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A B S T R A C T   

When cryptocurrency markets generate billions of dollars, it becomes interesting to forecast variation in volume 
of transactions for better trading and for better management of blockchain platforms. This study investigates how 
kernel choice influences the forecasting performance of the support vector regression (SVR) in predicting 
cryptocurrency trading volume. Three common kernels are considered; namely, linear, polynomial, and radial 
basis function (RBF). In addition, we make use of Bayesian optimization (BO) method to tune key parameters of 
the SVR, hereafter referred as SVR-BO. Besides, we examine the nonlinear dynamics of variation in volume of 
transactions by computing Hurst exponent, sample entropy, and largest Lyapunov exponent and found evidence 
of anti-persistence, significant randomness, and presence of chaos. Well-known ARIMA process, Lasso regression 
and Gaussian regression are used as benchmark models in the forecasting task. The root mean of squared errors 
(RMSE) and mean average error (MAE) are adopted as main performance metrics. Forecasting simulations are 
applied to thirty cryptocurrencies. The results from 180 experiments show that the SVR-BO with RBF kernel 
outperforms all models when used to predict next-day trading volume while SVR-BO with polynomial kernel 
outperforms all remaining models when used to predict next-week trading volume. Besides, Gaussian regression 
performs better than ARIMA process and Lasso regression on both daily and weekly data.   

1. Introduction 

Unlike cash, cryptocurrency is obviously a digital money used pri
marily online. Indeed, cryptocurrency is a virtual currency secured by 
cryptography that makes it difficult to counterfeit. Since its introduction 
in 2009, the cryptocurrency market is attracting a large number of 
transactions. In order to better understand the mechanics of crypto
currency markets, recent studies have examined various issues 
regarding cryptocurrency prices; including mapping cryptocurrencies to 
the complexity-entropy causality plane (Stosic et al., 2019a), agglom
erative hierarchical clustering (Song et al., 2019), volatility modeling 
(Lahmiri, Bekiros, & Salvi, 2018; Omane-Adjepong et al., 2019), mul
tifractal analysis (Cheng et al., 2019; Lahmiri & Bekiros, 2019a; Stav
royiannis et al., 2019; Zhang et al., 2019), tail-risk vulnerability (Borri, 

2019), and volatility (Kristjanpoller & Minutolo, 2018; Lahmiri & 
Bekiros, 2021a; Peng et al., 2018; Yu, 2019) and price forecasting 
(Alonso-Monsalve et al., 2020; Catania et al., 2019; Lahmiri & Bekiros, 
2019b, 2020, 2021b). 

Although attention has been given to the analysis and modeling of 
cryptocurrency price and volatility, only a limited number of studies has 
focused on studying the volume of transactions. For instance, it was 
found that cryptocurrency trading volume carries useful information to 
predict extreme negative and positive returns of all cryptocurrencies; 
however, it can predict volatility for only a limited number of crypto
currencies when the volatility is low (Bouri et al., 2019). Besides, it was 
found that volume changes follow different multifractal dynamics 
(Stosic et al., 2019b), there exists power-law correlation between price 
and volume (Zhang et al., 2018), and that the frequency of Google 
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searches leads to a surge in Bitcoin trading volume (Nasir et al., 2019). 
The motivations behind forecasting volume of cryptocurrencies 

follow. First, as forecasting is an important task in financial time series 
analysis and modeling, the knowledge of the future variation in volume 
of transactions provides valuable guidance in developing profitable 
trading strategies. Specifically, trading volume can be a substitute for 
information in the study of cryptocurrency price dynamics and good 
management of blockchain platforms. Second, can be employed as a 
predictor of returns and volatility since it carries valuable information 
regarding expectations of investors. 

