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Abstract

The problem of computing Bilinear-Diffie-Hellman maps is considered. It is shown
that the problem of computing the map is equivalent to computing a diagonal
version of it. Various lower bounds on the degree of any polynomial that interpolates
this diagonal version of the map are found that shows that such an interpolation
will involve a polynomial of large degree, relative to the size of the set on which it
interpolates.
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1 Introduction

Let G = 〈g〉 denote a cyclic group of prime order ℓ. The Diffie-Hellman map

DH : G×G −→ G

(gx, gy) 7−→ gxy

has been widely investigated and the difficulty of computing such a map for
two given group elements, gx and gy, is believed to be equivalent, in many
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groups, to solving the discrete logarithm problem in those groups [13,?]. It
has been observed that if an algorithm for the map

DH2 : G −→ G

gx 7−→ gx2

is available, then one can compute the DH function by using DH2 on gx, gy

and gx+y to compute

g(x+y)2 · g−x2 · g−y2

= g2xy

from which gxy is easily recovered. Thus if an efficient way could be determined
to represent the map DH2 as a polynomial over a sizable subset of the group
(i.e. interpolate the map over the subset), it could be used to solve the DH
problem. This note considers a similar problem in an elliptic curve/pairing
setting.

Let p be an odd prime and Fq the finite field of characteristic p with q elements.
We say that an elliptic curve E is defined over Fq if it can be given by a
Weierstrass equation with coefficients in Fq. In particular, if E is defined over
Fq then it is also defined over any extension of Fq. We denote by E(Fq) the
group of points on E that are defined over Fq. It is well-known that |E(Fq)| =
q+1−aq , where aq is called the trace of Frobenius and is bounded in absolute
value by 2

√
q.

Let ℓ be a prime different from p dividing |E(Fq)|, P ∈ E(Fq) a point of order
ℓ, and m the order of q modulo ℓ. We consider non-degenerate bilinear maps
of the form

e : 〈P 〉 × 〈P 〉 −→ µℓ(Fqm),

(aP, bP ) 7−→ e(P, P )ab

where µℓ(Fqm) is the group of ℓ-th roots of unity in Fqm. Such maps arise from
the Weil and Tate pairings [1,6,9]. For practical purposes, one can obtain easily
computable non-degenerate bilinear maps either by using the Weil pairing on a
supersingular elliptic curve that possesses suitable distortion maps, or by using
the Tate pairing on curves with trace of Frobenius congruent to 2 modulo ℓ.

Bilinear and non-degenerate pairings have found many applications in cryptog-
raphy including tripartite key generation protocols [10], identity based encryp-
tion schemes [2], and identity based signature schemes with various properties
[3]. It is essential for the security of many of those schemes, that given points
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P, aP, bP, cP it is hard to compute e(P, P )abc. This is the so-called Bilinear-
Diffie-Hellman problem:

BDH : 〈P 〉 × 〈P 〉 × 〈P 〉 −→ µℓ(Fqm),

(aP, bP, cP ) 7−→ e(P, P )abc

Although the complexity of the problem is not known, it has been shown by
Galbraith, Hopkins and Shparlinski [7], that computing the map (aP, bP, cP ) 7→
e(P, P )abc is equivalent to computing roughly the 2

√
log q most significant bits

of the values of the map. Thus the most significant bits of the “key” e(P, P )abc

are secure, provided that the map is hard to compute.

In this paper, we consider the “diagonal” case of the above map

BDH3 : 〈P 〉 −→ µℓ(Fqm),

nP 7−→ e(P, P )n3

,

and in fact the more general maps

BDHk : 〈P 〉 −→ µℓ(Fqm),

nP 7−→ e(P, P )nk

,

where k is a fixed constant. In order to define a map fk on the x-coordinates
of points, we need to observe that for k odd althought the points nP and
−nP are mapped to inverse values, they have the same x-coordinates. This
suggests that, in order to have a well defined function, fk should be defined
over any subset of {1, . . . , ℓ− 1} which does not contain n and ℓ− n for any
n ∈ {1, . . . , ℓ − 1}. For simplicity, we choose the following definition, noting
that any subset with the above property would work equally well.

fk :
{

x(nP ) ∈ Fq : 1 ≤ n ≤ ℓ−1
2

}

−→ µℓ(Fqm),

x(nP ) 7−→ e(P, P )nk

,

where x(nP ) is the x-coordinate of nP .

