attre) 

48: return maxdf, mindf, Att 

5 Numerical experiments 

The performance of HH-FGP is fully verified through experimental setup and three groups of 

experiments, so there are four parts in this section. Firstly, the experimental setup in this study is 

introduced, including experimental environment, parameter selection of HH-FGP, benchmark 

composition and evaluation method. Secondly, because this research focuses on the scheduling 

under heuristic computation time, and the existing meta-heuristics have been proved to be inferior 

to the optimal PR in stochastic project scheduling (Chen et al., 2018), only the state-of-the-art PRs 

participate in the comparison with HH-FGP, including 16 traditional PRs and two hybrid PRs. 

Third, since no other improvements to GP are found in multi-project scheduling to our best 

knowledge, HH-FGP is compared with GP maintaining the same evolution, i.e., GP adopts 

improved evolution search operators, such as genetic search and local search, so as to verify the 

effectiveness of filtering. Finally, HH-FGP is an optimization framework for filtering attributes 

and depth range at the same time, so the impact of different filtering operations on its performance 

is further explored, that is, HH-FGP is compared with GP only filtering attributes and GP only 

filtering depth range respectively.  



5.1 Experimental setup 

In this research, all experiments are performed on an Intel Core i5-4200 quadcore processor 

computer with 2.50 GHz clock speed and 8 gigabyte RAM. The implement details of HH-FGP can 

be divided into two parts. Firstly, based on Fig.3 and Algorithm I to Algorithms IV, the training of 

HH-FGP is written in Java using MyEclipse 2017 compiler to obtain the evolved PRs, and the 

example of evolved PR is shown in Fig.6. Secondly, during the test, Math3.jar is used in each 

instance to generate simulation inputs under different distributions for PRs to perform scheduling 

and calculate objectives Eq.(1) to Eq.(4). Meanwhile, referring to Chen et al. (2021), the 

parameters of HH-FGP are shown in Table 4, including the population size popsize, the maximum 

number of iterations maxgen, the crossover rate pc, the mutation rate pm and the judgment 

probability per. It can be seen that the parameters of HH-FGP are simple, by which the usability 

and practicability of HH-FGP are improved, and only the judgment probability is added. The 

sensitivity of this parameter is not high, because the PRs at each depth in the optimal PR set 

obtained by sampling evolution is fixed, when per floats up and down in a small range, the 

filtering results will not be affected. We believe that for the depth range filtering, it is sufficient 

when the effective PRs exceed 80% of the total PRs based on experience.  
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Fig.6 The example of evolved PR 

 

Table 4 The parameters of HH-TGP 

Variable popsize maxgen pc pm per 

Value 300 50 0.9 0.2 0.8 

 

In addition to the implementation and parameters of HH-FGP, another important part of the 

experimental design is the benchmark verification and evaluation method. Since SRCMPSP-NPI 

is established by Chen et al. (2019), these two parts are consistent with corresponding parts in that 

paper. In order to consider new project insertion in different situations, this benchmark first 

constructs 200 initial portfolios, in which each portfolio includes four projects with 30, 60, 90 and 

120 non-dummy activities selected from PSPLIB (Kolisch & Sprecher, 1996) to simulate the 

situation on which the activity number in different projects is often inconsistent in practice. Then, 

each initial portfolio is scheduled under five different conditions, in which two new projects with 

different structures are inserted at different random times under each condition, and the allocation 



of four resources needs to be considered. Therefore, the benchmark has 1000 different instances, 

and details such as the project selection, the new project insertion time and the maximum resource 

supply need to refer to Chen et al. (2019). Finally, in order to simulate stochastic duration, for 

each instance, the five most common distributions in SRC(M)PSP (Fang et al., 2015; Rostami et 

al., 2017; Chen et al., 2018; Chen et al., 2019; Chen et al. 2021) are selected to fully consider the 

stochastic environment under different variances shown in Table 5, including two low variance 

distributions (U1 and B1), two medium variance distributions (U2 and B2) and one high variance 

distribution (E). 