In this regard, the primary goal of this paper is to investigate the 
predictability of cryptocurrency trading volume. To this end, the sup
port vector regression (SVR) (Vapnik et al., 1996) is employed under 
different kernel functions used to nonlinearly map the input–output 
data. In fact, the main advantage of the SVR is applying the structural 
risk minimization principle to minimize an upper bound on the gener
alization error rather than implementing the empirical risk minimiza
tion principle to minimize the training error (Vapnik et al., 1996). 
Therefore, it theoretically guarantees to achieve the global optimum. In 
addition, the SVR can provide good generalization results even the data 
sample is small (Vapnik et al., 1996). Bring in mind that the SVR was 
successfully employed to solve various non-linear regression problems 
such as forecasting stock price (Lahmiri, 2018), discharge coefficient of 
a modified labyrinth side weir (Zaji et al., 2016), travel retail industry 
sales (Karmy & Maldonado, 2019), electric load (Maldonado et al., 
2019; Yang et al., 2019), wind tunnel performance (Yan et al., 2020), 
and wind speed (Liu et al., 2019). 

Besides, Bayesian optimization (BO) (Gelbart et al., 2014) is 
employed to tune key parameters of the SVR since this technique is fast 
and effective (Kazakeviciute et al., 2016; Lahmiri & Shmuel, 2019). For 
robustness of the results, the SVR is applied to predict trading volume of 
a large data set composed of thirty cryptocurrencies. Then, formal sta
tistical tests are applied to the estimated out-of-sample forecasting errors 
to check for presence of differences between populations of forecasts 
across different kernels. Besides, three different metrics belonging to 
statistical physics measures are employed to assess fractality, random
ness, and chaos in cryptocurrency volume data. They are respectively 
detrended fluctuation analysis (DFA) (Peng et al., 1994), sample entropy 
(SampEn) (Richman & Moorman, 2000), and the largest Lyapunov 
exponent (LLE) based on the method of Rosenstein (Rosenstein et al., 
1993). Indeed, they are well suited to describe nonlinear dynamics in 
nonstationary data with no prior assumptions. 

To sum up, the contributions of the current study follow. First, we 
tackle the problem of forecasting variation in volume of transactions in 
cryptocurrency. As far as we know, this is the first paper to conduct such 
investigation. Therefore, this the primary goal of the current empirical 
study. Second, we use a robust statistical machine learning model; 
namely, the SVR and investigate the effect of three different kernel 
choices on the forecasting accuracy; namely, linear, polynomial, and 
RBF kernel. Indeed, the SVR achieves the global optimum in minimizing 
the fitting error and provides good generalization results even the data 
sample is small. Third, Bayesian optimization technique is adopted to 
find the optimal values of key parameters of the SVR. This optimization 
technique is fast and statistically robust. Fourth, for robust results and 
generalization capability, the SVR-BO model is tested on a set composed 
of thirty different cryptocurrencies. Fifth, complexity in cryptocurrency 
volume variations is assessed to shed light on the nonlinear dynamics of 
such time series. Indeed, this is the secondary goal of our empirical 
study. For instance, it is a complement investigation to understand the 
nonlinear dynamics in volume variations. At the end, this is the first 
comprehensive study to predict cryptocurrency volume of transactions 
and examine the effect of kernel choice on SVR accuracy. Sixth, SVR 
models are compared against popular statistical models; namely, ARIMA 
process (Box, 2015), Lasso regression (Tibshirani, 1996), and Gaussian 
regression (Rasmussen & Williams, 2006). 

The reminder of this work is as follows. In Section 2 the support 

vector regression, Bayesian optimization, and performance metric are 
described. Section 3 presents the simulation results. Finally, Section 4 
briefly discusses the results and concludes the work. 

2. Forecasting and optimization methods 

Since the primary goal of the current comparative empirical study is 
to forecast variations in volume of transactions of cryptocurrencies, in 
this section, we only present SVR, Bayesian optimization and the per
formance metric; namely, the root mean of squared errors. As the sec
ondary goal is about assessing complexity in such data, details on 
detrended fluctuation analysis (DFA) (Peng et al., 1994), sample entropy 
(SampEn) (Richman & Moorman, 2000), and the largest Lyapunov 
exponent (LLE) based on the method of Rosenstein (Rosenstein et al., 
1993) are left to the reader in the respective references. Briefly speaking, 
they allow measuring fractality, randomness, and chaos in data. Thus, 
they are appropriate to describe nonlinear dynamics in nonstationary 
data with no prior assumptions. Thus, they are used as descriptors of 
nonlinear movements in volume variations. 

