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A B S T R A C T

Many types of research have been carried out with the aim of combating the COVID-19 pandemic since
the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise
suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason,
predicting the SARS-CoV-2 transmission rate has become one of the most important and challenging problems
of the past months. In this paper, we apply a two-stage mid and long-term forecasting framework to the
epidemic situation in eight districts of Andalusia, Spain. First, an analytical procedure is performed iteratively
to fit polynomial curves to the cumulative curve of contagions. Then, the extracted information is used for
estimating the parameters and structure of an evolutionary artificial neural network with hybrid architectures
(i.e., with different basis functions for the hidden nodes) while considering single and simultaneous time
horizon estimations. The results obtained demonstrate that including polynomial information extracted during
the training stage significantly improves the mid- and long-term estimations in seven of the eight considered
districts. The increase in average accuracy (for the joint mid- and long-term horizon forecasts) is 37.61% and
35.53% when considering the single and simultaneous forecast approaches, respectively.
1. Introduction

Since the first outbreak detected in Wuhan, China, the new coro-
navirus has widely and rapidly spread around the world due to its
powerful human-to-human transmission capacity (Sanche et al., 2020),
leading to an exponential growth in the number of infected people in
all countries. This new coronavirus, which produces the disease known
as coronavirus disease 2019 (COVID-19), has put human health at risk
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by provoking fever, cough, and myalgia as common symptoms, and
potentially leading to complications, such as acute respiratory distress
syndrome in a significant percentage (Chen et al., 2020; Huang et al.,
2020), among others. On the 11th of March 2020, when many countries
were in an emergency situation, the World Health Organization (WHO)
declared this virus a global pandemic thereby, forcing the countries to
adopt prevention measures such as nationwide lockdowns, mandatory
vailable online 27 June 2022
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use of facial masks and human mobility controls to suppress virus
transmission. Many studies have shown that reducing social interac-
tion by applying control measures helps to mitigate the spread of
contagions (Kharroubi & Saleh, 2020; Kraemer et al., 2020).

In each country, the number of outbreaks, their intensity and du-
ration depend on a wide variety of parameters, such as the size of
population, the control measures applied and even specific climato-
logical features (Livadiotis, 2020; Malki et al., 2020). Nevertheless,
the evolution of the outbreaks are similar regardless of the location
where they take place. The dynamics of the pandemic are as follows:
at the beginning, a small number of people became infected. Then,
due to the high contagion capacity, if social interaction is not limited,
the number of infections increases linearly in a short period of time.
After that, when a sufficient number of people contract the virus,
infections begin to rise exponentially, and the outbreak quickly spirals
out of control. At this time, control measures are usually applied to
bring the outbreak under control. Hence, it is of huge importance to
predict the contagion rate to avoid the inflexion point when the spread
velocity starts to increase exponentially. Forecasting will allow the
anticipation of uncontrolled situations and thus can help in adopting
health system preparedness measures to avoid hospital overcrowding
and in devising social restrictions to minimize the number of infections
and the economic impact (Maital & Barzani, 2020).

To devise suitable economic, social and health care strategies to
mitigate the pandemic effects, anticipating the evolution of the out-
breaks has thus become a crucial task. Multiple forecasting techniques
have been proposed since data about COVID-19 impact (regarding
infected, deceased and recovered people) started to be available. In this
connection, epidemiological models (Kermack & McKendrick, 1927)
are the most popular approach to estimating the evolution of infec-
tious diseases. These models use mutually exclusive compartments
or states and assign them to a population of individuals to describe
the dynamics of the population. Individuals flow through the com-
partments according to the parameters of the model. Compartmental
models have been mainly applied at the beginning of the pandemic
period in different locations. For example, in Anastassopoulou, Russo,
Tsakris, and Siettos (2020), a four-compartmental SIDR (Susceptible–
Infectious–Recovered–Dead) model was used to estimate the most im-
portant epidemiological parameters, such as the basic reproduction
number, 𝑅0, and the rates of infection, mortality and recovery, using
the COVID-19 incidence data of Hubei (China) from January 11 to
February 10, 2020. Moreover, in Hauser et al. (2020), also using data
from Hubei, an age-stratified SEIR (Susceptible–Exposed– Infected–
Removed) model was fitted to estimate the symptomatic case-fatality
ratio (sCFR) and infection-fatality ratio (IFR) over six regions of Europe.
An extension of this model, including predictions of the number of
cases using different time series forecasting techniques, was presented
in Katris (2021).

Alternatively, machine learning (ML) techniques have also been
applied to model some threatening aspects of the COVID-19 pandemic.
ML approaches have a long history in solving real-world problems in
different fields, including health care, economy and natural language
processing. Concerning the health care area, and particularly the new
SARS-CoV-2 virus, several ML and artificial intelligence expert systems
have been proposed for different purposes. On the one hand, with the
aim of identifying screening and management of SARS-CoV-2 positive
diagnoses, methods have been developed to augment traditional iden-
tification tools, using radio imaging technology to detect abnormalities
associated to COVID-19 infections (Huang et al., 2020; Ng et al.,
2020) as an alternative to conventional tests, or even as standalone
methods when viral testing is not an option. In Song et al. (2021),
a convolutional neural network (CNN) was applied to distinguish be-
tween COVID-19 infected patients, pneumonia infected patients and
healthy patients using computed tomography (CT) images. A deep
neural network called COVID-Net is presented in Wang, Lin and Wong
2

(2020) for identifying positive SARS-CoV-2 diagnoses using chest X ray
(CXR) images. In Abbas, Abdelsamea, and Gaber (2021) a class de-
composition (Abbas, Abdelsamea, & Gaber, 2020) technique is applied
in combination with a pretrained CNN, improving the performance
of the classifiers when the class decomposition layer is included as a
preprocessing step. A combination of deep learning and classical ML
algorithms is proposed in Sethy and Behera (2020), where deep features
of CXR images are extracted from the fully connected layer of a CNN
and used to feed a support vector machine for distinguishing between
healthy, COVID positive and pneumonia images. In Tamal et al. (2021),
a set of radiomics features from CXR images were selected and used
to train three classical ML classifiers, providing an accurate, fast and
automatic method that can be integrated with standard X-ray reporting
systems. Most recently, in Garg, Salehi, Rocca, Garner, and Duncan
(2022), the performances of 20 different CNNs trained for classifying
patients into three and two classes using chest CT images achieved an
accurate and very efficient classification model.

Apart from the new imaging diagnostic assistance mechanisms,
multiple algorithms and statistical techniques have been applied to
obtain an accurate prognosis of the pandemic rates, the peak of out-
breaks in different countries or even estimations of specific pandemic
wave scopes and to create analytical models that could act as decision
support systems. In this sense, in Benvenuto, Giovanetti, Vassallo,
Angeletti, and Ciccozzi (2020), a classical autoregressive integrated
moving average (ARIMA) is applied to analyze the trend of COVID-
19 prevalence and incidence and to perform short-term prediction
about the spread of the virus. In Wang, Zheng, Li and Zhu (2020),
three critical points of infections and recovered cases are estimated in
different countries by considering a hybrid forecast model based on a
logistic curve fit and Prophet (Taylor & Letham, 2018) application. A
comparison of six time series forecasting techniques applied to active
COVID-19 cases is performed in Papastefanopoulos, Linardatos, and
Kotsiantis (2020). Following a similar methodology, in Ribeiro, da
Silva, Mariani, and dos Santos Coelho (2020), the predictive capacity
of different machine learning regression models is measured using data
from 10 Brazilian states. More complex models are used in Verma, Man-
dal, and Gupta (2022) for forecasting purposes, where long short-term
memory (LSTM) recurrent neural networks are designed for predicting
the contagion rate in 4 Indian states. Multiple regressors were applied
in An et al. (2020) to predict the risk of mortality using different
characteristics of an infected person, concluding that variables such
as advanced age or taking metformin are important predictors that
influence the output probability. An assisted fuzzy case-based reasoning
(FCBR) algorithm for determining patient attention priorities based on
eight factors is presented in Geetha, Narayanamoorthy, Manirathinam,
and Kang (2021) with the aim of improving medical assistance and re-
ducing the mortality of COVID-19 patients. In Fidan and Yuksel (2022),
an unsupervised study is carried out to analyze the importance of city-
related parameters, such as population and environmental variables, in
addition to the number of cases to establish restrictions to contain the
spread of the virus. In Desai (2021), the effects of news sentiments are
included in the forecast task, concluding that negative news sentiments
could help to reduce the contagion rate. Finally, in Khan et al. (2021),
a very comprehensive review of research regarding the use of diverse
ML algorithms to combat the COVID-19 pandemic is presented, where
applications such as diagnosis, detection or forecasting are carried out
using different types of data in several countries.

Among all the state-of-the-art techniques in ML, there is one op-
tion that stands out: feed-forward neural networks (Bishop et al.,
1995). This is a highly adaptative technique that can be used to model
most nonlinear problems, mainly due to its universal approximation
capability (Hornik, Stinchcombe, & White, 1989). These models are
layer-divided structures, where each layer is composed of computa-
tional units that are connected to the nodes of the next layer by
weighted connections. Artificial neural networks (ANNs) have been
trained to solve multiple classification and regression problems (Abio-

dun et al., 2018). In this sense, backpropagation is the most popular
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algorithm for adjusting the network parameters in the training stage.
This method computes the gradient of the loss function with respect
to the weights of the network connections. However, even though
this approach can efficiently adjust the weight magnitudes, a global
optimal solution is not guaranteed. The reason behind this is the large
extent of the multidimensional error surface and the presence of local
optima where the backpropagation can get stuck. To perform a more
exhaustive search over this surface, evolutionary algorithms have been
presented as an alternative to discover and explore different regions
(trying to escape from local optima) where more accurate solutions
could be located. For forecasting purposes, evolutionary artificial neu-
ral networks (EANNs) have been applied in different fields such as
renewable energy (Gómez-Orellana, Guijo-Rubio, Gutiérrez, & Hervás-
Martínez, 2022; Mason, Duggan, & Howley, 2018), economy (Au, Choi,
& Yu, 2008; Chiroma, Abdulkareem, & Herawan, 2015; Yi-Hui, 2007)
or environment (Lu, Fan, & Lo, 2003). When modeling a future value
as a target variable, it is important to consider the existing trade-off
between accuracy and anticipation. Short-term events are usually easier
to model but do not offer enough anticipation time, while long-term
horizon forecasts are very useful for anticipating important events,
but their accuracy decreases when the forecasting horizon increases.
It is worth mentioning that the concepts of short and long horizons
are relative and depend on the field of study where the prediction is
carried out. Thus, in Gómez-Orellana et al. (2022), a 48-h forecast is
considered a long-term horizon, while in Au et al. (2008) they refer
to weekly events as short-term events. In the field of epidemiology,
since the parameters associated with an outbreak evolve rapidly and
the information is reported daily, 1, 3, and 5 days can be considered to
be short-, mid- and long-term horizons, respectively.

