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In this paper, we provide a generalization of binary quadratic residue

codes to the cases of higher power prime residues over the finite field of the

same order, which we will call qth power residue codes. We find generating

polynomials for such codes, define a new notion corresponding to the binary

concept of an idempotent, and use this to find square root lower bound for the

codeword weight of the duals of such codes, which leads to a lower bound on

the weight of the codewords themselves. In addition, we construct a family of

asymptotically bad qth power residue codes.
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Chapter 1

Introduction

1.1 A short introduction to coding theory

With the advent of the internet, an increasing proportion of our com-

munication is taking place electronically, using computers or other machines.

Because of this, we must be sure that these machines are able to transmit infor-

mation both quickly and reliably. Such transmission is typically accomplished

by converting the message into a sequence of zeros and ones dividing this se-

quence into blocks of some set length k, then transmitting the result across

a communications network. Since technology is not perfect, however, there

are often errors that occur during the transmission process; bits are flipped

because we are sending information across what is known in coding theory as

a noisy channel. If we attempted to send only the message across the channel,

we would sometimes inadvertently add errors to our original message. Thus

we first send our message through an encoder to add some redundancy so that

the original message can be recovered, even if some errors occur during the

transmission process. This need for error correction is originally why coding

theory was born. Figure 1.1 illustrates this message encoding, transmission,

and decoding process.
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Figure 1.1: The message transmission process

A “good” code is one that allows for both the detection and correction

of errors, while at the same time not taking up too much of the computer’s

memory. We want to reliably fix any errors that occur in the machinery while

the message is being transmitted without adding a lot of extraneous informa-

tion to the original message we are trying to encode. Such codes are said in

coding theory to have both a good minimal distance and a good transmission

rate, respectively. Families of codes meeting these criteria are called asymp-

totically good. This concept will be explained more thoroughly at the end of

the chapter.

1.2 Definitions and background material

1.2.1 Algebraic Background

Most of the work in this thesis is related to concepts learned in ab-

stract algebra and finite field theory. Many definitions in coding theory are

specialized uses of ideas contained in these branches of mathematics.
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The qth power residue codes that we will explore in this paper are an

example of what is known as a linear code.

Definition 1.2.1. A linear code is a linear subspace C of the vector space

Fnq . The dimension of this subspace, k, is called the rank or dimension of the

code C, and n is called the length of the code. The number r = k/n is called

the (transmission) rate of the code, and is the ratio of the original message

length k to the length of the final codeword, n. In other words, it measures the

quantity of information that the code can transmit in a given number of bits.

We will say that C is a [n, k] code, and the codewords in C will be denoted by

vectors (c0, c1, . . . , cn−1) ∈ Fnq .

In addition to being linear, the qth power residue codes have the prop-

erty that they are cyclic:

Definition 1.2.2. A code C is cyclic if and only if it is linear and for each

codeword c = (c0, c1, . . . , cn−1) in C, the word c′ = (cn−1, c0, c1, . . . , cn−2) is

also a codeword in C. The codeword c′ is called a cyclic shift of c.

It turns out that it will be more useful for us to think about cyclic codes

algebraically. In order to do this, associate the vector (c0, . . . , cn−1) ∈ Fnq with

the polynomial c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ Fq[x]/(x
n− 1). Using

this association, we get the alternative definition:

Definition 1.2.3. A cyclic code C of length n is an ideal of the ring Rn,q =

Fq[x]/(x
n − 1).

3



Note that multiplication by x in Rn,q corresponds to a cyclic shift. Further-

more, Rn,q is a principal ideal domain where every ideal is generated by one

element, which we call the generator polynomial for C. The following theorem

from [11], p. 190, will be helpful to us later.

Theorem 1.2.1. Let C be a nonzero ideal in Rn,q, i.e. a cyclic code of length

n. Then

1. There is a unique monic polynomial g(x) =
∑r

i=0 gix
i of minimal degree

in C.

2. C = 〈g(x)〉, i.e. g(x) is a generator polynomial of C.

3. g(x) is a factor of xn − 1.

4. Any c(x) ∈ C can be written uniquely as c(x) = f(x)g(x) in Fq[x], where

f(x) ∈ Fq[x] has degree < n − r, r = deg g(x). The dimension of C is

n− r (i.e., C is an [n, n− r] code). Thus the message f(x) becomes the

codeword f(x)g(x).

5. If g(x) = g0 + g1x+ g2x
2 + . . .+ grx

r, then C is generated (as a subspace

of Fnq ) by the rows of the generator matrix

G =









g0 g1 g2 · · · gr 0
g0 g1 · · · gr−1 gr

· · · · · ·
0 g0 · · · · · · gr









=









g(x)
xg(x)

· · ·
xn−r−1g(x)









4



We do not include a proof of this theorem here, but the curious reader

can find it in [11].

Besides the length and dimension of a code, we will also be concerned

with what is known as its minimum distance. The (Hamming) distance d(c,d)

between two distinct codewords c = (c1 c2 . . . cn) and d = (d1 d2 . . . dn)

in the code C is the number of places where they differ: d(c,d) = |{0 ≤ i ≤

n | ci 6= di}|. The (Hamming) weight of the codeword c, denoted wt(c), is the

distance d(c,0) between c and the zero vector and measures the number of

nonzero entries in the vector c.

Definition 1.2.4. The minimum distance of a code C, denoted dmin(C), is

dmin(C) = min
c,d∈C

c 6=d

d(c,d) = min
c∈C

c 6=0

wt(c)

Note that this definition implies that we may use the terms minimum

weight and minimum distance interchangably. Both terms will be used fre-

quently in this paper. An [n, k] code in which we know this final parameter of

minimum distance, d, is called an [n, k, d] code.

In general we prefer codes with large minimum distance because of their

ability to correct more errors.

Theorem 1.2.2. A code C with odd minimum distance d can correct 1
2
(d− 1)

errors. If d is even, then C can correct 1
2
(d− 2) errors and detect d

2
errors.

Figure 1.2.1 shows an example of this theorem. In the figure, we see

that codewords a,b and c differ from each other in three places. Thus if only

5



one error occurs, choosing the codeword closest to the received message will

correct the error.

Each codeword differs

d = 3

from the others in three
places.  

This code can correct 1 
error.

codeword a codeword b

codeword c

Figure 1.2: A code with minimal distance 3 can correct 1 error

A larger minimum distance implies more powerful error-correction ca-

pabilities. Computing the minimum distance of a code is usually quite difficult.

In fact, this problem has been shown to be NP-hard [16]; there is no known

way of doing the computation in less than exponential time. What we will do

instead for our family of qth power residue codes is find a lower bound on this

minimum distance. The minimum distance itself will only be found for a few

select cases, using available technology. A table of some of these results can

be found in Appendix 1.
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For any [n, k] code, we do have a best-case scenario for the minimum

distance known as the Singleton bound.

Theorem 1.2.3. (Singleton Bound) If C is an [n, k, d] code, then we must

have

d ≤ n− k + 1.

Ideally, we want an [n, k] code to have minimum distance as close to

this maximum as possible, but note that many perfectly good codes do not

meet this bound, and it is unrealistic to expect them to. In fact, a family

of codes can have good minimum distance without coming close to meeting

this upper bound. It is only important that the codes be what we will call

asymptotically good. We will discuss this notion in greater detail in Section

1.2.2.

In studying codes, it is often helpful to look instead at their dual codes.

