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Abstract

Session-based recommendation (SBR) is a practical recommendation task
that predicts the next item based on an anonymous behavior sequence,
and its performance relies heavily on the transition information between
adjacent items in the sequence. The current state-of-the-art methods in
SBR employ graph neural network to model neighboring item transition in-
formation from global (i.e, other sessions) and local (i.e, current session)
contexts. However, most existing methods treat neighbors from different
sessions equally without considering that the neighbor items from different
sessions may share similar features with the target item on different aspects
and may have different contributions. (e.g., color, style, size of clothes). In
other words, they have not explored finer-granularity transition information
between items in the global context, leading to sub-optimal performance. In
this paper, we fill this gap by proposing a novel method called Transition
Information Enhanced Disentangled Graph Neural Network (TIE-DGNN)
to capture finer-granular transition information between items and try to
interpret the reason of the transition by modeling the various factors of
the item. Specifically, we first propose a position-aware global graph at
item-level, which utilizes the relative position information to distinguish the
different types of neighbors, to model the neighboring item transition in the
global context. Then, we slice item embeddings into blocks, each of which
represents a factor, and use global-level disentangling layers equipped with
position-aware embedding propagation to separately learn the factor em-
beddings over the global graph. Moreover, we employ distance correlation
to encourage independence between each pair of factors. After obtaining
the items of independent factor embeddings from the global context, we
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train local-level item embeddings by using attention mechanisms to capture
transition information from the current session. Then, generating factor-
aware inter-session embedding (global context) and intra-session embedding
(local context) from two types of item embeddings, respectively. Finally,
we use contrastive learning techniques to enhance the robustness of two
types of session embeddings. To this end, our model considers two levels of
transition information. Especially in global text, we not only consider finer-
granularity transition information between items but also take user intents
at factor-level into account to interpret the key reason for the transition.
Extensive experiments on three real-world benchmark datasets demonstrate
the superiority of our method over the SOTA methods.

Keywords: Session-based recommendation, Graph neural networks,
Disentangled representation learning, Contrastive learning.

1. Introduction

With the explosive growth of information on the Internet, recommenda-
tion systems are widely deployed on various platforms (e.g., web search,
online shopping, etc.) to alleviate the data overload by recommending
the desired content to users. Most existing typical recommended meth-
ods, such as collaborative filtering (Polatidis & Georgiadis, 2016)(Wang
et al., 2019c)(He et al., 2020), content-based methods (Pazzani & Billsus,
2007)(Pazzani, 1999) and trust-based methods (Ardissono & Mauro, 2020),
utilize the user’s identity information and long-term historical interactions
to infer content that they are interested in. While these methods may fail
in some real-world scenarios, such as unlogged-in users or those who have
short-term interaction history. Thus, session-based recommendation, which
aims to predict the next item based on an anonymous user’s behavior se-
quence with chronological order, has attracted growing attention, and var-
ious methods have been proposed in this field. The earliest approaches to
SBR (session-based recommendation) employ Markov chain (Rendle et al.,
2010) to predict the next user’s interest by modeling the sequential pattern
in the session sequence. Due to its strong sequential assumption that the
next item is solely based on the previous ones, it fails to capture long-term
sequential dependence.

To overcome the aforementioned problem,several methods apply deep
learning techniques (i.e.,RNN-based or GNN-based) to model item-transition
in the current session. Most RNN-based (Hidasi et al., 2015)(Hidasi et al.,
2016)(Tan et al., 2016) methods treat session-based data as unidirectional
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sequences and model sequential patterns to capture item-transition infor-
mation, which are then extended with attention network (Li et al., 2017)
and memory network (Liu et al., 2018). GNN-based methods convert ses-
sion sequence into the graph and learn the transition relationship between
distant items via item embedding propagating and updating over the graph.
Wu et al.(Wu et al., 2019) is the first work to employ gated graph neu-
ral network to learn the item embedding in the session graph and achieves
great success. Motivated by its success, several variants have been pro-
posed (Yu et al., 2020)(Xu et al., 2019). All the above methods focus on
the current session when modeling transition information, during which the
performance is vulnerable to user behavioral sparsity and noisy data. To
alleviate the problem, some methods (Wang et al., 2019a)(Luo et al., 2020)
try to utilize collaborative information from other sessions for enhancing the
performance of recommendation task. GCE-GNN (Wang et al., 2020b) tra-
verses all sessions to find the most relevant neighbors and takes them as the
unified neighbor set of each item as global information. Then it is combined
with the local context (current session) to model the transition information.
Compared with the previous methods, it achieves the best result.

Despite the progress achieved, we argue that the method of construct-
ing global context information by unifying all filtered neighbors (from all
sessions) into a set without distinguishing the different types of neighbors
is unconsidered. The task of session-based recommendation is to predict
the next item most likely to interact with the current session. Thus, ef-
fectively modeling the transition between neighboring items is crucial to
enhance the accuracy of recommendations. While a uniform neighbor set
derived from the global context can only enrich the current item represen-
tation via aggregation operations and cannot make the model obtain the
transition information between them easily. This is because a unified neigh-
bor set has no latent information to make the model obtain the common
transition relationships between neighbors, such as whether the transition
is from A to B or B to A or both, in most cases. Although these methods
(Wang et al., 2020b)(Zheng et al., 2020) estimate the transition informa-
tion between items via focusing on the structure of the current session, the
length of most sessions is very short, making it difficult to distill valuable
information. Therefore, modeling the finer-grained transition relationship
between items in the global context is crucial to improve the performance
of the recommendation task.

In addition to building the transition relationship between neighboring
items in the global context, more importantly, we need to further investigate
the main reason for transition. The prediction in SBR made by matching
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the user’s main intent of the session (which is represented by the session
embedding) with candidate items. User’s preference on items driven by
various factors that characterize the item (e.g., phone includes color, resolu-
tion, memory), and more importantly, the preference could be dynamically
changed along with the clicked items in a sequence. Thus, inferring the key
factor that the user most cares about is crucial to interpret the transition
relationship between items and enhance the performance of the recommen-
dation. This is not trivial due to the fact that most existing embedding
functions for SBR represent the item as a holistic representation (embed-
ding), which does not distinguish the features of different features for an
item. Modeling various factors on an item and accurately capturing the
ones that users pay attention to remains a challenge.