In this study, we make the following contributions. First, we pro-
pose a novel methodology for the analysis of the contagion curve
by extracting evolution characteristics. The extraction procedure is
performed through an iterative process of polynomial model fitting. The
coefficients of the polynomial model fitting the cumulative contagion
curve describe the shape and evolution of the curve, where points
represent days since the beginning of each wave. This procedure allows
the collection of inherent features of a process that can be used as
related information, which is especially useful when process exogenous
related information is scarce. Second, we apply this methodology to
real data involving the number of infected people in different locations
of Andalusia (Spain) to build a transfer function per zone that can
predict the evolution of the contagion rate on the different stages
of the pandemic. By means of this methodology, we build a mul-
tivariate time series dataset per sanitary district by considering the
real cumulative contagion curve data as the dependent series and the
polynomial coefficient series as independent correlated series. Third,
we estimate the parameters of these transfer functions using EANNs,
with data from different periods of the pandemic waves that took place
in Andalusia. Given that every district presents different contagion
rates in the considered outbreaks, different architectures of EANNs
are considered using distinct basis functions in the nodes belonging
to the hidden layer with the goal of finding the best network scheme
for each district. By using distinct periods for the estimation of the
parameters, we build a forecast model per sanitary district using a
different order of lags that serves to obtain an accurate prediction about
the contagion rate in different stages of an outbreak. This results in
models that can identify the beginning and ending of new outbreaks
and predict the evolution of the contagion rate during the most critical
phase. The parameter estimation is carried out by considering mid-
and long-term time forecast horizons (3 and 5 days, respectively). The
eason behind the choice of these time horizons is that they offer
n acceptable trade-off between anticipation and accuracy. To serve
s decision support for adopting prevention measures, 3- and 5-day
redictions of the number of contagions are enough to devise suitable
ontainment schemes. Larger horizons lead to less accurate results. It
3

s not appropriate to base sensitive decisions such as the application j
of restriction measures on such results. Additionally, we consider a
combined estimation where both time forecast horizons are involved in
a single model using a multitask evolutionary artificial neural networks
(MuEANNs) approach. The resulting models can act as a decision
support system in new emergency situations caused by new viruses or
strains with similar contagion rate behavior. The results obtained with
the models that are trained with the extracted polynomial information
significantly outperform those obtained with models trained with pure
autoregressive data in almost all districts. Specially, the accuracy is
increased by up to 73.55% in the case of the Almería district.

The remainder of this paper is organized as follows: in Section 2, we
describe the data source and perform an analysis of the data used in this
study. The proposed methodology is explained in Section 3 where the
polynomial curve fit, the dataset building process, the autoregressive
forecast models and the EANNs are presented. The experimental design
and results obtained for each architecture, dataset and forecasting
approach are presented in Section 4. Finally, we conclude the paper
in Section 5.

2. Data description

The data used in this study and some considerations are speci-
fied in this section. This article focuses on eight areas of Andalusia,
the country’s second largest and most populated autonomous region,
located in southern Spain. The data were obtained from the official
website of the Andalusia government,1 where the number of COVID-19
diagnosed, cured and deceased people were reported daily and seg-
regated into 34 sanitary districts. Sanitary districts are administrative
divisions that have local health management competencies in specific
zones of Andalusia. These divisions are represented in Fig. 1, where
the eight districts that include the provincial capitals are highlighted
in green and their populations are specified. For this study, the daily
reported information in these eight sanitary districts from July 11, 2020,
to August 30, 2021, is used, resulting in a total of 417 observations, each
epresenting one day of an outbreak. During this period of time, four
ifferent waves took place in Andalusia. Although the data reported
y the Andalusia government about positive diagnosed contagions are
vailable since March 30, 2020, the data until July 11, 2020 correspond
o the first wave of the pandemic. During this wave, the country wide
ockdown resulted in a low intensity and short time wave. Hence we
ecided to exclude this period from the analysis.

The reported information presents a weekly pattern of fewer diag-
osed contagions during weekends, making the positive diagnoses time
eries highly noisy. This effect is common to most countries (Ricon-
ecker, Tarrasch, Blinder, & Ben-Eliyahu, 2020) and is due to the lower
umber of patients tested on Saturdays and Sundays, differences in
esting timings and reporting delays. Missing data on weekends are
sually included in the first days of the weekly reports thereby preserv-
ng the real number of positive diagnoses. Figs. 2(a) and 2(b) show,
espectively, the daily and cumulative positive COVID-19 diagnosis
ime series belonging to the district of Córdoba, one of the districts
onsidered in this study, from July 11, 2020 to August 30, 2021.

In Fig. 2(a), the noise produced by the weekly cycles is observable,
resulting in a visible sawtooth effect in the contagion time series.
The representation of the cumulative case time series is shown in
Fig. 2(b) where the noise is considerably mitigated, leading to a soft and
monotonically nondecreasing time series. The temporal trend of this
district is repeated for the other 33 districts, while varying in magnitude
according to specific district parameters, such as the geographic loca-
tion or the total population. The temporal positive diagnoses returned
four different waves, each one defined by an increment and followed
by a drop in the contagion rate.

1 The number of infections in Andalusia are reported daily in https://www.
untadeandalucia.es/institutodeestadisticaycartografia.

https://www.juntadeandalucia.es/institutodeestadisticaycartografia
https://www.juntadeandalucia.es/institutodeestadisticaycartografia


Expert Systems With Applications 207 (2022) 117977M. Díaz-Lozano et al.
Fig. 1. Geography of the 34 sanitary districts of Andalusia. The 8 districts including provincial capitals are highlighted in green.
Fig. 2. Daily (a) and cumulative (b) reported positive COVID-19 diagnoses in the district of Córdoba from July 11, 2020, to August 30, 2021.
As mentioned above, the first wave has not been considered due to
its low intensity and short wave time. Therefore, for this analysis, the
following waves have been used: the second wave spans from July 11,
2020, to December 15, 2020, and its long-term evolution is characterized
by a high peak of positive contagions and a gradual increment and drop
in the contagion rate. During this wave, the average age of the people
needing hospital care decreased compared to the first wave and the
mean hospitalization time was also reduced (Iftimie et al., 2021). The
4

third wave spans from December 15, 2020, to March 13, 2021. The begin-
ning of the contagion rate of this wave is highly accelerated because of
the removal of control measures due to the Christmas holidays. During
this period, mobility and social interaction increased, resulting in a
quick increment in the number of infected people and the maximum
number of COVID-19 cases was reached. At the end of the holiday
period, when control measures were reset, the contagion rate slowed
down. The fourth wave, lasting from March 13, 2021, to June 20, 2021,
is defined by a soft initial diagnoses increment owing to the beginning
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Fig. 3. Overview flowchart describing the applied methodology.
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f the vaccination campaign. This wave presents two peaks provoked
y the different changes in the containment measures policies. Finally,
he fifth wave took place in summer, from June 20, 2021, to August 30,
021, a period where control policies were loose. However, the high
accination rate produced a wave with weak magnitude and short time
eriod. Considering these partitions, the second, third, fourth and fifth
aves consist of 157, 88, 99 and 71 observations, respectively. These
ates have been chosen based on expert knowledge and the behavior
bserved in the daily contagion curves of the considered districts.

The nature of these four waves is very different in terms of evolution
ecause of the distinct social policies, control measures and vaccination
ampaigns that took place along their respective developments, result-
ng in a heterogeneous set of rates for each wave. For this reason, with
he main objective of modeling the complete period of the pandemic,
ncluding the most diverse information possible about all stages is
rucial. In this study, 3 different periods for each wave are considered:
eginning, growth and stabilization. Including information about these
hree stages in the parameter optimization phase results in models that
an detect imminent increases in contagion rates that can potentially
ead to local outbreaks, accurately predict the evolution of an initiated
utbreak and recognize in advance the end of virus transmission.

. Proposed methodology

In this section, the methodology proposed in this paper and the pro-
ess to generate the datasets used in the experimentation are detailed.
o provide an overview and facilitate understanding, Fig. 3 presents a
lowchart containing all the steps detailed in this section.

.1. Curve fitting

Many empirical data obtained from natural processes describe pat-
erns that may be defined using algebraic expressions. Curve fitting
echniques help to understand the inherent behavior of a process and
ay be useful in description, clustering or forecasting tasks (Motulsky
Ransnas, 1987). If the nature of the underlying process is known, an

ccurate parametric function working as an approximator results in a
oft curve whose parameters constitute a characterization of the empir-
5

cal data evolution. The information extracted from the fitted curve can
e used in ML tasks as important features, both in supervised (Hamidi,
hassemian, & Imani, 2018) and unsupervised (Abraham, Cornillon,
atzner-Lber, & Molinari, 2003; Martin et al., 1998) contexts.

In this paper, we consider the approximation by a polynomial func-
ion of the cumulative curve of contagions of the 8 districts involved

in this study by the least squares method. The shape of the curve
described in each wave is defined by a soft initial growth. Then, when
a sufficiently high number of infected people is reached, an exponential
increment occurs due to the high contagion rate. The waves finish with
a linear evolution when the outbreak is under control, but residual
positive cases are still present. According to this shape, a third-order
polynomial is the most interpretable and lowest-variance model that
can accurately fit the cumulative curve of each wave individually. The
polynomial regression is a type of fit where the dependent variable 𝑦𝑑
linearly depends on the powers of a single independent variable, in this
case, the number of days from the beginning of the wave. A 𝑘-degree
polynomial model, which is composed of 𝑘 + 1 parameters, is defined
as:

𝑦𝑑 = 𝛼0 + 𝛼1𝑑 + 𝛼2𝑑
2 + 𝛼3𝑑

3 +⋯ + 𝛼𝑘𝑑
𝑘 + 𝑒𝑑 , (1)

where 𝑦𝑑 is the cumulative number of contagions after 𝑑 days from
the beginning of an outbreak, α𝑘 = {𝛼0, 𝛼1, 𝛼2,…, 𝛼𝑘} are the 𝑘 + 1
parameters to be estimated and 𝑒𝑑 is the error term. For this study,
the chosen 3-degree polynomial model is composed of 4 parameters to
e estimated during fit and has a single inflexion point along with its
omain, where the function changes its concavity.

Following an iterative procedure, for each time period between the
tart of the outbreak 𝑖 (Day 0) and a day 𝑑, a 3-degree polynomial model
s fitted. Once the polynomial model has been fitted, the estimated pa-
ameters are used to describe a point of the curve, which is represented
s: 𝑃𝑑,𝑖 = {α𝑑,𝑖, 𝑦𝑑,𝑖}, where α𝑑,𝑖 = {𝛼1,𝑑,𝑖, 𝛼2,𝑑,𝑖, 𝛼3,𝑑,𝑖, 𝛼4,𝑑,𝑖} includes the

four parameters of the third order polynomial. Note that each point
of the curve represents a single day belonging to the 𝑖th outbreak,
where 𝑖 ∈ {2, 3, 4, 5}. Moreover, it is worth mentioning that the sanitary
districts are considered independently. A more detailed description of
the variables representing each point 𝑃𝑑,𝑖 is given in Table 1.

Given that for building accurate models a minimum number of days

is needed, 𝑑 can only take values in the range [𝑚𝑖, 𝐷𝑖]. In this way, 𝑚𝑖 is
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Table 1
Descriptors of a point of the cumulative curve of contagions.

Variable Description

𝛼1,𝑑,𝑖 Estimated 𝛼1 after 𝑑 days of the 𝑖th wave
𝛼2,𝑑,𝑖 Estimated 𝛼2 after 𝑑 days of the 𝑖th wave
𝛼3,𝑑,𝑖 Estimated 𝛼3 after 𝑑 days of the 𝑖th wave
𝛼4,𝑑,𝑖 Estimated 𝛼4 after 𝑑 days of the 𝑖th wave
𝑦𝑑,𝑖 Cum. contagions after 𝑑 days of the 𝑖th wave

Table 2
𝑀𝑒𝑎𝑛, and standard deviation, (𝑆𝐷), of the 𝑅2 statistics for the fitted polynomial
models.