Table 5 Five distributions of activity duration 

Distribution type Code Range Variance 

Uniform distribution 

U1 
* * * *

, , , ,U( , )i j i j i j i jd d d d− +  d*
i,j/3 

U2 
*

,U(0, 2 )i jd  (d*
i,j)2/3 

Beta distribution 

B1 
* * * *

, , , ,B( / 2,2 , / 2 1/ 3, 2 / 3)i j i j i j i jd d d d− −  d*
i,j/3 

B2 
* *

, ,B( / 2,2 ,1/ 6,1/ 3)i j i jd d  (d*
i,j)2/3 

Exponential distribution E 
*

,E( )i jd  (d*
i,j)2 

 

In terms of evaluation methods, since SRCMPSP-NPI needs to evaluate the four objectives 

Q1, Q2, R1 and R2 at the same time, and their values may vary greatly when facing different 

objectives or different instances, the performance ranking is introduced (Wang et al., 2017; Chen 

et al., 2019). It relies on relativity to achieve evaluation. For example, in the minimization 

problem, for the objective v, the rulenum methods participating in the evaluation are sorted 

according to the value obtained under the portfolio P, so as to be transformed into an integer 

ranking value from 1 to rulenum. Then calculate the average ranking value under multiple instances 

and multiple objectives, as shown in Eq.(11). In particular, in order to complete the ranking 

calculation under R1 and R2, by referring to Chen et al. (2019), each distribution performs 10 

simulations under each portfolio P to calculate SADi in Eq.(3) and Eq.(4). Although it is only 

executed 10 times in each instance, it can be seen from Eq.(11) that the ranking of each PR depends 

on the average value of 1000 instances, so it still has statistical accuracy.  

 , , ( / | |) / | |   {1,2,...., }rule rule v num

v

rk rk rule rule
 

= = 
total

P total

V P P

P V
 (11) 

Where rkrule represents the average ranking value of the rule method, rkrule,v,P represents the 

objective v value of the rule method under portfolio P, and Ptotal represents all portfolios. 

5.2 Comparison with existing PRs 

With the determination of benchmarks and evaluation method, in order to verify the 

effectiveness of PRs evolved by HH-FGP, it is necessary to select existing PRs for comparison. 

Firstly, 20 traditional PRs (Wang et al., 2017; Chen et al., 2019) for SRCMPSP are investigated, 

but the RB-policy combined with critical path method adopted in this paper for generating 



schedule dynamically updates the earliest start time of activities at each decision-making point, so 

that the functions of some PRs are consistent. Therefore, there are only 16 PRs with different 

functions by deleting the consistent PRs, as shown in Table 6. 

Table 6 The traditional PRs for comparison 

PR name Abbreviation PR name Abbreviation 

Minimum slack MINSLK Shortest operation duration first SOF 

Maximum slack MAXSLK Maximum operation duration first MOF 

Shortest activity from shortest project SASP Minimum late finish time MINLFT 

Longest activity from longest project LALP Maximum schedule pressure MAXSP 

Minimum total work content MINTWK Minimum worst case slack MINWCS 

Minimum total work content MAXTWK Criticality & resource utilization WACRU 

MAXTWK & earliest late start time TWKLST Maximum total successors MS 

First come first serve FCFS Maximum critical successors MCS 

 

Based on the above information, HH-FGP is used to perform 10 evolutions, and an optimal 

PR set is obtained under each evolution. Taking the first evolution as an example, in which 63 

evolved PRs are obtained, the performance ranking is shown in Table 7, where rkavg and rkmin 

respectively represent the average and minimum rkrule of 63 PRs when compared with traditional 

PRs, and the comparison with the optimal traditional PR (OTPR) under five distributions is shown 

in Fig.7. It is worth mentioning that since rkrule is the mean value under 1000 instances, the 

difference of rkavg or rkmin between the two PRs in Table 7 is 0.1, indicating that their ranking is 

100 different. Thus, the comparison of the performance ranking gap between two PRs in the test 

set can depend on the gap of rkavg or rkmin in Table 7 multiplied by 1000. In addition, the statistical 

table under 10 evolutions is shown in Table 8, where Num is the experiment number, PRnum and 

PRper respectively represent the obtained number of evolved PRs and the percentage of evolved 

PRs better than all traditional PRs in each evolution. The trend of average PRper under the five 

distributions is shown in Fig.8. 

