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DECOMPOSABLE SUBSPACES, LINEAR SECTIONS OF

GRASSMANN VARIETIES, AND HIGHER WEIGHTS OF

GRASSMANN CODES

SUDHIR R. GHORPADE, ARUNKUMAR R. PATIL, AND HARISH K. PILLAI

Abstract. Given a homogeneous component of an exterior algebra, we char-
acterize those subspaces in which every nonzero element is decomposable. In
geometric terms, this corresponds to characterizing the projective linear sub-
varieties of the Grassmann variety with its Plücker embedding. When the
base field is finite, we consider the more general question of determining the
maximum number of points on sections of Grassmannians by linear subvari-
eties of a fixed (co)dimension. This corresponds to a known open problem
of determining the complete weight hierarchy of linear error correcting codes
associated to Grassmann varieties. We recover most of the known results as
well as prove some new results. In the process we obtain, and utilize, a simple
generalization of the Griesmer-Wei bound for arbitrary linear codes.

1. Introduction

Let V be an m-dimensional vector space over a field F . Given a positive inte-

ger ℓ with ℓ ≤ m, consider the ℓth exterior power
∧ℓ

V of V . A nonzero element

ω ∈
∧ℓ

V is said to be decomposable if ω = v1 ∧ · · · ∧ vℓ for some v1, . . . , vℓ ∈ V .

A subspace of
∧ℓ V is decomposable if all of its nonzero elements are decompos-

able. In the first part of this paper, we consider the following question: what are

all possible decomposable subspaces of
∧ℓ V , and, in particular, what is the maxi-

mum possible dimension of a decomposable subspace of
∧ℓ

V ? We answer this by

proving a characterization of decomposable subspaces of
∧ℓ

V . This result can be
viewed as an algebraic counterpart of the combinatorial structure theorem for the
so called closed families of subsets of a finite set (cf. [5, Thm. 4.2]). As a corol-
lary, we obtain that the maximum possible dimension of a decomposable subspace

of
∧ℓ

V is max{ℓ,m − ℓ} + 1. In geometric terms, this corresponds to character-
izing the projective linear subvarieties (with respect to the Plücker embedding)
of the Grassmann variety Gℓ,m of all ℓ-dimensional subspaces of V , and showing
that the maximum possible (projective) dimension of such a linear subvariety is
max{ℓ,m − ℓ}. Briefly speaking, the characterization of decomposable subspaces
states that they are necessarily one among the two types of subspaces that are
described explicitly. Subsequently, using the Hodge star operator, we observe that
a nice duality prevails among the two types of decomposable subspaces.

In the second part of this paper, we consider the case when F is the finite field Fq

with q elements. For a fixed nonnegative integer s, we consider the linear sections
L∩Gℓ,m of the Grassmann variety Gℓ,m (with its canonical Plücker embedding) by

a linear subvariety L of P(
∧ℓ

V ) of dimension s, and we ask what is the maximum
number of Fq-rational points that such a linear section can have. In light of the
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abovementioned corollary of the characterization of decomposable subspaces, it is
evident that when s is small, or more precisely, when s ≤ max{ℓ,m − ℓ}, the
maximum number is 1 + q + q2 + · · · + qs. But for a general s, the answer does
not seem to be known. In fact, enumerative as well as geometric aspects of linear
sections of Gℓ,m are not particularly well-understood, in general, except in special
cases such as those when the linear sections are Schubert subvarieties of Gℓ,m.
(See, for example, Section 6 of [5] and the references therein.) However, the above
question admits an equivalent formulation in terms of linear error correcting codes,
and as such, it has been considered by various authors. Indeed, if we let C(ℓ,m)

denote the linear code associated toGℓ,m(Fq) →֒ P(
∧ℓ

V ), then its rth higher weight
(see Section 4 for definitions) is given by

dr(C(ℓ,m)) = n−max
L

|L ∩Gℓ,m(Fq)|

where the maximum is taken over projective linear subspaces L of P(
∧ℓ

F
m
q ) of

codimension r, and where n denotes the Gaussian binomial coefficient defined by

n = |Gℓ,m(Fq)| =

[

m

ℓ

]

q

:=
(qm − 1)(qm − q) · · · (qm − qℓ−1)

(qℓ − 1)(qℓ − q) · · · (qℓ − qℓ−1)
.

With this in view, we shall now consider the equivalent question of determining
dr = dr(C(ℓ,m)) for any r ≥ 0, where d0 := 0, by convention. This question is
open, in general, and the known results can be summarized as follows. From general

facts in Coding Theory and the fact that the embedding Gℓ,m(Fq) →֒ P(
∧ℓ

F
m
q ) is

nondegenerate, one knows that

0 = d0 < d1 < d2 < · · · < dk = n where k :=

(

m

ℓ

)

,

and also that

(1) dr (C(ℓ,m)) ≥ qδ + qδ−1 + · · ·+ qδ−r+1 where δ := ℓ(m− ℓ).

The latter is a consequence of the so called Griesmer-Wei bounds for linear codes
and a result of Nogin [12] which says that d1 = qδ. In fact, Nogin [12] showed that
the Griesmer-Wei bound is sometimes attained, that is,

(2) dr (C(ℓ,m)) = qδ + qδ−1 + · · ·+ qδ−r+1 for 0 ≤ r ≤ µ,

where

µ := max{ℓ,m− ℓ}+ 1.

Alternative proofs of Nogin’s result for higher weights of C(ℓ,m) were given by
Ghorpade and Lachuad [4] using the notion of a closed family. Recently, Hansen,
Johnsen and Ranestad [7] have observed that a dual result holds as well, namely,

(3) dk−r (C(ℓ,m)) = n− (1 + q + · · ·+ qr−1) for 0 ≤ r ≤ µ.

In general, the values of dr(C(ℓ,m)) for µ < r < k−µ are not known. For example,
if ℓ = 2 and we assume (without loss of generality) that m ≥ 4, then µ = m−1, and
dr(C(ℓ,m)) for m ≤ r <

(

m−1
2

)

are not known, except that in the first nontrivial
case, Hansen, Johnsen and Ranestad [7] have shown by clever algebraic-geometric
arguments that

(4) d5(C(2, 5)) = q6 + q5 + 2q4 + q3 = d4 + q4.

Notice that the Griesmer-Wei bound in (1) is not attained in this case. Nonethe-
less, Hansen, Johnsen and Ranestad [7] conjecture that the difference dr − dr−1 of
consecutive higher weights of C(ℓ,m) is always a power of q.

Our main results concerning the the determination of dr(C(ℓ,m)) are as follows.
First, we recover (2) and (3) as an immediate corollary of our characterization of
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decomposable subspaces. Next, we further analyze the structure of decomposable
vectors in

∧2 V to extend (3) by showing that

(5) dk−µ−1 (C(2,m)) = n− (1+ q+ · · ·+ qµ−1 + q2) = dk−µ − q2 for any m ≥ 4.

Finally, we use the abovementioned analysis of decomposable vectors in
∧2 V and

also exploit the Hodge star duality to prove the following generalization of (4) for
any m ≥ 4.

(6) dµ+1 (C(2,m)) = qδ + qδ−1 + 2qδ−2 + qδ−3 + · · ·+ qδ−µ+1 = dµ + qδ−2.

In the course of deriving these formulae, we use a mild generalization of the
Griesmer-Wei bound, proved here in the general context of arbitrary linear codes,
which may be of independent interest.

It is hoped that these results, and more so, the methods used in proving them,
will pave the way for the solution of the problem of determination of the complete
weight hierarchy of C(ℓ,m) at least in the case ℓ = 2. To this end, we provide,
toward the end of this paper, an initial tangible goal by stating conjectural formulae
for dr (C(2,m)) when µ+1 ≤ r ≤ 2µ−3, and also when k−2µ+3 ≤ r ≤ k−µ−1.
It may be noted that these conjectural formulae, and of course both (5) and (6),
corroborate the conjecture of Hansen, Johnsen and Ranestad [7] that the differences
of consecutive higher weights of Grassmann codes is always a power of q.