District 𝑅2

𝑀𝑒𝑎𝑛 𝑆𝐷

Almería 0.9954 0.0043
Cádiz Bay 0.9961 0.0023
Córdoba 0.9944 0.0075
Granada 0.9947 0.0047
Huelva Coast 0.9932 0.0044
Jaén 0.9929 0.0166
Málaga 0.9959 0.0029
Sevilla 0.9967 0.0028

the minimum number of observations needed to build accurate models,
and 𝐷𝑖 is the total duration, in days, of the 𝑖th outbreak. Therefore, the
number of polynomial models to be fitted for outbreak 𝑖 is (𝐷𝑖−𝑚𝑖+1).

For the estimation of 𝑚𝑖, the evolution of the quality of the fitted
polynomial models has been measured for the 8 sanitary districts under
study, using the coefficient of determination 𝑅2 as an evaluation metric,
defined in Eq. (2) for the 𝑖th wave. 𝑅2 statistic represents the proportion
of the variance of the dependent variable explained by the independent
variables:

𝑅2
𝑖 = 1 −

∑𝐷𝑖
𝑑=1(𝑦𝑑,𝑖 − �̂�𝑑,𝑖)2

∑𝐷𝑖
𝑑=1(𝑦𝑑,𝑖 − �̄�𝑖)2

, (2)

where 𝑦𝑑,𝑖, a real number, is the cumulative contagions after 𝑑 days, �̂�𝑑,𝑖
is the number of cumulative contagions predicted by the model, and 𝑦𝑖
s the mean of observed cumulative contagions. This metric ranges from
to 1, reaching its maximum value when the model is able to entirely

xplain the variance present in the real data, e.g., fitting perfectly to
he empirical nature of the observed contagion rate.

Analyzing the evolution of the mean 𝑅2 magnitude of the fitted
olynomial models of the eight districts, the minimum feasible 𝑚𝑖
hoice for each outbreak is based on the instant from which it begins
o stabilize. At the beginning of the waves, the cumulative number of
ontagions is reset to 0, considering the waves individually, e.g., ig-
oring the cumulative number of infected people of past waves. Fig. 4
hows the average, maximum and minimum evolution of the coefficient
f determination for the eight sanitary districts, and the chosen 𝑚𝑖 is
ndicated with a vertical line. The minimum number of days 𝑚𝑖 where
he determination coefficient variance begins to stabilize corresponds
o 21, 13, 12 and 15 for the second, third, fourth and fifth waves,
espectively. Considering these initial thresholds for fitting polynomial
urves, from the 415 observations of each district, a total of 61 days
re used as the minimum number of observations to build accurate
egressions, resulting in a total of 358 polynomial fits on the entire

pandemic period for each district. In Table 2, the 𝑀𝑒𝑎𝑛 𝑅2, and
tandard deviation, 𝑆𝐷, of all approximated models for each district
re presented. As shown in Table 2, the selected polynomial models fit
nalytically well for all districts and waves.

.2. Autoregressive models

Formally, a time series 𝑇 = (𝑣1, 𝑣2,… , 𝑣𝑙) of length 𝑙 is an ordered
equence of values 𝑣𝑗 . The timestamps 𝑗 = {1, 2,… , 𝑙} conform to a
6

equence of positive and ascending discrete values, which, in most
ases, are equally spaced. Time series are produced by any kind of
equenced phenomenon, whether natural, such as the climate in a par-
icular location, or artificial, such as stock prices of a given enterprise
ver time. Due to its intrinsic temporal nature, time series have been
he object of investigation in multiple fields of data mining, such as
orecasting, classification, clustering, and outlier analysis (Fu, 2011).

time series may be composed of more than one time-dependent
ariable measured at the same time instant. In this case, time series
re called multivariate, and its analysis involves modeling the inherent
elationship between the dimensions that compose it. Mathematically, a
ultivariate time series 𝑇 = (𝒗1, 𝒗2,… , 𝒗𝑙) of length 𝑙, is composed of 𝑁
imensions; thus, the value is a vector 𝒗𝑇𝑗 = (𝑣1,𝑗 , 𝑣2,𝑗 ,… , 𝑣𝑁,𝑗 ) of length
. In this sense, the point descriptors, obtained from the polynomial fit

terative process described in Section 3.1 and detailed in Table 1, are
sed to build a multivariate time series dataset per district.

Within the scope of time series forecasting, autoregressive (AR)
odels are a useful technique for modeling future values by using the

nformation of the 𝑝 past instants. A 𝑝-order AR model, denoted as
𝑅(𝑝), can be applied to the target variable as follows:

𝑑 = 𝑐 +
𝑝
∑

𝑗=1
𝛾𝑗𝑣𝑑−𝑗 + 𝑒𝑑 , (3)

here 𝑣𝑑 is the target value obtained from past lagged values (𝑣𝑑−𝑗 for
= {1, 2,… , 𝑝}), 𝑐 is a constant that serves as the intercept of the model,
𝑗 is the 𝑗th coefficient of the model, and 𝑒𝑑 is the error term. AR models
epresent any value of the series as a combination of its 𝑝 past values.
pecifically, in this study, AR models will be used for the prediction of
he number of cumulative contagions of the 𝑖th outbreak of 𝑑; hence,
𝑑 = 𝑦𝑑,𝑖 (note that 𝑑 is the number of days since the beginning of
he 𝑖th outbreak). Furthermore, when the forecasting of the number of
umulative contagions is carried out by using multivariate time series,
vector autoregressive model (VAR) (Zivot & Wang, 2003) is used.

hese VAR models generalize the AR model by including information
f the different dimensions of the time series (independent terms) to
odel the target time series (dependent term). 𝑉 𝐴𝑅(𝑝) models include
lags of all the dimensions of a given time series, in our case, lags of

he point descriptors presented in Table 1. Consequently, the 𝑉 𝐴𝑅(𝑝)
odel composed of 𝑁 dimensions is defined as follows:

𝑑 = 𝑐 +
𝑝
∑

𝑗=1
𝜸𝑗𝒗𝑑−𝑗 + 𝑒𝑑 , (4)

here 𝜸𝑗 is the vector of model coefficients and 𝒗𝑑−𝑗 is the vector
ontaining the 𝑗th lagged representation of the curve point belonging
o the 𝑖th outbreak, i.e, the 𝑗th lagged values of the variables described
n Table 1. Note that the 𝒗 vector has length 𝑁 . In the same way that
appens with AR models, VAR models will be used for the prediction
f the number of cumulative contagions of the 𝑖th outbreak of 𝑑; hence,
𝑑 = 𝑦𝑑,𝑖.

.3. Artificial neural networks

Artificial neural network (ANN) models (Bishop et al., 1995) have
een applied to a large number of regression and classification tasks,
emonstrating great performance due to their capability of being uni-
ersal approximators (Hornik et al., 1989). In this sense, multiple ANN
odels have been proposed in recent years: one of the first approaches
as the multilayer perceptron (MLP) (Bishop et al., 1995) with sigmoid
nits (SUs) as basis functions for the nodes in the hidden layers.
ther alternatives include the radial basis function (RBF) (Broom-
ead & Lowe, 1988; Poggio & Girosi, 1989) neural networks, which
sually make use of Gaussian transfer functions in the nodes of the
idden layers, and multiplicative networks, which use product units
PUs) (Durbin & Rumelhart, 1989), computing a weighted product
nstead of a weighted sum for a node input.

In this paper, given that mid- and long-term forecasts are con-
idered, the use of single and simultaneous forecasts is proposed. In
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his sense, two different models of ANNs are developed. On the one
and, ANNs aim to perform each forecast task separately (monotask),
nd on the other hand, ANNs achieve both forecast tasks simultane-
usly (multitask). Accordingly, monotask models only have one output,
hereas multitask models have two outputs. Considering that the aim
f this work is to forecast the cumulative number of contagions, two
ifferent horizons have been considered: 𝑦𝑑+3,𝑖 and 𝑦𝑑+5,𝑖. These two
orecast horizons are focused on predicting the cumulative number of
ontagions at mid- and long-term, i.e., 3 and 5 days ahead, respectively.

Therefore, the ANNs models applied to perform the forecast tasks
an be defined as follows:

𝑞(𝐱,θ) = 𝛽𝑞0 +
𝑚
∑

𝑗=1
𝛽𝑞𝑗𝐵𝑗 (𝐱,𝐰𝑗 ), 𝑞 = {1, 2}, (5)

here 𝑓𝑞 is the model output for the forecast task considering the
utput 𝑞, θ = {β1,… ,β𝑞 ,𝐰} is a vector including the basis function pa-
ameters corresponding to the synaptic weights: β𝑞 = {𝛽𝑞0, 𝛽𝑞1,… , 𝛽𝑞𝑚}
ncluding the weights from the hidden layer to the 𝑞th output node,
nd 𝐰𝑗 = {𝑤𝑗0, 𝑤𝑗1,… , 𝑤𝑗𝑛}, containing the weights of the connections
rom the 𝑛 input nodes to the 𝑗th hidden node, 𝑚 being the number
f neurons in the hidden layer. 𝐵𝑗 (𝐱,𝐰𝑗 ) represents the basis function
f the 𝑗th hidden neuron, 𝐱 being the set of inputs of the ANN model
Table 3 shows a complete description of the different variables used).

With respect to the type of neurons of the hidden layer, in this study,
wo different basis functions (BFs) are considered:

1. Radial Basis Function (RBF), as a kernel BF, with a Gaussian
Transfer Function (GTF), defined as follows:

𝐵𝑗 (𝐱𝑖,𝑑 , 𝐜𝑗 |𝐫𝑗 ) = exp

(

−
‖𝐱𝑖,𝑑 − 𝐜𝑗‖2

2𝑟2𝑗

)

, (6)

where 𝐜𝑗 = (𝑤𝑗1, 𝑤𝑗2,… , 𝑤𝑗𝑛) and 𝑟𝑗 = 𝑤𝑗0 being the centroid
and radius of the GTF, respectively.