 

Table 7 The rkmin and rkavg of HH-FGP and traditional PRs 

PR 
U1 U2 B1 B2 E 

rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin 

MINSLK 6.286 6.095 6.775 6.571 6.389 6.190 7.072 6.858 7.492 7.271 

MAXSLK 12.759 12.707 12.068 12.032 12.664 12.621 11.808 11.768 11.306 11.230 

SASP 8.376 8.330 8.690 8.653 8.369 8.320 9.008 8.976 9.202 9.163 

LALP 9.788 9.723 10.134 10.036 9.923 9.852 10.494 10.385 10.838 10.695 

MINTWK 8.018 7.873 7.897 7.772 8.075 7.937 7.978 7.851 7.794 7.685 

MAXTWK 12.210 12.092 12.111 11.990 12.066 11.954 11.670 11.558 11.485 11.376 

TWKLST 12.162 12.045 12.097 11.976 12.068 11.955 11.626 11.516 11.493 11.385 

FCFS 7.382 7.059 7.882 7.544 7.543 7.225 8.082 7.727 8.594 8.203 

SOF 11.627 11.507 11.195 11.076 11.565 11.448 10.670 10.553 10.137 10.031 

MOF 11.964 11.894 11.549 11.486 11.509 11.449 11.480 11.419 11.473 11.377 

MINLFT 8.686 8.536 8.466 8.307 8.651 8.505 8.018 7.851 7.966 7.777 

MAXSP 7.267 7.103 7.641 7.453 7.374 7.209 8.022 7.820 8.061 7.834 

MINWCS 6.294 6.107 6.792 6.591 6.411 6.221 7.103 6.891 7.515 7.298 



WACRU 7.983 7.910 7.295 7.193 7.924 7.848 6.903 6.804 6.510 6.371 

MS 6.654 6.519 7.000 6.847 6.803 6.665 7.294 7.125 7.255 7.065 

MCS 7.035 6.882 7.288 7.126 7.100 6.951 7.596 7.421 7.926 7.729 

HH-FGP 6.233 5.509 6.205 5.650 6.293 5.609 6.370 5.824 6.337 5.880 

 

As can be seen from Table 7, when dealing with scheduling under different distributions, the 

OTPR changes, so the OTPR under different distributions refers to different traditional PRs in 

Fig.7 (U1, U2 and B1 are MINSLK, B2 and E are WACRU). However, no matter from the 

perspective of rkmin or rkavg, HH-FGP is great superior to the OTPR. For example, under U1 

distribution, although the percentage of HH-FGP in rkmin is only 9.6% higher than that of OTPR, 

the actual ranking of HH-FGP is 586 higher than that of OTPR in 1000 instances, which means 

that the PRs evolved by HH-FGP is better than OTPR in most instances. More importantly, it can 

be analysed from Table 8 and Fig.8 that nearly 70 evolved PRs can be obtained in each evolution, 

more than half of the PRs obtained by HH-FGP are better than all traditional PRs under low 

variance distribution (U1 and B1), and this percentage reaches 80% or even 90% in medium or 

high variance distribution. Undoubtedly, it can be concluded that compared with traditional PRs, 

HH-FGP is an effective algorithm for stochastic multi-project scheduling, and is more suitable for 

highly uncertain environments. 

 

Fig.7 The rkavg and rkmin of HH-FGP and the best traditional PR 

 Table 8 The statistical results of HH-FGP in comparison with traditional PRs 

Num PRnum 

U1 U2 B1 B2 E 

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper 

1 63 6.233 5.509 58.73% 6.205 5.650 95.24% 6.293 5.609 60.32% 6.370 5.824 95.24% 6.337 5.880 87.30% 

2 59 6.273 5.472 50.85% 6.318 5.632 86.44% 6.354 5.596 49.15% 6.435 5.771 89.83% 6.382 5.792 86.44% 

3 71 6.240 5.517 54.93% 6.312 5.681 91.55% 6.326 5.553 57.75% 6.417 5.787 91.55% 6.311 5.720 83.10% 

4 60 6.228 5.537 53.33% 6.280 5.679 86.67% 6.296 5.585 53.33% 6.528 5.912 83.33% 6.403 5.771 80.00% 

5 86 6.250 5.617 55.81% 6.332 5.730 86.05% 6.321 5.664 55.81% 6.445 5.818 94.19% 6.401 5.680 74.42% 

6 73 6.292 5.476 52.05% 6.328 5.639 84.93% 6.366 5.588 52.05% 6.456 5.798 87.67% 6.378 5.765 83.56% 

