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Explainable Enterprise Credit Rating via
Deep Feature Crossing Network

Weiyu Guo, Zhijiang Yang, Shu Wu, Fu Chen

Abstract—Due to the powerful learning ability on high-rank and non-linear features, deep neural networks (DNNs) are being applied to
data mining and machine learning in various fields, and exhibit higher discrimination performance than conventional methods.
However, the applications based on DNNs are rare in enterprise credit rating tasks because most of DNNs employ the “end-to-end”
learning paradigm, which outputs the high-rank representations of objects and predictive results without any explanations. Thus, users
in the financial industry cannot understand how these high-rank representations are generated, what do they mean and what relations
exist with the raw inputs. Then users cannot determine whether the predictions provided by DNNs are reliable, and not trust the
predictions providing by such "black box” models. Therefore, in this paper, we propose a novel network to explicitly model the
enterprise credit rating problem using DNNs and attention mechanisms. The proposed model realizes explainable enterprise credit
ratings. Experimental results obtained on real-world enterprise datasets verify that the proposed approach achieves higher
performance than conventional methods, and provides insights into individual rating results and the reliability of model training.

Index Terms—Feature Crossing, Explainable Learning, Credit Rating, Attention Mechanism.

1 INTRODUCTION

The enterprise credit rating task attempts to predict
the credit rating of a company by mining related data,
which is critical to many financial applications, e.g., loan
[1], credit guarantee and venture investment [2]]. In practice,
this problem is very challenging because: (1) the informa-
tion of a company is typically multi-source and hetero-
geneous, which results in sparse, multi-type, and high-
dimensional features, and (2) accurate predictions depend
on effective high-rank features because such features can
add nonlinearity to the data and improve the performance
of learning methods. For example, the second-rank feature,
“profit®revenue” often indicates the repaying ability of a
company and makes sense for the enterprise credit rating
task. However, it is time-consuming to obtain hand-craft
high-rank features and impossible to enumerate test various
combinations in polynomial fitting time, due to the input
features with the property of sparse and high-dimensional.
Finally, automatically generated effective high-rank features
are highly efficient, which is an appealing characteristic in
many real-world applications, e.g., medical treatment and
fraud detection.

With the rapid development of deep learning, deep
neural networks (DNNSs) are receiving increasing attention
in many fields, and even have become ubiquitous in a
variety of applications, e.g., image processing [3], [4] and
natural language processing [5], [6], because they can ex-
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tract valuable high-rank features automatically from orig-
inal data without artificial feature engineering. Naturally,
several previous studies [7], [8]], [9]], [10] have applied DNNs
to the enterprise credit rating task to automatically learn
the low dimensional representations of company credit.
However, DNN-based forecasting models typically lack in-
terpretability. Users neither understand the meaning of the
high-rank representations generated by DNNs nor catch
on the inference process of DNN models. This kind of
information asymmetry and opacity shakes the norm of fair
lending, which is a fundamental principle of the financial
industry. In other words, users in finance field do not trust
the predictions provided by a “black box” model. Thus,
one significant challenge of using DNN models to predict
enterprise credit ratings is that the “reason codes” should
be provided to users. For example, users require an easy
understood explanation of why they were denied credit,
especially, when the basis for denial is the output from an
opaque machine learning algorithm.

Recently, several studies [11]], [12], [13] have been de-
voted to model high-rank feature interactions using DNNs
to improve the performance and interpretability of forecast-
ing models. Specifically, multiple fully-connected layers are
typically used to learn the high-rank feature interactions
in an implicit manner, as well as low-dimensional repre-
sentations of samples. However, such kinds of methods
suffer from two limitations. First, fully-connected neural
networks are inefficient in terms of learning multiplicative
feature interactions [14]. Second, these models learn the
feature interactions in an implicit manner, thus they lack
good explanation to answer which feature combinations are
meaningful. These limitations raise us to seek a new ap-
proach that is able to learn high-rank feature combinations
explicitly for the task of enterprise credit rating task while
offering a channel to penetrate “black box” models.

In this paper, to model the credit ratings of enterprises



using deep neural network with output readable explana-
tions, we propose a novel attention mechanism based deep
neural network called DeepCross to explicitly learn effec-
tive high-rank feature combinations and predict enterprise
credit ratings. In our model, to cope with sparse, multi-
type, and high-dimensional features, both the categorical
and numerical features are first embedded into an identical
low-dimensional space, which reduces the dimension of the
sparse features and allows different types of features to
interact with each other. Then, inspired by self-attention, in
considering a raw feature as a field query, the last high-rank
representation as the key and value, we afterwards construct
a series of novel feature crossing modules to explicitly
learn effective patterns of high-rank feature combinations
explicitly from the given dataset. As a result, we generate
static explanations to penetrate the process of the proposed
model’s training to investigate the reliability of the model.
Finally, by leveraging dual attentions, i.e., attributive and
temporal attention, the proposed model adaptively indi-
cates informative features and important time points for
samples. Thus, we can provide personalized explanations
for a given sample and rating pair.
Our primary contributions are summarized as follows:

o We propose to study the problem of explicitly and
automatically learning high-rank feature crossing in
enterprise credit rating and meanwhile construct
end-to-end DNN based model called DeepCross
with good explainability for the target problem.

o A feature crossing approach based on attentive neu-
ral network is proposed. It can learn high-rank fea-
ture interactions automatically from both categori-
cal and numerical input features, and support the
generation of static explanations to investigate the
proposed model’s training process.

e Dual attention modules, i.e., an attribute and tempo-
ral attention modules, are proposed to recognize the
informative features and important time points of the
given samples. As a result, personalized reasons of
an enterprise credit rating can be furthered to insight.

e A series of experiments are conducted to validate the
proposed model. The results demonstrate that the
proposed model can obtain more precise enterprise
credit ratings than conventional approaches and can
provide multiple pipelines to insight the predictive
process and results for users.