This technique will be used later in this thesis. To understand the notion of

a dual code, note that by Theorem 1.2.1 every cyclic linear code C can be

generated over Rn,q by some polynomial g(x) of minimal degree which divides

the polynomial xn − 1. Let h(x) = xn−1
g(x)

=
∑k

i=0 hix
i. We call h(x) the

check polynomial of C. To see why this name fits, note that if a(x) ∈ C,

then a(x) = b(x)g(x) for some polynomial b(x). Thus in Rn,q, a(x)h(x) =

b(x)g(x)h(x) = b(x)(xn−1) ≡ 0 mod (xn−1). In other words, the polynomial

h(x) checks whether the polynomial a(x) is a codeword in C.

7



Definition 1.2.5. The dual code C⊥ is the cyclic code generated over Rn,q by

the polynomial

g⊥(x) = xdeg h(x)h(x−1).

where h(x) is the check polynomial defined above. This code is generated as

a subspace of Fnq by the rows of the r × n generator matrix

H =









hl · · · h2 h1 h0

hl · · · h2 h1 h0

· · · · · · · · · · · · · · ·
hl · · · h2 h1 h0









=













←−−
h(x)

x
←−−
h(x)

. . .

xn−l−1
←−−
h(x)













where l = deg h(x) = n− deg g(x) = n− r = dim(C).

Note that C and C⊥ are duals as vector spaces: if c ∈ C and c∗ ∈ C⊥

then c · c∗ = 0.

Example 1. Let us look at a simple example. Suppose q = 2 and n = 4. Our

codes are ideals of the ring R4,2 = F2[x]/(x
4 + 1). Let g(x) = x + 1 be the

generating polynomial for a code Cg over R4,2. From Theorem 1.2.1 Cg has

generator matrix given by

Gg =





1 1 0 0
0 1 1 0
0 0 1 1





The check polynomial for Cg is given by h(x) = x4+1
x+1

= x3 + x2 + x+ 1, hence

we have check matrix Hg = [ 1 1 1 1 ]. It is clear that this code has length 4 and
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dimension 3. The message

(1 0 1)↔ 1 + x2

is encoded by either computing (1 0 1)Gg = (1 1 1 1) or (1 + x2)g(x) =

1+x+x2 +x3. We can calculate that the codewords in Cg are elements of the

set (written two different ways):

{(0000), (1100), (0110), (0011), (1010), (0101), (1111), (1001)} ⊆ F4
2

or

{0, 1 + x, x+ x2, x2 + x3, 1 + x2, 1 + x+ x2 + x3, 1 + x3} ⊆ F2/(x
4 − 1)

It follows that dmin(Cg) = 2, which means that this [4, 3, 2] code can detect

one error, but cannot correct any errors. Note that Cg meets the Singleton

Bound and hence has optimal minimal distance for a code of its length and

dimension.

1.2.2 Some notation and vocabulary

Recall that a good code is one that has both a good transmission rate

(we add as few extra bits to the length of the original message as possible)

and a good minimum distance (as close to the Singleton bound as possible).

In Chapter 5 we construct a family of qth power residue codes that is asymp-

totically bad. Ideally, however, we are looking for families of codes that are

asymptotically good. What that means for us is that for a fixed prime q we

are looking at qth power residue codes with prime lengths pi, with the prime

9



pi approaching infinity as i approaches infinity. For each of these increasing

prime values, let Cpi
denote the qth power residue code of length pi, let rpi

denote the dimension or rate of Cpi
and let dpi

denote the minimum distance

of Cpi
. Ideally, we would like to find a family of qth power residue codes with

the property that

lim
i→∞

rpi

pi
= ǫr > 0 and lim

i→∞

dpi

pi
= ǫd > 0.

Such codes are said to be asymptotically good ; both their rate and relative

distance are asymptotically non-vanishing. An asymptotically bad family of

codes is one in which at least one of these limits approaches zero.

In the construction of an asymptotically bad family of qth power residue

codes, we will frequently use some notation which may not be familiar to all

readers. Specifically, the symbol≪ will be used to denote asymptotic behavior.

f ≪ g stands for f(x) = O(g(x)) for x → ∞. In other words, there exists

some positive real number γ and a real number x0 with the property that

|f(x)| ≤ γ|g(x)| for all x > x0.

10



Chapter 2

A brief discussion of binary quadratic residue

codes

Now that we have the background material required, we are ready to

begin working towards our main result. We will be primarily interested in fur-

ther exploring codes that are similar to a well-studied class of codes known as

quadratic residue codes. Specifically, we extend the notion of binary quadratic

residue codes to qth power residue codes over Fq for q an arbitrary prime. In

extending the methods of [7], we find a bound on the weight of these codes,

as well as a bound on the weight of the dual codes. In addition, an asymp-

totically bad subfamily of these codes is constructed and explored, following

the argument contained in [17] which finds such a family for binary quadratic

residue codes.

2.1 Definitions

Set up a correspondence between Fp and the set {0, 1, . . . , p− 1}. Let

α ∈ F∗
p. If there exists some β ∈ F∗

p such that β2 = α we will say that α is a

quadratic residue modulo p. The binary quadratic residue codes are defined

as follows. Let p be an odd prime such that p ≡ ±1 mod 8 (which we choose

11



so that 2 is a quadratic residue modulo p), and let α be a primitive pth root

of unity in the smallest field extension of F2 containing such an element.

Definition 2.1.1. If Q is the set of quadratic residues modulo p, and N is the

set of nonresidues, then the binary quadratic residue codes Q, Q̄,N, N̄ of length

p are the ideals of Rp,2 generated by q(x) =
∏

i∈Q(x−αi), (x−1)q(x), n(x) =
∏

i∈N(x− αi), and (x− 1)n(x) respectively.

Q and N are sometimes called augmented quadratic residue codes, while

Q̄ and N̄ are called expurgated quadratic residue codes, so named because they

are gotten by deleting or expurging those codewords of odd weight from Q and

N respectively. Note that our choice of α in this construction was arbitrary -

choosing a different α might switch the polynomials q(x) and n(x).

The quadratic residue codes are known to have minimum distance

d ≥ √p (though minor improvements are known) and dimension 1
2
(p + 1)

(augmented) or 1
2
(p− 1) (expurgated) [11]. In other words, their transmission

rate is close to 1
2

as p approaches infinity; they have a good transmission rate,

even for large values of p. We also notice that because of the way these codes

are defined, xp − 1 = (x− 1)q(x)n(x); hence Q⊥ is equivalent to Q̄ and N⊥ is

equivalent to N̄, with equality occuring when p = 4k − 1.

Example 2. To see how these codes work, let us look at the simplest case.

Let p = 7. Then Q = {1, 2, 4} and N = {3, 5, 6}. The smallest field with a

primitive seventh root of unity is GF (23) = F2[α]/(α3+α+1). The powers of α

in this field are α, α2, α3 = α+1, α4 = α2 +α, α5 = α2 +α+1, α6 = α2 +1,

12



and α7 = 1. It follows that α is a primitive seventh root of unity in this

definition of GF (23). Hence the generating polynomial for Q is

q(x) = (x+ α)(x+ α2)(x+ α4)

= x3 + (α+ α2 + α4)x2 + (α3 + α5 + α6)x+ 1

= x3 + (α+ α2 + (α+ α2))x2

+((α+ 1) + (α2 + α+ 1) + (α2 + 1))x+ 1

= x3 + x+ 1

and similarly N is generated by the polynomial

n(x) = x3 + x2 + 1.