2. Decomposable Subspaces

Let us fix, in this as well as the next section, positive integers ℓ,m with ℓ ≤ m,
a field F , and a vector space V of dimension m over F . Let

I(ℓ,m) := {α = (α1, . . . , αℓ) ∈ Z
ℓ : 1 ≤ α1 < · · · < αℓ ≤ m}.

If {v1, . . . , vm} is a basis of V , then {vα : α ∈ I(ℓ,m)} is a basis of
∧ℓ V , where

vα := vα1
∧ · · · ∧ vαℓ

. Given any ω ∈
∧ℓ V , define

Vω := {v ∈ V : v ∧ ω = 0}.

Clearly, Vω is a subspace of V . It is evident that ω = 0 if and only if dimVω = m.
The following elementary characterization will be useful in the sequel. Here, and
hereafter, it may be useful to keep in mind that for us, a decomposable vector is
necessarily nonzero.

Lemma 1. Assume that ℓ < m and let ω ∈
∧ℓ

V . Then

ω is decomposable ⇐⇒ dimVω = ℓ.

Moreover, if dimVω = ℓ and {v1, . . . , vℓ} is a basis of Vω, then ω = c(v1 ∧ · · · ∧ vℓ)
for some c ∈ F with c 6= 0.

Proof. If ω is decomposable, then ω = v1 ∧ · · · ∧ vℓ for some linearly independent
elements v1, . . . , vℓ ∈ V . Clearly, {v1, . . . , vℓ} ⊆ Vω . Moreover, if v ∈ Vω, then
v, v1, . . . , vℓ are linearly dependent. It follows that {v1, . . . , vℓ} is a basis of Vω .
Conversely, let dimVω = ℓ. Extend a basis {v1, . . . , vℓ} of Vω to a basis {v1, . . . , vm}
of V . Write ω =

∑

α∈I(ℓ,m) cα vα. Now 0 = vi ∧ ω =
∑

α∈I(ℓ,m) cα (vi ∧ vα) for

ℓ < i ≤ m. Consequently, cα = 0 if i does not appear in α. It follows that
ω = c(1,2,...ℓ) (v1 ∧ · · · ∧ vℓ), as desired. �

Corollary 2. If ℓ = 1 or ℓ = m− 1, then the space
∧ℓ

V is decomposable, that is,

every nonzero element of
∧ℓ

V is decomposable.
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Proof. The result is obvious when ℓ = 1. Suppose ℓ = m − 1. Now
∧m

V is

canonically isomorphic to F , and for 0 6= ω ∈
∧ℓ

V , the linear map from V to F
given by v 7→ v∧ω is nonzero and hence surjective. Clearly, Vω is the kernel of this
linear map and so dimVω = dimV − 1 = ℓ. Thus, Lemma 1 applies. �

Lemma 3. Let ω1, ω2 ∈
∧ℓ

V be decomposable and linearly independent, and let
Vi = Vωi

for i = 1, 2. Then

ω1 + ω2 is decomposable ⇐⇒ dimV1 ∩ V2 = ℓ− 1 ⇐⇒ dimV1 + V2 = ℓ+ 1.

Proof. Assume that dim V1 ∩ V2 = ℓ− 1. Let {f1, . . . , fℓ−1} be a basis for V1 ∩ V2.
Extend it to bases {f1, . . . , fℓ−1, g1} and {f1, . . . , fℓ−1, g2} of V1 and V2, respec-
tively. By Lemma 1, there are c1, c2 ∈ F such that ωi = ci(f1 ∧ f2 ∧ · · · ∧ fℓ−1 ∧ gi)
for i = 1, 2. Now ω1 + ω2 6= 0 since ω1, ω2 are linearly independent, and ω1 + ω2 =
f1 ∧ f2 ∧ · · · ∧ fℓ−1 ∧ (c1g1 + c2g2). Thus ω1 + ω2 is decomposable.

Conversely, suppose ω1 + ω2 is decomposable. Let W = Vω1+ω2
. It is clear

that V1 ∩ V2 ⊆ W . Also, by Lemma 1, dimW = ℓ = dimV1 = dim V2. Hence if
V1 ∩ V2 = W , then V1 ∩ V2 = V1 = V2, which contradicts the linear independence
of ω1 and ω2. Thus, dimV1 ∩ V2 ≤ ℓ − 1, or equivalently, dimV1 + V2 ≥ ℓ + 1.
Moreover, we can find z ∈ W \ (V1 ∩ V2). Note that since z ∧ (ω1 + ω2) = 0, we
have: z ∧ ω1 = 0 ⇔ z ∧ ω2 = 0. Hence z 6∈ V1 ∪ V2 and Vi + Fz has dimension
ℓ+ 1 for i = 1, 2. Further, since z ∧ ω1 = −z ∧ ω2, in view of Lemma 1 we see that
V1 + Fz = Vz∧ω1

= Vz∧ω2
= V2 + Fz. Consequently, V1 + V2 ⊆ V1 + Fz = V2 + Fz

and dimV1 + V2 ≤ ℓ + 1. This proves that dimV1 + V2 = ℓ + 1 or equivalently,
dimV1 ∩ V2 = ℓ− 1. This proves the desired equivalence. �

Corollary 4. Let v1, v2, v3, v4 ∈ V and suppose ω := (v1∧v2)+(v3∧v4) ∈
∧2

V is
nonzero. Then ω is decomposable if and only if {v1, v2, v3, v4} is linearly dependent.

Proof. When v1 ∧ v2 and v3 ∧ v4 are linearly independent, the result follows from
Lemma 3. The case when v1 ∧ v2 and v3 ∧ v4 are linearly dependent is easy. �

Given a subspace E of
∧ℓ

V , let us define

VE :=
⋂

ω∈E

Vω and V E :=
∑

06=ω∈E

Vω .

Now, let r = dimE. We say that the subspace E is close of type I if there are
ℓ+ r − 1 linearly independent elements f1, . . . , fℓ−1, g1, . . . , gr in V such that

E = span{f1 ∧ · · · ∧ fℓ−1 ∧ gi : i = 1, . . . , r}.

And we say that E is close of type II if there are ℓ+1 linearly independent elements
u1, . . . , uℓ−r+1, g1, . . . , gr in V such that

E = span{u1 ∧ · · · ∧ uℓ−r+1 ∧ g1 · · · ∧ ǧi ∧ · · · ∧ gr : i = 1, . . . , r},

where ǧi indicates that gi is deleted. We say that E is a close subspace of
∧ℓ

V if
E is close of type I or close of type II.

Evidently, every one-dimensional subspace of
∧ℓ

V is close of type I as well as
of type II, whereas for two-dimensional subspaces, the notions of close subspaces
of type I and type II are identical. A corollary of the following lemma is that in
dimensions three or more, the two notions are distinct and mutually disjoint.

Lemma 5. Let E be a close subspace of
∧ℓ

V of dimension r. Then E is decom-
posable. Moreover, if {ω1, . . . , ωr} is a basis of E, then VE = Vω1

∩ · · · ∩ Vωr
and

V E = Vω1
+ · · · + Vωr

. Further, assuming that r > 1, we have dim VE = ℓ − 1
and dimV E = ℓ + r − 1 if E is close of type I, whereas dim VE = ℓ − r + 1 and
dimV E = ℓ+ 1 if E is close of type II.
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Proof. Since E is close of dimension r, there is a r-dimensional subspace G of V
[in fact, G = span{g1, . . . , gr}, in the above notation] such that E is naturally

isomorphic to
∧1

G or to
∧r−1

G according as E is close of type I or of type
II. Thus, in view of Corollary 2, we see that E is decomposable. Next, suppose
{ω1, . . . , ωr} is a basis of E. Then obviously, VE = Vω1

∩ · · · ∩ Vωr
. Moreover, in

view of Lemmas 1 and 3, we see that Vω+ω′ ⊆ Vω + Vω′ for all nonzero ω, ω′ ∈ E
such that ω + ω′ 6= 0. Hence, by induction on r, we obtain V E = Vω1

+ · · ·+ Vωr
.