2 RELATED WORK

The goal of this study is to propose a deep feature crossing
model to obtain accurate and explainable enterprise credit
ratings, thus it is relevant to three lines of study: (1) credit
rating approaches for enterprises, (2) feature interactions
learning techniques, and (3) attention mechanisms in the
deep learning context.

2.1 Enterprise Credit Rating

Enterprise credit rating is an intermediary service in the
financial field, which has existed for over 100 years. A
mount of approaches has been proposed to handle this
problem, and such approaches can be categorized into factor
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analysis-based methods [15], statistic-based methods [16],
and model-based methods [17].

Typically, factor analysis-based methods [15] are usually
to score the credit-related factors of an enterprise based
on expert experience, which can be applied flexibly to
qualitative analysis of enterprise credit. However, such
methods are highly dependent on the subjective judgment
of experts and lack the ability analysis enterprise credit
quantitatively. Differing from factor analysis-based meth-
ods, statistic-based methods quantify the enterprise credit
rating based on the company’s financial indicators. For
example, the Z-Score [16] treats the linear weighted sum of
given financial indicators as the credit score of the company.
The weights in the Z-Score model are calculated using
the historical data of similar companies. However, such
methods lack generalizability because the weights and score
thresholds are fixed by experts who based on the statistical
results of the historical data and their own experience to
provide.

With the development of machine learning technolo-
gies, model-based approaches, e.g., logistic regression [17]
and decision tree [18], have been used for the enterprise
credit rating problem. For example, logistic regression [[17]
is often used (rather than the Z-Score [16]) to handle the
large-scale credit rating task. In addition, the decision tree
[18] is also popular for the credit rating task because it
can generate interpretable decision rules. However, as the
features of companies become increasingly complex, the
prediction performance of these models based on shallow
feature representations is getting harder to be promoted.
Due to the strong ability of feature representation abilities
of DNNSs, recent model-based credit rating approaches have
transformed from traditional linear or nonlinear models
to deep models [8]], [19]. Most of these models leverage
recurrent neural networks (RNN) or covolutional neural
networks (CNN) to learn the feature representation of credit
from raw inputs, and then use multilayer feed-forward
networks to predict the credit ratings. Based on this basic
paradigm, although a higher accuracy can be achieved than
the traditional models that use shallow feature representa-
tions, the deep models are typically considered as “black
boxes” that cannot provide the required explanations of
predictions. Thus, users neither can understand the meaning
of the feature representations generated by DNNs not can
catch on the inference process of DNN models. Generally,
users in the field of finance do not trust predictions obtained
using “black box” models.

2.2 Learning Feature Crossing

Feature crossing is a promising way to capture the inter-
actions among raw features, and it is widely used to en-
hance the performance of many predictive tasks, e.g., click-
through rate [11], [12], [20] and financial analysis [8], [19].
The results of feature crossing can indicate the cooccurrence
of features and add nonlinearity to data, which can improve
the performance of learning methods significantly.
Factorization Machines (FM) [21] and its extensions [22]],
[23] are well-known examples of learning feature interac-
tions, which were proposed to capture the first-rank and
second-rank feature interactions and have been proved



effective for many tasks. However, modeling only low-
rank feature interactions limits performance improvements.
Thus, some recent studies [11], [12], [20] have modeled
high-rank feature interactions using DNNs to improve the
power of expression. Most of these deep models follow
the paradigm of embedding and stacked DNNs. Based on
this paradigm, both categorical and numerical features are
represented with low-dimensional vectors, and then feed-
forward networks are utilized to learn the representation of
high-rank feature interactions from their feature embedding.
However, these approaches learn feature interactions in
implicit manners, thus they lack explainability.

In contrast, several studies have investigated learning
feature interactions in explicit manners. For example, previ-
ous studies [12], [13] performed explicit feature interactions
by taking the outer product of features at the bit-wise or
vector-wise level. However, it is important to explain which
combinations are useful, because enumerating all crossing
features is both impossible and unnecessary, and pursuing
this leads to excessive computational complexity and may
generate irrelevant or redundant feature interactions. In
addition, tree-based models [24], [25], [26] have been used to
conduct meaningful feature interactions. However, in such
methods, the training procedure was broken into multiple
stages. Moreover, they rely on a certain amount of human
experience and lack versatility. Finally, previous studies [11],
[27] combined the power of embedding-based models and
attention mechanisms [6]], [28], [29] to learn high-rank fea-
ture interactions and identify useful feature combinations.
Differing from existing studies, we explicitly model feature
interactions using a self-attention mechanism in an “end-to-
end” manner. Moreover, the proposed approach probes the
learned feature combinations via lasso-based feature selec-
tion [30]]. As a result, we can learn compact and explainable
feature combination patterns automatically.

2.3 Attention Networks

Attention was first proposed in the context of neural ma-
chine translation [31] and has been proved effective in a
variety of tasks, e.g., question answering [32], text sum-
marization [33]], and recommender systems [29]. Recently,
the self-attention mechanisms [6] have been used frequently
to construct transformer models, from natural language
processing [5]] to computer vision [34], [35], which leverage
multi-heads self attention [6] to well capture the relation-
ships within the features. Unlike previous methods that
use attention techniques to improve model accuracy, the
proposed model employs the latest deep learning-based
attention techniques [6], [29] to alleviate the lack of inter-
pretability of deep learning methods. We employ attention
techniques to explicitly take feature crossing and adaptively
select features.

3 DEEP FEATURE CROSSING NETWORK

In this section, we first give an overview of DeepCross, the
proposed deep feature crossing network, which can auto-
matically learn high-rank feature crossing for the enterprise
credit rating task, and identify the meaningful feature com-
binations and time points. We then present a comprehen-
sive description of how low-dimensional representations
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are learned explicitly for high-rank combination features
without manual feature engineering, which are then used
to generate accurate enterprise credit ratings.