2. Product Unit (PU), as a projection BF, defined as follows:

𝐵𝑗 (𝐱𝑖,𝑑 ,𝐰𝑗 ) =
𝑛
∏

𝑘=1
𝐱𝑤𝑗𝑘
𝑖,𝑑 , (7)

where 𝐰𝑗 = {𝑤𝑗1, 𝑤𝑗2,… , 𝑤𝑗𝑛} are the weights from the input
layer to the hidden layer.
7

Furthermore, combining BFs in the hidden layer has some advantages,
such as providing flexibility to the decision rules. Any continuous
function can be decomposed into two different types of functions:
one belonging to the projection group and the other belonging to the
kernel group (Donoho & Johnstone, 1989). In this sense, hybrid ANNs
(both monotask and multitask) have also been considered. Such hybrid
models combine PU (projection) and RBF (kernel) BFs in the hidden
layer, i.e., they perform a linear combination of both types of BFs. These
hybrid ANN models are defined as follows:

𝑓𝑞(𝐱,𝜽) = 𝛽𝑞0 +
𝑚1
∑

𝑗=1
𝛽1𝑞𝑗𝐵

1
𝑗 (𝐱,𝐰

1
𝑗 ) +

𝑚2
∑

𝑗=1
𝛽2𝑞𝑗𝐵

2
𝑗 (𝐱,𝐰

2
𝑗 ), 𝑞 = {1, 2}, (8)

where 𝑚1 and 𝑚2 are the numbers of hidden neurons of the first and sec-
nd types, respectively. θ = {β1,… ,β𝑞 ,𝐰1

1,… ,𝐰1
𝑚1
,𝐰2

1,… ,𝐰2
𝑚2
} con-

tains the coefficients of the ANN model, β𝑞 = {𝛽𝑞0, 𝛽1𝑞1,… , 𝛽1𝑞𝑚1
, 𝛽2𝑞1,… ,

𝛽2𝑞𝑚2
} being the coefficients between the hidden layer and the 𝑞th

output node, and 𝐰1
𝑗 and 𝐰2

𝑗 being the weights connecting the input
layer to the 𝑗th hidden neuron of the first and the second type,
respectively. 𝐵1

𝑗 (𝐱,𝐰
1
𝑗 ) and 𝐵2

𝑗 (𝐱,𝐰
2
𝑗 ) represent the basis functions of

each type, defined in Eqs. (6) and (7).
The general forecast task proposed in this study considers the real

number of cumulative contagions as the continuous variable to be
forecasted. Consequently, for the evaluation of the ANNs, the mean
square error (MSE) of the network output layer with respect to the real
values is used as the loss function, defined as follows for the monotask
models:

𝑀𝑆𝐸(𝐱,θ) =

∑5
𝑖=2

∑𝐷𝑖−ℎ
𝑑=𝑚𝑖

(

𝑦𝑑+ℎ,𝑖 − �̂�𝑑+ℎ,𝑖
)2

∑5
𝑖=2 𝐷𝑖 − ℎ − 𝑚𝑖

, (9)

here 𝑦𝑑+ℎ,𝑖 and �̂�𝑑+ℎ,𝑖 are the real and forecasted cumulative numbers
f contagions, respectively. Note that �̂�𝑑+ℎ,𝑖 specifies the general output
𝑞(𝐱,θ) of the monotask model (𝑞 = 1) forecasting the cumulative

number of contagions for the day 𝑑 + ℎ of the 𝑖th outbreak.
Moreover, as mentioned above, in this study, two forecast horizons
are considered: ℎ = 3 or ℎ = 5. Accordingly, the loss function to
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evaluate the multitask models is defined as:

𝑀𝑆𝐸(𝐱,θ) =

∑5
𝑖=2

∑𝐷𝑖−5
𝑑=𝑚𝑖

[

(𝑦𝑑+3,𝑖 − �̂�𝑑+3,𝑖)2 + (𝑦𝑑+5,𝑖 − �̂�𝑑+5,𝑖)2
]

2
∑5

𝑖=2 𝐷𝑖 − 5 − 𝑚𝑖

, (10)

where, in this case, �̂�𝑑+3,𝑖 = 𝑓1(𝐱,θ) and �̂�𝑑+5,𝑖 = 𝑓2(𝐱,θ).

3.4. Evolutionary artificial neural networks

Even though ANNs are considered to be universal approximators,
for the different BFs, the required training time and final complexities
of the networks may vary significantly. The speed of convergence may
be a problem for those cases involving a sufficiently high number of
patterns in the training set or when the complexity of the network
increases, becoming the main challenge to be addressed (Livni, Shalev-
Shwartz, & Shamir, 2014). In most studies, gradient-based methods
have been applied to optimize ANN parameters. However, due to the
nonlinear nature of ANNs, the optimization process may converge to
one of the many local optima existing on the error surface of these
models (Sutton, 1986).

To perform a more exhaustive exploration process over the error
surface, Yao (1993) presented a thorough review of evolutionary algo-
rithms (EAs) applied to the optimization of ANN parameters. EAs use
a set of different candidate solutions (population) to: (1) simulate the
evolutionary process and natural selection and (2) provide the algo-
rithm with a global search capability with the objective of discovering
regions on the error surface where good performance solutions are
located. Therefore, EAs represent an efficient method to optimize both
the structure and weight connections of ANNs.

In this work, the EA proposed in Martínez-Estudillo, Martínez-
Estudillo, Hervás-Martínez, and García-Pedrajas (2006) is applied to
optimize the ANN models described in Section 3.3. In Algorithm 1 the
pseudocode of the EA is shown. As the goal of the EA is to minimize the
MSE of the ANNs, the fitness function 𝐴(𝐱,θ) guiding the evolutionary
process is defined as a strictly decreasing transformation of the MSE:

𝐴(𝐱,θ) = 1
1 +𝑀𝑆𝐸(𝐱,θ)

. (11)

Consequently, the fitness for the monotask or multitask ANNs is
alculated using the MSE defined in Eq. (9) or Eq. (10), respectively.

The EA begins creating an initial population of 𝑁 ANNs. Each
NN (individual) of the population is randomly generated, i.e., the
umber of neurons in the hidden layer, the number of connections
f each hidden neuron (to link both the input layer to the hidden
ayer and the hidden layer to the output layer), and the weights of
hose connections are randomly generated considering the parameters
escribed in Table 4 of Section 4.2. Next, the ANNs are evaluated and
anked according to their fitness.

After that, ANN optimization (evolutionary process) is performed
s long as the stopping criteria are not met. Specifically, two stopping
riteria are considered, as shown in Table 4 of the following Section 4.2.
ence, if either of them is reached, then the EA stops. In each genera-

ion of the evolutionary process, the worst 10% of ANNs are replaced
ith a copy of the best 10% of ANNs, which represents an elitist
ressure since the best 10% of individuals (after being cloned, they
onstitute the 20% of the population) are optimized in a different way,
s described below. Next, all individuals are evolved by simultaneously
pplying two types of mutations: parametric and structural.

Parametric mutation is applied to the best 10% of ANNs and updates
heir weights by adding Gaussian noise, whose variance decreases
hroughout the evolutionary process, i.e., the strength of the changes
ecreases as the individuals become better. In that way, this adaptive
ariance (particularly to each individual) dynamically modifies the
ntensity of the exploration of the error surface, favoring exploitation
s the performance of the individual increases.

On the other hand, structural mutation (applied to the remaining
8

0% of ANNs) alters the structure of individuals. More specifically,
his type of mutation modifies the number of hidden neurons and
heir number of connections between input and output layers, i.e., it
xplores a wider area of the search space while trying to maintain
he diversity of individuals. In particular, the EA applies five types
f structural mutations: Add Neuron, Delete Neuron, Add Link, Delete
ink and Neuron Fusion (Gutiérrez, Hervás, Carbonero, & Fernández,
009), which are applied sequentially to each individual.

Thus, the performance of individuals is improved throughout the
volutionary process, generation after generation, maximizing their
itness (and hence minimizing their MSE). Finally, the ANN with the
est fitness is selected as the final solution when the EA stops. Since
he population is randomly initialized, the EA has a stochastic com-
onent. Therefore, different runs will lead to distinct populations and,
onsequently, to different final solutions.

In this way, and regardless of the BFs used in the hidden layer,
he developed evolutionary artificial neural networks (EANNs) will be
enominated as monotask EANNs (MoEANNs) and multitask EANNs
MuEANNs) depending on whether they perform the forecast tasks
eparately or simultaneously, respectively.

Algorithm 1 Evolutionary Algorithm
1: Randomly create a population of ANNs with size 𝑁
2: Evaluate and rank ANNs with respect to their fitness using Eq. (11)
3: while stopping criteria are not met do
4: Replace the worst 10% of ANNs with a copy of the best 10% of

ANNs
5: Apply parametric mutation to the best 10% of ANNs
6: Apply structural mutation to the remaining 90% of ANNs
7: Evaluate and rank ANNs with respect to their fitness using

Eq. (11)
8: end while
9: Select the best fitness individual as the final solution

4. Experiment settings and results

The settings used in the experimentation and the results obtained
using EANN models are presented in this section. In addition, a statisti-
cal analysis is performed to evaluate significant differences between the
models and datasets used, with respect to the distinct sanitary districts
considered.

4.1. Datasets

To analyze the effect of the polynomial information in the forecast-
ing task, for each district, different multivariate time series datasets are
constructed by combining different sets of input variables and autore-
gressive orders. Experimental results have empirically demonstrated
that using the four polynomial coefficients simultaneously generates
overfitted models, performing poorly on the generalization set. For this
reason, only the coefficients defining the critical point of the 3-degree
polynomial model are considered in the dataset building process. The
critical point is produced when the function changes its concavity
which is related to the instant where the outbreak gets out of control,
and, therefore, the number of positive cases begins to rise exponen-
tially. This moment is reached when the second derivative of the
polynomial is equal to zero, i.e., 𝑑inflexion = − 𝛼3

3𝛼4
. Consequently, only

these two coefficients will be considered as polynomial information in
the datasets because they characterize the inflexion moment with 𝛼4
having more importance.

Table 3 shows the inputs of the EANN models. Regarding the
coefficients extracted from the polynomial approximation, except for
the coefficient 𝑦, which is always included in the AR/VAR models, the
other two coefficients, 𝛼3 and 𝛼4, can be included or not. Moreover,
apart from these coefficients, the number of days 𝑑𝑖 from the beginning
of the 𝑖th wave is always included as an input variable with the aim



Expert Systems With Applications 207 (2022) 117977M. Díaz-Lozano et al.

t
n

i
e
t
r
S
b
a
s
a
a

f

M
d
d

t
p
p

t
o
t
u
m
f
b
i
t

o
a
s

m
M

e
o
t

4

p
c
a
t
o
a
T
a
s

Table 3
Inputs (𝐱𝑑,𝑖) included in the EANNs for day 𝑑 belonging to the 𝑖th outbreak. 𝐼 is the
otal number of inputs for the generated datasets. Note that the different datasets are
amed according to the AR models used (either AR or VAR).
Lags Dataset name 𝐱𝑑,𝑖 I

𝑝 = 1
𝐴𝑅(1)𝑦 {𝑦𝑑−1,𝑖 , 𝑑𝑖} 2
𝑉 𝐴𝑅(1)𝑦,𝛼4 {𝑦𝑑−1,𝑖 , 𝛼4,𝑑−1,𝑖 , 𝑑𝑖} 3
𝑉 𝐴𝑅(1)𝑦,𝛼3 ,𝛼4 {𝑦𝑑−1,𝑖 , 𝛼3,𝑑−1,𝑖 , 𝛼4,𝑑−1,𝑖 , 𝑑𝑖} 4

𝑝 = 2
𝐴𝑅(2)𝑦 {𝑦𝑑−1,𝑖 , 𝑦𝑑−2,𝑖 , 𝑑𝑖} 3
𝑉 𝐴𝑅(2)𝑦,𝛼4 {𝑦𝑑−1,𝑖 , 𝛼4,𝑑−1,𝑖 , 𝑦𝑑−2,𝑖 , 𝛼4,𝑑−2,𝑖 , 𝑑𝑖} 5
𝑉 𝐴𝑅(2)𝑦,𝛼3 ,𝛼4 {𝑦𝑑−1,𝑖 , 𝛼4,𝑑−1,𝑖 , 𝛼3,𝑑−1,𝑖 , 𝑦𝑑−2,𝑖 , 𝛼4,𝑑−2,𝑖 , 𝛼3,𝑑−2,𝑖 , 𝑑𝑖} 7

of temporally locating the fitted evolution. Notably, the 𝐴𝑅(𝑝) and
𝑉 𝐴𝑅(𝑝) models are applied with 𝑝 = 1, 2. Therefore, the simplest
dataset is built with only two input variables (𝑦 lagged 1 time and 𝑑𝑖),
being identified as 𝐴𝑅(1)𝑦. On the other hand, the most complex dataset
is built with seven input variables (being 𝑦, 𝛼3 and 𝛼4 lagged two times
and 𝑑𝑖), which is identified as 𝑉 𝐴𝑅(2)𝑦,𝛼3 ,𝛼4 . Note that the total number
of input variables is specified in column 𝐼 of Table 3.