Finally, suppose r > 1. In case E is close of type I, and f1, . . . , fℓ−1, g1, . . . , gr
are linearly independent elements of V as in the definition above, then in view of
Lemma 1, we see that VE = ∩r

i=1 span{f1, . . . , fℓ−1, gi} = span{f1, . . . , fℓ−1} and
V E =

∑r
i=1 span{f1, . . . , fℓ−1, gi} = span{f1, . . . , fℓ−1, g1, . . . , gr}. On the other

hand, if E is close of type II, and u1, . . . , uℓ−r+1, g1, . . . , gr are linearly independent
elements of V as in the definition above, then as before, in view of Lemma 1, we see
that VE = span{u1, . . . , uℓ−r+1} and V E = span{u1, . . . , uℓ−r+1, g1, . . . , gr}. This
proves the desired assertions about dimVE and dimV E . �

The following result may be compared with [5, Thm. 4.2]. Also, the proof is
structurally analogous to that of [5, Thm. 4.2], except that the arguments here are
a little more subtle.

Theorem 6 (Structure Theorem for Decomposable Subspaces). A subspace of
∧ℓ

V
is decomposable if and only if it is close.

Proof. Lemma 5 proves that a close subspace of
∧ℓ

V is decomposable. To prove

the converse, let E be a decomposable subspace of
∧ℓ

V . We induct on r := dimE.
The case r = 1 is trivial, whereas if r = 2, then the desired result follows from
Lemmas 1 and 3. Now, suppose r = 3. Let {ω1, ω2, ω3} be a basis of E, and let
Vi = Vωi

for i = 1, 2, 3. Then dimVi = ℓ and dimVi ∩ Vj = ℓ − 1 for 1 ≤ i, j ≤ 3
with i 6= j, thanks to Lemmas 1 and 3. Thus, if we let W = V1 ∩ V2 ∩ V3, then

ℓ− 2 = dimV1 ∩ V2 + dimV1 ∩ V3 − dim V1 ≤ dimW ≤ dimV1 ∩ V2 = ℓ− 1.

If dimW = ℓ−1, then we can find ℓ+2 elements f1, . . . , fℓ−1, g1, g2, g3 in V such that
{f1, . . . , fℓ−1} is a basis of W and {f1, . . . , fℓ−1, gi} is a basis of Vi for i = 1, 2, 3.
We may assume without loss of generality that ωi = f1∧· · ·∧fℓ−1∧gi for i = 1, 2, 3,
thanks to Lemma 1. Since ω1, ω2, ω3 are linearly independent, it follows that
gi 6∈

∑

j 6=i Vj for i = 1, 2, 3. Consequently, f1, . . . , fℓ−1, g1, g2, g3 are linearly inde-
pendent elements of V and E is close of type I. On the other hand, if dimW = ℓ−2,
then we can find ℓ+1 elements u1, . . . , uℓ−2, g1, g2, g3 in V such that {u1, . . . , uℓ−2}
is a basis of W , and {u1, . . . , uℓ−2, gi} is a basis of ∩j 6=iVj , and moreover, gi 6∈ Vi

for i = 1, 2, 3. Consequently, u1, . . . , uℓ−2, g1, g2, g3 are linearly independent ele-
ments of V [indeed, the vanishing of a linear combination of u1, . . . , uℓ−2, g1, g2, g3
in which the coefficient of gi is nonzero implies that gi is in Vi]. Hence in view
of Lemma 1, we see that for i = 1, 2, 3, the set {u1, . . . , uℓ−2, g1, g2, g3} \ {gi} is
a basis of Vi and ωi = ci (u1 ∧ · · · ∧ uℓ−2 ∧ gi1 ∧ gi2) for some ci ∈ F \ {0}, where
1 ≤ i1 < i2 ≤ 3 with i1 6= i 6= i2. It follows that E is close of type II.

Finally, we assume that r > 3 and that every decomposable subspace of dimen-
sion < r is close of type I or of type II. Let {ω1, . . . , ωr} be a basis of E, and let
Vi = Vωi

and Ei = span{ω1, . . . , ωi−1, ωi+1, . . . , ωr} for i = 1, . . . , r. Each Ei is
decomposable and by the induction hypothesis, we are in one of the following two
cases.

Case 1: Ei is close of type I for some i ∈ {1, . . . , r}.

Fix i ∈ {1, . . . , r} such that Ei is close of type I, and let Wi := VEi
= ∩j 6=iVj .

Then dimWi = ℓ − 1 and since VE = Wi ∩ Vi, by picking any j ∈ {1, . . . , r} with
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j 6= i, and using Lemma 3, we find

ℓ− 2 = dimWi + dimVi − dim(Vj + Vi) ≤ dimVE ≤ dimWi = ℓ− 1,

If dimVE = ℓ − 1, then it is readily seen that E is close of type I. Suppose, if
possible, dim VE = ℓ − 2. Let {f1, . . . , fℓ−2} be a basis of VE and fℓ−1 be any
element of Wi \ VE . Then {f1, . . . , fℓ−1} is a basis of Wi and fℓ−1 6∈ Vi. Since
dimVj ∩ Vi = ℓ − 1 for j 6= i, we can find g1, . . . , gi−1, gi+1, . . . , gr ∈ Vi such that
{f1, . . . , fℓ−2, gj} is a basis of Vj ∩ Vi for j ∈ {1, . . . , r} with j 6= i. Also, since
fℓ−1 ∈ Wi \ VE , we see that {f1, . . . , fℓ−1, gj} is a basis of Vj , and so by Lemma 1,
each ωj is a nonzero scalar multiple of f1 ∧ · · · ∧ fℓ−1 ∧ gj for j ∈ {1, . . . , r} with

j 6= i. Now ω1, . . . , ωi−1, ωi+1, . . . , ωr are linearly independent elements of
∧ℓ

V ,
and therefore f1, . . . , fℓ−1, g1, . . . , gi−1, gi+1, . . . , gr are linearly independent of V .
In particular, the ℓ-dimensional space Vi contains ℓ + r − 3 linearly independent
elements f1, . . . , fℓ−2, g1, . . . , gi−1, gi+1, . . . , gr, which is a contradiction since r > 3.
Thus we have shown that E is close of type in I.

Case 2: Ei is close of type II for each i ∈ {1, . . . , r}.

In this case each Wi := VEi
is of dimension ℓ− r + 2 and as before, picking any

j ∈ {1, . . . , r} with j 6= i, and using Lemma 3, we find

ℓ− r + 1 = dimWi + dimVi − dim(Vj + Vi) ≤ dimVE ≤ dimWi = ℓ− r + 2.