3.1 Overview

The goal of the proposed approach is to map the origi-
nal sparse and high-dimensional feature vector into low-
dimensional spaces and model the high-rank feature inter-
actions explicitly. As shown in Fig. [1} the proposed method
takes the sparse sequential data as input, followed by an em-
bedding layer that projects both numerical and categorical
features into the same low-dimensional feature space. Then,
we feed the embedding of all features into a series of stacked
feature crossing blocks (Fig. [2), which are implemented
using a self-attentive neural network and a principal com-
ponent analysis (PCA) layer. For each feature crossing block,
high-rank features are automatically combined using a self
attentive mechanism, and the useful feature combinations
are selected using a PCA layer to avoid irrelevant and
redundant feature interactions, and reduce computational
complexity. By stacking multiple feature crossing blocks,
different ranks of feature combinations can be generated,
which are the low-dimensional representations.

The outputs of the feature crossing blocks are then used
to estimate the credit rating of a company. To obtain more
accurate and explainable estimations, a feature attention
module and a temporal attention module are stacked after
the feature crossing stage. The feature and temporal atten-
tion modules are used to model the correlations of feature
combinations and their temporal dependence, respectively.

3.2

We treat the raw attributes of a company as a sequential
data, and represent the ¢-th element in the sequence as a
sparse vector vy = [a1; G2; ...; a,], which is the concatenation
of all feature fields including both numerical and categorical
attributes. Here, n is the total number of feature fields, a; is
the attribute representation of the i-th feature field, a; is a
one-hot vector if the i-th feature field is categorical (e.g., a1
in Fig. , otherwise q; is a scalar value, and the i-th feature
field is numerical (e.g., ay, in Fig.[T).

The feature representations of the categorical features
may be sparse and high-dimensional. A common method
is to project them into a low-dimensional space. Inspired by
word embeddings [36], [37], we first treat each field of the
categorical attributes as a lexicon and each possible value in
this field as a word. Then, we can learn the low-dimensional
vector representation for each categorical attribute with an
embedding layer. Specifically, we represent a given categor-
ical feature a; with a low-dimensional vector:

€; =4aj; - L]' (1)

Input and Embedding Layer

where L; € R%*? is an embedding matrix for field j,
and a; is an one-hot vector. ¢; represents the number
of categories in the field j, and d is the dimensions of
the embedding vector. In addition, considering that some
categorical features can be multi-valued, e.g., the business
scope of a company may cover several lines and different
business lines have different contributions to the company.
Therefore, if required, we process the a; to be a probability
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Fig. 1: Overview of proposed model. The embedding layer projects both numerical and categorical features into the same low-
dimensional feature space. The details of feature crossing block are illustrated in Fig. 2} which automatically and explicitly learn
the meaningful feature combinations for the task of enterprise credit rating. The feature attention module and temporal attention
module are used to model the correlations of feature combinations and their temporal dependence, respectively.

distribution vector, and the value of each dimension denotes
the importance of the related category.

To realize the feature crossing can be realized between
categorical and numerical features, we also represent the nu-
merical features in a low-dimensional feature space, which
is same as the feature space of categorical features. Specif-
ically, we initialize a learnable matrix B € RF*d 45 a basis
matrix, in which the i-th row represents the basis of the i-th
numerical feature in a d-dimensional feature space. Then, a
given numerical feature a; can be expressed as follows:

€, = Q; - bi (2)

where b; € B is the basis vector of the numerical feature a;.

By doing with the embedding layer, the sequential data
are transformed as the sequencial embeddings, i.e., multiple
2D feature maps (Fig. [I).

3.3 Feature Crossing Module

After both the numerical and categorical features are pro-
jected into the same low-dimensional space, we further
model high-rank feature combinations in the representation
space. Here, the key problem is to determine which fea-
tures should be combined to form meaningful higher-rank
features. Traditionally, this problem has been partly tackled
by domain experts who create meaningful combinations
based on their experience. In fact, human experts can only
design some low-rank combinations, e.g., cost-benefit ratio,
because enumerating and imagining all high-rank feature
combinations is impossible to human. Thus, we tackle this
problem using a neural network module inspired by self-
attention mechanism and PCA.

Recently, the self-attentive network [6] has achieved
remarkable performance in self-driven feature correlation
modeling. It demonstrates superior performance when
modeling arbitrary word dependency in machine transla-
tion [38], [39] and the long-range dependencies of pixels
in image analysis [40]. Here, we extend this technique to
learn the correlations between different ranks of features

and generate effective higher-rank feature combinations.
Specifically, we utilize the key-value attention mechanism
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Fig. 2: Feature crossing block, where @ indicates the element
wise addition and ) is a Cartesian product. Grey cubes repre-
sent the convolutional networks.
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[6] to dynamically determine which feature combinations
are meaningful. As shown in Fig. ] taking the generation
of I-th rank feature combinations as an example, we explain
how to identify meaningful high-rank feature combinations
from the candidate set, which is a set of all outer products of
features. We define the first-rank features X1 ¢ R¥*m1%d
and i — 1-th rank features X (=1 € R¥*"i-1%4 a5 the input
of a specific feature crossing module. We then perform a
Ve(ctor)—level crossing product operation between X" and
X =1,

X(t,i) _ X(t’l) ®X(t,i—1) (3)

where X (%) and X **~1) are feature maps of the ¢-th time
point in X and X1, respectively. By adopting the
key-value attention mechanism, the correlations of features
between X1 and X(~1) can be expressed as follows:

exp(¥(af V,zi"))
Am.k = 5,2, G—1) (1)
ZJ 1 exp(qj(fj @) 4)

Ul ) = (FWauerys @57, f (Wieys i)




where WU(x, %) is an attention function that is used to define
the correlation between the m-th feature z(; ) € X (ti=D
and the k-th feature x,(ﬁl) € X(®1). Here, we adopt the inner
product of the input vectors, ie., (x,%), as the attention
function. f(x,*) represents a convolution layer with a filter
kernel size of 1 x 1. The convolution layer aggregates the
temporal inputs into a feature map. Wyyery and Wy, € R
are the learnable parameters of the convolution layers, re-
spectively. Finally, to learn the effectiveness of the i-th rank
features X (¥), we update the representation of the crossing
feature xﬁfllk) € X® in d-dimensional feature space with
residual connections guided by attention coefficients a,,

Tt = lam -2 ) 5)

where g(x) is a non-linear activate function. Here, we adopt
the leaky rectified linear units [41] as the activate function,
which negative slope is 0.1.