Both of these codes have minimal weight 3, and are thus [7, 4, 3] codes. As

mentioned above, q(x) and n(x) may be switched by choosing a different prim-

itive root. In particular, choosing α3, α5 or α6 as this primitive root will switch

these polynomials.

2.2 Historical Importance

Because of the relatively good properties of quadratic residue codes

there has historically been a great deal of interest in them. As previously

mentioned, they have transmission rate close to 1
2

for all values of p. More-

over, their minimum distance is consistently larger than the square root bound

would indicate, which gives us hope that an even better bound can be achieved.

Many of the properties of the quadratic residue codes have been explored in

13



detail in other books and papers, most comprehensively in Chapter 16 of [11].

The qth power residue codes that we introduce here have a better transmission

rate than their quadratic counterparts. We will prove a square root bound for

the minimum distance of the duals of the qth power residue codes, and from

this deduce a lower bound for the minimum distance of the codes themselves.

Specifically, if the generator polynomial a qth power residue code A0 factors

into m irreducible elements over Fp[x], then:

dmin(A0) ≥ p
1

2(qm−1) .

The proof of this theorem relies on the fact that the dual of the code A0 is

generated by the product of the generator polynomials for q−1 different codes,

each of which is isometric to A0.

14



Chapter 3

Defining qth power residue codes

3.1 Basic definitions

For the remainder of this paper, let q be some fixed odd prime number

(letting q = 2 would give us the quadratic residue codes, which have already

been thoroughly explored. For a more in-depth treatment, see [11]). Let p 6= q

be an odd prime such that q is a qth power residue modulo p. That is, there

exists some β ∈ Fp such that βq ≡ q mod p. Moreover, let q | (p − 1). We

can divide F∗
p into q cosets as follows.

Choose a primitive qth root of unity ζ ∈ Fp and define a homomorphism

ψq : F∗
p → (Fq,+) by

ψq(j) = i when j
p−1

q ≡ ζ i mod p

Note that ψq(j) = 0 if and only if j is a qth power residue modulo p, and

moreover ψq(j)
q ≡ ψq(j) mod q by Fermat’s Little Theorem. F∗

p can be di-

vided into q cosets A0, A1, . . . , Aq−1 given by Ai = {j ∈ F∗
p | ψq(j) = i}. A0 is

the set of qth power residues modulo p.

Let α be a primitive pth root of unity in the smallest field extension of

15



Fq containing such an element. We define the polynomials

ai(x) =
∏

a∈Ai

(x− αa) ∈ Fq[x].

Note that we may write xp − 1 = (x− 1)
∏q−1

i=0 ai(x).

Definition 3.1.1. The qth power residue codes Ai, Āi are cyclic codes

(ideals) of the ring Rp,q = Fq[x]/(x
p−1) with generator polynomials ai(x) and

(x− 1)ai(x) respectively, for i = 0, . . . , q − 1.

In keeping with the convention established for the quadratic residue

codes we will call Ai an augmented qth power residue code, while Āi will be

known as an expurgated qth power residue code. This time, the codewords

we are expurging correspond to those c = (c0, . . . , cp−1) where
∑p−1

i=0 ci ≡ 0

mod q.

We note here that this definition is not new, as qth power residue codes

have been defined in a similar manner and briefly explained by Berlekamp in

Section 15.2 of [1]. However, the techniques we use will differ substantially

from this prior source, and the lower bound we establish will be more general

than the one proved by Berlekamp in his book. It is also important to mention

that the qth power residue codes being studied here are significantly different

than those explored by Chapman in [2] and by vanLint and MacWilliams in

[15], despite having a similar name.
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By Theorem 1.2.1, Ai has a generator matrix given by

GAi
=









ai(x)
xai(x)

· · ·
xp−

p−1
q

−1
ai(x)









.

It follows easily that these codes have dimension p− p−1
q

= p(q−1)+1
q

, and hence

a rate of p(q−1)+1
q

/p = q−1
q

+ 1
pq

, which approaches q−1
q

as p approaches infinity.

That is, the transmission rate of these codes is asymptotically good, as defined

in Chapter 1.

Much of the remainder of this thesis will be concerned with the second

important property for determining the effectiveness of codes: estimating their

minimum distance. This proves to be a much harder task. The Singleton bound

tells us that

dmin(A0) ≤ p− (p− p− 1

q
) + 1 =

p− 1

q
+ 1.

While approaching this bound is extremely unlikely for any family of codes,

we do succeed in finding a lower bound on the minimum distance for the qth

power residue codes. Unfortunately, it can (and will) be shown in Chapter 5

that for every prime q there exists an asymptotically bad family of qth power

residue codes. It is currently unknown whether an asymptotically good family

can be found. A variation of this question has been studied for years by those

interested in quadratic residue codes, with no substantial progress being made

towards finding a solution.
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3.2 A new “idempotent”: the q-idempotent

In order to obtain a lower bound on the minimum distance of the qth

power residue codes, it will be helpful to first find a different, easier to work

with, generator polynomial. This polynomial will be constructed to be what

we call a q-idempotent of our code, with this name being taken from the classic

binary concept of the idempotent of a code.

Definition 3.2.1. A polynomial E2(x) of Rn,2 is an idempotent if E2(x) =

E2(x)
2 = E2(x

2).

This concept is important because of the following theorem.

Theorem 3.2.1. Let C = 〈g(x)〉 be a binary cyclic code. Then C contains a

unique idempotent E2(x) such that

1. C = 〈E2(x)〉 (and hence E2(x) = p(x)g(x) for some polynomial p(x)).

2. c(x) ∈ C if and only if c(x)E2(x) = c(x).

That is, every binary cyclic code can be generated by an idempotent, which

because of its special properties can be helpful in finding out more about the

code itself. When we define q-idempotents, we will not be quite so thorough.

Rather, we will simply define what we mean by a q-idempotent, and show that

one exists for our qth power residue codes (though not for codes over Fq in

general). This result, though limited, will prove to be enough for our purposes.
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Definition 3.2.2. Let Eq(x) be a polynomial in Rn,q. Then we call Eq(x) a

q-idempotent if Eq(x) = Eq(x
q) = Eq(x)

q.

In what follows we will find a q-idempotent that generates the same code

as the original generator polynomial for Ā0. To prove that this q-idempotent

ends up generating the same code as (x− 1)a0(x), we will need the following

Lemma found on p. 199 of [11]:

Lemma 3.2.2. Let g(x) | xn − 1 ∈ Rp,q be the generator polynomial for some

code C. If a(x) ∈ Rp,q is any polynomial with (a(x), xn − 1) | g(x), then g(x)

and a(x)g(x) generate the same code.

That is, any two polynomials that share the same roots of xn− 1 generate the

same code in Rp,q.

Claim 1. Define

Eq(x) =

p−1
∑

m=1

ψq(m)xm,

where ψq(m) is the homomorphism from F∗
p to (Fq,+) defined in Section 3.1.

Then there exists some pth root of unity α in the smallest field extension of Fq

containing such an element so that Eq(x) is a q-idempotent which generates the

code Ā0. That is, the polynomial Eq(x) generates the same code as (x−1)a0(x).

