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On the average number of elements in a finite
field with order or index in a prescribed residue

class

Pieter Moree

Abstract

For any prime p the density of elements in F∗
p having order, respectively

index, congruent to a(mod d) is being considered. These densities on aver-
age are determined, where the average is taken over all finite fields of prime
order. Some connections between the two densties are established. It is
also shown how to compute these densities with high numerical accuracy.
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1 Introduction

Let F∗
q be the multiplicative group of a finite field Fq and let x ∈ F∗

q. The order of x
is the smallest positive integer k such that xk = 1, the index is the largest number
t such that x(q−1)/t = 1. Note that t = [F∗

q : 〈x〉]. Let π(x) denote the number
of primes p ≤ x. Let δ(p; a, d) and ρ(p; a, d) denote the density of elements in
F∗
p having order, respectively index, congruent to a(mod d). It is not so difficult

to show that both limx→∞N(a, d)(x)/π(x) and limx→∞N ′(a, d)(x)/π(x) exist,
where

N(a, d)(x) =
∑

p≤x

δ(p; a, d) and N ′(a, d)(x) =
∑

p≤x

ρ(p; a, d)

These limits are denoted by δ(a, d), respectively ρ(a, d). In this note these quan-
tities are investigated. The following result is characteristic of the type of results
that will be established. (If a and b are natural numbers, then by (a, b), re-
spectively [a, b], the greatest common divisor, respectively the lowest common
multiple of a and b are denoted. By γ(a) =

∏

p|a p the square free kernel of a is

denoted. Throughout the letter p will be used to indicate primes.)

Theorem 1

1) For every B > 0 one has

N(a, d)(x) = δ(a, d)Li(x) +OB

(

x

logB x

)

,
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where

δ(a, d) =
∞
∑

r=1
(1+ra,d)=1

∞
∑

m=1
(m,d)|a

µ(m)

mrϕ(r[m, d])
,

and the implied constant depends at most on B.
2) One has

δ(a, d) =
ϕ((a, d))

(a, d)

∞
∑

r=1
(1+ra,d)=1

∞
∑

m=1
(m,d)=1

µ(m)

mrϕ(mrd)
.

3) If d|d1 and γ(d1) = γ(d), then δ(a, d1) =
d
d1
δ(a, d).

4) One has

δ(0, d) =
1

d

∏

p|d

1

1− 1
p2

and δ(d, 2d) =

{

1
2
δ(0, 2d) if d is odd;

δ(0, 2d) if d is even.

5) For s ≥ 1 one has

δ(a, 2s) =

{

22−s/3 if a is even;
21−s/3 if a is odd.

6) Let q be a prime and q ∤ a. Then

δ(a, q) =
q2

(q − 1)(q2 − 1)
− q

q2 − q − 1
ρ(−1

a
, q).

7) Put Wd(a) = {0 ≤ r < d : (1 + ra, d) = 1}. One has

δ(a, d) =
ϕ((a, d))

(a, d)ϕ(d)
∏

p|d(1− 1
p(p−1)

)

∑

α∈Wd(a)

ρ(α, d)
∏

p|(α,d)

p2 − p− 1

p2 − 1
.

In the next subsection a characteristic zero version of δ(a, d) and ρ(a, d) will
be discussed. Indeed, these characteristic zero quantities (exhibiting far more
complicated behaviour) motivated the author to study δ(a, d) and ρ(a, d). The
behaviour of these characteristic zero quantities turns out to have many resem-
blances with that of δ(a, d) and ρ(a, d).

1.1 Connections with characteristic zero

Let g ∈ Q\{−1, 0, 1} and p be a prime. By νp(g) the exponent of p in the canon-
ical factorisation of g is denoted. If νp(g) = 0, then g can be considered as an
element of F∗

p with order ordg(p) and index rg(p). Let Ng(a, d) and N ′
g(a, d) de-

note the set of primes p with νp(g) = 0 such that the order, respectively index of
g(mod p) is congruent to a(mod d).

In case g = 2 the set N ′
g(a, d) was first considered by Pappalardi [15], who

proved that it has a natural density ρg(a, d) under the assumption of the Gener-
alized Riemann Hypothesis (GRH). For the general case see [8].

The methods of [8] can be extended (see [10]) to show that under GRH the
set Ng(a, d) has a natural density δg(a, d), the evaluation of which seems to be far
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less easy than that of ρg(a, d). By δ̄g(d) the vector (δg(0, d), · · · , δg(d − 1, d)) (if
it exists) is denoted. Up to this century only δ̄g(2) had been evaluated. Recently
Chinen and Murata [2, 12] computed δ̄g(4) (on GRH) under the assumption that
g is a positive integer that is not a pure power. In [8], on GRH, δ̄g(3) and δ̄g(4) are
evaluated for each g ∈ Q\{−1, 0, 1}. If d|2(a, d), then δg(a, d) can be evaluated
unconditionally, cf. [1, 14, 19, 20].

Let G be the set of rational numbers g that cannot be written as −gh0 or gh0
with h > 1 an integer and g0 a rational number. By D(g) the discriminant of the
number field Q(

√

|g|) is denoted. The functions N(a, d)(x) and N ′(a, d)(x) can
be considered as naive heuristic approximations of Ng(a, d)(x) and N ′

g(a, d)(x) (if
S is any set of non-negative integers then S(x) denotes the number of elements in
S not exceeding x). For more on heuristics and primitive root theory, see [4, 5].
Theorem 2 and Theorem 3 say that as D(g) becomes large, the naive heuristic
for δg(a, d) and ρg(a, d) become more and more accurate. Some related numerical
material is provided in Table 3 and Table 4. The next result is proved in [10].

Theorem 2 (GRH). If D(g) → ∞ with g ∈ G, then δg(a, d) tends to δ(a, d).

In this paper the following similar (but easier) result will be proved.

Theorem 3 (GRH). If D(g) → ∞ with g ∈ G, then ρg(a, d) tends to ρ(a, d).

It turns out that both δ(a, d) and ρ(a, d) are much more accessible quantities
than δg(a, d), respectively ρg(a, d). In the light of the latter two theorems it thus
seems of some importance to compute δ(a, d) and ρ(a, d), which is the purpose of
this paper. The more complicated nature of Ng(a, d) versus N

′
g(a, d) is mirrored

in the fact that δ(a, d) is rather more difficult to compute than ρ(a, d).
As a prelude to proving Theorem 3, its ‘index equals t’ analog is proved

in Section 2. Theorem 3 is then proved in Section 3 (this involves evaluating
ρ(a, d)). In Section 4 Theorem 1 is considered. In Section 5 an Euler product
Aχ involving a Dirichlet character χ is studied and it is shown how ρ(a, d) and
δ(a, d) can be expressed in terms of Aχ’s. Since Aχ can be evaluated with high
numerical accuracy (Sections 6 and 7) this then allows us to evaluate ρ(a, d) and
δ(a, d) with high numerical precision.