As the feature rank increases, the number of correspond-
ing combinations increase exponentially. This problem leads
that enumerating all possible high-rank features will in-
crease the memory and computation exponentially. In fact,
only a few high-rank features are effective for target task.
Therefore, we utilize a convolution network to construct
PCA (Fig. 2) on the candidate feature combinations. Here,
a point-wise convolution neural network, which filters are
conducted lasso regularization [30] in the training stage, is
used to explicitly extract the meaningful features and reduce
computational costs. The implementation of the PCA layer
is expressed as follows:

argmin L(y, f(W, X@)) + 3 [[W.,
k=1

1 (6)

where L(*,*) is the loss function for target label y. f(x, *)
represents a convolution neural network which the number
of input channels is ¢; = n1 X n;—1, and the number of
output channels is a hyper-parameter ¢, = n;. W € R%*%
is the learnable parameters of 1 x 1 convolution kernels. Due
to the imposition of lasso on learnable parameter W ;,, most
of the elements in W. j, trend to zero after effective model
training, thus we can indicate which feature combinations
in X are useful for the target task by locating the non-
zero values of W. Finally, the representations of meaningful
feature combinations [X?), ..., X(] and their conditioned
on attention weights [A), ..., A)] are generated using a
battery of stacked [-1 feature crossing modules. Then we
collect the different rank feature combinations as follows:

X=XWeox®g...0x0 )

where © is the concatenation operator. As a result, we can
obtain mixed multi-rank features about target task, and each
of these features has explicit combinatorial semantics.

3.4 Feature Attention Module

Once the combination features are generated in the same
low-dimensional space, we further use a module of feature
attention to learn the influence of different features on final
enterprise credit rating. In order to adaptively calculate
the attention scores of each feature, which indicate the
correlations between result of enterprise credit rating and
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features, we assign each feature X i € X with a learnable
parameter matrix W; € R**4 and calculate the attention
scores of features for each input sample as follows:

v — exp(X. ;. ® W) ®)
LS en(X e W)
where ® is an arithmetic operation that first performs
element-wise multiplication, and then calculates the sum
of all the results. Here, we realize this arithmetic operation
using a convolution neural network, where the filter kernel
size of t x d, the number of its output channels is n as same
with the number of features. ¢ is the number of time points.
To preserve the information of previously learned com-
bination features, we add standard residual connections to
the end of this module. Formally, the output of this module
is expressed as follows:

)}::,i,: = g(az . X:,i,: + )?:,i,:) (9)

where g¢(x) represents the rectified linear units (ReLU),
which can add the nonlinearity into the proposed model.

3.5 Temporal Attention Module

The temporal attention module attempts to learn which
time points are more informative in the sequential data,
and facilitates the following credit rating in consideration
of the features of critical moments. In addition, the feature
fluctuations of in adjacent time points are often key patterns
for credit rating forecasting, thus, we realize this attention
using sliding kernels on the input sequence. Here, let X ()
be the features of center time point ¢ and s be the width
of the sliding kernel. We calculate the attention weights for
each time point in sequence as follows:

X

XSvt = [th—sgl,:,ﬁ "7Xt7:):7 o t+—5;1,:,:]

exp(Xs,t ® Ws)
S eap(Xs; @ W)

where ® is an arithmetic operation that first performs el-
ement wise multiplication, and then calculates the sum of
all the results. W, € R5*"%? ig 3 learn-able tensor. We
realize arithmetic operation ® using 3D-convolution neural
network, where convolution kernel is W, and the number
of output channels is one.

To preserve the information of previously learned com-
bination features, we add standard residual connections to
the end of this module. Formally, we obtain the following:

(10)

,;te[1,T]

at =

jzt,:,: = g(a't : j(\:t,:,: + Xt,:,:) (11)

where g(x) is adopted as the ReLUs.

3.6 Credit Rating and Model Training

The output of the temporal attention module is still a set
of feature vectors {X (¥ }._,, which includes all time points
of the feature maps learned via the [ — 1 feature crossing
modules, feature attention module, and temporal attention
module. For the final credit rating prediction, we simply
concatenate all feature vectors that belong to the same time
point to a vector as follows:

€y — Xt,l,: (ORERNO) Xt,n,: (12)



Enterprise credit reflects the operation situation of the
enterprise, which is influenced by both long-term and short-
term operations. To balance efficiency and performance, we
use GRU [42] to model the dependency of the credit rat-
ting on long-term and short-term operations because GRU
overcomes the vanishing gradients problem of RNNs and is
faster than LSTM [43]. The inputs of GRU in the proposed
model are the ordered features. The formulations of GRU
are expressed as follows:

ug = o(Wy - [he—1, e4])

zt = o(W, - [hi1,€4])

he = tanh(W5 - [ug x hy_1, e])
he =z % h+ (1= 2) % hy

(13)

where o () is the sigmoid activation function, e; is the input
feature at the t-th time point. W,, W, and Wﬁ are the
learnable parameters of GRU. h; is the t¢-th hidden states,
and * represents the element-wise product. Thus, we utilize
the last hidden states hy of GRU as the low-dimensional
feature representation of the company, and we predict the
company’s credit rating as follows:

y=0Wjyc-hr) (14)

where Wy, € RF*" is the project matrix that maps the
low-dimensional vector hp to the credit ratings y. n is the
dimension of hr, and k is the number of ratings.