2.1. The support vector regression 

Let 
{(

xk, yk
) }N

k=1 denotes the kth input vector £ of the kth training 
pattern and yk represents its corresponding desired output. Then, the 
regression function f is performed by a linear SVR (Vapnik et al., 1996) 
and is expressed as follows: 

f (x) = ωxT + b (1)  

where £,ω=(ω1, ω2,…, ωn) ∈ Rn, b ∈ R and T are respectively the input 
vector, the weight vector, the intercept, and transpose operator. The 
optimization problem for training the linear SVR is given by: 

Minimize
1
2
‖ω‖2

+C
∑N

k=1

(
ξk + ξ∗k

)
(2) 

Subject to, 

yk − ωxT
k − b⩽ε+ ξk and ωxT

k + b − yk⩽ε+ ξ∗k (3)  

where C is the penalty for incorrectly estimating the output associated 
with input vectors, ε > 0 is the regularization factor that weights the 
trade-off between the y estimated value and the target value, and ξ and 
ξ* are slack variables, and k = 1,…,N. Briefly speaking, the nonlinear 
support vector regression (SVR) (Vapnik et al., 1996) seeks to solve the 
following nonlinear regression problems: 

f (x) = ωϕ(x)T + b =
∑N

k=1

(
αk − α∗

k

)
ϕ(xk)ϕ(xk)

T
+ b (4)  

where φ(x) denotes a mapping function that maps the input vector £
into a higher dimensional feature space, and where α and α* are the 
Lagrange multipliers. The inner product of functions φ(x) and φ(x)T can 
be replaced by a kernel function K(•). Thus, the general form of the SVR 
is given by: 

f (x) =
∑N

k=1

(
αk − α∗

k

)
K(x, xk)+ b (5) 

In this study, three kernel functions are considered; namely, linear, 
polynomial, and radial basis function (RBF), respectively expressed as 
follows: 

K(x, xi) = xxi (6)  

K(x, xi) = (xxi + 1)d (7)  

K(x, xi) = exp
(
− ‖x − xi‖2

/σ2 ) (8) 
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Here, d is the order of the polynomial kernel and σ is the width of the 
RBF. Recall that these kernels have been chosen as they are popular in 
SVR function approximation. 

2.2. Baysian optimization 

In Bayesian optimization (BO) framework (Gelbart et al., 2014), an 
acquisition function is employed to consider both regions where the 
model believes the objective function is low and regions where uncer
tainty is high. In practice, there are many different types of acquisition 
functions. Because of its strong theoretical guarantees and empirical 
effectiveness (Gelbart et al., 2014), the expected improvement (EI) cri
terion is considered as main acquisition function in our study. Then, if f 
(x) is the objective function, then, the expected improvement EI(x,Q) is 
used to evaluate the feasibility of a point × based on the posterior dis
tribution function Q. In this work, objective function is the error func
tion of the SVR and the acquisition function is defined as the expected- 
improvement function (EI(x,Q)). The acquisition function is used to 
evaluate the “goodness” of the SVR parameters. The expected- 
improvement function (EI(x,Q)) is expressed as follows: 

EI(x,Q) = EQ
[
max

(
0, μQ(xbest) − f (x)

) ]
(9)  

where xbest is the location of the lowest posterior mean and μQ(xbest) is 
the lowest value of the posterior mean. 

The BO is employed to tune the structural parameters of the SVR; 
namely, the penalty factor C, the regularization factor ε, and the slack 
variable ξ. Also, BO algorithm is used to find the optimal value of 
parameter d (the order of the polynomial kernel) and the parameterσ, 
the width of the radial basis function following a Bayesian rule. Spe
cifically, a probabilistic model is built for each hyperparameter to 
generate a mapping function from that hyperparameter values to the 
objective function evaluated on a validation set. The BO technique is 
employed through k-fold cross validation which is a very popular 
approach in machine learning algorithms. In this regard, the number of 
folds is set to ten. More details on BO method can be found in Gelbart 
et al. (2014). 