7 69 6.285 5.460 49.28% 6.330 5.640 92.75% 6.384 5.635 49.28% 6.492 5.863 92.75% 6.458 5.891 78.26% 

8 67 6.312 5.544 47.76% 6.300 5.684 92.54% 6.383 5.657 49.25% 6.385 5.764 95.52% 6.317 5.710 82.09% 

9 68 6.311 5.584 45.59% 6.324 5.668 85.29% 6.378 5.637 47.06% 6.427 5.746 92.56% 6.324 5.726 85.29% 



10 69 6.291 5.491 46.38% 6.275 5.603 89.86% 6.369 5.566 47.83% 6.429 5.774 92.75% 6.387 5.829 82.61% 

avg 68.5 6.272 5.521 51.47% 6.300 5.661 89.13% 6.347 5.609 52.18% 6.438 5.806 91.54% 6.370 5.776 82.31% 

 

 

Fig.8 The variation trend of average PRper in HH-FGP compared with traditional PRs under 

different distributions 

In addition to the traditional PRs, Chen et al. (2019) proposed a hybrid method and obtained 

six effective hybrid PRs, which are state-of-the-art PRs for SRCMPSP. With similar steps, 

HH-FGP is compared with two hybrid PRs after deleting the same function to further verify its 

effectiveness, and this is also a comparison between HH-FGP and the hybrid method proposed by 

Chen et al. (2019). The comparison of HH-FGP and two hybrid PRs under the first evolution is 

shown in Table 9 and Fig.9, where WCS-SLK(FCFS-SLK) represents the mixture of 

MINWCS(FCFS) and MINSLK at different decision points, and the statistical results under the 10 

evolutions are shown in Table 10 and Fig.10. 

Table 9 The rkmin and rkavg of HH-FGP and hybrid PRs 

PR 
U1 U2 B1 B2 E 

rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin rkavg rkmin 

WCS-SLK 2.061 1.870 2.085 1.882 2.063 1.869 2.109 1.900 2.135 1.915 

FCFS-SLK 1.995 1.822 2.033 1.841 1.990 1.809 2.034 1.823 2.054 1.813 

HH-FGP 1.890 1.742 1.841 1.732 1.894 1.760 1.822 1.709 1.780 1.698 



 

Fig.9 The rkavg and rkmin of HH-FGP and the best hybrid PR 

Table 10 The statistical results of HH-FGP in comparison with hybrid PRs 

Num 

U1 U2 B1 B2 E 

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper 

1 1.890 1.742 87.30% 1.841 1.732 95.24% 1.894 1.760 88.89% 1.822 1.709 95.24% 1.780 1.698 95.24% 

2 1.897 1.753 77.97% 1.860 1.726 89.83% 1.908 1.765 76.27% 1.836 1.703 89.83% 1.788 1.672 89.83% 

3 1.877 1.756 91.55% 1.841 1.736 97.18% 1.885 1.754 85.92% 1.816 1.708 97.18% 1.766 1.691 97.18% 

4 1.901 1.757 77.67% 1.865 1.742 90.00% 1.908 1.766 75.00% 1.861 1.742 88.83% 1.800 1.707 90.00% 

5 1.882 1.768 89.53% 1.851 1.741 95.35% 1.890 1.767 77.91% 1.829 1.735 95.35% 1.780 1.700 95.35% 

6 1.903 1.749 83.56% 1.867 1.728 89.04% 1.911 1.762 80.82% 1.845 1.713 89.04% 1.791 1.684 89.04% 

7 1.892 1.737 82.61% 1.854 1.727 92.75% 1.901 1.761 75.36% 1.839 1.722 92.75% 1.792 1.697 92.75% 

8 1.893 1.754 82.09% 1.849 1.727 95.52% 1.900 1.764 76.12% 1.820 1.708 95.52% 1.766 1.676 95.52% 

9 1.891 1.77 76.74% 1.848 1.736 91.18% 1.896 1.778 76.47% 1.825 1.719 91.18% 1.768 1.686 91.18% 

10 1.887 1.75 81.16% 1.839 1.719 92.75% 1.893 1.759 76.81% 1.821 1.707 92.75% 1.776 1.674 92.75% 

avg 1.891 1.754 83.02% 1.852 1.731 92.88% 1.899 1.764 78.96% 1.831 1.717 92.77% 1.781 1.689 92.88% 