In section 3, we show that solving the Bilinear-Diffie-Hellman problem is equiv-
alent to computing the map BDH3. Further, computing BDH3 can be reduced
to the problem of computing BDHk for any 3 ≤ k < p. The reductions, in
both cases are not tight. In section 4, we show that any polynomial over Fqm

that interpolates sufficiently many values of the map fk necessarily has large
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degree. This result holds for any integer k ≥ 1 – the restriction 3 ≤ k < p
is needed only for the reduction to apply. Similar results have been obtained
for several other maps that are of cryptographic interest. For instance, for the
Diffie-Hellman and the discrete logarithm maps see [4,5,11]. Our proofs are
influenced in particular by [12].

2 Elliptic curves and division polynomials

Let E be an elliptic curve over a finite field Fq of odd characteristic p. We
assume that E is given by a Weierstrass equation

Y 2 = X3 + a2X
2 + a4X + a6, a2, a4, a6 ∈ Fq.

Define b2 = 4a2, b4 = 2a4, b6 = 4a6, and b8 = 4a2a6 − a2
4. The division

polynomials ψt(X, Y ) ∈ Fq[X, Y ] are defined recursively, modulo Y 2 − X3 −
a2X

2 − a4X − a6 as follows.

ψ0 = 0,

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + b2X
3 + 3b4X

2 + 3b6X + b8,

ψ4 = (2X6 + b2X
5 + 5b4X

4 + 10b6X
3 + 10b8X

2 + (b2b8 − b4b6)X + b4b8 − b26)ψ2,

ψ2t+1 =ψt+2ψ
3
t − ψt−1ψ

3
t+1, t ≥ 2,

ψ2t =ψt(ψt+1ψ
2
t−1 − ψt−2ψ

2
t+1)/ψ2, t ≥ 3.

It is a standard fact, see [1], that ψ2t+1 and ψ2
t are polynomials in one variable

X, and we write ψ2t+1(X) and ψ2
t (X). Further, for t prime to p, the degree of

ψ2
t (X) is t2 − 1. We also define

θt(X) = Xψ2
t − ψt−1ψt+1, t ≥ 1.

It can be shown inductively that the degree of θt(X) is t2.

Division polynomials are useful for stating multiples of a point in terms of its
affine coordinates. In particular, if P = (x, y) is a finite point on E then the
x-coordinate of the point tP is θt(x)/ψ

2
t (x).
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3 Reductions

We start with a reduction of the Bilinear-Diffie-Hellman problem to the prob-
lem of computing the “diagonal” Bilinear-Diffie-Hellman map BDH3.

Theorem 1 Let Fq be the finite field of characteristic p with q elements, E
an elliptic curve over Fq, P ∈ E(Fq) a point of prime order ℓ > 3 and m the

order of q modulo ℓ. Let A be an algorithm that computes the map

BDH3 : 〈P 〉 −→ µℓ(Fqm),

nP 7−→ e(P, P )n3

.

Then there exists an algorithm B that computes the Bilinear-Diffie-Hellman

map using O((m log q)) operations Fqm and 4 point additions and 7 calls to

algorithm A.

PROOF. We denote γ = e(P, P ). Given the points P and aP, bP, cP , the
algorithm B computes the points (a + b + c)P, (a + b)P, (a + c)P, (b + c)P
and uses A to obtain the values γ(a+b+c)3 , γ(a+b)3 , γ(a+c)3 , γ(b+c)3 , γa3

, γb3 , γc3.
It computes

δ = γ(a+b+c)3−(a+b)3−(a+c)3−(b+c)3+a3+b3+c3 = γ6abc.

Since γ has order ℓ and (ℓ, 6) = 1 there is a unique 6-th root of δ which B
computes by raising δ to the inverse of 6 modulo ℓ, and returns the value. It
is easy to verify that the number of steps are as stated in the theorem.

The computation of the map BDH3 can be reduced to the computation of
BDHk for any 3 ≤ k < p. We will use the following lemma of [11], which we
state in the special case of finite fields.

Lemma 1 ([11]) Let g(X) ∈ Fq[X] of degree D with leading coefficient gD

and B ≥ 1 an integer. Then

D−B
∑

j=0

(

D −B

j

)

(−1)D−B−jg(X + j) =
gDD!

B!
XB + TB−1(X),

where TB−1(X) is a polynomial of degree at most B − 1.
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Theorem 2 Let Fq be the finite field of characteristic p with q elements, E
an elliptic curve over Fq, P ∈ E(Fq) a point of prime order ℓ and m the order

of q modulo ℓ. Let A be an algorithm that computes the map

BDHk : 〈P 〉 −→ µℓ(Fqm),

nP 7−→ e(P, P )nk

,

for some 3 ≤ k < ℓ. Then there exists an algorithm B that computes BDH3

using k − 2 calls to algorithm A.