2 Index t

Let ρp(t) denote the density of elements in F∗
p having index t. Note that ρp(t) =

ϕ((p− 1)/t)/(p− 1) if p ≡ 1(mod t) and ρp(t) = 0 otherwise. By the method of
proof of Theorem 4 (cf. [5, p. 161]) it is easy to show that, for every B > 0,

∑

p≤x

ρp(t) =
∑

p≤x
p≡1(mod t)

ϕ
(

p−1
t

)

p− 1
= Li(x)

∞
∑

n=1

µ(n)

tnϕ(tn)
+O

(

x

logB x

)

, (1)

where Li(x) denotes the logarithmic integral. Now

∞
∑

n=1

µ(n)

tnϕ(tn)
=

1

tϕ(t)

∞
∑

n=1

µ(n)ϕ(t)

nϕ(tn)
.
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The latter sum has as argument a multiplicative function in n. On applying
Euler’s identity, it is then inferred that

∞
∑

n=1

µ(t)

ntϕ(nt)
= Ar(t), (2)

where

A =
∏

p

(

1− 1

p(p− 1)

)

= 0.37395581361920228805472805434641641511 · · ·

denotes Artin’s constant and

r(t) =
1

t2

∏

p|t

p2 − 1

p2 − p− 1
=

1

tϕ(t)

∏

p|t

1− 1
p2

1− 1
p(p−1)

.

Note that
1

tϕ(t)
≤ r(t) ≤ 6

Aπ2tϕ(t)
. (3)

Combination of (1) and (2) yields the following result.

Proposition 1 For every B > 0, one has

∑

p≤x

ρp(t) = Ar(t)Li(x) +O

(

x

logB x

)

,

Thus, the density of elements in F∗
p with index t equals Ar(t) on average.

Let Ng(t) denote the set of primes p with rg(p) = t. If g ∈ Q\{−1, 0, 1}, then it
can be shown [3, 18], under GRH, that Ng(t) has density

δ(Ng(t)) =
∞
∑

n=1

µ(n)

[Q(ζnt, g1/nt) : Q]
. (4)

For an explicit evaluation of this density see [11, 18]. We can now prove the
following result.

Proposition 2 (GRH). Let g ∈ G. If g > 0, set m = [2, D(g)]. If g < 0,
set m = D(g)/2 if D(g) ≡ 4(mod 8) and m = [4, D(g)] otherwise. Put m1 =
m/(t,m). If g ∈ G, then

|δ(Ng(t))−Ar(t)| ≤ 2.21

tm1ϕ(tm1)
.

Corollary 1 (GRH). The density of Ng(t) exists and if D(g) → ∞ with g ∈ G,
tends to the average density, Ar(t), of elements in F∗

p having index t.

4



The latter corollary is the ‘index equals t’ analog of Theorem 3.

Proof of Proposition 2. By (4) and the evaluation of the degree [Q(ζk, g
1/k) : Q]

as given in [18], it is deduced that

δ(Ng(t)) = Ar(t) +

∞
∑

k=1
m|kt

µ(k)

ktϕ(kt)
= Ar(t) +

∞
∑

k=1
m1|k

µ(k)

ktϕ(kt)
. (5)

On noting that ϕ(zw) ≥ ϕ(w)ϕ(z), with w and z arbitrary integers and using
that

∑

k 1/(kϕ(k)) < 2.21, the result then follows. ✷

Remark 1. The sum
∑

k 1/(kϕ(k)) can be written as an Euler product of the form
∏

p F1(p)/F2(p), with Fj(X) ∈ Z[X ] for j = 1, 2 and monic. Using Theorem 2 of
[6] such Euler products can be expressed in terms of values at integer points of
the (partial) Riemann zeta-function. This enables one to evaluate these constants
with hunderds of decimals of precision, see [13]. A similar idea forms the basis
of Theorem 6 and Theorem 7.

3 Computation of ρ(a, d)

Equation (4) suggests that, under GRH, one should have

Proposition 3 (GRH). If g ∈ Q\{−1, 0, 1}, then

ρg(a, d) =
∑

t≡a(mod d)

δ(Ng(t)) =
∑

t≡a(mod d)

∞
∑

n=1

µ(n)

[Q(ζnt, g1/nt) : Q]
.

(In this proposition and in the sequel sums over t are assumed to run over positive
integers only.) Indeed by [15], cf. [8], Proposition 3 is known to be true. Similarly
one would expect that ρ(a, d) satisfies (7) as can indeed be proved.

Theorem 4 For every B > 0 one has

N ′(a, d)(x) = ρ(a, d)Li(x) +O

(

x

logB x

)

, (6)

where

ρ(a, d) = A
∑

t≡a(mod d)

r(t) =
∑

t≡a(mod d)

A

t2

∏

p|t

p2 − 1

p2 − p− 1
(7)

and the implied constant depends at most on B.

Proof. One has

N ′(a, d)(x) =
∑

p≤x

∑

t|p−1
t≡a(mod d)

ϕ(p−1
t
)

p− 1
.

On using that ϕ(n)/n =
∑

m|n µ(m)/m, one obtains

N ′(a, d)(x) =
∑

p≤x

∑

t|p−1
t≡a(mod d)

∑

m| p−1
t

µ(m)

mt
.
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Writing v = mt and bringing the summation over p to the inside, one obtains

N ′(a, d)(x) =
∑

v≤x−1

1

v

∑

t|v
t≡a(mod d)

µ(
v

t
)

∑

p≤x
p≡1(mod v)

1.

The summation range is split up into the range v ≤ logB+1 x and logB+1 x < v ≤
x. In the former range the Siegel-Walfisz theorem (see e.g. [17, Satz 4.8.3]) is
invoked and for the latter range the trivial estimate

∑

p≤x, p≡1(mod v) 1 < x/v is

employed. Let d(v) denote the number of divisors of v. Together with the trivial
estimate |

∑

t|v, t≡a(mod d) µ(v/t)| ≤ d(v) ≪ vǫ, which holds for every ǫ > 0, one

concludes (cf. [5, p. 161]) that (6) holds with

ρ(a, d) =
∞
∑

v=1

∑

t|v, t≡a(mod d) µ(
v
t
)

vϕ(v)
. (8)

Interchanging the order of summation and using (2) one infers that

ρ(a, d) =
∑

t≡a(mod d)

∞
∑

v1=1

µ(v1)

tv1ϕ(tv1)
= A

∑

t≡a(mod d)

r(t).

This concludes the proof. ✷

Let a > 0. As d becomes large, the first term in the second summation in (7),
Ar(a), tends to be dominant by Corollary 4. In particular, limd→∞ ρ(a, d) =
Ar(a).

Proposition 4 One has

ρ(0, d) =
1

dϕ(d)
and ρ(d, 2d) =

{

ρ(0, 2d) if d is odd;
3ρ(0, 2d) if d is even.

Proof. Note that

ρ(0, d) = r(d)

∞
∑

m=1

r(dm)

r(d)
.

Since r(dm)/r(d) is a multiplicative function in m, the identity for ρ(0, d) then
follows on applying Euler’s identity and noting that ϕ(d)/d =

∏

p|d(1−1/p). The

identity for ρ(0, d) together with the observation that ρ(0, 2d)+ρ(d, 2d) = ρ(0, d),
then yields the truth of the remainder of the assertion. ✷

By ω(m) the number of distinct prime divisors of m is denoted.