To train the proposed model effectively, we leverage
the L, loss function [44] to supervise the learning process
of our model. The L, loss which supervised characteristic
is somewhere in between regression loss (e.g., MAE loss)
and classification loss (e.g., cross entropy loss). We do this
for two reasons: 1) the credit rating task can be realized
by either classification or regression in practice; and 2)
MAE loss typically has good generalization but less fitting
ability, while cross entropy loss is the opposite. Formally,
our training process is be expressed as follows:

l Co

arg min Lo (y5,57)) + >_ > Wl

i=2 k=1
1—(y; - log y;)*

q
where W represents the learnable parameters of the pro-
posed model, which are updated by minimizing the total
loss using gradient descent. W(Z) € W is the learnable
parameters of the PCA layer in’the i-th feature crossing
module (Section . In addition, g; is the j-th element
in the predictive vector y. ¢ € (0,1] is a hyper parameter
that tunes the supervised characteristic of learning between
classification and regression. Note that, the loss function is
equivalent to a cross entropy loss when ¢ — 0, and becomes
MAE loss when ¢ = 0.

(15)
Lq(yj,93)) =

4 EXPLAINABLE ENTERPRISE RATING

Through the interpreter shown in Figll] we attempt to
generate two kinds of explanations, i.e., static explanations
for the rating model and individual explanations for each
rating result. These explanations can rationalize the pro-
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posed model from several perspectives, i.e., training data,
model reliability, and individual sample.

Owing to the imposition of lasso regularization on the
parameters of PCA layers, most of the weights about feature
combinations trend to zero after completing the training.
Thus, given a data set and a trained model, we can identify
the meaningful feature combinations for the target task as
the non-zero elements in these weights. Specifically, we
identify the non-zero values from the learned parameters
of the PCA layers via recursive tracking. Here, assume the
useful combination patterns Q = {S!|l € [1,2,..., L],i € A’}
have been obtained, where A! is the combination pattern set
in which the associated parameters are non-zero in the {-th
PCA layer. In addition, S! = {s;|1 < j < l,s; € I} isa
feature combination pattern of the [-th rank, where I is the
set of raw features, i.e., the first-rank features. By analyzing
the static explanations €2, financial experts can investigate
the trained model to determine whether bias caused by the
training sets is evident, and they can explore new financial
indicators for the enterprise credit rating task.

To obtain comprehensible rating predictions, we further
generate individual explanations for each prediction, which
provides specific feature combinations and their weights
by mining attention cues of the feature crossing, temporal
attention and feature attention modules. Specifically, given
attention score vectors p and q generated from feature
attention module and temporal attention module, respec-
tively, we generate the individual explanations by following
algorithm:

E=r-(p®q)

16
(e1,e2,..,ex) = topK(E) (16)

where E € R™*" can be treated as the weights of the feature
combinations at different time points. r is a distribution
vector of ratings, which is treated as the probabilities on
different rating classes. (e1, ea, .., €f) is a set which elements
indicate the locations of top-k weights in matrix E. Through
the e;, we can locate which feature combinations at which
time points are more important to the given prediction, and
we score its significance with E(e;). Note that we can further
identify the constituents of the given feature combination e;
by parsing the useful combination patterns 2 recurrently. As
a result, the interpreter can provide different explanations
for different input and prediction pairs.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
approaches on real-world datasets, and attempt to answer
the following questions:

o How does the proposed model perform on the prob-
lem of enterprise credit rating problem? Is it efficient
for large-scale, sparse, high-dimensional, and multi-
type data?

e Are the proposed model and its outputs explainable?
How to generate and understand the explanations
using our proposed methods?

o What are the influences of different model configu-
rations on predictive performance?



5.1 Experimental Setup
5.1.1 Datasets

We evaluate the proposed approaches using two real-world
datasets, i.e., the CH-Stocks and US-Stockg’| datasets.
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Fig. 3: Statistical distribution of the number of companies w.r.t.
the time span.

CH-Stocks contains the historical data of 7968 Chinese
listed companies which was crawled from multiple data
sources. For each company, we collected its historical data,
which contains 24 first-rank financial features (Appendix[A),
from its IPO to third fiscal quarter of 2019. According to
the experience of investment analysts, the revenue situation
typically indicates the credit rating of a company. In this
experiment, we randomly split the dataset into a training
set (70%) and a testing set (30%), and indirectly predict
the credit rating of the company by classifying whether its
revenue increased in the next fiscal quarter. The testing data
contained 2451 Chinese listed companies, of which 1493 of
were positive samples.

US-Stocks contain over 200 financial indicators for all
the stocks of in the US stock market yearly from 2014 to
2018. The dataset was developed to understand whether it
is possible to predict the future performance of a company
by looking at the financial information released in financial
reports. In this experiment, we treated a company which
average stock price increases in next year as a positive
rating. We randomly split the dataset into a training set
(70%) and a testing (30%) set, and indirectly predict the
credit rating of the company by classifying whether its stock
price increased in subsequent year.

The list of listed companies changes with time, thus, the
time horizon of the data varies for each company. As shown
in Fig. 3} most companies in the experimental datasets
have a continuous record of about 5 years. As a result,
we primarily trained and tested the proposed model with
five consecutive years on both CH-Stocks and US-Stocks
datasets.

5.1.2 Competing Methods

We compared the proposed model to both deep learning-
based models and conventional shallow models. Decision
tree (DT), support vector machines (SVM), factorization
machine (FM), gradient boosted decision trees (GBDT),

1. www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-
20142018
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Z-Score, and logistics regression(LR) are shallow models,
which are often used to evaluate the credit ratings of com-
panies. In this experiment, we concatenated all features of
a company over all time periods we used as the input
data of the compared shallow models (except Z-Score).
Autolnt and IFR-CNN are recently proposed deep learning-
based models. AutoInt was proposed for click-through rate
prediction, and IFR-CNN was designed for bankruptcy pre-
diction. However, these deep learning-based models can be
transformed to perform enterprise credit rating prediction.

Z-Score is a classic enterprise credit rating model that
treats the linear weighted sum of given financial indica-
tors as the company’s credit score, and then ratings the
company by setting experience threshold scores. In this
experiment, we used the Altman Z-Score model, which
only considers five financial indicators with coefficients
[0.517,—0.460, 18.640,0.388,1.158], and treats the compa-
nies with Z-Score values greater than 0.9 as the positive
samples.