PROOF. Using Lemma 1 for D = k, B = 3, and g(X) = Xk we have

k−3
∑

j=0

(

k − 3

j

)

(−1)k−3−j(X + j)k =
k!

6
X3 + T2(X),

where T2(X) = c2X
2 + c1X + c0. Therefore, denoting γ = e(P, P ) we have

γk!n3/6 = γ−c2n2

γ−c1nγ−c0
k−3
∏

j=0

γ(
k−3

j )(−1)k−3−j (n+j)k

(1)

Algorithm B computes γ = e(P, P ), γn = e(P, nP ), γn2

= e(nP, nP ), the

coefficients c0, c1, c2, and
(

k−3
j

)

(−1)k−3−j for j = 0, . . . , k − 3. It makes k − 2

calls to A to obtain the values γ(n+j)k

, and uses Eq.(1) to compute δ = γk!n3/6.
Finally, B computes γn3

by raising δ6 to the inverse of k! modulo ℓ which
exists, since (k!, ℓ) = 1.

4 Interpolation of diagonal Bilinear-Diffie-Hellman maps

Theorem 3 Let Fq be the finite field with q elements of characteristic p > 2,
and ℓ > 2 a prime divisor of q − 1. Let E be an elliptic curve over Fq with

|E(Fq)| ≡ 0 (mod ℓ). Let P ∈ E(Fq) be a point of order ℓ, and γ an element

of F
∗
q of order ℓ. For 1 ≤ n ≤ ℓ − 1, let xn = x(nP ). Let S ⊆ {1, 2, . . . , ℓ−1

2
}

of cardinality |S| = ℓ−1
2

− s. If f ∈ Fq[X] satisfies

f(xn) = γnk

, n ∈ S
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for some fixed k ≥ 1, then

deg(f) ≥ ℓ− 4s− 1

4(2k + 3)
.

PROOF. For n, ℓ ∈ N, we denote by ⌊n⌋ℓ the remainder of n upon division
by ℓ. Following [12], we define the subset R of S as

R = {n ∈ S : ⌊2n⌋ℓ ∈ S}.

Since ℓ > 2, the map

Z/ℓZ → Z/ℓZ,

n (mod ℓ) 7−→ 2n (mod ℓ)

is injective. If s1 = |[1, (ℓ−1)/4]−S| and s2 = |((ℓ−1)/4, (ℓ−1)/2]−S|, then
s = s1 + s2. We claim that there are at most (ℓ − 1)/4 elements n ∈ S such
that ⌊2n⌋ℓ 6∈ S. To see this, note that these are elements of S that either lie
in ((ℓ− 1)/4, (ℓ− 1)/2] (there are (ℓ− 1)/4− s2 such) or the elements of S in
((1, (ℓ− 1)/4] that map to those s2 elements in ((ℓ− 1)/4, (ℓ− 1)/2] that are
not in S (there are at most s2 of them, by the injectivity of the above map).

It follows that

|R| ≥ |S| − ℓ− 1

4
. (2)

Next, we estimate the cardinality of the set

R = {xn : n ∈ R}.

For distinct n,m ∈ R, xn = xm implies that mP = −nP = (ℓ − n)P , which
in turn implies that m = ℓ − n, and the fact that the elements of R lie in
[1, (ℓ− 1)/2], we see that |R| = |R|. Combining this with Eq.(2), we have

|R| ≥ |S| − ℓ− 1

4
=
ℓ− 4s− 1

4
. (3)

Then we see that for every n ∈ R we have

f(x2n) = γ2knk

= f(xn)2k

.

7



Further,

f(x2n) = f

(

θ2(xn)

ψ2
2(xn)

)

,

so that for n ∈ R

f

(

θ2(xn)

ψ2
2(xn)

)

= f(xn)2k

.

We denote d = deg(f) and define the polynomial

G(X) = f

(

θ2(X)

ψ2
2(X)

)

ψ2d
2 (X).