Proposition 5 (GRH). Let g ∈ G and m be as in Proposition 2, then

∣

∣

∣
ρg(a, d)− ρ(a, d)

∣

∣

∣
≤ 2ω(m)+2

mϕ(m)
.
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Proof. By Theorem 3, Proposition 3 and (5) one infers on putting kt = v that,
under GRH,

∣

∣

∣ρg(a, d)− ρ(a, d)
∣

∣

∣ ≤
∑

t≡a(mod d)

∞
∑

k=1
m|kt

|µ(k)|
ktϕ(kt)

=
∑

m|v

∑

t|v, t≡a(mod d) |µ(vt )|
vϕ(v)

.

On noting that

∑

m|v

∑

t|v, t≡a(mod d) |µ(vd)|
vϕ(v)

≤
∞
∑

v=1

2ω(mv)

mvϕ(mv)
≤ 2ω(m)

mϕ(m)

∞
∑

v=1

2ω(v)

vϕ(v)
≤ 2ω(m)+2

mϕ(m)
,

the result follows. ✷

Since 2ω(m)/(mϕ(m)) tends to zero with increasing m and m tends to infinity as
D(g) tends to infinity, Theorem 3 is a consequence of Proposition 5.

The following result is concerned with Q-linear relations between the ρ(a, d)’s
with d fixed.

Lemma 1 Let α1, · · · , αϕ(d) be representatives of the reduced residue classes mod
d. Then, for every integer a,

ρ(a, d) ∈ Q[ρ(α1, d), · · · , ρ(αϕ(d)−1, d)].

Corollary 2 If d|d1 and β1, · · · , βϕ(d1) are representatives of the reduced residue
classes mod d1, then

Q[ρ(α1, d), · · · , ρ(αϕ(d)−1, d)] ⊆ Q[ρ(β1, d1), · · · , ρ(βϕ(d1)−1, d1)].

Proof of Lemma 1. It is easy to show that

ϕ(d)
∑

j=1

ρ(αj , d) = A
∑

(t,d)=1

r(t) =
∏

p|d

(

1− 1

p(p− 1)

)

∈ Q. (9)

It is thus enough to show that ρ(a, d) ∈ Vd := Q[ρ(α1, d), · · · , ρ(αϕ(d), d)].
Let α = a/(a, d) and δ = d/(a, d). Note that (α, δ) = 1. Let δ1 be the largest

divisor of (a, d) with (δ, δ1) = 1 and write (a, d) = δ1δ2. If α, δ, δ1 and δ2 are
being used for integers other then a and d, then this will be made explicit in the
notation. Thus the meaning of δ1(aj , d), which appears later in the proof, should
be obvious. Note that

ρ(a, d) = A
∑

t≡α(mod δ)

r(δ1δ2t) = Ar(δ2)
∑

t≡α(mod δ)

r(δ1t).

The proof proceeds with induction with respect to the number of distinct prime
divisors of δ1. If ω(δ1) = 0, then δ1 = 1 and one has to show that ρ(α, δ) ∈ Vd,
where α(mod δ) is a reduced residue class mod δ. Since α(mod δ) lifts to d/δ
reduced residue classes mod d, this is clear. If ω(δ1) = 1, then δ1 = qe with q a
prime and e ≥ 1. Then one has

ρ(a, d) = Ar(δ2)
∑

t≡α(mod δ)

r(qet)

7



= r(qe)Ar(δ2)
∑

t≡α(mod δ)
t 6≡0(mod q)

r(t) +
A

q2
r(δ2)

∑

t≡α
q
(mod δ)

r(qet)

= c1 +
A

q2
r(δ2)

∑

t≡α
q
(mod δ)

r(qet)

:

= cn +
A

q2n
r(δ2)

∑

t≡ α
qn

(mod δ)

r(qet),

where ci ∈ Vd. On choosing n ≥ 1 to be such that qn ≡ 1(mod δ), one infers that
ρ(a, d) ∈ Vd. Suppose the result has been proved for all a and d with ω(δ1) ≤ m
for some m ≥ 1. Then consider next a and d with ω(δ1) = m+ 1. One has

ρ(a, d) =

δ1
∑

j=1

Ar(δ2)
∑

t≡α(mod δ)
t≡j(mod δ1)

r(δ1t). (10)

Note that

A
∑

t≡α(mod δ)
t≡j(mod δ1)

r(δ1t) = A
∑

t≡α(mod δ)

t≡
j

(j,δ1)
(mod

δ1
(j,δ1)

)

r(δ2)r(δ1(j, δ1)t).

The latter sum equals a rational multiple times

A
∑

t≡α(mod δ)

t≡
j

(j,δ1)
(mod

δ1
(j,δ1)

)

r(δ2)r((j, δ1)t) = ρ(aj , d),

for some integer aj. Note that δ1(aj, d) = (j, δ1). Thus by the induction hypoth-
esis all terms in (10) with γ(δ1) ∤ j are in Vd (where γ(δ1) denotes the squarefree
kernel of δ1). One infers that

ρ(a, d) = d1 + Ar(δ2)
∑

t≡α(mod δ)
t≡0(mod γ(δ1))

r(δ1t)

= d1 +
A

γ(δ1)2
r(δ2)

∑

t≡ α
γ(δ1)

(mod δ)

r(δ1t)

:

= dn +
A

γ(δ1)2n
r(δ2)

∑

t≡ α
γ(δ1)

n (mod δ)

r(δ1t),

where δi ∈ Vd. On choosing n ≥ 1 to be such that γ(δ1)
n ≡ 1(mod δ) one infers

that ρ(a, d) ∈ Vd. ✷

Example 1. The result says that ρ(a, 6) ∈ Q[ρ(1, 6)]. Indeed, ρ(0, 6) = ρ(3, 6) =
1/12. Furthermore ρ(2, 6) = 1/12 + 3ρ(1, 6)/5, ρ(4, 6) = 1/3 − 3ρ(1, 6)/5 and
ρ(5, 6) = 5/12− ρ(1, 6).

8



4 Proof of Theorem 1

Proof of Theorem 1. 1) Note that

N(a, d)(x) =
∑

p≤x

δ(p; a, d) =
∑

p≤x

∑

r|p−1
p−1
r ≡a(mod d)

ϕ
(

p−1
r

)

p− 1
.

Proceeding as in the proof of Theorem 4, one infers that

N(a, d)(x) =
∑

r≤x−1

∑

m≤x−1
r

µ(m)

mr

∑

p≤x, p≡1(mod rm)
p≡1+ra(mod rd)

1. (11)

Now for the inner sum to be non-zero the two congruences must be compat-
ible. By the Chinese remainder theorem this is the case if and only if 1 ≡
1 + ra(mod r(m, d)), that is if and only if a ≡ 0(mod (m, d)). If the two con-
gruences are compatible, then they form a reduced residue class if and only if
(1 + ra, d) = 1. If the residue class is not reduced it contains at most one prime
and the contribution of these primes to N(a, d)(x) is bounded in absolute value
by

∑

v≤x d(v)/v = O(log2 x).
The summation range mr ≤ x− 1 in (11) is split up into the range r[m, d] ≤

logC x and the range r[m, d] > logC x, where C is to be chosen later. All error
terms arising in this way are easily seen to be of the claimed order of growth,
except the error term

E(x) = Li(x)
∑

r

∑

(m,d)|a

r[m,d]>logC x

|µ(m)|
mrϕ(r[m, d])

,

which arises on completing the sum

Li(x)
∑

r≤x−1
(1+ra,d)=1

∑

m≤ x−1
r , (m,d)|a

r[m,d]≤logC x

|µ(m)|
mrϕ(r[m, d])

,

to δ(a, d). On noting that r[m, d] > logC x implies rmd > logC x and using that
ϕ(zw) ≥ ϕ(z)ϕ(w), one obtains, cf. the proof of part 2,

E(x) = O







Li(x)

ϕ(d)

∑

m1|(a,d)

|µ(m1)|
m1

∑

r

∑

m2
rm2>logC x/(dm1)

|µ(m2)|
rm2ϕ(rm2)






.