Proof. Note that for any qth power residue ξ, we have ψq(ξn) = ψq(n) =

ψq(n/ξ) since ψq is an additive homomorphism. That is, multiplication by qth

power residues fixes cosets. In our case, this means we have ψq(qn) = ψq(n),
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as q is a qth power residue modulo p. Choose α any primitive pth root of

unity in the corresponding field extension of Fq. Then because of the previous

assertion, properties of the field Fq, and Fermat’s Little Theorem we may

write:

Eq(x)
q ≡

(

p−1
∑

m=1

ψq(m)xm

)q

≡
p−1
∑

m=1

ψq(m)qxqm

≡
p−1
∑

m=1

ψq(m)xqm ≡
p−1
∑

m=1

ψq(qm)xqm

≡ Eq(x) mod q

and similarly we find that Eq(x
q) = Eq(x). It follows that Eq(α) ∈ Fq, and

moreover that Eq(x) is a q-idempotent. Now choose α so that Eq(α) = 0 (it

will shortly become clear why such an α must exist). Then for all a ∈ A0 we

have

Eq(α
a) =

p−1
∑

m=1

ψq(m)αma =

p−1
∑

n=1

ψq(
n

a
)αn

=

p−1
∑

n=1

ψq(n)αn = Eq(α) = 0.

Moreover,

Eq(1) =

p−1
∑

m=1

ψq(m) =
p− 1

q
(0 + 1 + 2 + · · ·+ (q − 1))

=
p− 1

q

[

q · (q − 1)

2

]

=
(p− 1)(q − 1)

2
≡ 0 mod q

where the last equivalence follows since we know that 2 | (q−1) and q | (p−1).

It follows that all of the factors of (x− 1)a0(x) are also factors of Eq(x), hence

〈(x− 1)a0(x)〉 ⊇ 〈Eq(x)〉
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in Rp,q. To show the reverse inclusion, let b /∈ A0. Then

Eq(α
b) =

p−1
∑

m=1

ψq(m)αbm =

p−1
∑

n=1

ψq(
n

b
)αn

=

p−1
∑

n=1

ψq(n)αn −
p−1
∑

n=1

ψq(b)α
n

= Eq(α)− ψq(b)
p−1
∑

n=1

αn

= −ψq(b) · (−1) = ψq(b) 6= 0.

That is, Eq(x) has no additional factors of xn − 1 in Rp,q.

To show that we have not done anything fishy in our choice of α, note

that the previous series of equalities tells us that there must be some α sat-

isfying our original assumption that Eq(α) = 0. If Eq(β) = n, choose e ∈ Fq

such that ψq(e) ≡ −n mod p and let α = βe. Then Eq(α) = Eq(β
e) =

Eq(β) + ψq(e) = n+ (−n) = 0 as desired.

It follows from Lemma 3.2.2 that

〈Eq(x)〉 = 〈(x− 1)a0(x)〉 = Ā0,

and we have found a new generator polynomial for Ā0. We may slightly alter

Eq(x) to find similar polynomials for each of the Ai’s and Āi’s. Specifically, if

ξk ∈ Ak, define E
(k)
q (x) =

∑p−1
m=1 ψq(

m
ξk

)xm has roots 1 and αa, a ∈ Ak, hence

generates Āk.
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Chapter 4

Codeword weight and minimal distance

4.1 Codeword weight of qth power residue codes

Based on a lemma originally proved by Helleseth in [6] (although we

will follow the simpler proof later used in [7]), we are able to find a bound on

the codeword weight of the qth power residue codes using the q-idempotent

found in Section 3.2.

Consider the polynomial a(x) =
∑r

i=1 γki
xki ∈ Fq[x]/(x

p − 1), where

γki
6= 0 and the ki are unique elements of Fp so that a(x) has weight r. Let

K = {k1, . . . , kr} be the set of exponents of a(x). Create a corresponding

polynomial fa(t) =
∏

k∈K(t − k)γk ∈ Fp[t]. When there is no ambiguity as to

the indentity of the polynomial a, we will use f(t) to denote the polynomial

fa(t). Let Eq(x) be the q-idempotent of Ā0 defined previously. Then a(x)Eq(x)

is a codeword in Ā0, and we want to be able to determine its weight.

Write c(x) = a(x)Eq(x) =
(
∑

k∈K γkx
k
) (
∑p−1

m=1 ψq(m)xm
)

≡∑p−1
i=0 cix

i.

We want to count those places where cs 6= 0 in order to determine the weight

w(c) of this codeword. In order to do this, first note that

cs =
∑

k∈K

ψq(s− k)γk, s /∈ K or
∑

k∈K,k 6=s

ψq(s− k)γk, s ∈ K.
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Define a homomorphism χq : Fp → C by

χq(x) =

{

0 x = 0
e2πik x ∈ Ak

χq is what is known as a multiplicative character of F×
p .

Definition 4.1.1. A character χ of a group G with values in a field L is a

homomorphism χ : G→ L∗ from G to the multiplicative group of L.

Because χq(x) is a primitive qth root of unity for all nonzero x /∈ A0,

it follows that for nonzero x we have the equality:

1 + χq(x) + χq(x)
2 + . . .+ χq(x)

q−1

q
=

{

1 x ∈ A0

0 otherwise

Also note that the correspondence between the maps ψq and χq given by the

isomorphism between the additively and multiplicatively written fields Fq tells

us that for s /∈ K,

cs = 0 =
∑

k∈K

ψq(s− k)γk ⇐⇒
∏

k∈K

e2πiψq(s−k)γk = 1

⇐⇒
∏

k∈K

χq(s− k)γk = 1

⇐⇒ χq(f(s)) = 1

It follows that

1 + χq(f(s)) + χq(f(s))2 + · · ·+ χq(f(s))q−1

q
=

{

1 cs = 0
0 otherwise

On the other hand, if s ∈ K, suppose γs = i ∈ F∗
q. Then look at the ith

derivative of f evaluated at s, and find that f (i)(s)
i!

=
∏

k∈K, k 6=s(s − k)γk . By

the same logic as above, we find that cs =
∑

k∈K,k 6=s ψq(s − k)γk = 0 ⇐⇒

χq(
f (i)(s)
i!

) = 1, which allows us to arrive at the following lemma.
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Lemma 4.1.1. If a(x) =
∑r

i=1 γki
xki ∈ Fq[x]/(x

p − 1) be a polynomial of

weight r. Then the weight w(c) of the codeword c(x) = a(x)Eq(x) is

w(c) =
(q − 1)p

q
− 1

q





∑

t∈Fp

(χq(f(t)) + · · ·+ χq(f(t))q−1)+

∑

t∈K,γt=1

(χq(f
′(t)) + · · ·+ χq(f

′(t))q−1) + · · ·

+
∑

t∈K,γt=q−1

(

χq(
f (q−1)(t)

(q − 1)!
) + · · ·+ χq(

f (q−1)(t)

(q − 1)!
)q−1

)

]

.

where f(t) = fa(t) =
∏r

i=1(t − ki)γki ∈ Fp[t] is the polynomial corresponding

to a(x) defined at the beginning of the chapter.

Proof. The weight of our codeword w(c) is

w(c) = p− {number of places where code is 0}

= p−
[

∑

s/∈K

1 + χq(f(s)) + · · ·+ χq(f(s))q−1

q
+

∑

s∈K,γs=1

1 + χq(f
′(s)) + · · ·+ χq(f

′(s))q−1

q
+ · · ·

+
∑

s∈K,γs=q−1

1 + χq(
f (q−1)(s)
(q−1)!

) + · · ·+ χq(
f (q−1)(s)
(q−1)!