2.3. Performance measure 

As already mentioned, the root mean of squared errors (RMSE) and 
mean of absolute errors (MAE) are employed as main performance 
measures. Indeed, they are a standard and popular performance metrics 
widely used for signal analysis and prediction. 

The lower is the RMSE performance metric, the better is the fore
casting accuracy. The RMSE is given by: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n− 1
∑n

i=1
(Ai − Pi)

2

√

(10)  

where A and P P represent respectively the actual and predicted value, i 
is time index, and n is total number of out-of-sample data points. Also, 
the MAE is expressed as follows: 

MAE = n− 1
∑n

i=1
(Ai − Pi) (11) 

Similarly, the lower is the MAE, the better is the forecasting 
accuracy. 

3. Data and results 

We gathered data on volume of transactions of thirty cryptocurren
cies from yahoo.com for the period from spanning from 16 November 
2018 to 16 November 2019. The choice of this period is motivated by 
forming a large number of cryptocurrencies with significant number of 
transactions and price movements. In this regard, using SVR is an 
appropriate choice as it is capable to provide good generalization even 

from small data and to achieve global optima (Vapnik et al., 1996). The 
list of cryptocurrencies includes Aragon, Basic Attention Token, Bitcoin 
Cash, Blocknet, Binance Coin, Bitcoin, Civic, DigixDAO, district0x, 
Dogecoin, EOS, Ethereum, Ethereum, Gnosis, ICON, Lisk, Litecoin, 
MaidSafeCoin, MCO, MonaCoin, Nano, NavCoin, Neblio, OmiseGO, 
Status, Stratis, Substratum, Tether, NEM, and XRP. The change in vol
ume ΔV(t) at time t is calculated as V(t)-V(t-)/V(t). For illustration 
purpose, Fig. 1 displays Aragon change in volume time series, ΔV(t). 

In order to describe variations in the change of volume time series 
(ΔV(t)), we computed three different nonlinear statistics; namely, the 
Hurst exponent (HE) by using detrended fluctuation analysis (DFA) 
(Peng et al., 1994), sample entropy (SampEn) (Richman & Moorman, 
2000), and the largest Lyapunov exponent (LLE) based on the method of 
Rosenstein (Rosenstein et al., 1993). Indeed, the Hurst exponent is 
useful to evaluate long memory pattern that is hidden in temporal 
structure of the time series, sample entropy quantifies the rate of in
formation production in the signal, and the largest Lyapunov exponent 
assesses the existence of chaotic oscillations in the underlying data. 
Fig. 2 exhibits the boxplots of Hurst exponent (HE), sample entropy 
(SampEn), and the largest Lyapunov exponent (LLE). In general, based 
on the respective distributions of HE, SampEn, and LLE, it is obvious that 
changes in daily volume of cryptocurrencies exhibit anti-persistent dy
namics, significant level of randomness, and chaos. In other words, 
volume variation series exhibit nonlinear behavior and also some level 
of predictability. Hence, our choice to use support vector regression to 
model and predict future movement in volume of cryptocurrencies is 
appropriate since support vector regression are nonlinear predictive 
systems capable to map the data into a high dimensional space. In this 
regard, we used the standard protocol in machine learning literature for 
time series forecasting consisting on setting 80 % of the data for training 
the predictive model (for instance, the SVR-BO) and the remaining 20 % 
for testing. 