From this E(x) is easily seen to be OB(x/ log
B x), when C is chosen to be suffi-

ciently large.
2) By part 1 it is enough to show that

I1 :=
∞
∑

m=1
(m,d)|a

µ(m)

mrϕ(r[m, d])
=

ϕ((a, d))

(a, d)

∞
∑

m=1
(m,d)=1

µ(m)

mrϕ(mrd)
.

9



Note that

I1 =
∑

m1|(a,d)

∞
∑

m=1
(m,d)=m1

µ(m)

mrϕ(mrd
m1

)
.

On writing m = m1m2 one obtains

I1 =
∑

m1|(a,d)

∞
∑

m2=1
(m2,d/m1)=1

µ(m1m2)

m1m2rϕ(m2rd)

=
∑

m1|(a,d)

µ(m1)

m1

∞
∑

m2=1, (m2,d/m1)=1
(m2,m1)=1

µ(m2)

rm2ϕ(m2rd)

=
∑

m1|(a,d)

µ(m1)

m1

∞
∑

m2=1
(m2,d)=1

µ(m2)

rm2ϕ(m2rd)

=
ϕ((a, d))

(a, d)

∞
∑

m=1
(m,d)=1

µ(m)

rmϕ(mrd)
.

3) The condition on d and d1 ensures that (1 + ra, d1) = 1 iff (1 + ra, d) =
1 and (m, d1) = 1 iff (m, d) = 1. Furthermore one has ϕ((a, d1))/(a, d1) =
ϕ((a, d))/(a, d). By part 2 one then finds

δ(a, d1) =
ϕ((a, d))

(a, d)

∞
∑

r=1
(1+ra,d)=1

∞
∑

m=1
(m,d)=1

µ(m)

mrϕ(mrd1)
.

On noting that ϕ(mrd1) = ϕ(mrd)d1/d, the proof of part 2 is completed.
4) By part 2 one has, on writing mr = v,

δ(0, d) =
ϕ(d)

d

∞
∑

v=1

∑

m|v, (m,d)=1 µ(v)

vϕ(vd)
.

The inner sum equals one if γ(v)|d and zero otherwise. Thus

δ(0, d) =
ϕ(d)

d

∑

γ(v)|d

1

vϕ(vd)
=

1

d

∑

γ(v)|d

1

v2
=

1

d

∏

p|d

1

1− 1
p2

.

The formula for δ(d, 2d) easily follows from that of δ(0, d) and the observation
that δ(0, 2d) + δ(d, 2d) = δ(0, d).
5) An easy consequence of part 3 and part 4.
6) Using part 2 and (2), one infers that

δ(a, q) = δ(0, q)−
∑

t≡− 1
a
(mod q)

∞
∑

m=1
(m,q)=1

µ(m)

mtφ(mtq)

= δ(0, q)− 1

q − 1

∑

t≡− 1
a
(mod q)

∞
∑

m=1
(m,q)=1

µ(m)

mtφ(mt)

10



= δ(0, q)− 1

q − 1

∑

t≡− 1
a
(mod q)

A

1− 1
q(q−1)

r(t).

The proof is then completed on invoking part 3 and (7).
7) By part 2 one can write

δ(a, d) =
ϕ((a, d))

(a, d)

∞
∑

r=1
(1+ra,d)=1

1

rϕ(rd)

∞
∑

m=1
(m,d)=1

µ(m)ϕ(rd)

mϕ(mrd)
. (12)

Denote the inner sum in (12) by I2. One has

I2 =
∏

p∤rd

(1− 1

p(p− 1)
)
∏

p|r
p∤d

(1− 1

p2
)

=
A

∏

p|d(1− 1
p(p−1)

)

∏

p|r

1− 1
p2

1− 1
p(p−1)

∏

p|(r,d)

1− 1
p(p−1)

1− 1
p2

.

One thus obtains that

δ(a, d) =
ϕ((a, d))

(a, d)
∏

p|d(1− 1
p(p−1)

)

∑

α∈Wd(a)

∞
∑

w=1
w≡α(mod d)

Aϕ(w)

ϕ(wd)
r(w)

∏

p|(α,d)

1− 1
p(p−1)

1− 1
p2

.

Note that

ϕ(wd)

ϕ(w)
= d

∏

p|d
p∤w

(1− 1

p
) =

d
∏

p|d(1− 1
p
)

∏

p|(w,d)(1− 1
p
)
=

ϕ(d)
∏

p|(α,d)(1− 1
p
)
.

This equation together with the latter one derived for δ(a, d) and (2), then yields
the result. ✷

5 The densities and Aχ

Given a Dirichlet character χ mod d, let hχ = χ ⋆ µ, that is hχ denotes the
Dirichlet convolution of χ and the Möbius function µ. Note the following trivial
result.

Lemma 2 The function hχ is multiplicative and satisfies hχ(1) = 1 and further-
more hχ(p

r) = χ(p)r−1[χ(p)− 1], where the convention that 00 = 1 is adopted.

In particular if χ is the trivial character mod d, then

hχ(v) =
{

µ(v) if v|d;
0 otherwise.

(13)

By using one of the orthogonality relations for Dirichlet characters, the following
result is easily inferred.

11



Lemma 3 Let a(mod d) be a reduced residue class mod d. One has

∑

t≡a(mod d)
t|v

µ(
v

t
) =

1

ϕ(d)

∑

χ(mod d)

χ(a)hχ(v),

where χ runs over the Dirichlet characters modulo d.

The reader is referred to Section 2.4 of [8] for some further properties of hχ.
In what follows sums of the form

∑

(v,d)=1

hχ(v)

vϕ(v)

will feature. It is easy to see that this sum is absolutely convergent. Since its
argument is multiplicative, one then obtains that the latter sum equals

Aχ =
∏

p:χ(p)6=0

(

1 +
[χ(p)− 1]p

[p2 − χ(p)](p− 1)

)

.

Note that if χ is the principal character, then Aχ = 1. For a fixed prime p and
α ∈ R, 0 ≤ α < 1 let

fp(α) =

(

1 +
(e2πiα − 1)p

(p2 − e2πiα)(p− 1)

)

.

A tedious analysis shows that |fp(α)| as a function of α is decreasing for 0 < α ≤
1/2 and increasing for 1/2 ≤ α ≤ 1. Thus

1− 2p

(p2 + 1)(p− 1)
≤ |fp(α)| ≤ 1,

where the lower bound holds true iff α = 1/2 and the upper bound iff α = 0. It
follows that |Aχ| ≤ 1 with Aχ = 1 iff χ is the principal character mod d.