)q−1

q





=
(q − 1)p

q
− 1

q





∑

s∈Fp

(χq(f(s)) + · · ·+ χq(f(s))q−1)+

∑

s∈K,γs=1

(χq(f
′(s)) + · · ·+ χq(f

′(s))q−1) + · · ·

+
∑

s∈K,γs=q−1

(

χq(
f (q−1)(s)

(q − 1)!
) + · · ·+ χq(

f (q−1)(s)

(q − 1)!
)q−1

)

]
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Corollary 4.1.2. If a(x) =
∑r

i=1 γki
xki ∈ Fq[x]/(x

p − 1) is a polynomial of

weight r, then the weight w(c) of the codeword c corresponding to the polyno-

mial c(x) = a(x)Eq(x) satisfies:

q − 1

q
[p− (r − 1)

√
p− r] ≤ w(c) ≤ q − 1

q

[

p+ (r − 1)
√
p+

r

q − 1

]

To prove this corollary, we will rely not only on Lemma 4.1.1 but also

on the well-known Hasse-Weil bound for exponential sums.

Theorem 4.1.3 (Hasse-Weil Bound). [12] Let p be an odd prime, and let

χ denote a non-principal multiplicative character modulo p. Furthermore, let

F (x) be a polynomial with integer coefficients of degree n ≥ 1. Then

∣

∣

∣

∣

∣

∑

1≤i≤p

χ(F (i))

∣

∣

∣

∣

∣

≤ (n− 1)
√
p

unless F is a kth power of another polynomial modulo p, where k is the order

of the character χ.

The proof of this theorem will be omitted here, but we will use the

Hasse-Weil bound in the proof of 4.1.2.

Proof of 4.1.2. Consider the polynomial f(t) = fa(t) =
∏r

i=1(t− ki)γi ∈ Fp[t].

The multiplicative character χq as defined previously has the property that

for any x ∈ Fp,

χq(x) + · · ·+ χq(x)
q−1 =







0 x = 0
q − 1 x is a q-th power residue mod p
−1 otherwise
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It follows that

−r ≤
∑

s∈K,γs=1

(χq(f
′(s)) + · · ·+ χq(f

′(s))q−1) + · · ·

+
∑

s∈K,γs=q−1

(

χq(
f (q−1)(s)

(q − 1)!
) + · · ·+ χq(

f (q−1)(s)

(q − 1)!
)q−1

)

≤ (q − 1)r

Moreover, the Hasse-Weil bound tells us that:
∣

∣

∣

∣

∣

∣

∑

s∈Fp

χq(f(s)) + . . .+ χq(f(s))q−1

∣

∣

∣

∣

∣

∣

≤ (q − 1)(r − 1)
√
p

as per Theorem 4.1.3. Using these two facts together with Lemma 4.1.1 gives

us the lower bound

(q − 1)p

q
− 1

q
[(q − 1)(r − 1)

√
p+ (q − 1)r] ≤ w(c)

and the upper bound

w(c) ≤ (q − 1)p

q
+

1

q
[(q − 1)(r − 1)

√
p+ r]

or alternatively we may write

q − 1

q
[p− (r − 1)

√
p− r] ≤ w(c) ≤ q − 1

q

[

p+ (r − 1)
√
p+

r

q − 1

]

.

4.2 Bounding the weight of the dual code

We now use the lower bound on w(c) found above to find a square root

bound on dmin(Ā
⊥
0 ).
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Corollary 4.2.1. Let a(x) =
∑r

i=1 γki
xki be a non-zero polynomial in Fq[x]/(x

p−

1), and again let Eq(x) be the q-idempotent of Ā0. Then if a(x) is in the

dual code Ā0
⊥

(that is, a(x)Eq(x) = 0) then r ≥ √p. In other words,

dmin(Ā0
⊥
) ≥ √p.

Proof. We have just bounded the weight of the codeword c corresponding to

the polynomial c(x) = a(x)Eq(x) where a(x) has r non-zero coefficients. This

can help us find a lower bound for the weight of codewords in the dual code

in the following manner.

For small enough r, we will have

q − 1

q
[p− (r − 1)

√
p− r] > 0

which will in turn imply w(c) 6= 0, or that a(x) is NOT an element of the

dual code. Which possible weights r for our polynomial a(x) might actually

correspond to a codeword in the dual code? To find out, we must figure

out the values r for which the above inequality does not true. Solving the

inequality (q−1)p
q
− 1

q
[(q−1)(r−1)

√
p+(q−1)r] ≤ 0 yields the following series

of inequalities:

(q − 1)p

q
≤ 1

q
[(q − 1)(r − 1)

√
p+ (q − 1)r]

p ≤ (r − 1)
√
p+ r

p ≤ r(
√
p+ 1)−√p

√
p(
√
p+ 1) ≤ r(

√
p+ 1)

√
p ≤ r
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Thus, in order for a(x) to be in the dual code, we must have

r ≥ √p.

It follows that dmin(Ā0
⊥
) ≥ √p and we have the desired lower bound.

Notice that since the Āi
⊥

are isometric, this same bound holds for all

i. It is interesting to note that this is the same bound that was found in the

case of quadratic residue codes. Thus it seems likely that some improvements

to this bound can be made, although it is currently not clear how to proceed

with this.

4.3 Using the dual bound to get a lower bound on the

minimum distance of the qth power residue code of

length p

It turns out that we can use the lower bound found in Section 4.2 for

the weight of the dual code to our advantage when trying to find a better lower

bound on the minimum distance of the qth power residue codes. As Berlekamp

has proved in Theorem 15.22 of [1], we have the lower bound dmin(A0) ≥ q
√
p

for codewords that are in only the augmented qth power residue code of length

p but not those codewords that are in both the augmented and expurgated

codes; the bound holds for only those codewords in A0 \ Ā0. The following

theorem establishes a lower bound for all codewords c ∈ A0.

As a reminder, let p be a prime, and let q be a qth power residue modulo

p. We will obtain the following bound.
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Theorem 4.3.1. Suppose a0(x) is the generator polynomial for A0 over Rp,q =

Fq[x]/(x
p − 1). Moreover, suppose that a0(x) factors as

a0(x) = c1(x)c2(x) · · · cm(x), ci(x) irreducible.

Then

dmin(Ā0) ≥ p
1

2(mq−1) .

It is important to realize that in many cases m is small. In particular,

m is non-trivial only when in addition to being a qth power residue, q is also

an mth power residue modulo p. That is, m divides p−1
q

and there exists some

element y ∈ Fp with ymq ≡ q mod p. Why this is so will become clear in the

proof of the theorem.

The proof of Theorem 4.3.1 requires the following lemma.

Lemma 4.3.2. Let p be any prime and let E ⊆ Z/pZ be a set of distinct

elements containing zero of size at most p − 2. Then for any fixed t /∈ E, if

we choose r such that r 6= t, r /∈ E, then there exists some number s ∈ Z/pZ

such that

r ∈ s+ E, t /∈ s+ E.

That is, we may shift E by s modulo p so that the new set s + E contains r

but not t.

Example 3. Pictorally, we want to show that Figure 3 is always possible. In

the figure, we choose p = 11, and see that one possible value for s is s = 3 for

our choice of E, r, and t.
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C = {0, 4, 5, 6, 8, 9}
r = 3
t = 10

3+C = {0, 1, 3, 7, 8, 9}

This set hits r but not t.