It is very important to define and select meaningful inputs for the 
forecast of variation in trading volume. In this regard, the previous 
variations in trading volume are used as inputs. Especially, the last 5- 
days variations are fed to the predictive SVR-BO to generate forecasts. 
Indeed, there is no theoretical approach on how to determine the 
number of lags; hence, we used the last 5-days trading data as inputs as it 
is an effective and simple approach in building parsimonious financial 
time series forecasting models (Lahmiri & Bekiros, 2020; 2021b). For 
illustration purpose, Fig. 3 shows the graphical output from Bayesian 
optimization used to optimize the SVR parameters; specifically, it plots 
the minimum objective function against the number of function evalu
ations for each type of kernel. The Bayesian optimization algorithm 
required thirty iterations. The minimum observed value of the objective 
function and the estimated minimum simultaneously converged at the 
ninth, fifth, and tenth iteration respectively for the linear, polynomial, 
and radial basis function kernel. In this regard, it is worth mentioning 
that the processing time used by Bayesian optimization method to tune 
SVR when trained with linear kernel is 377.2608 s, with polynomial 
kernel is 110.2748 s, and with RBF kernel is 27.4173. Therefore, 
Bayesian optimization method is fast; especially when used to tune pa
rameters of the RBF kernel. 

Table 1 reports the obtained performance metrics along their 
respective average and stadard deviation when models are used to 
predict next-day and next-week trading volume seperatly. we focus on 
these two different horizons because of the limited data size. As shown 
in Table 1, for daily data, the SVR-BO with RBF kernel outperformed all 
other models in terms of RMSE and MAE. In addition, reference models 
(ARIMA, Lasso, Gaussian regression) underpperformed all SVR-BO 
models. Besides, for weekely data, the SVR-BO with polynomial kernel 
outperformed all remaining models in terms of RMSE and MAE. Addi
tionnaly, benchmark models obtained higher forecasting errors 
compared to all SVR-BO models. Finally, it is worth to mention that 
Gaussian regression performed better than ARIMA process and Lasso 
regression on both daily and weekely data. 
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4. Discussion and conclusion 

The cryptocurrency markets have been growing exponentially since 
inception. This remarkable development attracted the attention of 
governmental regulation authorities, large financial institutions and all 
investors at large. Consequently, the relative academic literature on the 

topic is growing fast; including study of connectivity among markets, 
volatility modeling, multi-scale analysis of prices and returns, and price 
and return forecasting. However, there are still uncharted territories. 
Specifically, nonlinear analysis and modeling and forecasting of volume 
of transactions data are hot topics that are not explored. Therefore, the 
primary goal of our paper is to complement and enrich the literature by 

Fig. 1. Plot of Aragon change in volume time series (ΔV(t)).  

Fig. 2. Boxplots of values of Hurst exponent (HE), 
sample entropy (SampEn), and largest Lyapunov 
exponent (LLE). They are computed from changes of 
volume of transactions of thirty cryptocurrencies. 
The horizental line indicate the mean of the distri
bution. As seen, the HE sample mean is clearly below 
0.5 which indicates that volume variation series are 
antipersistent. The SampEne mean is close to 2; 
hence, volume variation series exhibit some level of 
randomness. The sample mean of LLE is positive 
meaning that volume series are chaotic.   
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focusing on the forecasting next-day variation in volume of transactions 
in cryptocurrency markets. The secondary goal is to describe complexity 
in such data by means of three different statistical mechanics measures. 
Hence, the current work is the first to tackle these topics; especially the 
first one. 

Indeed, we examined the performance of the optimized support 
vector regression in the task of forecasting next-day and next-week 
variation in volume of transactions of a large set of cryptocurrencies 
under three different kernels, thirty digital assets in total. Hence, ninety 
forecasting experiments have been conducted. Unlike the classical or
dinary lest squares, the SVR was used in our study thanks to its ability to 

apply the structural risk minimization principle to minimize an upper 
bound on the generalization error rather than implementing the 
empirical risk minimization principle to minimize the training error, 
guarantee to achieve the global optimum, capability to use kernel for 
nonlinear mapping of the data, it is free of standard statistical assump
tions, and can provide good generalization results even the data sample 
is small (Vapnik et al., 1996). It is worth mentioning that the SVR is 
robust when data sample is small and flexible as it uses various kernels. 
However, optimal values of the parameters of the kernels should be 
optimally determined. In addition, the SVR requires a long training time 
for large samples. 