If χ′ is the primitive Dirichlet character associated with χ, then the Euler
products of Aχ and Aχ′ differ in at most finitely many primes and hence can be
simply related.

It will be shown in Theorem 5 that ρ(a, d) and δ(a, d) can be expressed in
terms of A′

χs, where χ ranges over the Dirichlet characters mod d. The proof
makes use of the following proposition.

Proposition 6 Let a ≥ 1. One has

ρ(a, d) =
1

ϕ(δ)wϕ(w)

∏

p|δ, p∤w

(

1− 1

p(p− 1)

)

∏

p|δ, p|w

(1− 1

p2
)

∑

χ(mod δ)

χ(α)Aχ

∏

p|w
p∤δ

1 + χ(p)−1
p2−χ(p)

1 + (χ(p)−1)p
(p2−χ(p))(p−1)

,

where w = (a, d), α = a/w and δ = d/w. In particular, if (a, d) = 1 then

ρ(a, d) =
1

ϕ(d)

∏

p|d

(

1− 1

p(p− 1)

)

∑

χ(mod d)

χ(a)Aχ.

12



Corollary 3 If γ((a, d))(a, d)|d, then

ρ(a, d) =
ρ(α, δ)

wϕ(w)

∏

p|(δ,w)

1− 1
p2

1− 1
p(p−1)

.

Proof of Proposition 6. From (8) and Lemma 3 one easily infers that

ρ(a, d) =
1

ϕ(δ)wϕ(w)

∑

χ(mod δ)

χ(α)

∞
∑

v=1

hχ(v)ϕ(w)

vϕ(vw)
.

On noting that the argument of the inner sum is multiplicative in v, the result
follows on applying (13) and Euler’s product identity. ✷

Example 3. One has ρ(0, d) = 1/(dϕ(d)) (in agreement with Proposition 4). Let
χ3 and χ4 denote the non-trivial character mod 3, respectively mod 4. One finds
ρ(±1, 3) = 5(1 ± Aχ3)/12 and ρ(±2, 8) = 5(1± Aχ4)/12. Let χ be the character
mod 5 uniquely determined by χ(2) = i. One has

ρ(3, 5) =
19

80
(1 + 2Re(iAχ)− Aχ2) .

Using Table 2, these densities can then be numerically approximated.

Example 4. One has
{

ρ(2, 8) = 3ρ(1, 4)/4
ρ(6, 8) = 3ρ(3, 4)/4

and

{

ρ(3, 9) = 8ρ(1, 3)/45
ρ(6, 9) = 8ρ(2, 3)/45

and

{

ρ(2, 12) = 3ρ(1, 6)/4
ρ(10, 12) = 3ρ(5, 6)/4.

One can now infer how the densities can be expressed in terms of Aχ’s.

Theorem 5 Let α and δ be as in Proposition 6. Then

ρ(a, d) ∈ Q(ζordα(δ))[Aχ1, · · · , Aχϕ(δ)
],

where χ1, · · · , χϕ(δ) are the characters mod δ.
Let λ denote Carmichael’s function, that is λ(d) equals the exponent of the

group (Z/dZ)∗, then

δ(a, d) ∈ Q(ζλ(d))[Aχ1, · · · , Aχϕ(d)
].

Proof. The first part is a straightforward consequence of Proposition 6. The
second part follows on applying part 7 of Theorem 1 and Proposition 6 together
with the observation that if δ|d, then any character χ′ mod δ can be lifted to a
character χ mod d, such that Aχ′ = cAχ, where c ∈ Q(ζλ(d)). ✷

The next result follows on combining Proposition 6 with part 7 of Theorem 1.

Proposition 7 Suppose that q is a prime and q ∤ a. Then

δ(a, q) =
q2 − q − 1

(q − 1)2(q + 1)
− 1

(q − 1)2

∑

χ 6=χ0

χ(−a)Aχ.

13



The Euler product Aχ can also be expressed in terms of ρ(a, d)′s. This yields

Aχ =

∑d
a=1 χ(a)ρ(a, d)

∏

p|d

(

1− 1
p(p−1)

) .

Thus, by (9) and ρ(a, d) ≥ 0, one finds

|Aχ| ≤
∑d

a=1, (a,d)=1 ρ(a, d)
∏

p|d

(

1− 1
p(p−1)

) = 1,

with equality iff χ is the principal character mod d.

6 The numerical evaluation of δ(a, d) and ρ(a, d)

Consider the numerical evaluation of the constant Aχ. To this end it turns out
to be more convenient to consider

Bχ :=
∏

p

(

1 +
[χ(p)− 1]p

[p2 − χ(p)](p− 1)

)

= Aχ

∏

p|d

(

1− 1

p(p− 1)

)

.

Recall that L(s, χ), the Dirichlet series for the character χ, is defined, for Re(s) >
1 by L(s, χ) =

∑∞
n=1 χ(n)/n

s.

Theorem 6 Let p1(= 2), p2, · · · be the sequence of consecutive primes. Let χ be
any Dirichlet character and n ≥ 31 (hence pn ≥ 127). Then

Bχ = R1AL(2, χ)L(3, χ)L(4, χ)
n
∏

k=1

(

1 +
χ(p)

pk(p
2
k − pk − 1)

)

(1−χ(pk)

p3k
)(1−χ(pk)

p4k
),

with
1

1 + p−3.85
n+1

≤ |R1| ≤ 1 +
1

p3.85n+1

.

Proof. The first step is to note that

Bχ = AL(2, χ)L(3, χ)L(4, χ)

∞
∏

k=1

(

1 +
χ(p)

pk(p2k − pk − 1)

)

(1− χ(pk)

p3k
)(1− χ(pk)

p4k
),

An upper bound for the kth term in the latter product is given by

1 + t5
(2 + 2t+ t3 + t5)

1− t− t2
,

where t = 1/pk. For t ≥ 127 some analysis shows that the latter expression is
bounded above by 1 + t4.85. Using this one obtains

|R1| ≤
∏

p>pn

(

1 +
1

p4.85

)

< 1 +
∑

m>pn

1

m4.85
≤ 1 +

1

p4.85n+1

+

∫ ∞

pn+1

dt

t4.85
≤ 1 +

1

p3.85n+!

.
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A similar argument allows one to obtain the lower bound. ✷

Since the Artin constant (see e.g. [13]) and L(2, χ), L(3, χ) and L(4, χ) can be
each evaluated with high numerical accuracy, Theorem 6 allows one to compute
Aχ with high numerical accuracy. Using Proposition 6 and part 7 of Theorem 1,
ρ(a, d), respectively δ(a, d), can then be evaluated with high numerical precision.

A more straightforward, but numerically much less powerful, approach in
computing ρ(a, d) and δ(a, d), is to invoke part 7 of Theorem 1 and compute
ρ(a, d) using the identity ρ(a, d) = A

∑

t≡a(mod d) r(t). One has the following
estimates.

Proposition 8 Let x ≥ 6. One has

0 < ρ(a, d)− A
∑

t≡a(mod d)
t≤x

r(t) <
1.28

x
.