Figure 4.1: Lemma 4.3.2 in action

Proof of Lemma. Let E ⊆ Z/pZ be as specified above. Fix some t /∈ E. Now,

suppose that the theorem above is not true. Then there exists some r 6= t with

r /∈ E, such that no matter what s we choose, if r ∈ s + E then t ∈ s + E as

well. Let d = t− r, the distance (possibly negative) between the two numbers

t and r. Now let us look at all the ways we can choose s so that r ∈ s+ E.

Start out with s = r (We may choose this by the assumption that

0 ∈ E). It follows that

t ∈ s+ E = r + E

= (t− d) + E

That is, t = t− d+ k1 for some k1 ∈ E. Therefore, it must be the case

that d = k1, hence d ∈ E.

Now, let s = r − d, where we just determined that d ∈ E. Clearly
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r ∈ s+ E, hence by our assumption t ∈ s+ E. Again we calculate t by:

t = s+ k2 = (r − d) + k2 = [(t− d)− d] + k2

= t− 2d+ k2

Where k2 ∈ E. It follows that k2 = 2d ∈ E. Repeat this process with

s = r − k2 to discover that if we set t = s + k3 for some k3 ∈ E, then

k3 = 3d ∈ E, and similarly this pattern continues until we have each member

of {0, d, 2d, 3d, . . . (p− 1)d} in E.

But now {0, d, 2d, 3d, 4d, . . . , (p − 1)d} = {0, 1, 2, 3, . . . , p − 1} since

d 6= 0 and we are working over a field of prime order. That is, continuing this

process would give us p distinct ki (including 0) in E, or in other words

|E| = p.

This is a contradiction of the fact that t /∈ E and r /∈ E. It follows that for

each r /∈ E, there exists some s with the desired properties.

Proof of Theorem. Let B(x) ∈ A0 be a nonzero codeword. Then B(x) =

b(x)a0(x) for some polynomial b(x), and a0(x) the generator polynomial for

the qth power residue code.

But now a0(x) = c1(x)c2(x) · · · cm(x) implies that qm | (p − 1), hence

there exists some element ξ ∈ Fp such that ξ is a primitive mqth root of
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unity modulo p; that is, ξmq ≡ 1 mod p, but ξi 6≡ 1 mod p for any other

0 < i < mq. Define a map φ : F∗
p → Z/mqZ by

φ(j) = i when j
p−1
mq ≡ ξi mod p.

Note that j(p−1)/q ≡ 1 mod p (those elements j ∈ A0 that are qth power

residues modulo p) if and only if j(p−1)/mq ≡ ξkq mod p, as then we would

find that j(p−1)/q ≡ (ξkq)m ≡ 1 mod p. Now we choose some n ∈ F∗
p such that

φ(n) = 1. In other words, n(p−1)/mq ≡ ξ mod p. But then (n2)(p−1)/mq ≡ ξ2,

so φ(n2) = 2. Similarly, φ(ni) = i for 0 ≤ i ≤ mq−1. Thus the elements of F∗
p

are divided into mq different sets Ik = {j ∈ F∗
p | j(p−1)/mq ≡ ξk mod p}, where

we can see that nk ∈ Ik. We will say that j ∈ Ik is in the same class as nk. The

elements of F∗
p that are qth power residues modulo p are exactly those in Ikq for

all 0 ≤ k ≤ (m− 1); A0 =
⋃m−1
k=0 Ikq. Furthermore, multiplication by nq maps

Ikq → I(k+1)q, as j ∈ Ikq implies that (nqj)(p−1)/mq ≡ (nq)(p−1)/mq(j)(p−1)/mq ≡

ξqξkq = ξ(k+1)q.

Now note that

a0(x) =
∏

j∈A0

(x− αj)

=

(

∏

j∈I0

(x− αj)
)





∏

j∈Iq

(x− αj)



 · · ·





∏

j∈I(m−1)q

(x− αj)





≡ c1(x)c1(x
n(m−1)q

) · · · c1(xn
q

)

where equivalency is in terms of the resulting code generated, and follows
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because the polynomial
∏

j∈Iq

(x− αj)

has exactly the same roots as the polynomial given by:

∏

j∈I0

(xn
(m−1)q − αj),

[

j ∈ I0 =⇒ j

n(m−1)q
∈ Iq

]

hence generates the same code by Theorem 3.2.2. Using a similar argument,

it follows that

mq
∏

i=1

c1(x
ni

) generates the same code as a0(x)a0(x
n)a0(x

n2

) · · · a0(x
nq−1

).

Notice that this construction proves what we claimed earlier: that if a0(x) has

m irreducible factors, then q is also an mth power residue modulo p. Since

α 7→ αq fixes each of the
∏

a∈Ik
(x−αa), it follows that if nk ∈ Ik then qnk ∈ Ik

as well. That is, k = φ(nk) = φ(qnk) = φ(q) + φ(nk) = φ(q) + k so that

φ(q) = 0.

Going back to our codeword B(x) = b(x)a0(x), suppose that

b(x) ∈ 〈c1(xn
i1 )〉 ∩ 〈c1(xn

i2 )〉 ∩ · · · ∩ 〈c1(xn
ik )〉.

We will use B(x) to construct an element in Āi
⊥

for some i.

Let E ⊆ {0, 1, . . . ,mq− 1} be the set such that B(x) ∈ 〈c1(xni

)〉 for all

i ∈ E and B(x) /∈ 〈c1(xnj

)〉 for all j /∈ E. Let t /∈ E. That is, c1(x
nt

) 6 | B(x).

Then from Lemma 4.3.2 it follows that for each r 6= t, there exists some integer

s permuting E such that r ∈ s+ E but t /∈ s+ E, where each of these sums is

taken modulo p.
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Let {0, s1, s2, . . . , sl} be the smallest possible set of integers such that

{si+E} hits every r 6= t. (Note that we must have l < mq−1 [or alternatively,

l ≤ mq − 2], since c1(x
nk+mq

) = c1(x
nk·nmq

) = c1((x
nk

)n
mq

) = c1((x
nk

)1) =

c1(x
nk

), so having both k and k + mq in the set of si’s would be redundant,

and since there are only mq−1 possible i’s, choosing all mq−1 of them would

mean that we hit c1(x
nt

), a contradiction.) We now consider the polynomial

B(x)B(xn
s1 ) · · ·B(xn

sl ) ∈ Fq[x]/(x
p − 1)

which we claim is a nonzero element of Ā⊥
i for some i. To see that this is true,

suppose that

B(x)B(xn
s1 ) · · ·B(xn

sl ) ≡ 0 mod xp − 1.

Then it would follow that c1(x
nt

) |B(xn
si ) for some i, henceB(x) ∈ 〈c1(xnt−si )〉 =⇒

t− si ∈ E =⇒ t ∈ E + si, a contradiction of how we chose the si’s. Thus this

element is nonzero as desired. To see that it is in the dual of some code Āi,

note that c1(x
nr

) | B(x)B(xn
s1 ) · · ·B(xn

sl ) for all r 6= t by construction. Hence

this polynomial is in all but one of the codes generated by the polynomials

a0(x), a0(x
n), . . . , a0(x

nq−1
) respectively, so is in Āi

⊥
for some i as desired.

The following inequality must then be true:

√
p ≤ dmin(Āi

⊥
) ≤ |B(x)B(xn

s1 ) · · ·B(xn
sl )| ≤ |B(x)|l+1 ≤ |B(x)|mq−1

and hence

|B(x)|mq−1 ≥ √p =⇒ |B(x)| ≥ p
1

2(mq−1)
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It follows that dmin(A0) ≥ p
1

2(mq−1) as desired, and in fact because of isometry

dmin(Ai) ≥ p
1

2(mq−1) for all i = 0, . . . , q − 1.