LR is a very popular model in the field of credit as-
sessment. It is similar to the Z-Score model as it is also a
linear weighted model. However, differing from the Z-Score
model, the weights of LR are learned from the training data.
In this experiment, the training algorithm was realized using
scikit—learrﬂ with L; penalty and the “liblinear” sovler.
Here, we set the tolerance for the stopping criteria to 0.0001,
and kept the default values for other hyper-parameters.

SVMis a classic kernel-based model that is effective in
high-dimensional spaces, even in cases where the number
of dimensions is greater than the number of samples. There-
fore, it is popular in the field of credit assessment field. In
this experiment, the training algorithm was realized using
“libsvm”, which is “nu-SVC”, the “rbf” kernel type, and the
defaults configurations for other settings.

DT is a representative algorithm for classification that
is commonly used in finance. In this experiment, the max-
imum tree depth was set to 5, and the training algorithm
was realized using scikit-learn. Note that the criterion for
building the tree is evaluating the Gini impurity.

FM is a general framework that uses factorization tech-
niques to model second-rank feature interactions and pro-
vide high prediction accuracy. In this experiment, we used
libFME] and the adaptive SGD learning method with learn-
ing rate 0.1, iteration times 500, and the defaults configu-
rations for other settings to learn the second-rank feature
interactions of the financial indicators and predict the credit
ratings of companies.

GBDT is a boosting learning technique for both regres-
sion and classification problems that produces a prediction
model in the form of an ensemble of weak decision trees. In
this experiment, the training algorithm was realized using
scikit-learn. We set the number of estimators to 100, and the
number of random states was set 10. Default values were
used for other hyper-parameters.

Autolnﬂ automatically learns the high-rank feature in-
teractions using multi-head self-attention, which can map
both the numerical and categorical features into the same

2. scikit-learn.org/stable

3. www.csie.ntu.edu.tw/cjlin/libsvm
4. www.libfm.org

5. github.com/shichence/Autolnt



low-dimensional space. In this experiment, we set the num-
ber of heads and blocks to 2 and 3, respectively, and the
block shape was set to [64, 64, 64]. To facilitate fair compari-
son, we employed Autolnt to obtain the feature representa-
tion of a sample, and then used our feature attention module
and temporal attention module to generate prediction.

IFR-CNN transforms the bankruptcy prediction to be
the task of image classification by generating matrices of
financial ratios. In this experiment, we realize the matrix
generation approach of IFR-CNN, and generate the matrices
of financial ratios by using the data of fiscal quarter or year.
Then, a binary classifier based on googlenet [45] realized
by torchvisioré is trained and tested by using the generated
matrices. Its task is predicting the next situation based on
current data. In other words, it only leverages data from a
single time point to make predictions.

5.2 Evaluation Criteria

TABLE 1: Confusion matrix of classifiers in this experiment.
y = 1 indicates that the model gives the company a positive
outlook, y = 0 represents negative outlook. g = 1 indicates that
the actual credit rating of the company is positive, and g = 0 is
a negative outlook.

Confusion Matrix ‘ Ground Truth

g=1 [ g=0
. y=1 True False
Prediction Positive(TP) Positive(FP)
y=0 False True
Negative(FN) Negative(TN)

In binary classification problems, the classifiers are likely
to obtain four types of predictions, i.e., true positives (TP),
false positives (FP), false negatives (FN), and true negatives
(TN). Therefore, we first defined the confusion matrix for
our experiments as shown in Table [I} To achieve a com-
prehensive evaluation, the predictive performance of the
compared models was evaluated using several indicators,
e.g., accuracy, type I and II errors, and area under the ROC
curve (AUC). Based on the confusion matrix defined in
Table [1} the accuracy, type I and II errors can be defined
as follows:

e — TP + TN
“TTINYFPYFN+TP
FP
Err=——"t 17
"M TNYFP (17)
FN
Erry = — v
"= ENTTP

where, Acc indicates the accuracy of labels prediction by
a given model. Err; and Erry are type I error and type
IT error, respectively. They can investigate the performance
of binary classification with the viewpoint of different cate-
gories.

To avoid the evaluation error caused by sample imbal-
ance, the AUC is utilized to further evaluate the quality of
models in this experiment, where ROC is a comprehensive
indicator reflecting continuous variables of True Positive
Rate and False Positive Rate continuous variables. The AUC
value is between 0.5 and 1, and a higher value is better.

6. github.com/pytorch/vision

5.3 Quantitative Analysis
5.3.1 Evaluation of Effectiveness

We summarize the quantitative results of company credit
ratings obtained by different models in Table |2} The follow-
ing observations can be obtained: (1) LR and SVM which
are a machine learning based linear model significantly
outperformed the statistics analysis-based model, ie., Z-
Score model, because they can adaptively fit the distribution
of the given dataset, which may be more suitable to the
company credit rating task on large-scale data. Besides,
the performance of Z-Score model on US-Stocks dataset
was better than CH-Stocks dataset. The reason for this
phenomenon is that the weights of Z-Score model in this
experiment obtained from corporate statistics in advanced
economies, which may be not suite for the Chinese situation.
(2) GBDT and DT, which explore high-rank feature engineer-
ing, consistently outperformed the first-rank approaches by
a large margin on all datasets, which indicates that using
only first-rank features may be insufficient in company
credit rating prediction. (3) Benefiting from the feature engi-
neering capabilities of DNNs and the attention mechanism,
the DeepCross and Autolnt typically achieved better per-
formance than other models. (4) The proposed model, i.e.,
DeepCross, obtained the best performance, which indicates
that using feature crossing modules to explore deeper-rank
feature interactions is crucial. Note that the proposed model
shares the same structures as Autolnt (except the setup of
the feature crossing modules). (5) The deep learning-based
model IFR-CNN did not consistently show advantages com-
pared to some of the shallow models. The reason for this
phenomenon may be that only leveraging data from a single
time point is not sufficient for the company credit rating
prediction task. The company credit changes with time and
it may be a sequential process.