 

Fig.10 The variation trend of average PRper in HH-FGP compared with hybrid PRs under different 

distributions 

By analysing the information in Table 9 and Fig.9, it can be obtained that HH-FGP is still 



superior to the optimal hybrid PR under any distribution. For example, under U1, the rkmin of 

HH-FGP is 128 higher than that of the FCFS-SLK in 1000 instances. However, the difference is 

that the average PRper in low variance distribution is about 80%, and it has consistently exceeded 

90% compared with hybrid PRs under medium and high variance distribution shown in Table 10 

and Fig.10, which can further prove that HH-FGP is still effective compared with hybrid PRs for 

SRCMPSP-NPI. 

5.3 The validation of attributes and depth range filtering 

From the Section 5.2, it can be seen that HH-FGP is a very effective algorithm to solve 

SRCMPSP-NPI, but the effectiveness of the depth range control and attributes filtering, which are 

the core contribution in this paper, needs to be further verified. Therefore, GP is used to realize 

PRs evolution for comparison with HH-FGP. In order to ensure the fairness of comparison, GP 

evolution applied in this section also has other improved search operators except the filtering of 

attributes and depth range to ensure the same evolution process as HH-FGP, such as three local 

searches. At the same time, in order to ensure the same search, the parameters of GP should also 

be consistent with HH-FGP, so as to ensure that the training amount of the two algorithms is the 

same. The difference is that all 50 generations of GP are to obtain the optimal PR set, while the 

sampling and filtering evolution of HH-FGP occupy 25 generations respectively. Based on the 

comparison with traditional PRs, the statistical results of single GP under 10 evolutions are shown 

in Table 11, and the comparison with HH-FGP in average rkavg, rkmin and PRper is shown in Fig.11 

and Fig.12. 

Table 11 The statistical results of single GP in comparison with traditional PRs 

Num PRnum 

U1 U2 B1 B2 E 

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper 

1 68 6.483 5.520 42.65% 6.553 5.696 77.94% 6.530 5.567 45.49% 6.531 5.750 82.35% 6.581 5.678 64.71% 

2 62 6.673 5.687 19.35% 6.804 5.746 54.84% 6.682 5.799 25.81% 6.747 5.810 66.13% 6.867 5.783 41.94% 

3 39 6.575 5.632 28.21% 6.695 5.758 74.36% 6.600 5.740 38.64% 6.603 5.619 82.05% 6.774 5.900 61.54% 

4 52 6.596 5.708 26.92% 6.652 5.728 78.85% 6.597 5.743 38.46% 6.579 5.599 86.54% 6.630 5.662 63.46% 

5 76 6.508 5.692 39.47% 6.579 5.860 81.58% 6.546 5.713 47.37% 6.561 5.816 86.84% 6.531 5.797 72.37% 

6 48 6.474 5.727 50.00% 6.627 5.803 75.00% 6.517 5.817 54.17% 6.543 5.721 79.17% 6.715 5.716 50.00% 

7 56 6.496 5.586 41.07% 6.555 5.605 82.14% 6.521 5.684 51.79% 6.542 5.652 83.93% 6.549 5.726 69.64% 

8 74 6.831 5.913 12.16% 7.019 5.991 51.35% 6.836 5.943 27.03% 6.919 5.994 59.46% 7.080 6.011 21.62% 

9 49 6.664 5.826 22.45% 6.855 5.972 51.02% 6.707 5.839 30.61% 6.753 5.780 67.35% 6.895 6.057 38.78% 

10 54 6.488 5.639 38.89% 6.571 5.707 77.78% 6.508 5.638 48.15% 6.564 5.729 83.33% 6.681 5.749 48.15% 

avg 57.8 6.579 5.693 32.18% 6.691 5.787 70.49% 6.604 5.748 40.75% 6.634 5.747 77.72% 6.730 5.808 53.22% 



 
Fig.11 The average rkavg and rkmin comparison between HH-FGP and GP 

 

Through the data comparison at different levels, it can be seen that HH-FGP is more effective 

than GP. By comparing the average PRnum in Table 8 and Table 11, it can be seen that GP can get 

about 58 PRs on average under 10 evolutions, while HH-FGP can get about 68 PRs, which 

indicates that more evolved PRs can be obtained after filtering for decision makers to choose. 