Corollary 4 Let a > 0 and a+ d ≥ 6, then

0 < ρ(a, d)− Ar(a) <
1.28

a+ d
.

The most important ingredient of the proof will is the following lemma (the idea
of which was suggested to the author by Carl Pomerance [16]).

Lemma 4 For x ≥ 6 one has

∑

n>x

1

nϕ(n)
<

2.1

x
.

Proof. Using that ϕ(n) ≥ log(2n)/(n log 2) and that
∑

k≥y 1/k
2 < 1.075/y for

y ≥ 6, one finds, for x ≥ 6,

∑

t>x

1

tϕ(t)
=

∑

t>x

1

t2

∑

d|t

|µ(d)|
ϕ(d)

=
∞
∑

d=1

|µ(d)|
d2ϕ(d)

∑

r>x/d

1

r2

≤ ζ(2)
∑

d>x/6

|µ(d)|
d2ϕ(d)

+
1.075

x

∑

d≤x/6

|µ(d)|
dϕ(d)

≤ ζ(2)
∑

d>x/6

log 2d

d3 log 2
+

1.075

x

∑

d≤x/6

|µ(d)|
dϕ(d)

≤ ζ(2)

∫ ∞

[x/6]

log 2t

t3 log 2
dt+

1.075

x

ζ(2)ζ(3)

ζ(6)

≤ ζ(2)

4

(2 log(2[x/6]) + 1)

[x/6]2 log 2
+

1.075

x

ζ(2)ζ(3)

ζ(6)
.
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For x ≥ 45000 the latter upper bound is bounded above by 2.1/x. After calcu-
lating

∑∞
n=1 1/(nϕ(n)) with enough precision (see Remark 1) and using that

∑

t>x

1

nϕ(n)
=

∞
∑

n=1

1

nϕ(n)
−
∑

t≤x

1

nϕ(n)
< 2.20386−

∑

t≤x

1

nϕ(n)
,

the result follows after verification in the range (6, 45000) (this verification is
easily seen to require only a finite amount of computation, cf. [7, Lemma 4]). ✷

The above argument can be easily adapted to show that

x
∑

n>x

1

nϕ(n)
∼ ζ(2)ζ(3)

ζ(6)
= 1.943 · · ·.

Proof of Proposition 8. From (7) and r(t) ≥ 0, one infers that

A
∑

t≡a(mod d)
t≤x

r(t) < ρ(a, d) ≤
∑

t≡a(mod d)
t≤x

r(t) + A
∑

t>x

r(t)

By (3) one has

A
∑

t>x

r(t) ≤ 6

π2

∑

t>x

1

tϕ(t)
.

On invoking Lemma 4, the result then follows. ✷

The terms AL(2, χ)L(3, χ)L(4, χ) in Theorem 6 form the beginning of an expan-
sion of Bχ in terms of special values of L-series.

Theorem 7 Define numbers G
(r)
j+1 by

(−1)r

r

∑

d|r

µ(d)(−1)
r
d

(1− zd − z2d)r/d
=

∞
∑

j=0

G
(r)
j+1z

j .

One has

Bχ = A
L(2, χ)L(3, χ)

L(6, χ2)

∞
∏

r=1

∞
∏

k=3r+1

L(k, χr)λ(k,r),

where (−1)r−1λ(k, r) = G
(r)
k−3r+1 ∈ Z>0.

Note that as formal series (1 − z − z2)−1 =
∑∞

j=0 Fj+1z
j where Fj denotes the

jth Fibonacci number (thus F0 = 0, F1 = 1 etc.). The numbers defined by

(1 − z − z2)−r =
∑∞

j=0 F
(r)
j+1z

j are known as convolved Fibonacci numbers and

hence a reasonable term for the integers G
(r)
j+1 might be ‘convoluted convolved

Fibonacci numbers’. For the convenience of the reader Table 1 gives a small
sample of these numbers.

The positivity of the numbers (−1)r−1λ(k, r) is established in [9], where the

numbers G
(r)
j+1 are investigated. The argument uses Witt’s dimension formula for

free Lie algebras. The remaining part of Theorem 7 follows from the following
more general result.
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Theorem 8 Suppose that f(z) allows a formal power series in z having only inte-
ger coefficients, i.e. f(z) =

∑

j≥1 a(j)z
j with a(j) ∈ Z. Let g(z) =

∑

j≥1 |a(j)|zj
and let j0 ≥ 0 denote the smallest integer such that a(j) 6= 0. Let

H(r)(z) =
1

r

∑

d|r

µ(d)f(zd)r/d =

∞
∑

j=0

h(j, r)zj .

Then, as formal power series in y and z, one has

1− yf(z) =
∞
∏

k=1

∞
∏

j=kj0

(1− zjyk)h(j,k), (14)

Moreover, the numbers h(j, k) are integers.
Let ǫ > 0 be fixed. The identity (14) holds for all complex numbers y and z

with g(|z|)y < 1 − ǫ and |z| < ρc, where ρc is the radius of convergence of the
Taylor series of g around z = 0. If, moreover, ρc > 1/2, g(1/2) < 1 and

∑

p g(
1
p
)

converges, then

∏

p

(

1− χ(p)f(
1

p
)

)

=
∞
∏

k=1

∞
∏

j=kj0

L(j, χk)−h(j,k). (15)

Proof of Theorem 7. Note that

(1− Y X2)





1 + (Y−1)X2

(1−Y X2)(1−X)

1− X2

1−X



 =

(

1 +
Y X3

1−X −X2
)

)

.

By the first part of Theorem 8 one infers that, as formal series,

(1 +
Y X3

1−X −X2
) = (1− Y X3)−1(1− Y 2X6)

∞
∏

r=1

∞
∏

k=3r+1

(1−XkY r)(−1)rG
(r)
k−3r+1,

on noting that G
(r)
1 = 1 for r = 2 and G

(r)
1 = 0 for r ≥ 2. Apply the second

part with f(z) = −z3/(1 − z − z2) (and hence g(z) = z3/(1 − z − z2)). The
Taylor series for g has radius of convergence ρc = (

√
5 − 1)/2 > 0.5. Note that

g(x) ≤ 1/2 for all 0 ≤ x ≤ 1/2. Furthermore,
∑

p g(1/p) <
∑

p
4
p3

< ∞. ✷

Remark 2. The Dirichlet character is an example of a completely multiplicative
function h, i.e. h(nm) = h(n)h(m) for all natural numbers n and m. If one
defines L(s, h) by L(s, h) =

∑∞
n=1 h(n)n

−s, then under the same conditions, one
may replace χ in Theorem 8 by any completely multiplicative function h satisfy-
ing |h(n)| ≤ 1.

Remark 3. If 0 < ρc ≤ 1/2 and
∑

p>1/ρc
g(1/p) converges, then an identity of

the type (15) still holds, but with Dirichlet L-functions being replaced by partial
Dirichlet L-functions. The idea is just to leave out the local factor 1−χ(p)f(1/p)
for sufficiently many small primes p and then proceed as before, cf. the proof of
Theorem 1 of [6] (in the formulation of Theorem 1 there, replace pn0 + 1 > 1/β
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(a typo) by pn0+1 > β).