First, suppose dim VE = ℓ − r + 1. Fix a basis {u1, . . . , uℓ−r+1} of VE . For each
i ∈ {1, . . . , r}, choose gi ∈ Wi \VE . Then gi 6∈ Vi and {u1, . . . , uℓ−r+1, gi} is a basis
of Wi for i = 1, . . . , r. Observe that the ℓ + 1 elements u1, . . . , uℓ−r+1, g1, . . . , gr
of V are linearly independent [indeed, the vanishing of a linear combination of
u1, . . . , uℓ−r+1, g1, . . . , gr in which the coefficient of gi is nonzero implies that gi is
in Vi]. Hence the subset {u1, . . . , uℓ−r+1, g1, . . . , gi−1, gi+1, . . . , gr} of Vi is a basis
of Vi, and so in view of Lemma 1, we see that ωi is a nonzero scalar multiple of
u1 ∧ · · · ∧ uℓ−r+1 ∧ g1 · · · ∧ ǧi ∧ · · · ∧ gr for i = 1, . . . , r. Thus we have shown
that if dimVE = ℓ − r + 1, then E is close of type II. Now suppose, if possible,
dimVE = ℓ− r + 2. Then VE = Wi for i = 1, . . . , r. Since r > 3 and Er−1 is close
of type II, we see that the subspace E∗ := span{ω1, ω2, ωr} of Er−1 is close of type
II. In particular, dimVE∗ = dimV1 ∩ V2 ∩ Vr = ℓ − 2. Thus, in view of Lemma 3,
we see that dim(V1 + V2 + Vr) is at most

dimV1+dimV2+dimVr−dimV1∩V2−dimV1∩Vr−dimV2∩Vr+dimV1∩V2∩Vr ,

which is 3ℓ−3(ℓ−1)+(ℓ−2) = ℓ+1. Also, by Lemma 3, we have dim(V1+V2+Vr) ≥
dim(V1 + V2) = ℓ + 1. It follows that V1 + V2 + Vr = V1 + V2, or equivalently,
Vr ⊆ V1 + V2. We will now use this to arrive at a contradiction. To this end,
consider the space Er. Since Er is close of type II, we can find ℓ + 1 linearly in-
dependent elements u1, . . . , uℓ−r+2, g1, . . . , gr−1 in V such that u1, . . . , uℓ−r+2 span
Wr and ωi = u1 ∧ · · · ∧ uℓ−r+2 ∧ g1 · · · ∧ ǧi ∧ · · · ∧ gr−1 for i = 1, . . . , r − 1. It is
clear that {u1, . . . , uℓ−r+2, g1, . . . , gr−1} is a basis of V1 +V2. Also, since Wr = VE ,
we can add r− 2 elements to the set {u1, . . . , uℓ−r+2} to obtain a basis of Vr. But,
Vr ⊆ V1 + V2 and so the additional r − 2 basis elements of Vr are linear combi-
nations of u1, . . . , uℓ−r+2, g1, . . . , gr−1. Consequently, ωr is a linear combination of
ω1, . . . , ωr−1, which is a contradiction. �

Corollary 7. Let µ := max{ℓ,m− ℓ}+1 and r be any positive integer. Then
∧ℓ

V
has a decomposable subspace of dimension r if and only if r ≤ µ. Moreover, a close
subspace of type I (resp: type II) of dimension r exists if and only if r ≤ m− ℓ+ 1
(resp: r ≤ ℓ+ 1).

Proof. Let E be a subspace of
∧ℓ

V of dimension r. By Lemma 5, if E is close
of type I, then ℓ + r − 1 = dimV E ≤ m, that is, r ≤ m − ℓ + 1, whereas if E is
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close of type II, then ℓ − r + 1 = dimVE ≥ 0, that is, r ≤ ℓ + 1. Thus, Theorem 6

implies that if
∧ℓ V has a decomposable subspace of dimension r, then r ≤ µ. The

converse is an immediate consequence of the definition of close subspaces and their
decomposability. �

Remark 8. Decomposable vectors in
∧ℓ

V are variously known as pure ℓ-vectors (cf.
[2, §11.13]), extensors of step ℓ (cf. [1, §3]), or completely decomposable vectors (cf.
[12]). Some of the preliminary lemmas proved initially in this section are not really
new. For example, Lemma 1 appears essentially as Exercise 17 (a) in Bourbaki
[2, p. 650] or as Theorem 1.1 in Marcus [10], Corollary 2 is basically Theorem 1.3
of [10], and Lemma 3 is a consequence of Exercise 17 (c) in [2, p. 651]. We have
stated these results in a form convenient for our purpose, and included the proofs
for the sake of completeness. At any rate, as far as we know, Theorem 6 is new.
On the other hand, characterization of decomposable subspaces has been studied in
the setting of symmetric algebras. Although one comes across subspaces of various
types, including those similar to the ones considered in this section, the situation
for subspaces of symmetric powers is rather different and the characteristic of the
underlying field plays a role. We refer to the papers of Cummings [3] and Lim [9] for
more on this topic. In the context of tensor algebras, the opposite of decomposable
subspaces has been considered, namely, completely entangled subspaces wherein
no nonzero element is decomposable. A neat formula for the maximum possible
dimension of completely entangled subspaces of the tensor product of finite dimen-
sional complex vector spaces is given by Parthasarathy [13]. As remarked earlier,
determining the structure of decomposable subspaces corresponds to determining
the linear subvarieties in the Grassmann variety Gℓ,m. A special case of this has
been considered, in a similar, but more general, geometric setting by Tanao [14],
where subvarieties of G2,m biregular to P

m over an algebraically closed field of
characteristic zero are studied.

3. Duality and the Hodge Star Operator

We have seen in Section 2 that a decomposable subspace of
∧ℓ

V is close of type
I or of type II. It turns out that the two types are dual to each other. This is best

described using the so called Hodge star operator h :
∧ℓ

V →
∧m−ℓ

V, which may
be defined as follows. Fix an ordered basis {e1, . . . , em} of V and use it to identify
∧m V with F so that e1 ∧ · · · ∧ em = 1. Let I(ℓ,m) and eα for α ∈ I(ℓ,m) be
as in Section 2. Moreover, for α = (α1, . . . , αℓ) ∈ I(ℓ,m), let αc = (αc

1, . . . , α
c
m−ℓ)

denote the unique element of I(m−ℓ,m) such that {α1, . . . , αℓ}∪{α
c
1, . . . , α

c
m−ℓ} =

{1, . . . ,m}. Then h :
∧ℓ

V →
∧m−ℓ

V is the unique F -linear map satisfying

h(eα) = (−1)α1+···+αℓ+ℓ(ℓ+1)/2 eαc for α ∈ I(ℓ,m).

Clearly, h is a vector space isomorphism. The key property of h is that it is es-
sentially independent of the choice of ordered basis of V , and as such, it maps

decomposable elements in
∧ℓ

V to decomposable elements in
∧m−ℓ

V . (See, for
example, [1, Sec. 6] and [10, Sec. 4.1].) In particular, decomposable subspace

of
∧ℓ

V are mapped to decomposable subspaces of
∧m−ℓ

V . Moreover, it is easy
to see that via the Hodge star operator, close subspaces of type I are mapped to
close subspaces of type II, whereas close subspaces of type II are mapped to close
subspaces of type I. Thus, the two types are dual to each other.

In the case ℓ = 2, both
∧ℓ V and

∧m−ℓ V are closely related to the space Bm of
all m×m skew-symmetric matrices with entries in F , and the relation is compatible
with the Hodge star operator. To state this a little more formally, we introduce
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some terminology below and make a few useful observations. In the remainder of
this section we tacitly assume that m > 2.

Given any u ∈ V , let u denote the m × 1 column vector whose entries are the
coordinates of u with respect to the ordered basis {e1, . . . , em}. In particular, ei
has 1 as its ith entry and all other entries are 0. Consider the F -linear maps

σ :
∧2

V → Bm and π :
∧m−2

V → Bm

defined by

σ(er ∧ es) = ere
t
s − ese

t
r for 1 ≤ r < s ≤ m and π(ω) = Aω for ω ∈

∧m−2
V,

where et denotes the transpose of e and Aω denotes the m×mmatrix whose (i, j)th
entry is (the unique scalar corresponding to) ei ∧ ej ∧ ω.

Lemma 9. σ = π ◦ h.