More importantly, it can be seen from the following two accounts that the PRs obtained by 

HH-FGP is more effective. Firstly, it can be seen from Fig.11 that in terms of average rkmin, 

HH-FGP is better than GP except for B2 distribution, so it can be concluded that the better PR can 

be obtained after filtering in most distributions. Secondly and more significantly, from the 

perspective of average rkavg, HH-FGP is 0.3 better than GP in different distributions, and even 

reaches 0.36 in high variance distribution, which means that the average ranking of PRs obtained 

by HH-FGP is 360 higher than GP in 1000 instances. Similar conclusions can also be drawn from 

Fig.12. For example, under the medium and low variance distribution, the average PRper of 

HH-FGP is almost 20% higher than that of GP, which means that although HH-FGP obtains more 

PRs, the proportion of evolved PRs better than all traditional PRs is increased. At the same time, 

this proportion gap reaches 30% under the high variance distribution, which indicates that 

HH-FGP is more suitable for SRCMPSP-NPI with high variance distribution. It is worth 

mentioning that through HH-FGP evaluation, the important attributes applicable to SRCMPSP-NPI 

are “TS”, “TSD”, “AvgRR” and “MaxRR”, and the appropriate depth range is 4 to 6. Through this 

part of the experiment, it can be shown that HH-FGP can obtain more effective PRs under the 

same search (even its evolution of 25 generations is for sampling), so that the effectiveness of 

depth range and attribute filtering is verified. 



 

Fig.12 The average PRper comparison between HH-FGP and GP under different variance 

distributions 

5.4 The effect analysis of the depth range and attributes filtering 

The effectiveness of attribute and depth range filtering is verified in Section 5.3, but the 

evolution of HH-FGP filters two parameters at the same time, so the necessity of filtering two 

parameters needs to be further explored, that is, assuming only depth range or attribute filtering, 

how does the performance of HH-FGP change. Therefore, in this section, the filtering in HH-FGP 

is divided into two parts, namely GP only with the depth range filtering (HH-DFGP) and GP only 

with the attributes filtering (HH-AFGP), to complete PRs evolution. Similarly, except that 

HH-DFGP and HH-AFGP only perform depth range and attributes filtering when executing 

Algorithm IV, other evolution processes and parameters are consistent with HH-FGP. With the 

same experimental process, the statistical results of HH-DFGP and HH-AFGP under 10 evolutions 

are shown in Table 12 and Table 13, and their comparisons on the average rkavg, rkmin and PRper are 

shown in Fig.13 and Fig.14. 

Table 12 The statistical results of HH-DFGP in comparison with traditional PRs 

Num PRnum 

U1 U2 B1 B2 E 

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper 

1 41 6.663 5.653 21.95% 6.699 5.831 63.41% 6.704 5.786 21.95% 6.735 5.837 75.61% 6.688 5.852 41.46% 

2 37 6.580 5.876 35.14% 6.539 5.871 83.78% 6.601 5.951 37.84% 6.556 5.853 86.49% 6.541 5.821 64.86% 

3 37 6.425 5.632 45.95% 6.513 5.738 81.08% 6.471 5.695 51.35% 6.516 5.765 83.78% 6.549 5.699 64.86% 

4 53 6.555 5.693 32.08% 6.597 5.810 81.13% 6.606 5.781 39.62% 6.656 5.842 77.36% 6.623 5.699 47.17% 

5 48 6.597 5.784 18.75% 6.656 5.834 83.33% 6.639 5.837 35.42% 6.695 5.746 89.58% 6.608 5.764 75.00% 

6 49 6.549 5.586 32.65% 6.611 5.696 75.51% 6.616 5.690 36.73% 6.678 5.908 75.51% 6.621 5.849 57.14% 

7 39 6.525 5.687 41.03% 6.570 5.728 84.62% 6.595 5.780 48.72% 6.560 5.691 84.62% 6.619 5.780 53.85% 

8 39 6.660 5.745 35.90% 6.751 5.862 74.36% 6.699 5.868 41.03% 6.784 5.919 74.36% 6.824 5.995 64.10% 

9 47 6.468 5.676 38.30% 6.521 5.750 80.85% 6.508 5.759 42.55% 6.528 5.689 87.23% 6.498 5.666 68.09% 