In this paper, we propose a novel Transition Information Enhanced Dis-
entangled Graph Neural Network (TIE-DGNN) to tackle the above prob-
lems. Specifically, we take global and local approaches to learn item em-
bedding, respectively. For the global context (i.e., all the sessions), we first
construct the position-aware global graph at item-level, which utilizes the
relative position information to classify neighbors into different types so as
to model the neighboring transition information. To characterize the factors
of items, we slice item embeddings into multiple chunks with the assumption
that each chunk represents a latent factor. Then, we employ global-level dis-
entangling layers equipped with position-aware embedding propagation to
separately learn the factor embeddings over the global graph and use dis-
tance correlation to encourage the independence factor-by-factor. By doing
this, we can obtain independent factor embeddings that include transition
information from global context to represent each item in our model. For
local context (i.e., current session), we learn local-level (session-level) item
embeddings by employing the attention mechanism to model neighboring
transitions within the current session. After obtaining two types of em-
beddings for each item, we generate factor-aware inter-session embedding
(global-level) and intra-session embedding (local-level) respectively by ag-
gregating each item in the current session with attention weight, and then
use contrastive learning techniques to enhance their robustness. To this end,
we obtain two types of session embeddings by considering transition infor-
mation from global and local contexts, respectively. Finally, we linearly
combine these two session embeddings and make a prediction by calculating
the similarity with the target item.

To summarize, the main contributions of our work are threefold:

• We emphasize the importance of modeling transition information be-
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tween neighboring items from global and local contexts. To the best of
our knowledge, we are the first to consider fine-grained transition infor-
mation modeling in the global context.

• We propose a novel transition information enhanced disentangled graph
neural network for SBR. It can leverage the relative position informa-
tion in the global context to capture the transition information between
neighboring items, as well as represent the item with disentangled rep-
resentations of factors to infer the main reason for the transition.

• We have conducted extensive experiments on three real-world benchmark
datasets to demonstrate the effectiveness of our TIE-DGNN. Experimen-
tal results show that our proposed model outperforms the state-of-the-
art methods. The ablation study further demonstrates the validity of
different components in our model1.

2. Related Work

2.1. Session-based Recommendation

Markov Chain for SBR. The early methods for studying session-based
recommendation are mainly based on Markov chain. Shani et al. (Shani
et al., 2005) employ markov decision processes (MDP) with appropriate
initialization to capture the transition relationship between items. Rendle
et al. (Rendle et al., 2010) combine first-order markov chain and matrix
factorization to capture sequential behavior between adjacent items in the
session sequence and the general taste of a user, respectively.

Deep Learning Methods for SBR. With the boom of deep learn-
ing, many methods based on it apply to session-based recommendation.
Hidasi et al. (Hidasi et al., 2015) employ the recurrent neural network
called GRU4REC to model the sequential transition relationship between
items by adopting a multi-layer Gated Recurrent Unit (GRU). Then they
extend the model (Hidasi et al., 2015) with the parallel architecture (Hidasi
et al., 2016). While Tan et al. (Tan et al., 2016) enhance the model (Hi-
dasi et al., 2015) by using data augmentation. In addition, Li et al. (Li
et al., 2017) propose a hybrid encoder with an attention mechanism to ex-
tract the main purpose from the current session sequence. Liu et al. (Liu

1The implementation of our model is available via https://github.com/AnsongLi/TIE-
DGNN.
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et al., 2018) emphasize the long-term and short-term interests of the cur-
rent session, which are obtained by multi-layer perceptrons and attention
mechanisms. MCPRN (Wang et al., 2019b) employs PSRU (GRU variant)
in each mixture-channel to capture the multi-purpose of the current ses-
sion. However, both RNN-based and Markov chain-based approaches have
the strong sequential hypotheses, which means that they cannot capture
transition relationships between distant items.

Recently, graph neural network has achieved great success in various
fields. Thus, many methods based on it are proposed for session-based
recommendation. Wu et al. (Wu et al., 2019) is the first work to convert
session sequence into a graph to model high-order transition relationships
between items and apply the gated graph neural network to learn item
embeddings. Compared with RNN-based and Markov chain-based methods,
the performance of SR-GNN improves by a large margin. Following the
success of SR-GNN (Wu et al., 2019), many variants have been proposed,
such as GC-SAN (Xu et al., 2019) combines self-attention mechanism with
graph neural network and TAGNN (Yu et al., 2020) considers candidate item
factors into recommendation task. Qiu et al.(Qiu et al., 2019) propose the
WGAT layer to serve as the item feature encoder that learns representation
to assign different weights to different neighbors.

Global Methods for SBR. All the above methods only focus on the
transition relationship between items in the current session. There are also
works considering to leveraging the global information. Some collaborative
filtering (CF) based methods (Wang et al., 2019a)(Luo et al., 2020) explore
the the latest n neighborhood sessions of the current session to model the
global information at the session-level. But these methods may suffer from
the problem of noise when integrating other sessions’ embeddings into the
current one. Thus, some methods propose constructing a global graph to
capture global information at the item-level. Qiu et al.(Qiu et al., 2020)
propose a broadly connected session (BCS) graph to link different sessions
and a novel mask-readout function to improve session embedding. Zheng
et al. (Zheng et al., 2020) construct two channels to generate inter-session
and intra-session embeddings from local and global contexts, respectively.
Xia et al.(Xia et al., 2020) combine hypergraph model with self-supervised
task to capture transition relationship between items from global context.
Wang et al.(Wang et al., 2020b) traverse all sessions to find the most rel-
evant neighbors and takes them as a unified neighbor set for each item as
global information. Then, they combine it with the local context (current
sesssion) to model the transition information. All these methods for model-
ing transition information from the global context are coarse-grained, which
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makes the models less explanatory. Thus, we propose a new method of con-
structing global graph by considering relative position information between
items from all sessions, which captures the fine-grained transition relation-
ship from the global context.

2.2. Disentangled Representation Learning

Disentangled representation learning, which aims to learn independent
factors behind the data, is quickly applied to various fields, such as computer
vision(Chen et al., 2016), text(John et al., 2018) and topic modeling (Lin &
Wang, 2020). In the field of recommendation, Ma et al.(Ma et al., 2019b) is
the first work to learn disentangled representations based on user behaviors.
With the booming of graph neural network, Ma et al.(Ma et al., 2019a) ap-
plyed disentangled representation learning in graph convolutional network to
achieve micro-disentanglement for representing each item. This method(Ma
et al., 2019a) does not consider macro-separability between each pair of fac-
tors behind the item. Thus, DGCF(Wang et al., 2020a) and IPGDN(Liu
et al., 2020) employ distance correlation and the Hilbert-Schmidt indepen-
dence criterion, respectively, to encourage independence between pairs of
factors. In SBR, Li et al.(Li et al., 2022) is the first work to consider dif-
ferent contributions of item factors to capture the user’s intent and apply
disentangled representation learning techniques to learn different factors em-
beddings of item in the current session, which infer the main intent of the
user more easily. Capturing the main intents of users can effectively assist
the model in inferring the reasons for transition relationships between items.
Thus, we employ disentanglement techniques to represent each item as dif-
ferent factor embeddings to infer the key factor that the user cares about as
the reason for the transition between items in the global context.