We consider then the polynomial F (X) = G(X) − ψ2d
2 (X)f(X)2k

. We have
deg(ψ2

2) = 3 and deg(θ2) = 4, so that deg(G) = 4d. Also deg(ψ2d
2 f

2k

) =
3d+2kd = (2k +3)d. We note that d > 0, since otherwise f would be constant,
which would imply that the order ℓ of γ divides 2k − 1. In such a case the
result of the statement is trivial. Since d > 0, k ≥ 1, we see that deg(G) <
deg(ψ2d

2 f
2k

), so that deg(F ) = (2k + 3)d, and of course F is not the zero
polynomial.

For every n ∈ R,

F (xn) =G(xn) − ψ2d
2 (xn)f(xn)2k

= f

(

θ2(xn)

ψ2
2(xn)

)

ψ2d
2 (xn) − ψ2d

2 (xn)f(xn)2k

= f(x2n)ψ2d
2 (xn) − ψ2d

2 (xn)f(xn)2k

=0,

since n, 2n ∈ S. The polynomial F is not the zero polynomial, and all the
elements in R are roots of F . It follows that

deg(F ) = (2k + 3)d ≥ |R| .

Using the bound for |R| in Eq.(3), we obtain the bound of the statement.

We can apply Theorem 3 to show that any polynomial f over Fqm that agrees
with fk on a reasonably large set of points needs to have large degree. We only
need to observe that if an elliptic curve is defined over Fq it is also defined
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over Fqm and letting γ = e(P, P ), which is an ℓ-th root of unity, since the
order of P is ℓ and e is assumed to be non-degenerate, we obtain the following
corollary.

Corollary 1 Let E be an elliptic curve over Fq, P ∈ E(Fq) a point of odd

prime order ℓ 6= p, and m the order of p modulo ℓ. For 1 ≤ n ≤ ℓ − 1, let

xn = x(nP ). Let S ⊆ {1, 2, . . . , (ℓ − 1)/2} of cardinality |S| = (ℓ − 1)/2 − s.
If f ∈ Fqm[X] satisfies

f(xn) = e(P, P )nk

, n ∈ S

for some fixed k ≥ 1, then

deg(f) ≥ ℓ− 4s− 1

4(2k + 3)
.

In particular, interpolating the “diagonal” Bilinear-Diffie-Hellman map on (ℓ−
1)/2 − s points requires a polynomial of degree at least (ℓ− 4s− 1)/44.

We now proceed to prove a lower bound for the degree of a polynomial that
interpolates a much smaller set S. The following lemma will be used in the
proof the main theorem.

Lemma 2 Let t ∈ N with (t, ℓ) = (t, p) = 1, R ⊂ {1, . . . , ℓ− 1} be such that

n ∈ R ⇒ ⌊−n⌋ℓ 6∈ R. If the polynomial f ∈ Fq[X] satisfies

f(xn) = γnk

, f(xtn) = γtknk

n ∈ R,

then

deg(f) ≥ |R|
(tk + t2 − 1)

.

PROOF. As in the proof of Theorem 3, for every n ∈ R we have

f(xtn)= f

(

θt(xn)

ψ2
t (xn)

)

= f(xn)tk ,

where d = deg(f). Therefore the polynomial

F (X) = f

(

θt(X)

ψ2
t (X)

)

ψ2d
t (X) − f(X)tkψ2d

t (X)
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has at least |R| roots xn – note that the points xn, n ∈ R are all distinct.
Further, F is not the zero polynomial, and its degree is (t2 − 1)d + tkd =
(tk + t2 − 1)d. Therefore, we have

(tk + t2 − 1)d ≥ |R|.

Theorem 4 Let Fq be the finite field with q elements of characteristic p > 2,
and ℓ > 2 a prime divisor of q − 1. Let E an elliptic curve over Fq with

|E(Fq)| ≡ 0 (mod ℓ). Let P ∈ E(Fq) a point of order ℓ, γ an element of F
∗
q

of order ℓ, and xn = x(nP ). Let S ⊆ {1, 2, . . . , ℓ− 1} be such that n ∈ S ⇒
⌊−n⌋ℓ 6∈ S of cardinality |S| ≥ 4ℓ/(ǫ log2(ℓ)) for any 0 < ǫ < 1. If f ∈ Fq[X]
satisfies

f(xn) = γnk

, n ∈ S

for some fixed k ≥ 1, then

deg(f) ≥ |S|
4ǫℓkǫ log2(ℓ)

.

PROOF. Let K ∈ N, K < ℓ. As in [12], we define the sets

Si = {⌊2in⌋ℓ : n ∈ S}, i = 0, . . . , K

and

Ri,j = Si ∩ Sj, 0 ≤ i < j ≤ K.