10 50 6.359 5.438 36.00% 6.405 5.523 90.00% 6.431 5.547 42.00% 6.511 5.697 84.00% 6.436 5.616 52.00% 

avg 44 6.538 5.677 33.78% 6.586 5.764 79.81% 6.587 5.769 39.72% 6.622 5.795 81.85% 6.601 5.774 58.85% 

 



Table 13 The statistical results of HH-AFGP in comparison with traditional PRs 

Num PRnum 

U1 U2 B1 B2 E 

rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper rkavg rkmin PRper 

1 39 6.500 5.684 33.33% 6.552 5.624 87.18% 6.541 5.790 41.03% 6.555 5.667 89.74% 6.553 5.554 71.79% 

2 47 6.620 5.663 40.43% 6.758 5.813 74.47% 6.652 5.720 46.81% 6.720 5.761 78.72% 6.792 5.736 55.32% 

3 37 6.393 5.752 43.24% 6.412 5.790 86.49% 6.431 5.881 45.95% 6.481 5.956 89.19% 6.491 5.837 64.86% 

4 46 6.472 5.626 23.91% 6.453 5.733 89.13% 6.530 5.767 30.43% 6.540 5.832 93.48% 6.461 5.764 60.87% 

5 38 6.491 5.642 50.00% 6.644 5.810 71.05% 6.540 5.684 50.00% 6.597 5.887 73.68% 6.701 5.836 52.63% 

6 43 6.628 5.739 30.23% 6.687 5.797 67.44% 6.665 5.783 34.88% 6.703 5.881 72.09% 6.698 5.853 62.79% 

7 36 6.387 5.639 36.11% 6.438 5.702 80.56% 6.435 5.758 36.11% 6.490 5.692 80.56% 6.466 5.789 55.56% 

8 46 6.465 5.709 41.30% 6.456 5.695 86.96% 6.501 5.788 45.65% 6.507 5.731 84.78% 6.396 5.575 76.09% 

9 38 6.619 5.957 28.95% 6.669 5.938 76.32% 6.672 6.022 31.58% 6.710 6.037 71.05% 6.673 5.987 34.21% 

10 46 6.525 5.510 32.61% 6.579 5.695 71.74% 6.560 5.567 36.96% 6.635 5.796 78.26% 6.617 5.758 39.13% 

avg 41.6 6.510 5.692 36.01% 6.565 5.760 79.13% 6.553 5.776 39.94% 6.594 5.824 81.16% 6.585 5.769 57.33% 

 

Through the analysis and comparison of relevant data, the following results can be obtained. 

Firstly, based on the PRnum in Table 8, Table 12 and Table 13, it can be seen that the number of 

PRs obtained by both HH-DFGP and HH-AFGP decreases sharply, that is, they only reach about 

60% of HH-FGP or even worse than GP. Therefore, it can be concluded that if only a single 

parameter (attributes or depth range) is filtered, less PRs will be obtained. Secondly, it can be seen 

from Fig.13 that with respect to average rkmin, HH-DFGP and HH-AFGP can achieve the effect 

similar to HH-FGP under B2 and E distributions, but inferior to HH-FGP in other distributions. 

From the perspective of average rkavg, HH-FGP is still better than HH-DFGP and HH-AFGP in all 

distributions, and it is found that HH-DFGP and HH-AFGP are even similar to GP by comparing 

Fig.11 and Fig.13. Thus, it can be obtained that only filtering either depth range or attributes can 

only improve the ability to obtain the optimal PR under medium or high variance distribution, but 

the average performance of the evolved PRs is not improved. Finally, as can be seen from Fig.14, 

compared with GP, although the average PRper of HH-DFGP and HH-AFGP is better than GP 

under different variance distributions, the number of effective PRs obtained by them is not much 

different from GP due to the reduction of PRnum. On the contrary, HH-FGP can not only increase 

the number of evolved PRs, but also greatly improve average PRper as shown in Fig.14. In a word, 

if only depth range or attributes filtering is adopted, the effect is just that it is easy to select an 

effective PR in a small range and improve the performance of the evolved optimal PR under 

medium or high variance distribution. Therefore, the experiments in this section show the 

necessity of simultaneous filtering of both depth range and attributes, and verify the effectiveness 

of HH-FGP again. 