2.3. Contrastive Learning

Contrastive learning aims at embedding the extended versions of the
same sample close to each other, and trying to push the embedded contents
of different samples away (Jaiswal et al., 2021). It has become an indis-
pensable component in improving model performance. Early contrastive
learning works focus on word-embedding methods(Mnih & Kavukcuoglu,
2013)(Mikolov et al., 2013). Then it is applied to computer vision(Chen
et al., 2020) and natural language processing (Wu et al., 2020)(Giorgi et al.,
2020). In the field of graph, DGI (Veličković et al., 2018) and DMI (Peng
et al., 2020) use comparative learning to enhance the robustness of node
representation in graphs. In SBR, data sparsity is a problem that has been
perplexing this field. Comparative learning can be seen as a method of data
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Figure 1: Illustrations of construction of session graph and position-aware global graph.

augmentation to enhance the robustness of representation. Some works (Xia
et al., 2020) has combined comparative learning with session-based recom-
mendation and achieve good results. To enhance the robustness of session
representations, we adapt Contrastive Predictive Coding (Oord et al., 2018)
proposed infoNCE loss into our model.

3. PRELIMINARIES

In this section, we first introduce the problem setting for SBR, then
present two types of graph models, i.e., position-aware global graph and
session graph. We highlight the process of modeling fine-grained transition
information over the global graph.

3.1. Problem Setting

Let V = {v1, ...vi, ...vN} represent the set of all unique items involved in
all sessions, andN represents the total number of items. s = [vs,1, vs,2, ..., vs,n]
denotes an anonymous session in which items are ordered by timestamps and
vs,k ∈ V(1 ≤ k ≤ n) denotes an interacted item by user within the session s.
In our model, we embed each session s and item vi into the same space and
let s and vi represent them, respectively2. Given a session s, the session-

2In the paper, we use bold uppercase letters, bold lowercase letters, and nonbold letters
to denote matrices, vectors, and scalars, respectively. unless otherwise specified, all vectors
are in the column form.
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based recommendation task is to recommend the next item vs,n+1 ∈ V that
is most likely to be interacted with by the user of the current session s.

3.2. Graph Model Construction

3.2.1. Construct Position-aware Global Graph

In the learning process of a graph-based model, we extract information
from the graph structure through node propagation. The information con-
tained in the graph structure determines the upper limit of the performance
of our model. Therefore, it is crucial to make the graph model contain
as much information as possible. In session-based recommendation, some
methods consider mining information from other sessions to construct a
global graph to achieve better performance. Existing global graph construc-
tion methods, such as I3GN (Zheng et al., 2019) and DGTN (Zheng et al.,
2020) select neighbors from recent sessions based on their similarities to each
item in the target session. GCE-GNN (Wang et al., 2020b) traverses all ses-
sion sequences to select neighbors that appear most frequently for each item.
All these methods unify all the filtered neighbors into a single set without
distinguishing the different types of neighbors. This will make it difficult for
the model to capture item transition in the global context. Because there
is no latent information to make the model obtain the common transition
between neighbors, such as whether the transition is from A to B or B to
A or both, in most cases. Thus, we propose a novel position-aware global
graph, which utilizes the relative position information to distinguish the role
of different neighbors, so as to model finer-grained transition information in
the global context.

Let Ggvi = (Vg, Eg) be the position-aware global graph. First, we define
|ε| as the scope of modeling of item transition, and traverse all sessions
to find all the neighbor items, which the adjacent distance d ≤ |ε| to vi,
and all its neighbor items and itself to form the Vg node set in the global
graph Ggvi . These neighbors are represented as set N ε

vi . To modeling position
information, there are three types of edges in edge set Eg, namely in-edge,
out-edge and in-out-edge. Based on this, we divide the items in the neighbor
set N ε

vi into Nin, Nout and Nio, representing in-coming neighbor, out-coming
neighbor and in-out-coming neighbor, respectively. Each type of neighbor
is connected to the corresponding type of edge. In order to distinguish the
importance of neighbors, we take the frequency of neighbor items over all
the sessions as the weight of the corresponding edge. An example of building
a position-aware global graph is shown in the Figure 1 (b).
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Figure 2: The overview of the proposed TIE-DGNN model.

3.2.2. Construct Session Graph

For each session sequence s = [vs,1, vs,2, ..., vs,n], we construct a session
graph Gs = (Vs, Es) to model the pattern of neighboring items in the current
session, where Vs and Es are the node set and edge set, respectively. In our
setting, each node represents an item vs,i ∈ Vs. (vs,i, vs,j) ∈ Es indicates that
there is an adjacent edge between nodes vs,i and vs,j . Four types of edges are
contained in our edge set, which are ein,eout,ein−out and eself , respectively.
ein indicates in-coming edge that there is a transition from vi to vj , eout
indicates out-coming edge, ein−out indicates in-out-coming edge that there
are both transition from vi to vj . eself denotes that there is a loop transition
within the item itself. These all types of edges can help model to capture the
relationship between items at the session-level more easily. The examlple is
shown in the Figure 1 (a).

4. THE PROPOSED METHOD

In this section, we present our Transition Information Enhanced Dis-
entangled Graph Neural Network model, termed TIE-DGNN, whose work-
flow is shown in Figure 2. It is composed of four main components. 1)
Global-level Disentangled Item Embedding Learning. In this mod-
ule, we first initialize the position embeddings in the global context and
slice item embeddings into multiple chunks with the assumption that each
chunk represents a factor. Then, we employ global-level disentangling lay-
ers to separately learn different factor embeddings of items over the global
graph and finally get the factor-aware global item embeddings. 2) Local-
level Item Embedding Learning. In this module, we use an attention
mechanism to learn the local-level item embeddings in the current session.
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3) Dual-channel Session Embedding Learning. In this module, we
take reversed position information into attention weights account to gener-
ate factor-aware inter-session embedding and intra-sesion embedding via the
aggregation of factor-ware global item embeddings and local-level item em-
beddings, respectively. Then, we employ contrastive learning techniques to
enhance the robustness of two types of session embeddings. 4) Prediction
Layer. In this module, we linearly combine two types of session embeddings
and match it with candidate items to calculate the probability of their being
the next item.

4.1. Global-level Disentangled Item Embedding Learning

In this subsection, we first introduce the initialization of item embed-
dings and position embeddings in the global context, and then show how to
learn the factor-aware global item embeddings via global-level disentangling
layers.

4.1.1. Initialization

Embedding Initialization. The previous methods (Wu et al., 2019;
Wang et al., 2020b) of session-based recommendation represent an item as a
holistic representation. However, the intents behind users’ selection of items
are diverse (Wang et al., 2019b; Ma et al., 2019a), which are determined by
different potential factors behind the item. Thus, we use disentangled em-
bedding learning techniques to encode the different factors behind the item,
so as to infer the key factors that the user most cares about for interpreting
the reason of transition in the global context. Then, we take item vi as an
example, showing how to generate initial disentangled item embeddings in
the global context.