Proof. We have h(er ∧ es) = (−1)r+s+1 (e1 ∧ e2 ∧ · · · ∧ ěr ∧ · · · ∧ ěs ∧ · · · ∧ em) for
1 ≤ r < s ≤ m, whereˇindicates that the corresponding entry is removed. Now,

ei∧ej∧(e1 ∧ e2 ∧ · · · ∧ ěr ∧ · · · ∧ ěs ∧ · · · ∧ em) =







(−1)i+j−3 if (r, s) = (i, j),
(−1)i+j−2 if (r, s) = (j, i),

0 otherwise

for 1 ≤ i, j, r, s ≤ m with r < s. It follows that π ◦ h(er ∧ es) = ere
t
s − ese

t
r =

σ(er ∧ es) for 1 ≤ r < s ≤ m. Since {er ∧ es : 1 ≤ r < s ≤ m} is a basis of
∧2V

and all the maps are linear, the lemma is proved. �

Given any ω′ ∈
∧2V and ω ∈

∧m−2V , we refer to the rank of σ(ω′) [resp: π(ω)]
as the rank of ω′ [resp: ω], and denote it by rank(ω′) [resp: rank(ω)]. Note that if
ω = h(ω′), then rank(ω′) = rank (ω), thanks to Lemma 9.

Corollary 10. Both σ and π are vector space isomorphisms. Moreover,

(7) ω′ is decomposable ⇐⇒ rank(ω′) = 2 for any ω′ ∈
∧2

V,

and

(8) ω is decomposable ⇐⇒ rank(ω) = 2 for any ω ∈
∧m−2

V.

Proof. It is evident that σ is an isomorphism. Hence by Lemma 9, so is π. Now,
given any ω ∈

∧m−2V , the kernel of (the linear map from V to V corresponding to)

π(ω) = Aω is the space Vω . Hence (8) follows from Lemma 1. Next, if ω′ ∈
∧2

V
is decomposable, then ω′ = u ∧ v for some u, v ∈ V and σ(ω′) = uvt − vut.
It follows that σ(ω′) is of rank 2. This proves the implication =⇒ in (7). The
other implication follows from (8) together with Lemma 9 and the fact h gives a
one-to-one correspondence between decomposable elements. �

Corollary 11. Let v1, v2, v3, v4 ∈ V and suppose ω := (v1 ∧ v2) + (v3 ∧ v4) ∈
∧2 V

is nonzero. Then the rank of σ(ω) is 2 or 4 according as the set {v1, v2, v3, v4} is
linearly dependent or linearly independent.

Proof. Follows from (7) above and Corollary 4 in view of the fact that a skew-
symmetric matrix is always of even rank. �
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4. Griesmer-Wei Bound and its Generalization

Let us begin by reviewing some generalities about (linear, error correcting) codes.
Fix integers k, n with 1 ≤ k ≤ n and a prime power q. Let C be a linear [n, k]q-code,
i.e., let C be a k-dimensional subspace of the n-dimensional vector space F

n
q over

the finite field Fq with q elements. Given any x = (x1, . . . , xn) in F
n
q , let

supp(x) := {i : xi 6= 0} and ‖x‖ := |supp(x)|

denote the support and the (Hamming) norm of x. More generally, for D ⊆ F
n
q , let

supp(D) := {i : xi 6= 0 for some x = (x1, . . . , xn) ∈ D} and ‖D‖ := |supp(D)|

denote the support and the (Hamming) norm of D. The minimum distance of C is
defined by d(C) := min{‖x‖ : x ∈ C with x 6= 0}. More generally, for any positive
integer r, the rth higher weight dr = dr(C) of the code C is defined by

dr(C) := min {‖D‖ : D is a subspace of C with dimD = r} .

Note that d1(C) = d(C). If C is nondegenerate, that is, if C is not contained in a
coordinate hyperplane of Fn

q , then it is easy to see that

0 < d1(C) < d2(C) < · · · < dk(C) = n.

See, for example, [15] for a proof as well as a great deal of basic information about
higher weights of codes. The set {dr(C) : 1 ≤ r ≤ k} is often referred to as the
weight hierarchy of the code C. It is usually interesting, and difficult, to deter-
mine the weight hierarchy of a given code. Again, we refer to [15] for a variety of
examples, such as affine and projective Reed-Muller codes, codes associated to Her-
mitian varieties or Del Pezzo surfaces, hyperelliptic curves, etc., where the weight
hierarchy is completely or partially known.

The following elementary result will be useful in the sequel. It appears, for
example, in [8, Lemma 2]. We include a proof for the sake of completeness.

Lemma 12. Let D be a r-dimensional code of a [n, k]q-code C. Then

‖D‖ =
1

qr − qr−1

∑

x∈D

‖x‖.

In particular,

dr(C) =
1

qr − qr−1
min

{

∑

x∈D

‖x‖ : D is a subspace of C with dimD = r

}

.

Proof. Clearly, (x, i) 7→ (i, x) gives a bijection of {(x, i) : x ∈ D and i ∈ supp(x)}
onto {(i, x) : i ∈ supp(D), x ∈ D and xi 6= 0}. Hence
∑

x∈D

‖x‖ =
∑

x∈D

∑

i∈supp(x)

1 =
∑

i∈supp(D)

∑

x∈D
xi 6=0

1 =
∑

i∈supp(D)

(qr−qr−1) = (qr−qr−1)‖D‖,

where the penultimate equality follows by noting that if i ∈ supp(D), then x 7→ xi

defines a nonzero linear map of D → Fq. �

We remark that the Griesmer bound as well as the Griesmer-Wei bound is an
easy consequence of the above lemma. In fact, as we shall see below, it can also be
used to derive a useful generalization of the Griesmer-Wei bound. To this end, we
need to look at the elements of minimum Hamming weight as well as the second
lowest positive exponent in the weight enumerator polynomial of C, provided of
course this polynomial has at least two terms with positive exponents.

Let C be a linear [n, k]q-code. Given any subspace D of C, we let

∆(D) := |{x ∈ D : ‖x‖ = d(C)}| .
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Given any r ∈ Z with 1 ≤ r ≤ k, we let

∆r(C) := max {∆(D) : D is a subspace of C with dimD = r} .

Further, upon letting SC := {‖x‖ : x ∈ C with ‖x‖ > d(C)}, we define

e(C) :=

{

minSC if SC is nonempty,
d(C) if SC is the empty set.

It may be noted that e(C) ≥ d(C) and also that the equality holds if and only if
∆k(C) = qk − 1. We are now ready to prove a simple, but useful generalization of
the Griesmer-Wei bound.

Theorem 13. Let C be a linear [n, k]q-code and r be an integer with 1 ≤ r ≤ k.
Then

dr(C) ≥
d(C)∆r(C) + e(C)(qr − 1−∆r(C))

qr − qr−1
.

Proof. Let Dr be a r-dimensional subspace of C such that

∑

x∈Dr

‖x‖ = min

{

∑

x∈D

‖x‖ : D is a subspace of C with dimD = r

}

.

Then Dr has qr − 1 nonzero elements and so, in view of Lemma 12, we have
(

qr − qr−1
)

dr(C) =
∑

x∈Dr

‖x‖=d(C)

d(C) +
∑

x∈Dr

‖x‖>d(C)

‖x‖

≥ d(C)∆(Dr) + e(C) (qr − 1−∆(Dr))

≥ e(C) (qr − 1)−∆r(C) (e(C)− d(C)) ,

where the last inequality follows since ∆(Dr) ≤ ∆r(C) and d(C) ≤ e(C). This
yields the desired formula. �

Corollary 14 (Griesmer-Wei Bound). Given any linear [n, k]q-code C, we have

dr(C) ≥
r−1
∑

j=0

⌈

d(C)

qj

⌉

for 1 ≤ r ≤ k.