It’s not hard to see that S0 = S and |Si| = |S| for i = 0, . . . , K. Furthermore,

K
∑

i=0

|Si| −
∑

0≤i<j≤K

|Ri,j| ≤
∣

∣

∣∪K
i=0Si

∣

∣

∣ ≤ ℓ− 1,

so that

∑

0≤i<j≤K

|Ri,j| > (K + 1)|S| − ℓ.

It follows that there exists a pair 0 ≤ i < j ≤ K such that |Ri,j| > ((K +
1)|S| − ℓ)/(K(K + 1)). Noting that |R0,j−i| = |Ri,j|, we see that

R0,j−i = {n ∈ S : ⌊2j−in⌋ℓ ∈ S}
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and |R0,j−i| > ((K+1)|S|− ℓ)/(K(K+1)). We can now apply Lemma 2 with
R = R0,j−i and t = 2j−i, to obtain that

deg(f)≥ |R0,j−i|
2(j−i)k + 22(j−i) − 1

>
(K + 1)|S| − ℓ

K(K + 1)(2(j−i)k + 22(j−i) − 1)

>
(K + 1)|S| − ℓ

K(K + 1)(2kK + 22K − 1)
.

Letting K = ⌊ǫ log2(ℓ)⌋ for any 0 < ǫ < 1 we have

deg(f)≥ |S|
2ǫℓkǫ log2(ℓ)

− ℓ

ǫ2(log2(ℓ))
2ℓkǫ

=
|S|

2ǫℓkǫ log2(ℓ)

(

1 − 2ℓ

|S|ǫ log2(ℓ)

)

≥ |S|
4ǫℓkǫ log2(ℓ)

.

Applying Theorem 4 in the case γ = e(P, P ), which has order ℓ since e is
non-degenerate, we obtain the following corollary.

Corollary 2 Let E be an elliptic curve over Fq, P ∈ E(Fq) a point of odd

prime order ℓ 6= p, and m the order of p modulo ℓ. For 1 ≤ n ≤ ℓ − 1, let

xn = x(nP ). Let S ⊆ {1, 2, . . . , ℓ − 1} be such that n ∈ S ⇒ ⌊−n⌋ℓ 6∈ S of

cardinality |S| ≥ (4ℓ)/(ǫ log2(ℓ)) for any 0 < ǫ < 1. If f ∈ Fqm [X] satisfies

f(xn) = e(P, P )nk

, n ∈ S

for some fixed k ≥ 1, then

deg(f) ≥ |S|
4ǫℓkǫ log2(ℓ)

.

As an example, we see that for ǫ = 1/(2k), any polynomial that interpolates
at least 8kℓ/ log2(ℓ) points has degree at least 4k2

√
ℓ/(log2(ℓ))

2. In particular,
any polynomial that interpolates the diagonal Bilinear-Diffie-Hellman map on
at least 24ℓ/ log2(ℓ) points has degree at least 36

√
ℓ/(log2(ℓ))

2.
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5 Conclusion

Bilinear, non-degenerate pairing have been used in cryptography since Menezes,
Okamoto and Vanstone [15] realized that they can be used to simplify the
computation of the elliptic curve discrete logarithm problem in supersingular
curves. It was later realized, mostly due to the work of Joux [10], that pair-
ings can also be used to costruct cryptographic protocols. In many cases, the
security of the new protocols depends on difficulty of computing the so-called
Bilinear-Diffie-Hellman map [7], or on that of inverting the pairing [8,16,17].

In this work, the problem of interpolating the BDH map on elliptic curves has
been considered. Specifically if an efficient algorithm could be found to deter-
mine a polynomial representation of the map BDH3 that interpolates the x
coordinates of point multiples, over a relatively large subset of the group, with
the polynomial of small degree compared to the size of the set it interpolates
over, the map would be considered insecure since such a map could be used
to compute BDH.

The results obtained show that the degree of any such polynomial is relatively
large, in all the circumstances considered, lending support to the general belief
the map is secure.

It is important to note that although we have shown such an interpolation
polynomial for the map has large degree, it does not necessarily follow it is hard
to compute. For example, the map xn 7−→ e(P, P )n2

is easy to compute and one
could consider computing this map over a large subset of the group and using
Lagrange interpolation to determine the polynomial. However, for a sufficiently
large subset, the procedure would not be computationally feasible and some
other method would have to be found to find such a polynomial. Similarly, we
have no information on how sparse any such interpolation polynomial might
be.

Acknowledgements. We would like to thank the reviewers for pointing out
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