Regarding the target or output variables, as mentioned in the pre-
vious Section 3.3, the cumulative number of contagions at two dif-
ferent time horizons is employed, 𝑦𝑑+3,𝑖 and 𝑦𝑑+5,𝑖. For the MoEANN
approaches, two different datasets are built as 𝑆𝑚 = {(𝐱𝑑,𝑖, 𝑦𝑑+ℎ,𝑖)}, de-
pending on the forecasting horizon, ℎ = 3 or ℎ = 5. On the other hand,
for the simultaneous forecasting with ℎ = 3 and ℎ = 5 carried out by the
MuEANN approach, the dataset is built as 𝑆𝑀 = {(𝐱𝑑,𝑖, 𝑦𝑑+3,𝑖, 𝑦𝑑+5,𝑖)}.
Note that 𝐱𝑑,𝑖 is one of the six combinations presented in Table 3.

The train and test partitions have been generated while taking
nto account the three stages previously mentioned in Section 2. From
ach wave, a specific period has been included in the generalization
est, aiming to include as many different cases as possible to build
obust models. The rest of the stages are included in the training set.
pecifically, the testing partition is composed of the beginning stage
elonging to the second wave, the growth stage of the fourth wave
nd the stabilization stage from the third wave and fifth wave. This
plitting methodology is shown in Fig. 5, where periods for training
nd testing sets are represented over the cumulative contagion curve
nd the evolution of polynomial coefficients (𝛼4 and 𝛼3) for the district

of Sevilla. This hold-out splitting methodology responds to the need to
involve as much information as possible about the different stages of
all the waves in the training set. With these nonrandom partitions, we
aim to create a heterogeneous and representative set of observations for
training and testing sets, given that the application of cross-validation
would have increased unaffordably the needed runs of the algorithm.
Therefore, from the 358 patterns that were involved in the datasets for
each district, the final datasets used in the experimentation contain 350
and 354 observations for the two considered autoregressive orders 𝑝 = 1
and 𝑝 = 2, respectively. Note that for 𝑝 = 1, the first observation from
each of the 4 waves is needed to build the final datasets, whereas in
the case of 𝑝 = 2, the initial observations needed are 2. From these
final datasets, 283 and 71 for 𝑝 = 1, (and 280 and 70 for 𝑝 = 2)
patterns are used for building the training and testing sets, respectively
(representing 80% and 20% of the total data).

4.2. Experimental settings

The contagion curve is specific for every district, varying in mag-
nitude and transmission rate according to geographical and population
parameters. To find the best model and dataset for each specific dis-
trict, the experimentation carried out in this paper makes use of all
generated options detailed in Table 3 for all districts. In this way,
the considered BFs for the ANNs detailed in Section 3.3 have been
applied to estimate the weights from the input layer to the hidden
layer of the models, resulting in 18 different combinations per district:
9

3 ANNs (using each one a different BF combination: PU, RBF or the i
Table 4
Parameter values that have been used in the EA for all models (PU, RBF and RBF+PU
or both MoEANNs and MuEANNs).
Parameter Value

Independent runs 40
Stopping criteria:

(1) maximum number of generations 1500
(2) consecutive generations without improving individuals 10

Population size 1000
Number of hidden layers of each individual 1
Minimum number of hidden neurons (initialisation) 2
Maximum number of hidden neurons (initialisation) 3
Maximum number of hidden neurons (whole process) 4
Range of hidden neurons to be added or deleted [1, 3]
Range of links to be added or deleted [1, 5]
Range for weights between input and hidden layer [0.1, 0.9]
Range for weights between hidden and output layer [−10, 10]

hybrid one RBF+PU) applied to the 6 different datasets generated
from the AR/VAR models. In addition, depending on whether the two
forecast tasks are approached simultaneously or not, the two different
approaches proposed in this work are compared: (1) MoEANN, which
considers the two tasks separately (3 or 5 days ahead as different
tasks), and (2) MuEANN, which groups both tasks carrying out them
simultaneously. Consequently, 3 different models (2 MoEANNs and 1

uEANN) were considered for the 18 combinations of each sanitary
istrict, resulting in a total of 54 experiments being executed for each
istrict.

Regardless of the district, dataset and computing error perspective,
he evolutionary algorithm used to optimize the EANN models is ap-
lied with the same configuration. More specifically, in Table 4, the
arameters of the EA are shown, together with their values.

The weight values of the connections from the hidden layer to
he output layer are randomly generated regardless of the type of BF
f the model. However, the weight values of the connections from
he input layer to the hidden layer are randomly generated for PU
nits, whereas for RBF, units the weight values are initialized using K-
eans (Lloyd, 1982) as a clustering method to determine the Gaussian

unction centroids. For hybrid EANN models combining RBF+PU units,
oth types of BFs have the same probability of being selected in the
nitialization process of the individuals, and the final number of both
ypes of units will depend on the evolutionary process.

Input features for all datasets are scaled in the interval [0.1, 0.9]. The
utput layer is composed of 1 and 2 linear units for the two MoEANN
nd the MuEANN approaches, respectively, and their output values are
caled in the interval [−10, 10].

The described configuration for performing the optimization of the
odels follows the guidelines published in Gutiérrez et al. (2009) and
artínez-Estudillo et al. (2006).

The EANN models containing SU basis functions in the hidden layer,
ither pure or combined with PU or RBF, were affected by a high
verfitting and, consequently, performed poorly in the test set. Thus,
his basis function has been excluded from this study.

.3. Results

The results presented in this section aim to compare the model
erformance differences produced when polynomial coefficients are in-
luded as training features and the extent to which multitask models are
ble to take advantage of using the same structure and parameters for
ackling several tasks simultaneously. The results are expressed in terms
f root mean square error (RMSE, applying the square root to Eqs. (9)
nd (10)). As explained in Section 3.4 the EANN models are stochastic.
hus, 40 runs are performed and the results are expressed as the mean
nd standard deviation of the RMSE obtained for the generalization
ets, i.e., patterns unseen during the training stage. Given the interest

n knowing which BF is better and the best value for 𝑝 in the AR/VAR
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a
N
m
a

p
o
i
T
a
b
o
t
s
s

odels, the results are segregated considering the different options, as
ell as for the individual districts.

In addition, the performances of the models for the two forecasting
orizons are also compared. Note that for single horizon forecasts,
nly the corresponding output neuron error of the MuEANN model
s considered. Regarding individual forecasting horizons, Tables 5 and

show the results obtained for 𝑦𝑑+3,𝑖 and 𝑦𝑑+5,𝑖, respectively, in the
eight districts considered. On the other hand, worth mentioning that
when simultaneous time horizon forecasting tasks are approached, the
results achieved by the MoEANN approaches (one tackling 𝑦𝑑+3,𝑖 and
he other tackling 𝑦𝑑+5,𝑖) are the average of the errors of the two single
oEANN models. Table 7 shows the results obtained for all zones and

atasets considering these two horizons simultaneously. In Tables 5–
, best results per forecasting approach and district are highlighted in
old, whereas the second best result is highlighted in italics.

Apart from the model performances, the complexities of the two
oEANN and the MuEANN models are an important aspect to be com-

ared. Since almost all experiments resulted in the maximum limited
umber of nodes in the hidden layer (4 neurons), complexities are mea-
ured in terms of the total number of connections. Table 8 shows the
verage number of connections for each model, forecasting approach
nd dataset. For the sake of a fair comparison, model complexities
re measured from a simultaneous forecast horizon perspective. For
oEANN models, the average of connections is computed for each

nput feature combination and autoregressive order. Then, the resulting
verages for the two horizons are summed. Bold and italics represent
he least complex and the second least complex architectures by fore-
asting approach, basis function and dataset, respectively. As expected,
odels become more complex when the number of autoregressive input

eatures increases. Considering the average number of connections of
he models, it can be said that the use of MuEANN models is justified.
ven though the results obtained with this approach are slightly worse,
he models are much simpler in all cases while their performances
emain competitive.

In most cases, the results produced by the models involving one
ingle output neuron (MoEANN) are slightly better than those obtained
sing the MuEANN approach, as seen in the results shown in Tables 5
nd 6. This is to be expected since MoEANN model training is guided by
onsidering only the error made for a single output variable, focusing
he model training on a single objective. Nevertheless, it is important to
oint out the special case of the district of Málaga, where the results of
10
the single and simultaneous forecast improve if the models are trained
considering the errors of the two horizons in the training set. This
phenomenon is due to the capability of the MuEANN model to infer
relationships between the related tasks used to optimize itself.

Considering the results achieved, it can be concluded that there
is no single combination of BF and dataset that performs accurately
for all districts. However, some highlights can be extracted from the
experimental results. Pure RBF models always produce poor perfor-
mances when modeling from the MuEANN perspective, and except for
Cádiz Bay, they also underperform using the MoEANN approach. In
the particular case of simultaneous forecasting (see MuEANN columns
of Table 7), PU architecture is the best choice when modeling the
cumulative curve of contagion of the districts of Almería, Granada,
Huelva and Sevilla, while an RBF+PU architecture is needed for the rest
of the locations. In this respect, a different number of input variable
lags are needed to achieve the best results depending on the district
to be modeled. Overall, considering Tables 5–7, it can be seen that
hybridization outperforms pure model architectures in the districts of
Málaga, Jaén and Cádiz when modeling from a MuEANN approach.
On the other hand, MoEANN approaches achieve better results in
Sevilla, Jaén and Granada when modeling the considered horizons,
either individually or jointly.

Moreover, concerning the complexities presented in Table 8, the
average number of links for the eight considered districts is higher for
the hybrid architectures, regardless of the autoregressive order 𝑝 and
the number of model outputs. Pure PU models trained with 𝐴𝑅(𝑝)𝑦
re less complex than RBF models trained with the same dataset.
evertheless, it is noteworthy that the opposite effect occurs when pure
odels are trained including polynomial information, i.e, when they

re trained with the 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 and 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3 datasets.
The results show that the performances obtained for both ap-

roaches (the MoEANN and MuEANN models) improve when some sort
f autoregressive polynomial information derived from curve fitting
s included in the model training set, except for the district of Jaén.
his fact demonstrates that adding lags of polynomial coefficients has
positive effect on the forecasting task, not only in terms of accuracy

ut also reducing, in some cases, the variance of the results. The results
btained in Jaén may be because it is the least populated district, and
he fitness of the polynomial models along its outbreaks has the higher
tandard deviation of the eight districts, as shown in Table 2. Fig. 6
hows a boxplot diagram where the RMSE achieved with the MuEANN
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Table 5
Performances of the MoEANN and MuEANN models trained with the different combinations of input features and autoregressive orders, 𝑝,
evaluating the errors of the 𝑦𝑑+3,𝑖 forecast horizon. The results are expressed as 𝑀𝑒𝑎𝑛𝑆𝐷 RMSE of the generalization set, and SD stands out for
Standard Deviation.