Remark 4. The conditions in the latter part of the theorem ensure that f(z) =
O(z2) for small z. This ensures on its turn that in the double product in (15)
only factors L(j, χk) with k ≥ 1 and j ≥ 2k ≥ 2 appear.

The proof given here of Theorem 7 rests on the following lemma.

Lemma 5 Suppose that f(X, Y ) =
∑

j,k α(j, k)X
jY k with α(j, k) integers and

f(0, 0) = 0. Then there are unique integers e(j, k) such that, as formal series,
one has

1 + f(X, Y ) =

∞
∏

j=0

∞
∏

k=0
(j,k) 6=(0,0)

(1−XjY k)e(j,k).

Proof. The term Xj1Y k1 is said to be of lower weight than Xj2Y k2 if k1 < k2 or
k1 = k2 and j1 < j2. Suppose that XjY k is the term of lowest weight appearing
in f(X, Y ). Then consider (1 + f(X, Y ))(1 −XjY k)−a(j,k). This can be written
as 1 + g(X, Y ) where all the coefficients of g(X, Y ) are integers and the term of
lowest weight in g(X, Y ) has strictly larger weight than the term of lowest weight
in f(X, Y ). Now iterate.

It is not obvious from this argument that if one starts with a different weight
ordering of the terms XjY k we end up with the same integers e(j, k). Sup-
pose that h(X) has integer coefficients, then the coefficients e(n) in 1 + h(X) =
∏∞

n=1(1 − Xn)e(n) are unique, cf. [6]. Hence, by setting X = 0, respectively
Y = 0, one obtains that e(0, k), respectively e(j, 0) are uniquely determined.
Setting Y = Xm one obtains that 1+ f(X,Xm) =

∏∞
n=1(1−Xn)v(n), where v(n)

is uniquely determined and v(2m) = e(2m, 0) + e(m, 1) + e(0, 2). The unique-
ness of e(0, 2), e(2m, 0) and f(2m) then implies the uniqueness of e(m, 1). The
proof will be completed by using induction. So suppose one has established
that e(j, k) with k ≤ r for some r ≥ 1 are uniquely determined. Using that
v((r + 2)m) =

∑r+2
k=0 e((r + 2 − k)m, k), one infers by the induction hypothesis

and using that e(0, r+2) and v((r+2)m) are uniquely determined, that e(m, r+1)
is uniquely determined. ✷

Proof of Theorem 8. By Möbius inversion and the definition of H(r)(z) one infers
that

f(z)r =
∑

d|r

r

d
H( r

d
)(zd) =

∑

d|r

r

d
h(j,

r

d
)

∞
∑

j=0

zjd,

from which it is inferred that

∞
∑

r=1

yrf(z)r =
∞
∑

k=1

∞
∑

j=0

h(j, k)k
∞
∑

d=1

zjdykd.

The latter identity with both sides divided out by y can be rewritten as

f(z)

1− yf(z)
=

∞
∑

k=1

∞
∑

j=0

h(j, k)kzjyk−1

1− zjyk
.
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Formal integration of both sides with respect to y gives

− log(1− yf(z)) = −
∞
∑

k=1

∞
∑

j=0

h(j, k) log(1− zjyk),

whence

1− yf(z) =

∞
∏

k=1

∞
∏

j=0

(1− zjyk)h(j,k).

On writing f1(z) = f(z)/zj0 and y1 = yzj0 and expanding 1−y1f1(z)(= 1−yf(z))
in terms of y1 and z, it is then seen that (14) holds. The integrality of h(j, k)
follows by Lemma 5.

The formal argument can be certainly made rigorous in the situation where

∞
∑

k=1

∞
∑

j=j0

|h(j, k)kzjyk| < ∞, (16)

where one is in the situation of absolute convergence and interchanges in order
of summation are hence allowed. Note that for x ≥ 0, g is an non-decreasing
function of the real variable x. Now note that

∞
∑

j=j0

|h(j, r)zj | ≤ 1

r

∑

d|r

g(|z|d)r/d ≤ g(|z|)r,

where the assumption that |z| < ρc is being used. The double sum in (16) is thus
majorized by

∑∞
r=1 rg(|z|)r|y|r which in the given (y, z) region converges.

By a similar argument the convergence
∑

p

∑∞
r=1 rg(1/p)

r, which is a conse-
quence of the convergence of

∑

p g(1/p) (one uses here that g is non-decreasing
as a function of the real variable x for x ≥ 0 and that g(1/2) < 1), ensures the
convergence of the triple product

∏

p

(

1− χ(p)f(
1

p
)

)

=
∏

p

∞
∏

k=1

∞
∏

j=kj0

(

1− χ(p)k

pj

)h(j,k)

. (17)

(From the theory of infinite products use that a product
∏

(1 + ǫv) is called ab-
solutely convergent if

∑

ǫv is absolutely convergent and that in an absolutely
convergent product the factors can be reordered without changing its value.) On
bringing the outer product over the primes p to the inside and using the Euler
product for a Dirichlet L-series, the result then follows. ✷
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7 Tables

Explanation to Table 1. Table 1 gives some values of convoluted convolved Fi-
bonacci numbers G

(r)
j . These numbers are defined in Theorem 7.

Explanation to Table 2. For every character χ of modulus ≤ 12, Aχ can be de-
duced from the table below. In every case the value of χ is given (in at most
two arguments) such that χ is uniquely determined by this. If χ itself is not in
the table, its complex conjugate χ̄ will be (in which case one has Aχ = Aχ̄) or
χ is the principal character (in which case Aχ = 1). Although Aχ for χ not a
primitive character can be easily related to Aχ′ with χ′ a primitive character,
for the convenience of the reader the numerical approximations to Aχ for the
non-primitive characters are listed as well.

Explanation to Table 3. An entry in a column having as header the number a
and in a row starting with an integer d, respectively a −, gives the first five
decimal digits of δ(a, d), respectively δ(a + 6, d). If an entry is in a row labelled
≈, let δ(a, d) be the entry directly above it. Then the number given equals
N−19(a, d)(x)/π(x) with x = 2038074743 (and hence π(x) = 108).

Explanation to Table 4. Similar to that of Table 2 (and with the same value of
x). In case d = ∞ one has δ(a, d) = Ar(a) for a ≥ 1 and N ′

g(a,∞)(x) denotes
the number of primes p ≤ x with vp(g) = 0 such that g has index equal to a.
Here x = 1299709 (and hence π(1299709) = 105).