Proof. Using Theorem 13 and the fact that e(C) ≥ d(C), we see that

dr(C) ≥
d(C)(qr − 1)

qr − qr−1
=

r−1
∑

i=0

d(C)qi

qr−1
=

r−1
∑

j=0

d(C)

qj
≥

r−1
∑

j=0

⌈

d(C)

qj

⌉

for any integer r with 1 ≤ r ≤ k. �

5. The Grassmann Code C(ℓ,m)

Let us fix, throughout this section, a prime power q and integers ℓ,m with
1 ≤ ℓ ≤ m, and let

n :=

[

m

ℓ

]

q

, k :=

(

m

ℓ

)

, and δ := ℓ(m− ℓ),

where
[

m
ℓ

]

q
is the Gaussian binomial coefficient, which was defined in Section 1. It

may be remarked that
[

m
ℓ

]

q
is a polynomial in q of degree δ with positive integral

coefficients. The Grassmann code C(ℓ,m) is the linear [n, k]q-code associated to
the projective system corresponding to the Plücker embedding of the Fq-rational

points of the Grassmannian Gℓ,m in P
k−1
Fq

= P
(
∧ℓ

F
m
q

)

; see, for example, [12, 4] for

greater details. Alternatively, C(ℓ,m) may be defined as follows.
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Let V := F
m
q . Fix a basis {e1, . . . , em} of V . Then we can, and will, fix a corre-

sponding basis of
∧ℓ

V given, in the notations of Section 5, by {eα : α ∈ I(ℓ,m)}.
Let Gℓ,m = Gℓ,m(Fq) be the Grassmann variety consisting of all ℓ-dimensional sub-

spaces of V . The Plücker embeddingGℓ,m →֒ P
(
∧ℓ

V
)

simply maps a ℓ-dimensional

subspace of V spanned by v1, . . . , vℓ to the point of P
(
∧ℓ

V
)

corresponding to
v1 ∧ · · · ∧ vℓ. It is well-known that this embedding is well defined and nondegen-

erate. Fix representatives ω′
1, . . . , ω

′
n in

∧ℓ V corresponding to distinct points of

Gℓ,m(Fq). We denote the subset {ω′
1, . . . , ω

′
n} of

∧ℓ
V by T (ℓ,m). Having fixed a

basis of V , we can identify each element of
∧m

V with a unique scalar in Fq. With
this in view, we obtain a linear map

τ :
∧m−ℓ

V → F
n
q given by τ(ω) := (ω′

1 ∧ ω, ω′
2 ∧ ω, . . . , ω′

n ∧ ω) .

Since the Plücker embedding is nondegenerate, it follows that τ is injective. The
Grassmann code C(ℓ,m) is defined as the image of the map τ . It is clear that
C(ℓ,m) is a linear [n, k]q-code. Given any codeword c ∈ C(ℓ,m), there is unique

ω ∈
∧m−ℓ

V such that τ(ω) = c; we denote this ω by ωc.

Given any subspace E of
∧ℓ

V , we let g(E) := |E ∩ T (ℓ,m)|. Note that since
T (ℓ,m) consists of nonzero elements, no two of which are proportional to each
other, we always have

(9) |g(E)| ≤
qr − 1

q − 1
for any subspace E of

∧ℓ
V with dim E = r.

Given any integer s with 1 ≤ s ≤ k, we let

gs(ℓ,m) := max
{

g(E) : E a subspace of
∧ℓ

V of codimension s
}

.

Note that as a consequence of (9), we have

(10) gs(ℓ,m) ≤
qr − 1

q − 1
where r := k − s.

Lemma 15. Let D be a subspace of C(ℓ,m) and s = dimD. If D := τ−1(D), then

E := D⊥ := {ω′ ∈
∧ℓ V : ω′ ∧ ω = 0} is a subspace of

∧ℓ V of codimension s and

‖D‖ = n− g(E).

Proof. Since τ is an isomorphism of
∧m−ℓ

V and C(ℓ,m), we have dimD = s. Also,

since (ω′, ω) 7→ ω′∧ω gives a nondegenerate bilinear map of
∧ℓ

V ×
∧m−ℓ

V → Fq,

and so E := D⊥ is a subspace
∧ℓ V of codimension s. For 1 ≤ i ≤ n, we have

i 6∈ supp(D) ⇐⇒ ω′
i ∧ ω = 0 for all ω ∈ D ⇐⇒ ω′

i ∈ E .

It follows that ‖D‖ = n− g(E). �

Corollary 16. ds (C(ℓ,m)) = n− gs(ℓ,m) for s = 1, . . . , k.

Proof. Clearly, E 7→ τ(E⊥) sets up a one-to-one correspondence between subspaces

of
∧ℓ

V of codimension s and subspaces of C(ℓ,m) of dimension s. Hence the
desired result follows from Lemma 15. �

We now recall some important results of Nogin [12]. Combining Theorem 4.1,
Proposition 4.4 and Corollary 4.5 of [12], we have the following.

Proposition 17. The minimum distance of C(ℓ,m) is qδ and the codewords c of
C(ℓ,m) such that ωc is decomposable attain the minimum weight qδ. Moreover, the
number of minimum weight codewords in C(ℓ,m) is (q − 1)n.

A useful consequence is the following.
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Corollary 18. Given any c ∈ C(ℓ,m), we have

‖c‖ = qδ ⇐⇒ ωc is decomposable.

Moreover ∆(C(ℓ,m)) = (q − 1)n.

Proof. The implication ⇐= follows from Proposition 17. The other implication also
follows from Proposition 17 by noting that the number of decomposable elements

of
∧m−ℓ V is equal to the number of decomposable elements of

∧ℓ V , and that the
latter is equal to (q − 1)n. �

In [12], Nogin goes on to determine some of the higher weights of C(ℓ,m) using
Proposition 17 and some additional work. More precisely, he proves formula (2)
in Section 1. As remarked in Section 1, Introduction, alternative proofs of (2) are
given in [4] as well as [7]. The latter also proves the dual version (3). We give below
yet another proof of (2) and (3) as an application of Theorem 6 and Corollary 18.

Theorem 19. Let µ := max{ℓ,m− ℓ}+ 1. Then for 0 ≤ r ≤ µ we have

dr (C(ℓ,m)) = qδ+qδ−1+· · ·+qδ−r+1 and dk−r (C(ℓ,m)) = n−(1+q+· · ·+qr−1).

Proof. The case r = 0 is trivial. Assume that 1 ≤ r ≤ µ. By Corollary 7, there is

a decomposable subspace E of
∧ℓ

V of dimension r. Then h(E) is a decomposable

subspace of
∧m−ℓ V and hence by Corollary 18, D := τ(h(E)) is a r-dimensional

subspace of C(ℓ,m) in which every nonzero vector is of minimal weight. Conse-
quently, by Lemma 12, we have

‖D‖ =
1

qr − qr−1

∑

c∈D

‖c‖ =
d (C(ℓ,m)) (qr − 1)

qr − qr−1
=

r−1
∑

j=0

d (C(ℓ,m))

qj
=

r−1
∑

j=0

qδ−j .

In other words, the Griesmer-Wei bound is attained. This proves the desired for-

mula for dr (C(ℓ,m)). Next, E is a subspace of
∧ℓ

V of codimension k−r, and since
E is decomposable, every ω′ ∈ E with ω′ 6= 0 can be uniquely written as ω′ = λω′

i

where λ ∈ Fq \ {0} and i ∈ {1, . . . , n}. It follows that g(E) = (qr − 1)/(q − 1) =
1 + q + · · ·+ qr−1, and so, in view of (10), we find gk−r(ℓ,m) = 1 + q + · · ·+ qr−1.
This, together with Corollary 16, yields the desired formula for dk−r (C(ℓ,m)). �

6. Higher Weights of the Grassmann Code C(2,m)

The results on the higher weights of C(2,m) mentioned in the Introduction will
be proved in this section. Throughout, let q, ℓ,m, k, n, δ be as in Section 5, except
we set ℓ = 2. Also, we let F := Fq and V := F

m
q . Note that the complete weight

hierarchy of C(2,m) is easily obtained from Theorem 19 if m ≤ 4. With this in
view, we shall assume that m > 4. In particular, µ := max{ℓ,m− ℓ}+ 1 = m− 1.