Disentangled representation learning aims to model the latent different
factors behind the item. We assume that there are K latent factors when
given a single node i ∈ V in the global graph. Thus, the embedding vi ∈ Rd
is cast into K chunks, with each chunk representing a latent factor. The
formula is as follows:

ci,k =
σ(W>

k · vi) + bk

‖σ(W>
k · vi) + bk‖2

, (1)

where σ is an activation function. Wk ∈ Rd×
d
K is a weight matrix of the

kth factors. bk ∈ R
d
K represents the bias term. l2 normalization is adopted

to avoid overfitting. Accordingly, the initial disentangled embedding for vi
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is hg
v
(0)
i

= {c(0)i,1 , ..., c
(0)
i,k } ∈ R

d
K , where ci,k represents embedding for the kth

factor.
Position Embedding Initialization. As aforementioned, each item

in the global graph has three types of neighbors, namely Nin, Nout, Nio,
which represent in-coming neighbor, out-coming neighbor and in-out-coming
neighbor, respectively. Different types of neighbors denote the different tran-
sition relationships for the current item. We consider that in the same tran-
sition relationship, the importance of different neighbors to the current item
is differentiated, e.g., in the session {v1 → v2 → v3 → v4}, v1, v2, v3 are the
in-coming neighbors for v4. It is obvious that v3 shows great influence on the
current item v4 and the impact of v1 would be relatively small. The distance
of neighbors from the current item can distinguish the importance of differ-
ent neighbors. Thus, we propose a position-coding method by considering
the distance to adaptively estimate the importance of each neighbor.

For neighbor sets Nin, Nout, we construct two learnable position em-
bedding matrices Pin,Pout. Take Pin = [pin1 , ...,p

in
µ , ...,p

in
ε ] ∈ Rdp as an

example, µ(1 ≤ µ ≤ ε) denotes adjacent distance between items and dp
represents the dimension of position embedding. In a dataset, the adja-
cent distance between neighboring items may not unified, e.g., in the sesion
{v1 → v2 → v3 → v4}, the distance of v3 from v4 is 1, however in session
{v3 → v9 → v4} is 2. To better estimate the importance of each neighbor,
we choose the most frequent distance of neighbors from the current item
over all the sessions as µ. For neighbor set Nio, the meaning of distance of
in-coming edge and out-coming edge is different. Thus, we do not consider
distance of in-out-coming neighbors from the current item. To distinguish
other types of neighbors, we build a unified position vector pio ∈ Rdp for all
items in Nio.

4.1.2. Global-level Disentangling Layer

In this subsection, we present details of global-level disentangling layer
(GLDL). The example of structure of our model with two GLDL layers is
shown in Figure 3.

Position-aware Neighbor Information Propagation. As mentioned
above (section 3.2.1), for each item, there is a neighbor set N ε

v = {Nin, Nout,
Nio}, which represent the in-coming neighbors, out-coming neighbors, and
in-out-coming neighbors, respectively. Different types of neighbors play dif-
ferent roles in the learning process. We conduct information propagation for
Nin, Nout and Nio, respectively. In the process of propagation, in order to
distinguish the importance of different neighbors to the current items from
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Figure 3: An example of two GLDL layers for our disentangled embedding learning
method. Specifically, we first project each node (i.e., item) in the position-aware global
graph into different embedding subspaces such that each subspace represents a latent
factor. Then, in each subspace, we employ position-aware aggregators to separately ag-
gregate neighbor information of different position types for learning factor embeddings of
nodes. In the next stage, we take v3 as an example. The different factor embeddings are
concatenated to form a new item embedding. To prevent overfitting, we fused the new
item embedding with its previous representation via the residual attention mechanism to
generate the final item embedding. Finally, distance correlation is used to encourage inde-
pendence between each pair of factors. Stack multiple GLDL layers can obtain high-order
transition information between items over the graph.

the same type of neighbor, we employ an attention mechanism to achieve
the goal. Moreover, we represent each item as different factor embeddings
mentioned above (section 4.1.1). Thus, we separately propagate and update
different factor embeddings of item. Let L be the number of GLDL layers in
our model and K be the number of factors. We will use l(1 ≤ l ≤ L)3 and
k(1 ≤ k ≤ K) to denote the l-th GLDL layer and k-th factor, respectively.
We then present how to learn the global embedding of items.

To distinguish the importance of different items in the same neighbor
type to the current item vi, we employ attention mechanism and linearly
combine neighbor information according to attention score,

hkN
r
g
i,j

=
∑

vj∈Nr
g
i,j

θi,jcj,k, (2)

3We omit the notation l for simplicity as the operation is the same for all the GLDL
layers
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where cj,k denotes the embedding of neighbor item vj for kth factor. θi,j
represents the important weight of different neighbors in Nrgi,j

to current

item vi where rgi,j ∈ [in, out, io] represents the transition relationship be-

tween items i, j in the global context4. Intuitively, several factors can cause
effects on the importance of a neighbor to the target item, such as the posi-
tion information, the frequency infromation, and the matching degree with
the session preference. We combine these three elements to estimate the
important weight θi,j between neighbor vj ∈ Nrgi,j

and the current item vi,

θi,j = q>rgi,j
LeakyRelu(Wrgi,j

[sk � cj,k ‖ wij ‖ p
rgi,j
µ ]), (3)

where � indicates element-wise multiplication operation, ‖ indicates con-
catenation operation. LeakyRelu as the activation function. For different

types of neighbor, we train two weight matrices Wrgi,j
∈ R

d
K
+dp+1× d

K
+dp+1

and qrgi,j ∈ R
d
K
+dp+1. p

rgi,j
µ ∈ Rdp is position vector to be learned where µ

denotes distance between vj and vi, and dp indicates the dimension of the
vector. wrgi,j ∈ R1 represents the weight between vi and vj which is deter-

mined by the number of vj occurrences. sk can be seen as preference of the
current session for the kth factor, which is as follows:

sk =
1

|S|
∑
vi∈S

hsvi,k. (4)

hsvi,k represents local-level item vi embedding for the kth factor obtained
by the local-level representation learning layer. The details will be described
in the subsequent section 4.2.

We employ softmax function to normalize the coefficients from all neigh-
bors in Nrgi,j

to vi, which makes coefficients comparable across different

neighbors:

θi,j =
exp(θi,j)∑

vx∈Nin
exp(θi,x)

. (5)

The resulting attention score is capable of estimating the importance of
each neighbor.

4It should be noted that Nin, Nout, Nio represents in-coming neighbors, out-coming
neighbors and in-out-coming neighbors respectively, and we separately aggregate the
neighbor information according to the transition relationship with attention weights.
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According to the above equations (2) (3) (4) (5), we aggregate the neigh-
bor information in Nin, Nout, Nio to compute hkNin

, hkNout
and hkNio

. Finally,
we linearly combine the three kinds of neighbor information to get the final
neighbor information representation:

hkNε
vi

= hkNin
+ hkNout

+ hkNio
. (6)

The current item pays different attention to different factor embeddings
of neighbors. Therefore, for each factor, we get an aggregated neighbor

information representation. hNε
vi

= [h1
Nε

vi
, ...,hKNε

vi
] ∈ R

d
K indicates the set

of neighbor information embedding for all factors.
Node update. In this step, we will aggregate the neighbor information

embedding and current item embedding h̃gvi = {ci,1, ..., ci,k} ∈ R
d
K factor-

by-factor. The formula is as follows:

hgvi,k = relu(Wk1 [ci,k ‖ hkNε
vi

]), (7)

where ‖ indicates concatenate operation. We select relu as active function.