In summary, the proposed model outperformed all com-
pared models. Compared to the most competitive baseline
i.e., Autolnt, the proposed model could explore deeper-rank
feature interactions with similar resource consumption and
is more efficient during online inference. This advantage is
gained through the stacked feature crossing modules, which
first perform explicit feature crossing via the vectorized
Caresian product, and then perform PCA using a one-
dimensional convolutional network.

532

The proposed model learns high-rank feature combinations
by stacking multiple feature crossing modules. We investi-
gated the performance of the proposed model in terms of
parameter [, which is the rank of feature combinations. As
shown in Fig. |4} the performance typically increased as we
increased the rank of the proposed model because higher-
rank feature crossing means that more feature combinations
are used for prediction. However, the results obtained on
two datasets differ somewhat. When the range of feature
rank over 4, the performance of the proposed model on the
CH-Storcks dataset began to decrease. The reason for this
reduced performance was likely by the fact that the number
of first-rank features in CH-Storcks dataset is small, and the
fourth-rank and above features contain too many invalid
feature combinations. As a result, the number of training

Influence of Different Rank
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TABLE 2: Performance of enterprise credit rating prediction of different models. In this experiment, our model was trained
to be a third-rank model both on CH-Stocks and US-Stocks, which the output dimension of the embedding layer is 64. The
output dimensions of PCA layers in our stacked feature crossing modules are [128, 64, 32], which indicate the numbers of feature
combinations that are retained in different rank feature crossing. DeepCross and AutoInt were trained and tested by using the
data of 5 consecutive time points on US-Stocks and 15 consecutive time points on CH-Stocks.

Model class‘ Models ‘ CH-Stocks ‘ US-Stocks
\ | Acc [ AUC [ Erry | Errg [ Acc | AUC | Erry | Errp
First-rank \ Z-Score | 06359 | - | 03033 | 07523 | 0.6987 | - | 02915 | 0.3660
LR [46] 0.8464 | 0.9252 | 0.1678 | 0.0883 | 0.7256 | 0.7813 | 0.2682 | 0.2901
SVM [47] 0.7926 | 0.8458 | 0.2223 | 0.0928 | 0.7269 | 0.7791 | 0.2879 | 0.2187
\ FM | 0.8244 | - | 01837 | 01373 | 07249 | - | 02632 | 0.3029
High-rank | GBDT[49] | 09526 | 09713 | 0.0397 | 0.0521 | 0.7503 | 0.8279 | 0.2546 | 0.228
| DT [50] | 09314 | 09623 | 0.0551 | 0.0846 | 0.7342 | 0.8035 | 0.2856 | 0.1889
| AutoInt [11] | 0.9612 | 09736 | 0.02758 | 0.0416 | 0.7497 | 0.7869 | 0.2457 | 0.2653
Deep-rank | [FR-CNN[8] | 0.6716 | 0.7072 | 03275 | 0.3292 | 0.7127 | 0.7012 | 0.3027 | 0.3662
| DeepCross | 0.9801 | 0.9955 | 0.0166 | 0.0275 | 0.7723 | 0.8341 | 0.2303 | 0.2537
samples may be relatively small compared to the feature CHStock CH-Stock
dimension, which caused the proposed model to exhibit ' :
over-fitting.
1 1 g“ >og
m CH-Stock B CH-Stock ii -
0% US-Stock 05 M US-Stock - 508
090 5 0 — time span=20
0.0 0 os < — time span=15
085 < 071 — time span=10
080 085 —o— Accuracy —— time span=>5
075 AuC —— time span=2
o0 ' 0 5 -F?me SD;SnS 2 2 0 50 100 lter:toions 30 30
0:50 070 1 US-Stock . US-Stock
(a) Accuracy (b) AUC v \ﬁ"uij'l"‘a}l ) ).‘.1':
I8 ’“1 Jli‘
Fig. 4: Performance w.r.t. the rank of the model. e > ,JI ’ |
: 0/0(_)0/0/0 £ l
5.3.3 Influence of Different Time Spans g g e
We predict the credit ratings of companies by sequential o — EEZ;SZ::;
modeling. Therefore, we investigate the feature of our AUC ’ — time span=1
model in training and testing phase w.r.t. the parameter ¢, o S S T T % 10 1o @0 % w0 0 a0 0
Time sbans Iterations

which is the time spans of data used to training and testing.
As shown in Fig. |5} accuracy and AUC firstly increase as we
increasing the time span on testing phase since credit rating
of a company is temporal evolution. However, when the
time span exceeds a certain range, the performance of our
model begins to decrease on CH-Stocks. The reason of this
phenomenon is probable that the increase of time span leads
to significant reduction of training samples in CH-Stocks,
which causes the trained model to suffer from over-fitting.

In addition, different from the testing phase, with any
time spans settings, the proposed model achieved conver-
gence on the training datasets, and the convergence speed
of training was accelerated as the time span was increased.
Note that as the time span increases, the number of training
samples in datasets decreases. This phenomenon further
indicates that the number of training samples can affect the
fitting performance of the model, and increasing the number
of samples may be an effective way to improve the proposed
model’s performance.

(a) Testing phase (b) Training phase

Fig. 5: Influence of different time spans in training and testing
phases. In training phase, we adopted the method of stochastic
gradient descent with 0.001 learning rate to train our models.

5.4 Explainable Enterprise Credit Rating

A good enterprise credit rating system can provide accuracy
evaluations and good explainability of the model and the
outputs. Here, we describe how the proposed model is able
to explain the output results and the modeling process.
Benefiting from the dual attention modules and the feature
crossing modules, the proposed model not only can provide
credit rating prediction for a given company, but also can
generate static and personalized explanations for the mod-
eling process and the output prediction results, respectively.