District BF 𝑝 MoEANN MuEANN

𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3 𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3

Almería

PU 1 312.6113.72 95.6213.24 𝟖𝟓.𝟒𝟐𝟗.𝟓𝟐 275.9718.92 119.6723.75 𝟏𝟎𝟖.𝟕𝟖𝟏𝟔.𝟕𝟕
2 300.2412.58 103.3915.85 90.7212.90 275.8122.80 136.7230.20 126.7526.41

RBF 1 312.1113.72 176.5229.38 181.8749.91 332.0918.92 257.0467.98 304.0180.76
2 293.5312.58 184.2246.05 203.3461.35 353.0122.80 255.3984.67 301.0772.12

RBF+PU 1 131.9034.75 107.1226.05 98.6928.41 147.5324.31 142.8234.69 146.5142.91
2 136.1454.19 97.7125.18 99.6146.13 152.7524.91 164.1245.26 171.7845.95

Cádiz Bay

PU 1 358.684.41 223.447.76 222.2010.90 397.6520.54 237.8432.91 247.0724.69
2 345.9112.52 234.5715.14 235.5322.00 354.0033.69 228.0626.10 229.8341.18

RBF 1 292.564.41 168.0735.62 173.0333.94 295.5720.54 268.9791.29 281.1568.42
2 299.9712.52 𝟏𝟓𝟑.𝟖𝟗𝟑𝟕.𝟏𝟓 195.4563.40 303.9633.69 333.86382.05 271.4678.10

RBF+PU 1 306.9742.29 201.6527.82 194.8539.42 226.1738.12 185.5157.84 𝟏𝟕𝟒.𝟎𝟐𝟓𝟗.𝟏𝟎
2 295.8258.44 210.1438.15 191.6840.64 217.7549.77 184.2467.41 175.1265.75

Córdoba

PU 1 195.734.50 82.585.87 76.0010.42 194.048.90 95.409.57 93.708.34
2 182.7113.97 80.437.57 74.4112.31 186.749.00 89.409.87 86.6811.13

RBF 1 189.784.50 155.6732.39 166.9033.23 226.678.90 196.2033.28 209.9140.78
2 186.4113.97 161.0329.05 176.9430.49 235.629.00 197.9736.07 220.0630.83

RBF+PU 1 116.6520.27 82.2828.21 71.9616.16 120.3616.08 𝟕𝟒.𝟓𝟖𝟏𝟎.𝟗𝟔 77.1516.61
2 117.1515.00 77.1413.39 𝟕𝟎.𝟓𝟐𝟏𝟑.𝟕𝟗 120.7515.61 78.1012.98 78.6015.63

Granada

PU 1 198.095.62 112.259.39 118.4913.14 213.2014.01 121.3911.73 127.4512.34
2 157.5740.79 114.7019.86 113.1412.95 210.2617.62 113.1512.98 128.2617.07

RBF 1 203.495.62 182.2245.85 169.5042.52 318.2214.01 227.1243.82 229.4246.94
2 186.0140.79 168.0131.91 181.6241.68 316.9817.62 246.9646.30 270.1351.13

RBF+PU 1 148.5645.33 130.61104.41 𝟏𝟎𝟖.𝟑𝟗𝟔𝟗.𝟗𝟕 173.5036.95 105.6921.87 109.0326.16
2 152.2859.65 112.0852.14 115.38103.97 165.8535.86 𝟏𝟎𝟒.𝟕𝟏𝟐𝟐.𝟗𝟏 123.6464.24

Huelva Cost

PU 1 147.3618.14 𝟔𝟏.𝟑𝟎𝟏𝟎.𝟗𝟒 68.9210.70 139.299.39 62.534.05 67.978.01
2 147.9318.95 69.729.51 76.8514.70 133.157.50 𝟔𝟎.𝟗𝟒𝟒.𝟔𝟗 70.0011.91

RBF 1 135.6518.14 87.2718.56 109.9646.24 158.099.39 114.1438.05 141.2541.63
2 133.6218.95 83.4519.20 121.6545.67 154.997.50 108.6635.66 142.1257.78

RBF+PU 1 89.7733.70 63.5417.01 71.2329.77 77.0415.55 69.5520.88 79.0720.38
2 75.0023.14 67.6521.77 74.1423.85 75.4617.85 68.1419.17 69.2416.99

Jaén

PU 1 100.2712.54 78.896.54 81.396.44 117.334.59 98.8012.75 105.998.80
2 86.5716.14 78.306.98 77.308.38 113.9712.73 96.9710.78 103.6611.09

RBF 1 109.0612.54 96.6112.49 88.3813.97 112.814.59 99.4413.78 112.9432.96
2 108.0816.14 106.5712.88 96.7919.70 114.1912.73 115.9425.38 119.2829.18

RBF+PU 1 74.0335.94 𝟕𝟎.𝟔𝟒𝟔𝟏.𝟕𝟐 94.1649.77 70.8318.46 84.6943.50 78.4121.37
2 80.6647.86 74.2134.16 74.1120.98 𝟕𝟎.𝟔𝟒𝟐𝟑.𝟒𝟐 85.7154.24 77.5319.70

Málaga

PU 1 428.7914.34 312.3920.39 305.8023.28 391.1028.60 296.1527.29 293.2533.05
2 423.8843.40 300.5629.19 𝟐𝟗𝟑.𝟎𝟔𝟑𝟗.𝟓𝟕 370.8741.41 281.4540.26 276.0943.11

RBF 1 365.1314.34 467.0785.02 499.1184.02 451.4728.60 559.18150.48 559.78105.88
2 395.3643.40 499.4168.21 528.7268.64 448.6041.41 564.19107.76 531.75107.13

RBF+PU 1 358.9533.49 316.2538.65 332.67148.19 288.3160.17 255.6856.73 259.1346.60
2 352.6326.08 312.1048.37 298.1572.09 274.4565.26 𝟐𝟒𝟑.𝟖𝟎𝟔𝟓.𝟕𝟎 267.21127.55

Sevilla

PU 1 268.4618.32 155.9319.72 156.7827.77 292.4214.57 147.5919.40 162.6016.60
2 226.2722.92 174.8223.72 187.6037.87 270.8616.85 𝟏𝟒𝟏.𝟑𝟐𝟐𝟐.𝟎𝟒 158.9819.26

RBF 1 388.2818.32 320.3886.43 348.93123.80 473.5214.57 446.58102.65 459.1296.61
2 365.8922.92 331.6191.40 371.6182.34 483.7516.85 442.58112.32 518.3271.35

RBF+PU 1 263.9847.13 171.7339.08 𝟏𝟒𝟔.𝟏𝟏𝟑𝟒.𝟏𝟏 273.3858.92 150.5323.62 152.4421.21
2 256.6835.30 163.8134.53 150.7120.47 274.9452.97 159.3830.53 156.3831.06
model and the best 𝑉 𝐴𝑅(𝑝) dataset is compared with the results of
the analogous model trained with no polynomial data considering
the dual and simultaneous horizon forecast. The improvement in the
results when autoregressive polynomial coefficients are included in
the training data is graphically noticeable in the districts except Jaén,
especially in Córdoba, Huelva Coast, Almería, Sevilla and Granada,
where the median obtained with the best combination is distinctly
lower than its analogous model. There is no distinguished difference
in the dispersion of the results obtained for the Cádiz and Málaga
districts. However, in these districts, the worst result obtained with
the 𝑉 𝐴𝑅(𝑝) model is always better than the worst result obtained
with the 𝐴𝑅(𝑝) model. Additionally, to quantitatively summarize the
11
aforementioned improvement, Table 9 presents the percentage accu-
racy gain of the double forecast results obtained with models trained
with best 𝑉 𝐴𝑅(𝑝) with respect to training with best 𝐴𝑅(𝑝) datasets.
In terms of percentage, the results for all the districts except Jaén are
notably improved when modeled with polynomial information, with
Almería being the district that benefits the most from this additional
information, increasing the accuracy by 73.55% and 59.46% for the
MoEANN and MuEANN approaches, respectively.

To graphically illustrate the improvement produced by the inclusion
of the polynomial curve point descriptors in the training phase of
the EANNs, in Figs. 7 and 8 the best performances obtained for the
district of Sevilla with MuEANN models trained with 𝐴𝑅(𝑝) and 𝑉 𝐴𝑅(𝑝)
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Table 6
Performances of MoEANN and MuEANN models trained with the different combinations of input features and autoregressive orders, 𝑝,
evaluating the errors of the 𝑦𝑑+5,𝑖 forecast horizon. The results are expressed as 𝑀𝑒𝑎𝑛𝑆𝐷 RMSE of the generalization set, SD stands out
for Standard Deviation.

District BF 𝑝 MoEANN MuEANN

𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3 𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3

Almería

PU 1 426.6020.90 137.2415.40 𝟏𝟐𝟒.𝟗𝟒𝟏𝟐.𝟔𝟔 322.3915.91 140.4022.01 𝟏𝟑𝟏.𝟒𝟕𝟏𝟓.𝟑𝟎
2 415.6827.30 147.0721.20 138.4518.57 326.9333.21 169.1435.54 146.1625.96

RBF 1 421.4620.90 254.3857.33 261.4376.61 463.6315.91 272.9860.76 310.5484.80
2 426.2527.30 248.0870.96 247.5371.40 466.0133.21 288.3575.45 307.7077.09

RBF+PU 1 182.9759.55 147.0131.56 152.2943.97 215.8037.53 156.1232.20 154.4127.30
2 180.7055.17 148.5434.73 137.5242.93 228.2336.45 174.9942.88 176.2339.83

Cádiz Bay

PU 1 501.2325.16 325.0311.60 322.4224.88 409.4018.17 276.8629.40 269.1022.70
2 498.9519.77 312.9213.03 312.0726.27 429.5434.05 278.1825.54 257.2343.86

RBF 1 460.8925.16 219.5240.75 242.4067.64 396.4618.17 324.4293.69 353.2086.84
2 454.4519.77 𝟐𝟏𝟕.𝟕𝟔𝟒𝟖.𝟒𝟏 258.1157.20 410.0034.05 381.32401.25 326.9877.12

RBF+PU 1 502.89147.86 285.9947.07 275.1650.38 293.5437.96 230.0355.89 216.9153.80
2 442.87107.47 286.2952.97 267.1067.05 311.51112.80 220.2458.14 𝟐𝟏𝟐.𝟔𝟖𝟔𝟎.𝟔𝟔

Córdoba

PU 1 264.526.69 132.215.69 𝟏𝟏𝟎.𝟕𝟑𝟏𝟖.𝟔𝟖 252.264.47 135.5611.81 𝟏𝟐𝟒.𝟗𝟓𝟏𝟓.𝟏𝟑
2 251.6211.44 128.858.86 115.5118.41 255.806.53 133.1410.32 128.6112.48

RBF 1 263.826.69 207.7437.88 216.6346.81 328.344.47 249.1138.39 260.3443.14
2 258.8711.44 223.0026.99 228.6528.77 338.046.53 258.7841.17 265.9330.29

RBF+PU 1 174.5527.13 111.6317.62 111.0618.58 184.4715.81 125.0313.78 128.5120.28
2 172.9130.25 121.8819.65 110.9516.27 190.2118.62 135.8120.29 131.5820.06