 

Fig.13 The average rkavg and rkmin comparison of HH-FGP, HH-DFGP and HH-AFGP 

 

Fig.14 The average PRper comparison of HH-FGP, HH-DFGP and HH-AFGP under different 

variance distributions 

 

5.5 Discussion on performance indicator 

It is well-noticed that efficiency is an important performance indicator of an optimization 

algorithm beside the quality of solutions, but it is difficult to qualitatively compare the 

convergence and efficiency due to the following two factors. From the perspective of convergence, 

since the result of each generation in HH-FGP is a set of PRs with non-dominated performance 

(Pareto frontier), there is no suitable evaluation or intuitive curve to describe the change of Pareto 

frontier with generation. For example, the iteration result of a certain generation maybe adds a 

non-dominated PR, updates a PR in the previous generation PR set, or even deletes a variety of 

PRs in the previous generation PR set due to the acquisition of a new dominant PR.  

On the other hand, it is also very difficult to qualitatively prove the efficiency of HH-FGP 

through training time, because the gap between GP, HH-FGP, HH-DFGP and HH-AFGP in 

Section 5.3 and Section 5.4 can be ignored due to the same training parameters and search amount. 

For example, in our current results, each training process takes nearly 18 hours due to the very 

large training data, and the time difference between them is no more than 5 minutes. However, 



when using evolved PRs for decision-making, the response is very rapid. For example, in our 

results, the time consumption of a PR scheduling of an instance is less than 50ms. 

Thus, how to evaluate efficiency performance of the proposed algorithm is a future 

investigation question, though it can be seen from Sections 5.3 and 5.4 that HH-FGP has a good 

quality of solutions. 

 

6 Conclusion 

In this paper, a novel HH-FGP framework is proposed to solve SRCMPSP-NPI more 

effectively by filtering both the depth range and attributes simultaneously. After exploring and 

implementing the framework, the existing research is extended from the following two aspects. 

Firstly, it provides a hyper-heuristic method for evolving PR to solve the multi-disturbance 

multi-objective stochastic scheduling problem through obtaining more effective PRs, especially 

the stochastic project scheduling, which is helpful for the scheduling optimization in the heuristic 

computation time. Secondly, it extends the existing hyper-heuristic filtering method, that is, it 

should filter two parts at the same time, rather than only considering attributes.  

As for innovations in implementation, firstly, under ensuring the same search, this unique 

framework divides the evolution of traditional GP into two parts, namely sampling and filtering 

evolution, so as to obtain an optimal PR set under the consideration of the depth range and 

attributes and realize the filtering PR evolution. Secondly, in the sampling and filtering evolution, 

the existing genetic search and local search are improved to control evolved PRs without violating 

the depth constraint, and they also provide a search method to meet the need of controlling the 

depth range. Finally, a multi-objective filtering evaluation mechanism is designed, which realizes 

the depth range and attribute filtering under sampling by designing judgment threshold and 

combining contribution weight. Tested with a large number of experiments, HH-FGP verifies its 

effectiveness by comparing with the existing PRs and GP and impacts of applying the two filtering 

methods separately.  

It is worth mentioning that when HH-FGP is applied to the actual SRCMPSP-NPI 

represented by assembly production, it only needs to perform training regularly on the basis of 

collecting duration and new project insertion information (in order to realize the fitting of 

distribution), and the scheduling PRs can be selected and updated to realize the decision-making 

in this cycle. Meanwhile, if the schedule generation policy and basic attributes in Table 3 are 

replaced, HH-FGP can easily realize PR evolution for other scheduling problems in stochastic 

environment, such as job shop and flow shop. It can be shown that the study of HH-FGP is very 

meaningful. 

In the future work, HH-FGP will be studied from two aspects to realize its expansion. Firstly, 

SRCMPSP-NPI is a stochastic project scheduling problem considering two disturbances. When 

facing more disturbance factors such as resource disruptions and more scheduling scenarios such 

as multi-skill resource constrained project scheduling, whether HH-FGP can ensure the same 

effectiveness or further improve the framework needs to be explored. Second, HH-FGP is a search 

framework connected by two parts. For the filtering evolution, the search process in sampling 

evolution is unknown, but it may produce effective guidance information. Therefore, 

reinforcement learning can be combined into HH-FGP to realize synchronous dynamic update of 



sampling and filtering evolution, resulting in its further improvement.  
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