Wk1 ∈ R
d
K
× 2d

K denotes the weight matrix to be learned. After current

item is updated factor-by-factor, we obtain hgvi = [hgvi,1, ...,h
g
vi,K

] ∈ R
d
K .

Then, let the learned embeddings of all factors concatenate into a holistic
representation hgvi ∈ Rd.

It is well known that in the information propagation of graph-based
models, with the increase of the number of layers, there will be an indistin-
guishable problem between items, which is called over-smoothing. Inspired
by (Li et al., 2022), we employ residual attention mechanism to alleviate
the negative effect of over-smoothing problem:

α = Wf (σ(Wph
g
vi + Wqh

g(l−1)

vi )), (8)

hg
l

vi = αhgvi + (1− α)hg
(l−1)

vi , (9)

where hg
(l−1)

vi denotes the final output representation of vi in the (l − 1)-th
GLDL layer. Wp,Wq ∈ Rd×d and Wf ∈ R1×d are learnable parameters.
σ is the sigmoid activation function. α controls the amount of each part
should be preserved.

Distance Correlation. As previously stated, in order to characterize
the features of items, we cast item embedding into K chunks, with each
chunk representing a latent factor. We would like these factors to be inde-
pendent to each other, which avoid the negative effects of information re-
dundancy. In fact, the information redundancy always exists between these
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factors. We need take measures to alleviate the negative impact of it. Thus,
we employ distance correlation as the regularizer in our model to further
encourage the independence between each pair of factors. The formula is as
follows:

Lcor =

K∑
k=1

K∑
k′=k+1

cos(ci,k, ci,k′ ), (10)

where cos represents the similar distance between two embeddings. ci,k, ci,k′

indicate a pair of factor embeddings of an arbitrary item vi. For more details,
please refer to (Székely et al., 2007).

4.2. Local-level Item Embedding Learning

To learn the local neighboring item transitions contained in the current
session, inspired by (Wang et al., 2020b), the edge set of the session graph
contains four types of edges to model relationships between items, namely
ein, eout, ein−out, eself . Next, we will present how to learn local-level item
embedding.5 It is well-known that the importance of different neighbors to
the current item is different. Thus, we assign different attention weights to
neighbors to distinguish their importance and linearly combine them:

hsvi =
∑

vj∈Ns
vi

ϕi,jhvj . (11)

ϕi,j represents the coefficient controlling the importance weight of neigh-
bors, which is calculated by similarity of neighboring item:

ϕi,j = LeakyRelu[Wrsij
(hvi � hvj )], (12)

where � indicates the element-wise product. We choose LeakyRelu as acti-
vation function. It should be noted that there are four types of edge relation-
ship in the session graph. Thus, the four weight matrices need to be learned
to correspond to the four edge relationships, namely Win,Wout,Win−out,
Wself . Wrsi,j

∈ R1×d denotes weight matrix to be learned where rsi,j ∈
[in, out, in− out, self ] represents the relationship between vi and vj .

5In the session graph model, due to its sparse user behaviors and considering the
complexity of the model, we do not employ disentangled embedding learning techniques
and represent each item as a holistic embedding (i.e., hvi ∈ Rd).
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Then we apply the softmax function to normalize the importance weights
across all neighbors (including itself) to the current item:

ϕi,j =
exp(ϕi,j)∑

vx∈Ns
vi
exp(ϕi,x)

. (13)

According to Eq (11)(12)(13), we obtain local-level item embedding
hsvi ∈ Rd which is aggregated by the features of neighbors and item itself in
the current session.

Remark. It should be noted that Eq (4) in the global-level disentan-
glement layers need obtain the trained embedding of items at the local-
level to generate the average feature representation of the current session
for different factors. Therefore, we allow the trained embeddings of each
item hsvi ∈ Rd in the current session to be cast into K embedding sub-
spaces that train the factor embeddings in the global context, obtaining a

set hsvi = [hsvi,1, ...,h
s
vi,K

] ∈ R
d
K .

4.3. Dual-channel Session Embedding Learning

For each item in an arbitrary session sequence, we learn two types of
embeddings: global-level (inter-session) disentangled item embedding hgvi
and local-level (intra-session) item embedding hsvi . The previous methods
(Wang et al., 2020b) (Zheng et al., 2020) fuse two different levels of item
embedding before learning session embeddings, however, it may introduce
more noise into the embedding. Thus, we decided to separately learn session
embedding at two different views (i.e, inter-session and intra-session embed-
dings). Next, we will present how to generate two different views of session
embedding.

Factor-aware Inter-session Embedding Learning. In this subsec-
tion, we will show how to learn inter-session embedding. It is well-known
that session embedding directly aggregated by the item which is represented
as a holistic embedding cannot well model the diverse intents of a user in
the current session(Li et al., 2022). Based on factor-aware item embeddings
obtained by global-level disentangling layers, we can assign attention coef-
ficients to different factors of each item in the process of generating factor-
aware session embeddings. By doing so, we can estimate the diverse intents
of a user on different factors. This is expected to help us better capture the
main factors that users care about and infer the key reason for the main
transition relationships in the current session.

In addition, how to assign the weight coefficient is also particularly im-
portant for each item in the current session. Most previous methods focus
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on the importance of the last item in the session, which indirectly affects
the contribution of other items to the current item. We need to measure the
contribution of each item in the session more comprehensively. Intuitively,
the importance of each item decreases from the back to the front of the
session. Thus, we integrate reversed position embedding into the process of
assigning weight coefficient to each item.

Let hgvi = [hgvi,1, ...,h
g
vi,K

], obtained by global-level disentangling layers,
be the input to represent each item in the current session. We also use a

learnable position embedding matrix Pg = [pg1,p
g
2, ...,p

g
ι ] ∈ R

d
K to model

the reversed position information of item, where ι represents the length of
session sequence. The kth factor embedding of the tth item in the session
after fusing the position information is as follows:

hg
′

vi,k
= tanh(Wk2 [hgvi,k ‖ pgι−i+1] + bk1), (14)

where Wk2 ∈ R
d
K
× 2d

K , bk1 ∈ R
d
K are the trainable parameters. Then we

calculate the representation of average feature of session,

sf,k =
1

ι

ι∑
i=1

hgvi,k. (15)

The soft-mechanism is then employed to calculate the weight coefficient
of each item,

γi = q>k σ(Wk3h
g
′

vi,k
+ Wk4sf,k + bk2), (16)

where Wk3 ,Wk4 ∈ R
d
K
× d

K and qk,bk2 ∈ R
d
K are learnable parameters.