Acknowledgement. The author thanks Yves Gallot for writing a C++ program
that was used to create Tables 3 and 4. Furthermore, he thanks the referee for
some helpful comments.
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Table 1: Convoluted convolved Fibonacci numbers G
(r)
j

r\j 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 5 8 13 21 34 55 89
2 1 1 3 5 11 19 37 65 120 210 376
3 0 1 3 7 17 37 77 158 314 611 1174
4 0 1 3 10 25 64 146 331 710 1505 3091
5 0 1 4 13 38 102 259 626 1457 3287 7224

Table 2: Numerical evaluation of Aχ

d χ χ Aχ

3 χ(2) = −1 - + 0.173977122429634 · · ·
4 χ(3) = −1 - + 0.643650679662525 · · ·
5 χ(2) = i - + 0.364689626478581 · · ·
- - - +i0.224041094424738 · · ·
5 χ(2) = −1 - + 0.129307938528080 · · ·
6 χ(5) = −1 - + 0.869885612148171 · · ·
7 χ(3) = eπi/3 - + 0.218769298429369 · · ·
- - - +i0.235418433356679 · · ·
7 χ(3) = e4πi/3 - + 0.212612780475062 · · ·
- - - −i0.145188986908610 · · ·
7 χ(3) = −1 - + 0.611324432919373 · · ·
8 χ(3) = 1 χ(5) = −1 + 0.837998503129360 · · ·
8 χ(3) = −1 χ(5) = 1 + 0.643650679662525 · · ·
8 χ(3) = −1 χ(5) = −1 + 0.603907856267167 · · ·
9 χ(2) = eπi/3 - + 0.578815911632924 · · ·
- - - +i0.334468140016295 · · ·
9 χ(2) = e4πi/3 - + 0.250710892521489 · · ·
- - - −i0.207858981269346 · · ·
9 χ(2) = −1 - + 0.173977122429634 · · ·
10 χ(3) = i - + 0.779414790379699 · · ·
- - - +i0.123970019579663 · · ·
10 χ(3) = −1 - + 0.646539692640401 · · ·
11 χ(2) = eπi/5 - + 0.657644343795360 · · ·
- - - +i0.151998116640767 · · ·
11 χ(2) = e2πi/5 - + 0.373259555803500 · · ·
- - - +i0.208638808901506 · · ·
11 χ(2) = e3πi/5 - + 0.187051722258759 · · ·
- - - +i0.232381723173172 · · ·
11 χ(2) = −1 - + 0.184204262987186 · · ·
12 χ(5) = 1 χ(7) = −1 + 0.919500970946465 · · ·
12 χ(5) = −1 χ(7) = 1 + 0.869885612148171 · · ·
12 χ(5) = −1 χ(7) = −1 + 0.841259078358102 · · ·
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Table 3: δ(a, d) and approximation to δ−19(a, d)

a 0 1 2 3 4 5

d = 2 0.66666 0.33333 - - - -
≈ 0.66667 0.33333 - - - -
3 0.37500 0.35599 0.26900 - - -
≈ 0.37502 0.35602 0.26897 - - -
4 0.33333 0.16666 0.33333 0.16666 - -
≈ 0.33334 0.16664 0.33333 0.16669 - -
5 0.20833 0.23542 0.17799 0.23400 0.14424 -
≈ 0.20831 0.23572 0.17829 0.23373 0.14395 -
6 0.25000 0.06067 0.12134 0.12500 0.29532 0.14766
≈ 0.25001 0.06067 0.12132 0.12501 0.29534 0.14765
7 0.14583 0.15968 0.15483 0.11905 0.16351 0.15567
≈ 0.14584 0.15965 0.15467 0.11915 0.16367 0.15573
- 0.10141 - - - - -
≈ 0.10129 - - - - -
8 0.16666 0.08333 0.16666 0.08333 0.16666 0.08333
≈ 0.16667 0.08332 0.16664 0.08335 0.16667 0.08332
- 0.16666 0.08333 - - - -
≈ 0.16669 0.08334 - - - -
9 0.12500 0.11866 0.08966 0.12500 0.11866 0.08966
≈ 0.12501 0.11866 0.08966 0.12501 0.11868 0.08965
- 0.12500 0.11866 0.08966 - - -
≈ 0.12500 0.11867 0.08965 - - -
10 0.13888 0.07196 0.14393 0.08172 0.06810 0.06944
≈ 0.13888 0.07197 0.14408 0.08159 0.06783 0.06944
- 0.16345 0.03405 0.15227 0.07613 - -
≈ 0.16374 0.03421 0.15214 0.07612 - -
11 0.09166 0.09890 0.09811 0.09904 0.09848 0.07170
≈ 0.09166 0.09889 0.09805 0.09904 0.09859 0.07180
- 0.09940 0.09303 0.09297 0.09523 0.06143 -
≈ 0.09939 0.09303 0.09297 0.09526 0.06133 -
12 0.12500 0.03033 0.06067 0.06250 0.14766 0.07383
≈ 0.12500 0.03033 0.06065 0.06251 0.14767 0.07382
- 0.12500 0.03033 0.06067 0.06250 0.14766 0.07383
≈ 0.12501 0.03035 0.06067 0.06249 0.14767 0.07383
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Table 4: ρ(a, d) and approximation to ρ65537(a, d)

a 0 1 2 3 4 5

d = 2 0.50000 0.50000 - - - -
≈ 0.49994 0.50006 - - - -
3 0.16666 0.48915 0.34417 - - -
≈ 0.16662 0.48924 0.34414 - - -
4 0.12500 0.41091 0.37500 0.08908 - -
≈ 0.12497 0.41097 0.37497 0.08909 - -
5 0.05000 0.44143 0.31320 0.10036 0.09498 -
≈ 0.05000 0.44150 0.31322 0.10035 0.09494 -
6 0.08333 0.38955 0.31706 0.08333 0.09959 0.02710
≈ 0.08330 0.38966 0.31705 0.08331 0.09958 0.02709
7 0.02380 0.40253 0.29923 0.08966 0.08471 0.03881
≈ 0.02380 0.40263 0.29923 0.08962 0.08470 0.03881
- 0.06123 - - - - -
≈ 0.06122 - - - - -
8 0.03125 0.38569 0.30818 0.07380 0.09375 0.02521
≈ 0.03124 0.38577 0.30818 0.07380 0.09372 0.02521
- 0.06681 0.01528 - - - -
≈ 0.06679 0.01529 - - - -
9 0.01851 0.39347 0.29075 0.08696 0.07829 0.02983
≈ 0.01851 0.39356 0.29075 0.08694 0.07829 0.02981
- 0.06118 0.01738 0.02358 - - -
≈ 0.06117 0.01740 0.02358 - - -
10 0.02500 0.38063 0.30067 0.07141 0.08456 0.02500
≈ 0.02500 0.38071 0.30068 0.07140 0.08452 0.02500
- 0.06080 0.01253 0.02895 0.01041 - -
≈ 0.06079 0.01254 0.02895 0.01041 - -
11 0.00909 0.39040 0.28866 0.07722 0.07791 0.02698
≈ 0.00910 0.39047 0.28865 0.07721 0.07791 0.02698
- 0.05543 0.01768 0.02331 0.01418 0.01909 -
≈ 0.05541 0.01769 0.02331 0.01419 0.01908 -
12 0.02083 0.37819 0.29216 0.07231 0.07926 0.02170
≈ 0.02080 0.37827 0.29215 0.07230 0.07926 0.02169
- 0.06250 0.01136 0.02489 0.01101 0.02033 0.00540
≈ 0.06250 0.01139 0.02491 0.01101 0.02033 0.00539
· · · · · · · · · · · · · · · · · · · · ·
∞ 0.00000 0.37395 0.28046 0.06648 0.07011 0.01889
≈ 0.00000 0.37367 0.28124 0.06646 0.06913 0.01885
- 0.04986 0.00893 0.01752 0.00738 0.01417 0.00340
≈ 0.04962 0.00915 0.01796 0.00745 0.01449 0.00359
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