Due to the PCA layers and the lasso regularizations
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TABLE 3: Most important feature combinations on CH-Stocks dataset. The f; in table indicates a first-rank feature, which special
semantics can be queried in Appendix El l; is the rank of features.

Top-K ‘ h ‘ la ‘ I3 ‘ la

| feature | weight [ feature [ weight [ feature | weight | feature | weight

1 | fis | 03852 | fufis | 01995 | fofisfo0 | 00177 | fafufr.fs | 0.0500

2 | fis | 0.0878 | fig,foo | 0.1599 | fo,f3,f22 | 0.0177 | fo,fi2,f1s,f21 | 0.0499

3 | fs | 00809 | fofis | 01594 | fis,fisfor | 0.0177 | fafafofis | 00250

4 | fiz ]| 00667 | f3,f15 | 01198 | fo,fiz,f13 | 0.0177 | fii,fis,f17, f10 | 0.0250

5 | fio | 00593 | fio,fis | 01198 | fs,fo,for | 0.0177 | fe,f10,f12,f24 | 0.0250
1Y > > > Ko <o 1Y K
WK < o' 1 o o' <o <> < (XY LIS '

50

100

(a) Positive instances.

25 50 75 100 125 150 175 200 225

(b) Negative instances.

Fig. 6: Heatmap examples of input feature weights w.r.t time points. The weights were first normalized to [0, 1], and then mapped
to the color space [0, 255]. The intensity of the color blocks indicates the importance of the corresponding features. We show the
seven most important features (the sum of weights on different time points is greater than others). Here, f; indicates a feature,
which special semantics can be queried in the Appendix t; is a time point and t5 is the predictive time point.

in the feature crossing modules, we can summarize the
most important feature combinations in different ranks of
feature sets for a given dataset. As shown in Table |3, we
parsed the useful combination patterns and their weights
from each PCA layer in a backtracking way (Section [4). By
analyzing these static explanations, human experts in the
field of enterprise credit rating can further investigate the
trained model to determine whether there exists bias caused
by the training datasets. For example, in the second-rank
feature combinations, the combination of operation cycle

(i.e., f11) and capital return (i.e., fig) may be an indication
of a company’s debt paying ability, and this pattern is
consistent with common accounting principles. In addition,
as shown in Table as the rank increases, the weights of the
feature combinations tend to be trivial. This phenomenon
proves that the high-rank features typically include a lot
of redundant and noise, thus, the feature selection in the
proposed feature crossing module is necessary.

In addition, in the field of enterprise credit rating task,
users are interested in the correlations between the features



of a given sample and the specific credit rating results.
Therefore, we further provide a credit rating to a given
company with visualized the correlations between the most
important feature combinations and time points. We ob-
serve the following phenomenon from the visualized results
shown in Fig.[6} (1) The features of the time points closer to
the rating time point are more important to the result than
the features farther away from the rating time point, e.g., the
features on t5 are most effective to both positive samples
and negative samples. (2) The results of different samples
are affected by different features. (3) Some features are
important to both positive samples and negative samples,
e.g., the net profit cut growth rate (i.e., f13) can discriminate
both positive and negative samples.

In summary, the proposed model demonstrates good
explainability and provide both global and personalized
explanations, which can assist financial experts to assess the
reliability of the trained models and users to understand the
rating results.

6 CONCLUSION

In this paper, we have proposed a novel deep feature
crossing based model to predict enterprise credit rations
with high accuracy and explainability. The proposed model
maps the original sparse and high-dimensional features into
low-dimensional spaces and explicitly models the interac-
tions of the high-rank feature. First, we construct and stack
multiple feature crossing modules to generate useful high-
rank feature combinations in an explicit manner. Then, by
leveraging the proposed feature crossing modules, we learn
static patterns of the high-rank feature combinations from
the training data, which helps human experts in the field
of credit rating identify bias in the trained model. Next, to
obtain an accurate estimation with individual explanations,
we further construct feature attention and temporal atten-
tion modules following the feature crossing stage. These
attention modules are used to model the correlations of
feature combinations and their temporal dependence, re-
spectively. By mining and visualizing the Cartesian prod-
uct of their attentions, the proposed method can provide
personalized explanations of multiple feature combinations
for a given sample and credit rating pair. In addition, we
have presented methods to train the proposed model and
generate corresponding explanations. The experimental re-
sults confirm that the proposed model demonstrates higher
prediction accuracy than traditional enterprise credit rating
models and provide explanations of both the prediction
results and the training process.

However, the DNNSs are a data-driven approach that can
easily suffer over-fitting on small training sets. Therefore, in
future, we plan to extend our experimental datasets to in-
clude non-listed companies and extend the proposed model
to support non-financial information, which can effectively
mitigate the problem of insufficient numbers of training
samples. In addition, we would like to obtain the more
accurate company representation by considering the news
about companies and their propagation on social media,
e.g., Weibo and Twitter to improve the performance of the
proposed model.
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APPENDIX A
The raw features of the listed Chinese companies used in
our experiments are listed in Table

TABLE Al: Attribute names of CH-Stocks dataset. f; indicates
the feature number in our explanation system.

‘l NO. 1 Annotation 1 NO. 1 Annotation “
| fo | Industry category | f1 ] Net profit |
| f2 | Net profit cut | f3 | Gross revenue |
| fa | Earnings per share | fs | Netassets value per share |
| fe | Capital surplus fund per share | f7 | Undivided profit per share |
| fs | Operation cash flow pershare | fo | Days sales of inventory |
| fio | Accounts receivable turnover days | fi1 | Operation cycle |
| fiz | Net profit growth rate | fis | Net profit cut growth rate |
| fia | Operation revenue growthrate | fi5 | Net profit ratio |
| fi7 | Gross income ratio | fis | Capital return |
| fio | Return on equity | f20 | Inventory turningrate |
| far | Current ratio | fa2 | Quick ratio |
| faz | Super quick ratio | faa | Debt equity ratio |
| f2s | Debt assets ratio | — | — |
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