Finally, we linearly combine the item embeddings hgvi,k to obtain the inter-

session embedding on the kth factor:

sg,k =

ι∑
i=1

γih
g
vi,k

. (17)

Following the above steps, the inter-session embedding can be obtained
by factor-wisely aggregating all the item embeddings in the current session

with weight coefficients. sg = [sg,1, sg,2, ..., sg,K ] ∈ R
d
K represents the final

factor-aware inter-session embedding.
Intra-session Embedding Learning. In this subsection, we use item

embedding obtained by the Local-level Item Embedding Learning to learn
the intra-session embedding. We adopt the same strategy as generating
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inter-session embedding, which is combined with position information to
more comprehensively model the contribution of each item in the session.
The difference is that we do not need to aggregate item embedding factor-
wisely because we do not investigate latent factors at local-level item embed-
ding learning due to the limited user behaviors. Therefore, we only need to
construct a new learnable position embedding matrix and adjust some learn-
able parameters in Eq (14)(15)(16)(17), then generate the final intra-session
embedding sl ∈ Rd according to these formulas. Specifically, we construct
a learnable position embedding matrix Pl = [pl1,p

l
2, ...,p

l
ι] ∈ Rd where ι

denotes the length of the current session. For Eq (14), we apply plι−i+1

to be the position vector and Wk5 ∈ Rd×2d, bk3 ∈ Rd to be the learnable
parameters. For Eq (16), we apply Wk6 ,Wk7 ∈ Rd×d and qk1 ,bk4 ∈ Rd to
be the learnable parameters.

Contrastive learning. Contrastive learning has been widely used in
SBR, which can be used as an auxiliary task to enhance the performance of
model. It is expected to better characterize different aspects of sessions by
contrasting two groups of session embeddings learned via two views (inter-
session and intra-session). Thus, we next present how to learn contrast
objective to enhance the performance in characterizing session feature.

We first generate sample pairs from the ground truth (positive) and the
corrupted samples obtained by corrupting positive samples with row-wise
and column-wise shuffling. Then, we employ InfoNCE (Oord et al., 2018)
with a standard binary cross-entropy loss as our learning objective and the
formula defined as follows:

Lcon = −logσ(sgs
>
l )− logσ(1− (̃sgs

>
l )), (18)

where s̃g (or s̃l) represents the corrupted samples. By doing so, the session
embedding can leverage another view of session information to refine itself
and enhance robustness.

4.4. Prediction Layer

After obtaining inter-session embedding sg and intra-session embedding
sl, we linearly combine them into the final session representation:

S = sg + sl. (19)

Based on the current session representation S and the embedding of
candidate item vi ∈ V, the probability of the next click is obtained by the
dot product of their embeddings and applying the softmax function:

ŷi = Softmax(S>vi). (20)
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We employ a cross-entropy loss function as the learning objective, which
is defined as:

Lc = −
n∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi), (21)

where y is the one-hot encoding vector of the ground truth item. Then,
we unify disentangled loss, contrastive loss and cross-entropy loss into the
learning objective. The final loss function of our model is defined as follows:

L = Lc + βLcor + λLcon, (22)

where Lcor,Lcon denotes disentangled loss and contrastive loss respectively
which are defined in Eq. 10 and Eq. 18. β and λ controls the magnitude of
the disentangled learning task (i.e., distance correlation loss) and contrastive
learning task (i.e., InfoNCE loss), respectively.

5. Experiments

To evaluate the effectiveness of our proposed model, we conduct ex-
tensive experiments on three publicly accessible datasets by answering the
following three key research questions:

• RQ1: Does the proposed method outperform state-of-the-art session-
based baselines in publicly accessible datasets?

• RQ2: Does position-aware global graph and position embedding matrices
in global-level encoder positively affect our proposed model on session-
based recommendation?

• RQ3: How does the key parameters affect the performance of TIE-
DGNN, including the number of factors for disentangled representation
and the regularization coefficients for loss functions?

5.1. Experimental Configurations

Datesets and Preprocessing. We evaluate the performance of our
proposed model on three real-world benchmark datasets:

• Tmall 6 dataset comes from IJCAI-15 competition, which contains anony-
mous user’s shopping logs on the Tmall online shopping platform. Due

6https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
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Statistics Tmall Last.fm Nowplaying

# training sessions 351,268 2,837,644 825,304
# test sessions 25,898 672,519 89,824

# items 40,728 38,615 60,417
Avg.length 6.69 11.88 7.42

Table 1: Statistical results of datasets

to the large size of Tmall, following (Wang et al., 2020b), only the first
120000 of the sessions are used for experiments. In these sessions, we set
the last 100 seconds as the test data and the remaining historical sessions
as training data.

• Last.fm 7 dataset is widely used in the music recommendation task, which
is released by (áOscar Celma, 2010). We focus on the recommendation
task for music artists. Following (Guo et al., 2019) (Ren et al., 2019), the
top 40,000 most popular artists are preserved, and the splitting interval
is set to 8 hours. The most recent 20% of the sessions are used as the test
data and the remaining historical sessions as training data.

• Nowplaying 8 dataset describes the behaviors of user listening music ex-
tracted from Twitter, which comes from (Zangerle et al., 2014). Following
(Wang et al., 2020b), the sessions of the last two months are set to the
test data and the remaining historical data for training.

For fair comparison, we conduct steps of preprocessing over the three
datasets. Following (Wu et al., 2019) (Wang et al., 2020b), we filter out
all sessions which length is 1 and occurrences of items less than 5 times.
In addition, we generate sequences and corresponding labels by using split-
ting method to augment data. To be specific, for a session sequence S =
[vs,1, vs,2, ..., vs,n], we generate a series of sequences and labels ([vs,1], vs,2),
([vs,1, vs,2], vs,3), ..., ([vs,1, ..., vs,n−1], vs,m). The statistics of the datasets are
summarized in Table 1.

Evaluation Metrics. To evaluate the recommendation results, we
choose the most commonly used P@20 (Precision) and MRR@20 (Mean
Reciprocal Rank) as metrics accrodding to the previous works(Wang et al.,
2020b)(Wu et al., 2019).

7http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
8http://dbis-nowplaying.uibk.ac.at/#nowplaying
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Baseline Algorithms. We compare our method with the representa-
tive methods in SBR. The following eight baseline models are evaluated.

• FPMC(Rendle et al., 2010) is a sequential method based on matrix
factorization and Markov chain. To compare it in SBR, we ignore the user
latent representations when conducting recommendation task.

• GRU4Rec(Hidasi et al., 2015) is RNN-based method that utilizes
GRU units to capture the sequential behaviors between items in session
sequence.

• NARM(Li et al., 2017) applies attention mechanism into hierarchical
RNN to model the main purpose of user and combines it with sequential
behavior to generate the representation for SBR.

• STAMP(Liu et al., 2018) employs attention layers to replace all RNN
encoders in the previous work, which is capable of capturing the users’
current interests relied on last item and combines it with long-term inter-
ests to enhance the performance.