It turns out that it is possible to improve this lower bound if 2 | m. In

this case, we have the following theorem.

Theorem 4.3.3. Suppose a0(x) is the generator polynomial for A0 over Rp,q =

Fq[x]/(x
p − 1). Moreover, suppose that a0(x) factors as

a0(x) = c1(x)c2(x) · · · cm(x), ci(x) irreducible and 2 | m.

Then

dmin(Ā0) ≥ p1/mq.

Proof. LetB(x), n and E be as in the proof of Theorem 4.3.1. Note that we still

have xp− 1 = (x− 1)
∏mq−1

i=0 c1(x
ni

), but because of the stipulation that 2 | m,

we can create two quadratic residue codes generated by q(x) =
∏

i∈I c1(x
ni

)

and n(x) =
∏

i/∈I c1(x
ni

), where I is the set integers i modulo mq such that ni

is a quadratic residue modulo p, a set of size mq
2

.

We now have two possibilities. In the first case, either n(x) | B(x)

or q(x) | B(x) and it follows that |B(x)| ≥ √p by the square root bound

that exists for the quadratic residue codes. Otherwise, we may assume that

B(x) is divisible by neither of these. Therefore we may choose some t such

that c1(x
t) 6 | B(x) and c1(x

t) | n(x). Let {0, s1, . . . , sℓ} be the smallest set of
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integers such that {si+E} hits every i ∈ I but does not hit t. Then ℓ ≤ mq
2
−1,

and it follows that

√
p ≤ dmin(Ā

⊥
0 ) ≤

∣

∣

∣

∣

∣

∏

s∈S

B(x)

∣

∣

∣

∣

∣

= |B(x)|ℓ+1 ≤ |B(x)|mq

2 .

It follows that |B(x)| ≥ p1/mq, and hence

dmin(A0) ≥ p1/mq

as desired.

4.4 Why we must alter a previous proof technique

When dealing with the binary quadratic residue codes, there was a

straightforward proof for the square root bound on the minimum distance as

per Theorem 16.1 of [11]. The proof notes that any codeword c(x) of minimum

distance d in Q has a corresponding codeword c̄(x) = c(xn), n ∈ N of minimum

distance in N. The codeword c(x)c̄(x) is then a codeword in Q∩N, making it

a multiple of a0(x)a1(x) =
∏p−1

j=1(x − αj) =
∑p−1

j=0 x
j. It follows that c(x)c̄(x)

has weight p. Thus

d2 = |c(x)|2 ≥ |c(x)c̄(x)| = p =⇒ d ≥ √p,

which is the desired bound. But this method only works because it has been

shown that the minimum distance of these codes must be odd, hence (x− 1)

does not divide the minimum distance codeword. As previously mentioned,
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Theorem 15.22 in [1] gives a qth root bound for codewords that are in only

the augmented but not the expurgated qth power residue codes, (i.e. those

codewords that (x−1) does not divide) proved in much the same way. Ideally,

we would like to see this qth root bound hold for all codewords, but the previous

proof will not get us there, as qth power residue codes can be constructed in

which the minimum distance codewords come from the expurgated code.

Recently, Semyonovykh uses this method in his paper [13] (Proposition

2(4), p. 574) to prove a qth root bound on the minimum distance of binary

qth power residue codes, a variation of what we have done here, when q = 3

and q = 4. Unfortunately there appears to be a hole in this proof, which we

conjecture would also occur in our qth power residue codes over Fq, which

arises because the minimum distance of these binary qth power residue codes

is no longer always odd. A codeword of minimum distance may now be a

member of the expurgated qth power residue code.

Consider the case where q = 3 and let p = 43. The set of cubic residues

modulo 43 is then

A0 = {1, 2, 4, 8, 11, 16, 21, 22, 27, 32, 35, 39, 41, 42}

A 43rd root of unity α may be found in the field

GF (214) = F2[x]/(x
14 + x13 + x11 + x9 + x8 + x7 + x6 + x2 + 1)

The polynomial f(x) = x is a generator for this field, hence we may take:

α = x(214−1)/43 = x12 + x10 + x9 + x8 + x7 + x3.
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Using this α, we get the code

A0 = 〈
∏

a∈A0

(x− αa)〉

= 〈x14 + x12 + x10 + x7 + x4 + x2 + 1〉 ⊆ F2[x]/(x
43 − 1).

The proof suggests taking a codeword a(x) ∈ A0 of the least weight d, then

getting a correspondence to the dual code by a(x)↔ r(x) = a(x)a(xq)a(xq
2
),

where a(x)a(xq)a(xq
2
) is supposedly divisible by xp−1

x−1
, hence has weight p,

which in turn gives a cube root bound on the minimum distance of such cubic

residue codes. A problem arises, however: in this case using PARI/GP we

can determine that dmin(A0) = 6, and find such a minimum weight codeword

a(x) = x38 + x37 + x35 + x34 + x28 + x ∈ A0. Using this polynomial with the

suggested map gives us:

r(x) = a(x)a(x3)a(x9)

≡ 0 mod x43 − 1 (also using PARI/GP)

which we can also discover for ourselves, as we know that

∏

a∈A0

(x− αa)
∏

a∈A1

(x− αa)
∏

a∈A2

(x− αa) =
x43 − 1

x− 1
| r(x),

and moreover since d = 6 is even, (x− 1) | r(x) as well (the binary codeword

a(x) has even weight ⇐⇒ a(1) = 0).

It follows that the conclusion of the proof as it stands gives us the

trivial bound d ≥ 0. Thus, though in this case direct calculation tells us that

the bound d = 6 ≥ 3
√

43 still holds, the proof presented does not work in the
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general case, although I have not found a counterexample to the cube root

bound presented.

4.5 A cubic residue code example

It may now be helpful to the reader to see a simple example of the

construction of a qth power residue code. We will use q = 3 (a cubic residue

code) to keep the example relatively straightforward. It is much harder to

come up with cubic residue code examples than quadratic residue codes, as

we are now forced to deal with much larger primes. For example, the smallest

p for which 3 | (p − 1) that also has 3 as a cubic residue mod p turns out to

be p = 61, which is the prime that we will be working with. That is, our code

will have words of length 61.

Let p = 61. Then 2 is a primitive element modulo 61, and from this we

can get the primitive cube root of unity 220 ≡ 47 mod 61. Using this cube

root of unity, we can find ψq(j) for all j ∈ F∗
61 and get cosets

A0 = {1, 3, 8, 9, 11, 20, 23, 24, 27, 28, 33, 34, 37, 38, 41, 50, 52, 53, 58, 60}

A1 = {2, 5, 6, 7, 13, 15, 16, 18, 21, 22, 39, 40, 43, 45, 46, 48, 54, 55, 56, 59}

and

A2 = {4, 10, 12, 14, 17, 19, 25, 26, 29, 30, 31, 32, 35, 36, 42, 44, 47, 49, 51, 57}.