The choice of the relatively small time period was motivated by 
forming a large number of cryptocurrencies with significant number of 
transactions and price movements. In this regard, the SVR is an appro
priate choice as it is capable to provide good generalization even from 
small data and to achieve global optima (Vapnik et al., 1996). Besides, 
by performing simulations on thirty markets for each kernel function we 
expect being able to draw general and robust conclusions. 

For each experiment, the Bayesian optimization was adopted to find 
optimal parameters of the SVR under each different kernel. Indeed, 
theoretically speaking, Bayesian optimization is fast to get to the optimal 
set of parameters and bring better generalization performance on the 
test set (Gelbart et al., 2014). For instance, since the BO method natu
rally requires less iterations to get to the optimal set of hyperparameter 
values, it considers only areas of the parameter space based on beliefs 
used to choose a prior probability distribution for the model parameters. 
Bring in mind that we focused only on optimizing SVR by BO and con
ducted comparisons under different kernels and the comparison of BO 
with other optimization methods is out of scope of the current work. 

Besides, nonlinear analysis based on measurement of three different 
complexity measures have been applied to each time series for good 
characterization of their nonlinear dynamics. For instance, detrended 
fluctuation analysis, sample entropy, and the largest Lyapunov exponent 
based on the method of Rosenstein were respectively employed to 
capture long-memory, randomness, and chaos in each volume data. 
These complexity measures are suitable to describe nonlinear dynamics 
in data with no prior assumptions. This is the first paper to examine 
nonlinear dynamics in volume variations of cryptocurrencies, to the best 
of our knowledge. 

In sum, the results from ninety experiments can be summarized as 
follows. First, the outcomes from nonlinear analyses show that changes 
in volume of transactions are self-similar, random, and chaotic. Hence, 
there is a potential to predict volume data of cryptocurrency markets. 
Second, we concluded from our ninety experiments that Bayesian opti
mization method is fast; especially when used to tune parameters of the 
RBF kernel. Third, we found that SVR with RFB kernel outperformed all 
models when used to predict next-day trading volume while SVR with 
polynomial kernel outperformed all other models when used to predict 
next-week trading volume. This finding can be explained by the fact that 
RBF kernel helped capturing local variations in daily trading volume 

Fig. 3. Examples of plots of the minimum objective function against the 
number of function evaluations following Bayesian optimization for each type 
of kernel: linear, polynomial, and radial basis function (RBF) kernel. Examples 
are from Aragon change in volume data. 

Table 1 
obtained performance metrics.   

RMSE MAE RMSE MAE  

Daily Daily Weekly Weekly 
SVR-BO with linear 

kernel 
0.2589 ±
0.1438 

0.2401 ±
0.1327 

0.3501 ±
0.1531 

0.3413 ±
0.1198 

SVR-BO with 
polynomial kernel 

0.2177 ±
0.1546 

0.2036 ±
0.1435 

0.1045 ± 
0.1001 

0.1009 ± 
0.1170 

SVR-BO with RBF 
kernel 

0.2111 ± 
0.1504 

0.2013 ± 
0.1422 

0.1101 ±
0.1320 

0.1002 ±
0.1301 

ARIMA process 0.4787 ±
0.1791 

0.4387 ±
0.1135 

0.8901 ±
0.3711 

0.8876 ±
0.7172 

Lasso regression 0.4340 ±
0.1703 

0.4251 ±
0.1641 

0.8139 ±
0.3852 

0.8100 ±
0.5287 

Gaussian regression 0.4051 ±
0.1611 

0.4003 ±
0.1587 

0.7015 ±
0.3321 

0.7001 ±
0.3901  
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while polynomial kernel helped capturing general trend in weekly 
trading volume. Fourth, all SVR models outperformed statistical 
benchmark models (ARIMA, Lasso regression, Gaussian regression) on 
both daily and weekly data. Fifth, the Gaussian regression model per
formed better than ARIMA process and Lasso regression on both daily 
and weekely data. 

For future work, the current study will be extended to a classification 
problem to predict next move direction in volume of transactions. 
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