• SR-GNN(Wu et al., 2019) utilizes the gated graph convolutional layer
to obtain item embedding. Then, generating the session representation
for recommendation by using an attention net which capture the global
preference and current interests of this session.

• GC-SAN(Xu et al., 2019) first combines graph neural network and
multi-layer self-attention network to enhance the recommendation perfor-
mance by modeling local neighboring item transitions and contextualized
non-local representations.

• GCE-GNN(Wang et al., 2020b) uses two levels of graph models to
capture item transition relationships from local and global contexts and
takes reversed position information into account to generate session rep-
resentation for SBR.

• Disen-GNN(Li et al., 2022) combines disentangled representation lear-
ning techniques with gated graph convolutional layers to model latent
factors behind the item to estimate the diverse intents of the user.

Hyperparameter Setup. For a fair comparison, we tune the baselines
for best performance on three datasets according to the data preprocessing
methods and the parameter settings provided in their papers. The Back-
Propagation Through Time (BPTT) algorithm (Chen & Huo, 2016) is used
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Statistics Tmall Last.fm Nowplaying

embedding size (d) 275 128 105
# factors (K) 5 4 7

# GLDL layers 2 2 2
β 5 4 5
λ 0.005 0.02 0.005

Table 2: Parameter settings for datasets

Model
Tmall Last.fm Nowplaying

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

FPMC 9.15 3.31 12.86 3.78 7.36 2.82
GRU4REC 10.93 5.89 17.61 6.62 7.92 4.48

NARM 23.30 10.70 21.83 7.59 18.59 6.93
STAMP 26.47 13.36 21.76 7.66 17.66 6.88
SR-GNN 27.57 13.72 22.33 8.23 18.87 7.47
GC-SAN 21.80 10.17 22.64 8.42 18.85 7.43

Disen-GNN 31.56 15.31 22.92 8.75 22.22 8.22
GCE-GNN 35.09 15.80 24.26 8.66 22.47 8.40

TIE-DGNN 39.01 17.75 25.25 8.83 23.35 8.53

% Gain 11.2% 12.3% 4.0% 0.9% 3.9% 1.5%

Table 3: The comparison of TIE-DGNN with baselines over the three datasets

for training our model. We adopt the dropout strategy in dual-channel ses-
sion embedding learning to prevent overfitting. Following previous methods
(Wang et al., 2020b)(Wu et al., 2019), we set mini-batch to 100 and L2
penalty to 10−5. All parameters are initialized using a Gaussian distribu-
tion with a mean of 0 and a standard deviation of 0.1. We select Adam
with an initial learning rate of 0.001 that will decay by 0.1 after every 3
epoch to optimize parameters. Besides, we randomly select a 10% subset
of the training set as the validation set. Moreover, the scope of modeling
of item transition ε and number of neighbors in the global context is set to
3 and 12 respectively as previous methods (Wang et al., 2020b). Some key
parameters, which have a great impact on the model (i.e., the number of
factors, the number of GLDL layers, etc.), need to be tuned respectively in
each dataset. The details are shown in Table 2.

5.2. Performance Comparison (RQ1)

The performance comparison of our proposed model over the state-of-
the-art baselines is shown in Table 3, where the best and second-best perfor-
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mance of each column are highlighted in boldface. The gains are calculated
by using the difference between the performance of TIE-DGNN and the
best baseline to divide the performance of the latter. It can be seen that our
model has achieved the best results over the three datasets in terms of the
two metrics consistently, especially improving a large margin on the Tmall
dataset. The results ascertain the superiority of our proposed model.

As a traditional method in session-based recommendation, FPMC can
only model the sequential behavior between two pairwise items for recom-
mendation tasks. Thus, their performance is worse than that of neural
network-based models (i.e., GRU4REC,NARM,STAMP).

Among all the neural network-based models, RNN is applied to build
GRU4REC and NARM. While the performance of NARM is better than
that of GRU4REC. This is because NARM employs an attention mecha-
nism to capture the users’ current interests, which relies on the last item
and combines it with sequential behavior obtained by RNN to conduct rec-
ommendation. While GRU4REC employs a simple RNN-based structure
to consider sequential behavior between items and cannot model the shift
of user preference. STAMP utilizes a complete attention mechanism that
distinguishes the importance of different items and considers the last item of
a session to model the short-term interest. Except for the improvement over
NARM in Tmall dataset, the performance in other datasets is comparable.

Among all the baseline methods, the graph-based methods outperform
other methods over the three datasets (besides GC-SAN in the Tmall
dataset), which indicates that graph modeling is more suitable than se-
quential modeling (MC, RNN) or attention modeling for session-based rec-
ommendation. This is because the graph structure can iteratively aggregate
the neighbor information from the graph to distill high-order transitions
between items, which obtain better item representations. SR-GNN is the
first work to employ gated graph neural network for session-based recom-
mendation and use self-attention mechanism on the last item to generate
session embedding. Based on SR-GNN, GC-SAN designs a multi-layer self-
attention network to obtain contextualized non-local representations and
combine them with the local item embeddings learned by GGNN for the
recommendation task. Compared with SR-GNN, the performance of GC-
SAN is comparable across the Last.fm and Nowplaying datasets. While in
the Tmall dataset, it underperforms SR-GNN by a large margin, even lower
than the neural network-based models (NARM, STAMP). We think that the
multi-layer self-attention network may not be applicable to the data pattern
in the Tmall dataset, which does not mean that graph neural networks are
inferior to neural network-based models for SBR. Considering that the user’s
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intents may be diverse in the session sequence, Disen-GNN disentangles the
item embedding into independent factors that represent user preferences and
separately updates the embedding of each factor via promotion over the ses-
sion graph so as to better infer the user’s specific intent. Attributed to the
advanced representation learning techniques, Disen-GNN obtains better re-
sults than SR-GNN and GC-SAN across the three datasets. GCE-GNN is
the best performing method that integrates information from global context
(i.e., all the sessions) and current interests (i.e., current session) to learn
item embeddings and also uses position information to generate session rep-
resentation for SBR.

In our model, we highlight the importance of transitions between neigh-
boring items from global and local contexts. Especially in the global con-
text compared with GCE-GNN, we consider the finer-grained transition in-
formation, including its modeling, propagation, and the key reason for it.
Specifically, we integrate relative position information into the global graph
(global context) for each item to distinguish the different roles of neighbors.
Then, we disentangle the item embedding into independent factors (repre-
sent user preferences) and separately update the embedding of each factor
via promotion over the position-aware global graph. Combining them with
local-level item embeddings to generate factor-aware inter-session embed-
ding and intra-session embedding, respectively, and then using contrastive
learning techniques to enhance the robustness of the two types of session
embeddings. With those specially designed components, our model outper-
forms the best compared method (GCE-GNN) across the three datasets. In
these three datasets, the improvement of our model in the Nowplaying and
Last.fm datasets is relatively lower than in the Tmall dataset. We think it
may be related to the average length of the session. The longer the session
length, the richer the information contained in the session. In other words,
even without considering finer-grained transition information, other models
can still achieve better results. It also indicates that our model has greater
potential in datasets with more sparse data through fine-grained modeling
transition information, which is more in line with session-based recommen-
dations.