We begin by recalling a result of Nogin concerning the spectrum of C(2,m).
To this end, given any nonnegative integer t, let N(m, 2t) denote the number of
skew-symmetric bilinear forms of rank 2t on F

m
q . We know from [11, §15.2] that

(11) N(m, 2t) =
(qm − 1)(qm−1 − 1) · · · (qm−2t+1 − 1)

(q2t − 1)((q2t−2 − 1) · · · (q2 − 1)
qt(t−1).

The said result of Nogin [12, Thm. 5.1] is the following.

Proposition 20. Given any i ≥ 0, let Ai := |{c ∈ C(2,m) : ‖c‖ = i}|. Then

(12) Ai =







N(m, 2t) if i = q2(m−t−1) q
2t − 1

q2 − 1
for 0 ≤ t ≤ ⌊m/2⌋,

0 otherwise.
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Moreover, for any c ∈ C(2,m) and 0 ≤ t ≤ ⌊m/2⌋, we have

‖c‖ = q2(m−t−1) q
2t − 1

q2 − 1
⇐⇒ rank(ωc) = 2t.

Corollary 21. d (C(2,m)) = qδ and e (C(2,m)) = qδ + qδ−2.

Proof. The numbers θt := q2(m−t−1) q
2t−1
q2−1 increase with t and the first two positive

values of θt (t ≥ 0) are qδ and qδ + qδ−2. �

We now prove a number of auxiliary results needed to prove the main theorem.

Lemma 22. Let E and E1 be subspaces of
∧2

V such that E ⊂ E1 and dimE1 =
dimE + 1. Assume that E is decomposable and E1 is not decomposable. Then we
have the following.

(i) The set E1 \ E contains at most q2(q − 1) decomposable vectors.
(ii) If E1\E contains a decomposable vector ω such that Vω ⊆ V E, then E1\E

contains exactly q2(q − 1) decomposable vectors.

Proof. Both (i) and (ii) hold trivially if E1 \ E contains no decomposable vector.
Now, suppose E1 \ E contains a decomposable vector, say ω. Then E1 = E + Fω.
Write ω = u ∧ v, where u, v ∈ V , and let r := dimE. By Theorem 6, we are in
either of the following two cases.

Case 1: E is close of type I.

In this case, there are linearly independent elements f, g1, . . . , gr ∈ V such that
E = span{f ∧ gi : i = 1, . . . , r}. Let G := span{g1, . . . , gr}. Elements ξ of E1

are of the form ξ = f ∧ g + λ(u ∧ v), where g ∈ G and λ ∈ Fq. Clearly, ξ
and (g, λ) determine each other uniquely, and ξ ∈ E1 \ E if and only if λ 6= 0.
Observe that {f, u, v} is linearly independent, lest we can write u ∧ v = f ∧ h for
some h ∈ V , and consequently, E1 becomes decomposable. Hence, by Corollary
4, we see that if λ 6= 0, then ξ = f ∧ g + λ(u ∧ v) is decomposable if and only if
g ∈ span{f, u, v}. Further, in view of Lemmas 1 and 5, we have Vω = span{u, v}
and V E = span{f, g1, . . . , gr}. Thus, g ∈ span{f, u, v} if and only if f ∧ g = f ∧ x
for some x ∈ Vω ∩ V E . It follows that decomposable elements of E1 \ E are
precisely of the form f ∧ x+ λ(u ∧ v), where x ∈ Vω ∩ V E and λ ∈ Fq \ {0}. Since
∣

∣Vω ∩ V E
∣

∣ ≤ |Vω| = q2 and |Fq \ {0}| = q − 1, both (i) and (ii) are proved.

Case 2: E is close of type II, but not closed of type I.

In this case, by Corollary 7, we must have dimE = 3. Thus, there are linearly
independent elements g1, g2, g3 ∈ V such that E = span{g2∧g3, g1∧g3, g1∧g2}. Let
G := span{g1, g2, g3}. Note that since G = V E and ω = u ∧ v 6∈ E, the possibility
that Vω ⊆ V E does not arise in this case. Thus dimVω ∩ V E ≤ 1 and (ii) holds
vacuously. The elements of E1 are of the form ξ = g ∧ h+ λ(u∧ v), where g, h ∈ G
and λ ∈ Fq. Clearly, ξ is a decomposable element of E1 \ E if g ∧ h = 0 and
λ 6= 0. If, in addition, ξ = g ∧ h+ λ(u ∧ v) is decomposable for some g, h ∈ G with
g ∧ h 6= 0 and λ ∈ Fq \ {0}, then by Corollary 4, {g, h, u, v} is linearly dependent,
and hence dimVω ∩ V E = 1. So we may assume without loss of generality that
u = g1. Then it is clear that the elements of E1 \ E are precisely the (unique)
linear combinations of the form λ(u ∧ v) + λ1(g2 ∧ g3) + λ2(g1 ∧ g3) + λ3(g1 ∧ g2),
where λ ∈ Fq \ {0} and λ1, λ2, λ3 ∈ Fq; moreover, by Corollary 4, such a linear
combination is decomposable if and only if λ1 = 0. It follows that E1 \ E contains
at most q2(q − 1) decomposable elements. �

The bound q2(q − 1) in Lemma 22 can be improved if the dimension of the
decomposable subspace E is small.



14 SUDHIR R. GHORPADE, ARUNKUMAR R. PATIL, AND HARISH K. PILLAI

Lemma 23. Let E and E1 be subspaces of
∧2

V such that E ⊂ E1 and dimE1 =
dimE + 1. Assume that E is decomposable of dimension r ≥ 1 and E1 is not
decomposable. Then E1 \ E contains at most qr−1(q − 1) decomposable elements.

Proof. If r ≥ 3, then the result is an immediate consequence of part (i) of Lemma 22.
Also, the result holds trivially if E1 \ E contains no decomposable element. Thus,
let us assume that r ≤ 2 and E1 = E + Fω, where ω ∈ E1 \ E is decomposable.

First, suppose r = 1. Then E = Fω0 for some decomposable ω0 ∈
∧2

V . Since
E1 is not decomposable and ω 6∈ E, in view of Lemmas 1 and 3, we see that
dimVω ∩ Vω0

= 0. Hence from Corollary 4, it follows that the only decomposable
elements in E1 \ E are those of the form λω where λ ∈ Fq \ {0}. Thus E1 \ E
contains at most (q − 1) decomposable elements, as desired.

Next, suppose r = 2. Then in view of Theorem 6, there are linearly independent
elements f, g1, g2 ∈ V such that E = span{f ∧ g1, f ∧ g2}. As in the proof of
Lemma 22, we can write ω = u∧v, where u, v ∈ V are such that {f, u, v} is linearly
independent. Further, if dim Vω ∩ V E = 2, then Vω ⊆ V E and we may assume
without loss of generality that g1, g2 ∈ Vω ; hence E1 = span{f ∧ g1, f ∧ g2, g1 ∧ g2},
and so E1 is close of type II, which is a contradiction. Thus dim Vω∩V E < 2 and so
∣

∣Vω ∩ V E
∣

∣ ≤ q. Moreover, as in the proof of Lemma 22, decomposable elements of

E1\E are precisely of the form f∧x+λ(u∧v), where x ∈ Vω∩V E and λ ∈ Fq \{0}.
Thus E1 \ E contains at most q(q − 1) decomposable elements, as desired. �

Lemma 24. There exists a (µ+1)-dimensional subspace of
∧2

V containing exactly
(qµ − 1)+q2 (q − 1) decomposable vectors. Moreover, the remaining

(

qµ − q2
)

(q − 1)
nonzero elements in this subspace are of rank 4.