Granada

PU 1 279.0121.82 152.279.72 164.8218.47 301.1412.14 𝟏𝟑𝟗.𝟎𝟎𝟕.𝟖𝟓 158.6612.52
2 192.3845.54 152.2414.59 154.6723.55 311.7821.74 143.1712.28 165.9115.85

RBF 1 294.8221.82 220.1437.12 212.9452.10 412.3212.14 284.4241.23 300.0864.77
2 281.1945.54 242.3338.38 237.8046.39 407.6021.74 314.2634.37 324.7754.32

RBF+PU 1 216.0844.87 176.55118.66 𝟏𝟐𝟔.𝟑𝟔𝟑𝟏.𝟐𝟔 240.3461.51 168.6224.40 170.2736.28
2 207.3344.49 196.73123.74 158.5675.74 241.6753.77 169.8427.97 196.5669.05

Huelva Cost

PU 1 202.6019.02 86.376.78 93.8910.47 198.0910.09 90.979.85 92.139.49
2 203.5715.97 𝟕𝟗.𝟎𝟔𝟕.𝟐𝟐 89.888.48 196.189.77 𝟖𝟗.𝟎𝟑𝟗.𝟔𝟒 96.4110.44

RBF 1 204.0919.02 114.3523.67 135.8640.22 226.7810.09 140.1933.66 164.7536.37
2 189.2815.97 105.7522.14 137.2639.83 227.029.77 134.1930.46 169.9867.43

RBF+PU 1 127.0566.98 84.6025.29 95.6639.06 116.4422.26 97.0321.84 101.2421.02
2 108.3439.04 79.9220.69 96.1732.21 114.9425.31 96.3822.83 94.8728.81

Jaén

PU 1 155.568.00 117.3610.04 122.967.68 149.905.03 129.3414.86 117.0310.98
2 128.2322.05 111.728.35 115.0812.26 148.6115.77 127.9013.89 123.0615.93

RBF 1 140.768.00 121.1413.64 121.5214.38 181.865.03 160.2720.03 166.2327.05
2 138.0222.05 128.7116.94 124.1724.20 188.3915.77 169.5224.90 173.1933.89

RBF+PU 1 106.7754.71 102.8334.25 109.7636.07 108.3941.12 124.1791.61 113.3636.17
2 𝟗𝟖.𝟖𝟐𝟑𝟏.𝟎𝟔 115.55103.98 116.2933.37 𝟏𝟎𝟐.𝟖𝟐𝟑𝟎.𝟕𝟕 115.7545.87 108.9324.21

Málaga

PU 1 511.4733.48 410.5722.16 395.9734.33 308.5026.07 326.3627.25 325.7030.92
2 528.8676.06 385.9536.31 𝟑𝟔𝟓.𝟐𝟑𝟒𝟔.𝟐𝟎 351.9396.41 306.1737.17 308.0144.44

RBF 1 542.0333.48 608.6067.13 639.0070.48 528.3426.07 572.4969.65 581.8587.50
2 570.6476.06 628.9946.10 687.1261.91 552.1596.41 594.2680.60 586.2192.53

RBF+PU 1 492.8355.81 401.0337.86 407.2157.16 342.6182.43 288.6358.38 289.4545.87
2 472.3841.33 419.9373.59 385.0262.96 352.9778.50 𝟐𝟔𝟖.𝟓𝟑𝟔𝟐.𝟎𝟓 303.64111.44

Sevilla

PU 1 378.6422.45 229.2625.04 209.9838.14 374.8911.51 𝟐𝟎𝟔.𝟓𝟐𝟐𝟑.𝟔𝟕 218.5418.82
2 318.6627.24 260.8834.39 233.2528.07 385.2728.82 216.9826.45 226.4825.73

RBF 1 553.1922.45 436.69104.15 427.7491.88 654.7111.51 556.51109.41 563.96121.52
2 365.8927.24 470.9489.03 494.1773.37 665.6228.82 550.15126.87 613.4078.47

RBF+PU 1 394.1461.60 227.1966.71 𝟏𝟗𝟔.𝟒𝟒𝟓𝟔.𝟐𝟒 449.7992.50 252.3841.93 251.0130.25
2 394.3879.74 251.6074.07 226.5144.38 435.6288.04 271.0239.57 258.8742.70
datasets are compared. More specifically, in Figs. 7(a) and 8(a), the
model test predictions are represented over time with the real curve of
cumulative contagions of the four waves. For both forecast horizons,
the model trained with the best 𝑉 𝐴𝑅(𝑝) dataset fits better than the one
trained with the best 𝐴𝑅(𝑝). This improvement is especially noteworthy
in the second and fourth waves for both horizons and in the third
wave for the mid-term forecast. In Figs. 7(b) and 8(b), where the
real test values for mid- and long-term horizons are scattered with
the values predicted by both models, the improvements are visibly
easier to appreciate. Points located in the gray equality line represent
a perfect prediction. Predictions resulting from models trained with
𝑉 𝐴𝑅(𝑝) models of the two considered forecast horizons are closer to
12
this line, representing a more accurate prognosis of the cumulative
number of contagions. Note that in Figs. 7(b) and 8(b) the plotted data
correspond, from left to right, to the second, fourth, fifth and third
waves.

4.4. Statistical analysis

Once all the results for the 18 models and datasets combinations for
each district have been descriptively analyzed, a statistical analysis has
been carried out to obtain robust conclusions from several aspects of
the experimentation. For simplicity purposes, this analysis is mainly fo-

cused on the results obtained in simultaneous horizon forecasting with
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Table 7
Performances of MoEANN and MuEANN models trained with the different combinations of input features and autoregressive orders, 𝑝,
simultaneously evaluating the errors of the 𝑦𝑑+3,𝑖 and 𝑦𝑑+5,𝑖 forecast horizons. The results are expressed as 𝑀𝑒𝑎𝑛𝑆𝐷 RMSE of the generalization
set, SD stands out for Standard Deviation.

District BF 𝑝 MoEANN MuEANN

𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3 𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3

Almería

PU 1 369.6157.15 116.7121.15 𝟏𝟎𝟒.𝟗𝟐𝟏𝟏.𝟒𝟔 299.1829.05 130.0425.13 𝟏𝟐𝟎.𝟏𝟑𝟏𝟏.𝟒𝟔
2 357.9657.89 125.2322.26 114.5824.19 301.3738.27 152.9336.74 136.4527.93

RBF 1 366.0957.15 214.9439.49 221.1540.57 397.8629.05 265.0164.96 307.2882.87
2 359.8957.89 216.1532.84 225.4423.55 409.5138.27 271.8781.87 304.3874.72

RBF+PU 1 157.4326.44 127.6520.66 125.8927.47 181.6746.53 149.4734.12 150.4636.18
2 158.4223.48 123.1325.99 118.5620.09 190.4948.97 169.5544.42 174.0143.06

Cádiz Bay

PU 1 441.3272.28 274.2450.89 271.6450.29 403.5220.26 257.3536.81 258.0926.15
2 422.4376.62 273.7539.36 273.8038.58 391.7750.73 253.1235.98 243.5344.69

RBF 1 375.6072.28 193.7926.46 207.7135.41 346.0120.26 296.7096.56 317.1786.08
2 378.1876.62 𝟏𝟖𝟓.𝟒𝟐𝟏𝟏.𝟒𝟔 226.3832.28 356.9850.73 357.59392.49 299.2282.43

RBF+PU 1 412.7098.75 245.5142.65 237.1240.77 259.8650.81 207.7761.08 195.4760.45
2 369.3574.09 248.2238.67 229.8738.42 264.6398.98 202.2465.47 𝟏𝟗𝟑.𝟗𝟎𝟏𝟏.𝟒𝟔

Córdoba

PU 1 230.1334.48 108.0524.94 93.5817.78 223.1529.95 115.4822.78 109.3219.84
2 217.1634.64 104.6424.38 95.2220.92 221.2735.41 111.2724.09 107.6524.07

RBF 1 226.8034.48 182.3926.71 192.4025.66 277.5029.95 222.6644.62 235.1348.97
2 222.6434.64 192.4131.43 202.7926.42 286.8335.41 228.3749.22 243.0038.21

RBF+PU 1 145.6029.36 96.9615.44 91.5119.99 152.4235.80 𝟗𝟗.𝟖𝟎𝟏𝟏.𝟒𝟔 102.8331.67
2 145.0328.29 99.7922.74 𝟗𝟎.𝟕𝟒𝟏𝟏.𝟒𝟔 155.4838.75 106.9633.51 105.0932.01

Granada

PU 1 238.5540.63 132.5220.25 141.6623.50 257.1745.88 130.1913.31 143.0619.95
2 174.9718.60 133.4719.22 133.9121.20 261.0254.48 𝟏𝟐𝟖.𝟏𝟔𝟏𝟏.𝟒𝟔 147.0925.01

RBF 1 249.7340.63 201.1820.02 191.2222.79 365.2745.88 255.7751.29 264.7566.69
2 233.6018.60 205.1737.63 209.7128.87 362.2954.48 280.6152.86 297.4559.41

RBF+PU 1 182.7534.42 153.5825.28 𝟏𝟏𝟕.𝟒𝟗𝟏𝟏.𝟒𝟔 206.9260.76 137.1639.07 139.6544.02
2 179.8128.46 155.4943.36 136.9723.58 203.7659.38 137.2741.40 160.1076.00

Huelva Cost

PU 1 174.9827.96 73.8312.88 81.4012.90 168.6930.97 76.7516.09 80.0514.94
2 175.7528.13 74.395.49 83.367.35 164.6732.70 𝟕𝟒.𝟗𝟗𝟏𝟏.𝟒𝟔 83.2117.32

RBF 1 169.8727.96 100.8114.29 122.9114.53 192.4430.97 127.1738.21 153.0040.81
2 161.4528.13 94.7412.04 129.4610.18 191.0032.70 121.4335.53 156.0564.32

RBF+PU 1 108.4119.94 74.0711.49 83.4413.55 96.7427.51 83.2925.40 90.1523.49
2 91.8817.58 𝟕𝟑.𝟕𝟗𝟏𝟏.𝟒𝟔 85.1512.22 95.2029.48 82.2625.37 82.0526.90

Jaén

PU 1 127.9227.83 98.1319.45 102.4420.96 133.6216.98 114.0720.61 111.5111.38
2 107.4021.28 95.0116.94 96.4319.16 131.2922.48 112.4319.84 113.3616.81

RBF 1 124.9127.83 109.0412.78 104.9516.99 147.3416.98 129.8634.94 139.5840.24
2 123.0521.28 117.3611.73 110.4814.47 151.2922.48 142.7336.74 146.2441.56

RBF+PU 1 90.6117.70 𝟖𝟔.𝟕𝟑𝟏𝟏.𝟒𝟔 101.9610.18 89.6136.99 104.4374.37 95.8934.46
2 89.7411.04 94.8822.28 95.2021.72 𝟖𝟔.𝟕𝟑𝟏𝟏.𝟒𝟔 100.7352.43 93.2327.09

Málaga

PU 1 472.8941.72 361.4849.30 351.4645.40 349.8049.54 311.2531.17 309.4835.88
2 476.3753.05 343.8043.08 𝟑𝟐𝟗.𝟏𝟓𝟏𝟏.𝟒𝟔 361.4074.79 293.8140.67 292.0546.60

RBF 1 453.5841.72 537.8371.30 569.0570.50 489.9049.54 565.83117.44 570.8197.75
2 483.0053.05 564.2065.23 607.9279.61 500.3774.79 579.2296.33 558.98103.73