5.3. Effectiveness of global context (RQ2)

Effectiveness of position-aware global graph. One of the main
contributions of our model is designing the position-aware global graph at
item-level to model the fine-grained transition relationships of neighboring
items in the global context (i.e., all the sessions). Compared to the global
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Model
Tmall Last.fm Nowplaying

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

TIE-DGNN-w/o-PEM 37.52 16.90 24.97 8.65 21.97 8.45
TIE-DGNN-w/o-PGG 38.10 16.77 24.12 8.30 23.03 7.66

TIE-DGNN 39.01 17.75 25.25 8.83 23.35 8.53

Table 4: The effectiveness of global context

graph constructed by GCE-GNN, we utilize position information to dis-
tinguish different types of neighbors (i.e., in-coming neighbors, out-coming
neighbors and in-out-coming neighbors) and aggregate the neighbor infor-
mation by position-wisely. To investigate the effectiveness of the position-
aware global graph, we compared it with TIE-DGNN-w/o-PGG, which re-
places the position-aware global graph with the global graph constructed by
GCE-GNN.

Table 4 shows the results of TIE-DGNN and the variant (TIE-DGNN-
w/o-PGG). Our proposed model obtains better performance across three
datasets. It indicates that by using position information to distinguish
neighbors in the global context, TIE-DGNN learns the importance of differ-
ent types of neighbors to better model the neighboring item transitions and
thus performs better in the final recommendation task.

Effectiveness of position embedding matrices. In the process
of neighbor information aggregation, we train different position embedding
matrices to estimate the importance of different neighbors under the same
transition relationships and facilitate our model to capture neighboring item
transitions in the global context. To further investigate the effectiveness of
the position embedding matrices in the global context, we compare our pro-
posed model with the variant (TIE-DGNN-w/o-PEM) that does not employ
position embedding matrices in the aggregation of neighbor information.
Table 4 displays the result. It is obvious that our proposed model obtains
better performance across the three datasets, which demonstrates the pos-
itive effects of position embedding matrices on modeling neighboring item
transitions in the global context.

5.4. Influence of key parameters (RQ3)

Influence of disentangled representation (K). To investigate whet-
her or not TIE-DGNN positively affected by disentangled representation
techniques, we study the performance of the model with varying the number
of factors (K) in the learning process. To be specific, we set item embedding
size (d) to 128 and 105 for Last.fm and Nowplaying datasets respectively.
Then, keep the embedding size unchanged and vary K in two sets of values
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Figure 4: Impact of factor number (K).

{1,2,4,8,16} (Last.fm) {1,3,5,7,15} (Noplaying). The performance compar-
isons are shown in Fig.4. There are several observations:

• When K is 1, the performance of our model is relatively worse for both
datasets in terms of P@20 and MRR@20 consistently. It indicates that
only uniform intent is insufficient to capture a user’s specific purpose
for different scenarios. This also justifies the rationality of disentangling
item embedding for profile users’ diverse intents.

• With the increase of factors, the performance is generally enhanced till
arriving the peak. We find that for different datasets the number of
factors corresponding to the peak are varying, e.g.,K=4 on Last.fm and
K=7 on Nowplaying. We think it is due to the different scenarios of
datasets, since the user intents are driven by different factors for different
scenarios.

• When the number of factors is larger than a threshold (i.e., K=4 on

27



0 5e-4 5e-3 2e-2 5e-2

25.0
27.5
30.0
32.5
35.0
37.5
40.0

P@
20

Tmall Last.fm

0 5e-4 5e-3 2e-2 5e-28

10

12

14

16

18

20

M
RR

@
20

Tmall Last.fm
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Figure 6: Impact of the coefficient of disentangled loss (β).

Last.fm and K=7 on Nowplaying), the performance of the model rel-
atively drops. This indicates that too fine-grained intents may result
in performance degradation. Thus, selecting the proper K is crucial to
disentangling item embeddings in the learning process.

Coefficient of disentangled loss (β). To encourage the factor-aware
embeddings independence, we apply distance correlation (disentangled loss),
which is a statistical measure to quantify the level of independence. The co-
efficient β is a weight of controlling the disentangled loss in the training pro-
cess. To verify the influence of independence modeling, we tune β in a wide
range for the best value setting and use P@20 (similar trends are observed
based on MRR@20) on Last.fm and Tmall datasets to reflect recommenda-
tion performance. The results are shown in Fig.6. It can be seen that both
datasets have the same tendencies based on P@20, which rise for a period of
fluctuation until reaching a peak and then begin to fall. A properly selected
β can significantly improve a model’s performance and outperform the ones
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that does not use independent modeling (β is 0). It indicates that encour-
aging factors independent can assist model to obtain better representations
in the learning process and thus improve performance. However, when β
is too large, gradient conflicts between joint loss functions (i.e., contrastive
loss function and cross-entropy loss function) lead to the guiding effects of
prediction loss on the learning process weakening, and performance suffers
as a result.

Coefficient of contrastive loss (λ). As introduced in Eq.22, we apply
λ to control the magnitude of contrastive loss based on two types of session
embeddings. To investigate the influence of contrastive modeling, we tune
λ in a set of representative values {0.0005,0.005,0.02,0.05}. The results are
shown in Fig.5. When λ takes 0.005 and 0.02 for Tmall and Last.fm datasets
respectively, the model obtains the best performance in terms of P@20 and
MRR@20 consistently. The proper setting of λ can significantly enhance the
performance of the model. It shows that contrastive learning can enhance
the robustness of two types of session embeddings and thus improve the
recommendation results. For both datasets, with the increase of β, the
performance of model declines. We think that the reason for the decline is
the same as the coefficient β of disentangled loss, which is gradient conflicts
between joint loss functions.

6. Conclusion

In this paper, we propose a novel Transition Information Enhanced Dis-
entangled Graph Neural Network (TIE-DGNN) model for session-based rec-
ommendation. Our model highlights the importance of neighboring item
transitions from the global context. We first construct a position-aware
global graph to model fine-grained transition relationships between items
and represent an item as the embeddings of multiple factors to infer the key
reason for the transition. Then, we employ global-level disentangling layers
to separately learn the factors embeddings of item and train local-level item
embeddings via attention mechanism. After obtaining two types of item em-
beddings including transition information from global and local contexts, we
generate factor-aware inter-session embedding and intra-session embedding
by taking reversed position information into account, respectively, and use
contrastive learning techniques to enhance their robustness. Experimental
results show the superiority of our model over the state-of-the-art methods
across all the datasets in terms of P@20 and MRR@20. Moreover, further
ablation studies verified the validity of different components in our model.
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