Proof. By Corollary 7, there exists a µ-dimensional decomposable subspace of
∧2

V ,
say E. Since m > 4, we have µ > 3, and so by Theorem 6 and Corollary 7, E is close
of type I. Thus there exist µ+1 linearly independent elements f, g1, . . . , gµ ∈ V such
that E = span{f ∧gi : i = 1, . . . , µ}. Now, consider ω := g1∧g2 and E1 := E+Fω.
It is clear that ω 6∈ E and E1 is not decomposable. Moreover, by Theorem 6 and
Lemma 5, dimV E = µ+1 = m, and thus V E = V ⊇ Vω. So it follows from part (ii)
of Lemma 22 that E1 \E contains exactly q2(q − 1) decomposable elements. Since
every nonzero element of E is decomposable, we see that E1 is a (µ+1)-dimensional

subspace of
∧2

V containing exactly (qµ − 1) + q2 (q − 1) decomposable vectors.
Since every element of E1 is of the form a(f ∧ g) + b(g1 ∧ g2) for some a, b ∈ F
and g ∈ span{g1, . . . , gµ}, it follows from Corollary 10 and Corollary 11 that the
remaining

(

qµ+1 − 1
)

− (qµ − 1)− q2 (q − 1) elements are of rank 4. �

Lemma 25. Every (µ+1)-dimensional subspace of
∧2 V contains at most (qµ − 1)+

q2 (q − 1) decomposable vectors.

Proof. Let E∗ be any (µ+1)-dimensional subspace of
∧2

V . Let r be the maximum
among the dimensions of all decomposable subspaces of E∗. If r = 0, then E∗

contains no decomposable element and the assertion holds trivially. Assume that
r ≥ 1. Let Er be a decomposable r-dimensional subspace of E∗. Extending a
basis of Er to E∗, we obtain a subspace E′ of E∗ such that Er ∩ E′ = {0} and
E∗ = Er + E′. Clearly,

(13) E∗ =
⋃

ω∈E′

Er + Fω and E∗ \ Er =
⋃

06=ω∈E′

(Er + Fω) \ Er.

Given any nonzero ω ∈ E′, the space Er + Fω is not decomposable, thanks to
the maximality of r, and so by part (i) of Lemma 22, (Er + Fω) \ Er contains
at most q2(q − 1) decomposable elements. Moreover, for any nonzero ω, ω′ ∈ E′,
we have Er + Fω = Er + Fω′ if ω and ω′ differ by a nonzero constant, whereas
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(Er + Fω)∩(Er + Fω′) = Er if ω and ω′ do not differ by a nonzero constant. Thus
the second decomposition in (13) is disjoint if we let ω vary over nonzero elements
of E′ that are not proportional to each other. It follows that E∗ \ Er contains at

most q2(q−1)|E′\{0}|
(q−1) = q2

(

qµ+1−r − 1
)

decomposable elements. In case r ≤ 2, then

using Lemma 23 instead of part (i) of Lemma 22, it follows that E∗ \Er contains at
most qr−1

(

qµ+1−r − 1
)

decomposable elements. Thus, if we let s := min{2, r − 1}

and Nr := (qr − 1) + qs
(

qµ+1−r − 1
)

, then we see that E∗ contains at most Nr

decomposable elements. To complete the proof it suffices to observe that

(qµ − 1) + q2 (q − 1)−Nr =

{

(qr − q3)(qµ−r − 1) if r ≥ 3,
(q2 − qr−1)(q − 1) if 1 ≤ r ≤ 2,

is always nonnegative. �

Corollary 26. We have ∆(C(2,m)) = (qµ − 1) + q2 (q − 1) and gk−µ−1(2,m) =
1 + q + q2 + · · ·+ qµ + q2.

Proof. The assertion about ∆ (C(2,m)) follows from Lemma 24, Lemma 25, and

Corollary 18. Further, by Lemma 25, we see that if E is any subspace of
∧2

V of
codimension k − µ− 1, that is, of dimension µ+ 1, then

g(E) ≤
(qµ − 1) + q2 (q − 1)

q − 1
= 1 + q + q2 + · · ·+ qµ−1 + q2,

and by Lemma 24, we see that the bound is attained for some subspace of codi-
mension k−µ−1. This proves that gk−µ−1(2,m) = 1+ q+ q2+ · · ·+ qµ−1+ q2. �

Theorem 27. For the Grassmann code C(2,m), we have

dk−µ−1 (C(2,m)) = n− (1 + q + · · ·+ qµ−1 + q2).

and
dµ+1 (C(2,m)) = qδ + qδ−1 + 2qδ−2 + qδ−3 + · · ·+ qδ−µ+1

Proof. The formula for dk−µ−1 (C(2,m)) is an immediate consequence of Corollary
26 and Corollary 16. To prove the formula for dµ+1 (C(2,m)), we use Corollary 26
and Corollary 21 to observe that for C(2,m), the generalized Griesmer-Wei bound
in Theorem 13 can be written as

dµ+1 (C(2,m)) ≥ qδ + qδ−1 + 2qδ−2 + qδ−3 + · · ·+ qδ−µ+1.

Moreover, by Lemma 24, there exists a (µ + 1)-dimensional subspace, say E1, of
∧2

V containing (qµ − 1)+ q2 (q − 1) decomposable elements such that the remain-
ing

(

qµ − q2
)

(q − 1) nonzero elements are of rank 4. Thus, in view of Proposition
20, we see that D1 := τ(h(E1)) is a (µ+1)-dimensional subspace of C(2,m) in which
(qµ − 1)+q2 (q − 1) elements are of weight qδ while the remaining

(

qµ − q2
)

(q − 1)

nonzero elements are of weight qδ + qδ−2. Consequently, by Lemma 12, we have

‖D1‖ =
1

qµ+1 − qµ

∑

c∈D

‖c‖

=
qδ

[

(qµ − 1) + q2 (q − 1)
]

qµ+1 − qµ
+

(

qδ + qδ−2
) [(

qµ − q2
)

(q − 1)
]

qµ+1 − qµ

= qδ−µ
(

qµ + qµ−1 + · · ·+ q + 1
)

+ qδ−2 − qδ−µ.

This proves that dµ+1 (C(2,m)) = qδ + qδ−1 + 2qδ−2 + qδ−3 + · · ·+ qδ−µ+1. �

Remark 28. It appears quite plausible that the new pattern which emerges with
dµ+1 (C(2,m)) continues for the next several values of dr (C(2,m)). More precisely,
we conjecture that for µ+ 1 < r ≤ 2µ− 3, one has

dr (C(2,m)) =
(

qδ + qδ−1 + · · ·+ qδ−µ+1
)

+
(

qδ−2 + qδ−3 + · · ·+ qδ−r+µ−1
)
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and

dk−r (C(2,m)) = n−
(

1 + q + · · ·+ qµ−1
)

−
(

q2 + q3 + · · ·+ qr−µ+1
)

These conjectural formulae yield the complete weight hierarchy of C(2, 6). In gen-
eral, we believe that the conjecture of Hansen, Johnsen and Ranestad [7] about
dr (C(ℓ,m)) − dr−1 (C(ℓ,m)) being a power of q is likely to be true and that de-
termining dr (C(ℓ,m)) from dr−1 (C(ℓ,m)) is a matter of deciphering the correct
term of the Gaussian binomial coefficient (which can be written as a finite sum of
powers of q) that gets added to dr−1 (C(ℓ,m)).
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