RBF+PU 1 431.6367.52 359.1842.84 370.4138.63 315.4677.10 272.1659.87 274.2948.66
2 412.5160.16 366.0254.48 342.1444.21 313.7182.17 𝟐𝟓𝟔.𝟏𝟕𝟏𝟏.𝟒𝟔 285.42121.15

Sevilla

PU 1 323.5555.28 193.5336.98 183.0427.22 333.6543.27 𝟏𝟕𝟕.𝟎𝟓𝟏𝟏.𝟒𝟔 190.5733.13
2 273.0546.47 217.8543.37 210.4323.54 328.0661.88 179.1544.99 192.7340.69

RBF 1 470.7355.28 378.5458.97 387.8340.75 564.1243.27 501.54119.48 511.54121.64
2 365.8946.47 401.2770.31 432.8961.91 574.6861.88 496.37131.34 565.8688.79

RBF+PU 1 332.4865.59 199.8128.67 𝟏𝟕𝟏.𝟓𝟗𝟏𝟏.𝟒𝟔 361.59117.44 201.4561.25 201.7255.78
2 326.4069.27 208.2644.51 188.6138.33 355.28108.32 215.2066.06 207.6263.40
the MoEANN and MuEANN approaches (see Table 7). As mentioned in
Section 4.3, these models are less complex than using both MoEANNs
(with one forecasting horizon each), while performances remain com-
petitive. These tests assume normality in the data being compared. In
this respect, a previous Kolmogorov–Smirnov test (Massey, 1951) was
applied using the results from the 40 different seeds before performing
the comparison tests. In all cases, the 𝑝-values obtained from the
Kolmogorov–Smirnov test show that the null hypothesis of normality
is accepted for the different sets of results used.

For reasons of clarity, several comparisons of mean tests have been
performed to conclude significant differences within several aspects of
the results obtained. First, the results of the best MuEANN model and
13
training data combination for all districts are contrasted with the best
results obtained from the MoEANN model, which performs better in
most cases. Table 10 shows the 𝑝-values obtained in a paired t-test for
the mean results of the best models in both approaches. Considering
a level of significance of 𝛼 = 0.05, significant differences can only be
found in the results of the districts of Córdoba, Almería and Málaga
(i.e., 3 out of 8 sanitary districts). In this latter case, the MuEANN
method is more accurate than the monotask method. For this specific
sanitary district, in addition to being less complex in terms of total
links, models that simultaneously predict mid- and long-term time
forecasting horizons perform significantly better. Notwithstanding the
additional difficulty of modeling two different output time horizons,
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Fig. 6. Comparison boxplots of simultaneous forecast results using MuEANN models including (𝑉 𝐴𝑅(𝑝)) and not including (𝐴𝑅(𝑝)) polynomial information in the training set. The
esults are expressed as the RMSE obtained for the test set of the 40 executions for each district.
Table 8
Comparison of MoEANN and MuEANN model complexities considering double and
simultaneous forecasting, 𝑦𝑑+3,𝑑+5,𝑖. The results are expressed in terms of the average
number of links involved in the EANNs of the eight considered districts.

BF 𝑝 Input dataset

𝐴𝑅(𝑝)𝑦 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 𝑉 𝐴𝑅(𝑝)𝑦,𝛼4 ,𝛼3

MoEANN

PU 1 𝟏𝟖.𝟕𝟎 23.26 24.80
2 𝟐𝟎.𝟕𝟔 26.74 29.42

RBF 1 19.46 𝟐𝟎.𝟒𝟓 𝟐𝟏.𝟖𝟒
2 21.14 𝟐𝟓.𝟓𝟎 𝟐𝟕.𝟕𝟒

RBF+PU 1 20.81 24.49 26.80
2 22.13 29.02 33.09

MuEANN

PU 1 𝟏𝟑.𝟎𝟒 16.20 17.03
2 𝟏𝟑.𝟕𝟑 18.59 19.53

RBF 1 14.33 𝟏𝟒.𝟗𝟏 𝟏𝟓.𝟒𝟖
2 15.26 𝟏𝟔.𝟗𝟐 𝟏𝟖.𝟏𝟔

RBF+PU 1 15.41 16.85 17.67
2 15.82 19.17 20.59

Table 9
Percentage accuracy gain obtained in simultaneous double-horizon forecasting, 𝑦𝑑+3,𝑖
nd 𝑦𝑑+5,𝑖, training the models with the best 𝑉 𝐴𝑅(𝑝) datasets with respect to the best
𝑅(𝑝) in all districts.
District 𝑦𝑑+3,𝑑+5

MoEANN MuEANN

Córdoba 37.43% 34.52%
Huelva Cost 19.68% 54.46%
Almería 73.55% 59.84%
Cádiz Bay 50.97% 26.72%
Sevilla 48.39% 46.93%
Granada 35.71% 50.90%
Jaén 4.28% −7.49%
Málaga 30.90% 18.34%

Mean 37.61% 35.53%

this approach takes advantage of the inherent relationship between
the two tasks addressed achieving similar results to the models with
a single time horizon target. For the rest of the districts, the mean
results obtained in both approaches are not significantly different,
although the MuEANN approach is simpler in terms of the number of
connections, and, thus, easier to implement.
14
Table 10
Statistical differences between the average mean RMSE test results of the MoEANN and
MuEANN best models.

District t 𝑝-value

Córdoba −3.26 2.31E−03a

Huelva Cost −0.42 6.78E−01
Almería −6.21 2.63E−07a

Cádiz Bay −0.85 3.98E−01
Sevilla −0.92 3.61E−01
Granada −1.69 9.82E−02
Jaén −1.18 2.46E−01
Málaga 6.75 4.69E−08b

aStatistically significant differences favoring MoEANN method.
bStatistically significant differences favoring MuEANN method.

To analyze the effect of the polynomial information on the perfor-
mance of the models, a paired t-test was applied to the results obtained
with the best 𝑉 𝐴𝑅(𝑝) and 𝐴𝑅(𝑝) datasets for every horizon and model
approach. The results, expressed as the 𝑝-value obtained in the test,
are presented in Table 11 for all districts, forecast horizon approaches
and methodologies (MoEANN or MuEANN). With the exception of
Jaén, where no significant differences can be found between the best
results obtained using the 𝐴𝑅(𝑝) or 𝑉 𝐴𝑅(𝑝) datasets, the rest of the
models benefit significantly from the additional data derived from the
polynomial curve fitting.

5. Conclusions

In this paper, a novel approach for extracting inherent information
of the cumulative curve of contagions produced by the COVID-19
transmission rate has been proposed. By iteratively fitting a 3-degree
polynomial, a 4 coefficient representation of the curve is generated
for every day of a specific outbreak. The experimentation carried out,
using the information of eight specific locations in Andalusia, Spain,
demonstrates that using the coefficients that define the polynomial
curve inflexion instant improves model performances when forecasting
the mid- and long-term values of the original curve. In the exper-
imentation carried out in this paper, evolutionary artificial neural
networks (EANNs) are used to model the cumulative contagion curve
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Fig. 7. 𝑦𝑑+3,𝑖 test predictions of the cumulative number of Sevilla over time (a) and scattered with real values (b) using the best 𝑉 𝐴𝑅(𝑝) and 𝐴𝑅(𝑝) datasets.
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Fig. 8. 𝑦𝑑+5,𝑖 test predictions of the cumulative number of Sevilla over time (a) and scattered with real values (b) using the best MuEANN model trained with 𝑉 𝐴𝑅(𝑝) and 𝐴𝑅(𝑝)
atasets.
a
n

f different districts using two different basis functions and considering
he hybridization of both. For each location, different datasets are used
o estimate the transfer function parameters using combinations of
16

s

utoregressive information of the original curve and extracted poly-
omial features. Due to the unique and specific characteristics of the
anitary districts considered, there is no single combination of network
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Table 11
Statistical differences between the best results obtained with the different models trained with the 𝑉 𝐴𝑅(𝑝) and 𝐴𝑅(𝑝) datasets in the eight districts. The results are expressed as
the resulting 𝑝-value of a paired t-test.

District 𝑦𝑑+3,𝑖 𝑦𝑑+5,𝑖 𝑦𝑑+3,𝑑+5,𝑖
MoEANN MuEANN MoEANN MuEANN MoEANN MuEANN

Córdoba 1.63E−15a 2.11E−18a 2.27E−12a 2.58E−21a 4.17E−15a 3.63E−21a

Huelva Cost 1.79E−03a 3.84E−06a 5.95E−05a 5.86E−07a 1.45E−05a 4.36E−07a

Almería 5.84E−10a 1.52E−09a 2.57E−07a 4.75E−16a 1.64E−09a 5.89E−14a

Cádiz Bay 1.91E−21a 6.66E−04a 3.59E−15a 2.54E−08a 1.56E−14a 3.67E−07a

Sevilla 6.57E−15a 3.64E−28a 5.26E−16a 2.01E−33a 6.29E−24a 1.39E−32a

Granada 4.90E−03a 8.82E−12a 4.35E−08a 7.73E−15a 1.84E−07a 1.26E−13a

Jaén 7.51E−01 1.56E−01 5.89E−01 3.22E−01 9.45E−01 2.23E−01
Málaga 2.00E−09a 3.93E−02a 8.02E−12a 3.06E−04a 3.76E−14a 1.98E−04a

aStatistically significant differences favoring models trained with 𝑉 𝐴𝑅(𝑝) datasets.
B

C

C

D

D

D

F

architecture and data that perform well for all cases. However, on the
whole, the methodology applied achieves excellent results.

However, from the results obtained, it can be concluded that in-
cluding lags of the polynomial features to the forecaster significantly
improves the results, except for the district of Jaén. In most cases, the
best performances obtained in Jaén are achieved using only autore-
gressive data of the number of cumulative contagion time series. In
this district, the methods that slightly benefit from the additional infor-
mation of the polynomial coefficients (MoEANNs approaches modeling
𝑦𝑑+3,𝑖 and 𝑦𝑑+3,𝑑+5,𝑖) return results that are not significantly different
from the same approaches using only autoregressive information, as
seen in the 𝑝-values presented in Table 11.

Moreover, two different EANN approaches have been applied. On
the one hand, monotask EANNs (MoEANN models) have been consid-
ered for modeling one target value at a time, i.e., two different models
are needed to forecast on two different forecasting horizons. On the
other hand, a multitask EANN (MuEANN model) has been used for
forecasting both horizons simultaneously, resulting in a much simpler
model. It is expected that models performing only one task are more
accurate, as their optimization procedure is less complex. Nevertheless,
there are no significant differences between the performances achieved
by the MoEANN approaches and the MuEANN one for the sanitary
districts of Huelva, Cádiz, Sevilla, Granada and Jaén, although the
complexity of MuEANN models is lower in terms of average number
links. Furthermore, in the district of Málaga, the MuEANN models
perform significantly better than the average results of the two best
MoEANN models. In this case, the MuEANN approach benefits from
the intrinsic relationship between the two output targets.

Finally, it has been demonstrated that considering the features
extracted from the inherent behavior of a process in the modeling
stage can significantly improve the performance of the tasks carried
out. Applying a similar methodology for any kind of problem, if the
intrinsic problem nature is known, adapting a low-variance model as a
description step may provide high quality descriptors that are able to
support several supervised and unsupervised tasks.
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