In order to find our generator polynomials, we must now find a primitive 61st

root of unity in some field extension of F3. Using GP, we find that F310 is the
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smallest such field extension. Write

F310 = F3[x]/(x
10 + 2x8 + x6 + x5 + x4 + x3 + x+ 2)

In this field, x is a primitive element, and from this we can calculate the

primitive 61st root of unity

α = x(310−1)/61 = x9 + 2x8 + x7 + 2x5 + x4 + 2x3 + x2 + 1

in this field. Now look at how x61 − 1 factors over F3. We have:

x61 − 1 = (x− 1)f1(x)f2(x)f3(x)f4(x)f5(x)f6(x)

(i.e. seven irreducible factors) where

f1(x) = x10 + x7 + x6 + x5 + x4 + x3 + 1

f2(x) = x10 + x8 − x7 − x5 − x3 + x2 + 1

f3(x) = x10 − x8 + x7 − x6 + x5 − x4 + x3 − x2 + 1

f4(x) = x10 + x9 − x8 + x7 − x6 − x5 − x4 + x3 + x+ 1

f5(x) = x10 + x9 − x8 − x7 − x6 − x4 − x3 − x2 + x+ 1

f6(x) = x10 − x9 + x8 − x7 + x5 − x3 + x2 − x+ 1.

We can now calculate the generator polynomials, which turn out to
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break apart as follows:

a0(t) = f4(t)f5(t)

= t20 + 2t19 + 2t18 + t17 + 2t16 + t14 + 2t13

+2t12 + t11 + t9 + 2t8 + 2t7 + t6 + 2t4 + t3 + 2t2 + 2t+ 1

a1(t) = f1(t)f2(t)

= t20 + t18 + t16 + t15 + t14 + 2t11 + 2t10

+2t9 + t6 + t5 + t4 + t2 + 1

a2(t) = f3(t)f6(t)

= t20 + 2t19 + t17 + 2t15 + 2t14 + 2t13 + t12

+2t11 + 2t10 + 2t9 + t8 + 2t7 + 2t6 + 2t5 + t3 + 2t+ 1.

Notice that because x61−1
x−1

factors into six irreducible factors rather than three,

it follows that 3 is not only a cubic residue modulo 61, but 3 is also a quadratic

residue modulo 61. That is, there exists a quadratic residue code of length 61

over F3. We used the existence of such a code to our advantage in Theorem

4.3.3 when proving a better bound on the minimum distance.

Let us now calculate the minimum distance of the cubic residue code generated

by the polynomial:

(t− 1)a0(t) = t21 + t20 + 2t18 + t17 + t16 + t15 + t14 + 2t12 + 2t11

+t10 + t9 + 2t7 + 2t6 + 2t5 + 2t4 + t3 + 2t+ 2

In order to do this, we used the following Magma code:
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P<x> := PolynomialRing(FiniteField(3));

F := Factorization(x^61 - 1);

H := CyclicCode(61, F[1][1]*F[5][1]*F[6][1]);

SetVerbose(‘‘Code’’,true);

MinimumWeight(H);

From this I determined that the minimum weight of the extended Cubic

Residue Code of length 61 is d = 10. Note here that the lower bound predicted

by Theorem 4.3.3 for this code is

dmin(A0) ≥ p
1

2·3 = 6
√
p ≈ 1.984,

which is much smaller than the actual minimum distance. Thus it seems

possible that a better bound exists, though a better one is not currently known.

Looking at a couple more examples, however, we can conclude a few

things about the lower bound on these qth power residue codes in general.

Specifically the square root bound that is commonly accepted for the quadratic

residue codes no longer holds here, even for relatively small primes q. See

Appendix A for a table of some of these examples.

For example, let q = 5 and p = 31. If the square root bound held here,

we would have dmin ≥
√

31, or rounding up to the nearest integer, dmin ≥ 6.

Performing the computations in Magma, in a manner similar to the above,

gives the minimum weight of this 5th power residue code as less than or equal

to 4, certainly below this square root bound.
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Chapter 5

A family of asymptotically bad

q-residue codes

5.1 An overview of algebraic number theory

In what follows we will construct an asymptotically bad family of qth

power residue codes, a construction which will rely heavily on ideas found in

algebraic number theory. Thus a brief overview of the relevant topics will be

given here.

Let F be a number field, and K/F a finite extension. Denote the ring

of algebraic integers of F by OF := {y ∈ F | y is a solution to a monic

polynomial f ∈ Z[x]}, and similarly for the extension K/F . Then if p is a

nonzero prime ideal of OF , we may look at its unique factorization in OK as

pOK = Pe1
1 · · ·P

ej

j .

The positive integer ei is called the ramification index for Pi/p, and p is said

to be ramified in K if one of the ei 6= 1. We say that p splits completely in K

if [K : F ] = j. This implies that ei = 1 for all i (i.e. p is unramified in K) and

OK/Pi = OF/p.

Example 4. Let F = Q and K = Q(i), a degree 2 extension of F . Then

OF = Z, and OK = Z[i], as i is the solution to the monic polynomial f =
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x2 + 1. Consider the prime ideal p = 〈13〉 of OF . Then over OK , p factors as

pOK = P1P2, where P1 = 〈2 + 3i〉 and P2 = 〈2 − 3i〉 are both prime ideals

in OK . We say that p splits completely in K, and is unramified in K.

The interested reader may wish to refer to [8] for a more comprehensive

overview of this topic.

5.2 The Chebotarev density theorem

In addition to class field theory, the construction of an asymptotically

bad family of qth power residue codes relies on an applicaton of the Chebotarev

density theorem. Specifically, we will use this theorem in bounding the smallest

prime p that splits in some field K. For an overview of the theorem itself, see

[5]. The bounds of [10] and [9] use Chebotarev’s theorem to estimate this

prime p in terms of the discriminant D of K; their results in this area will play

an important role in the construction of our family.

5.3 What we are looking for

In the following, we will be constructing an asymptotically bad family

of qth power residue codes. That is, we construct a sequence of qth power

residue codes with lengths pi, pi tending towards infinity, with the property

that limi→∞
dpi

pi
= 0, where dpi

is the minimum distance of the code of length

pi. Note that when we first defined the qth power residue codes we saw that

they had dimension given by q−1
q

+ 1
pq

. It follows that if rpi
is the dimension
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of the qth power residue code of length pi, then limi→∞
rpi

pi
= q−1

q
for any

sequence of pi’s which tends toward infinity. Thus the transmission rate of

these codes is actually asymptotically good, even though the family of codes

we construct is asymptotically bad because it violates the second criterion for

an asymptotically good family.

5.4 Constructing the family

In the following construction we will follow the argument of [17] closely,

in which Voloch constructs a similar asymptotically bad family of the binary

quadratic residue codes.

Theorem 5.4.1. For infinitely many primes p, the minimum distance dp of

the qth power residue code of length p over Fq is O(p/ log log p). If furthermore

the generalised Riemann hypothesis is true, then the bound can be improved to

O(p/ log p).

Proof. Let ℓ be an odd prime, ζ a primitive complex ℓth root of unity and K

the extension of the rational number field obtained by adjoining ζ, q
√
q, q
√

1,

and q
√
ζm − 1 for all m = 1, . . . , ℓ− 1. This ensures that ζm − 1 and q are qth

powers in K, which we will need to construct our code.

Let p be a prime that splits completely in K. Then ℓ | (p − 1) and

q | (p− 1), hence we can form a qth power residue code of length p with some

minimum weight dp.
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Claim 2. dp ≤ (q−1)(p−1)
qℓ

.

Proof of Claim. To prove this claim, we will construct a codeword of the de-

sired weight. Let f(t) = t(p−1)/ℓ − 1 =
∏(p−1)/ℓ

i=1 (t −mi)
γi ∈ Fp[t] for some set

M = {m1, . . . ,m(p−1)/ℓ}. Then f(t) has all of its roots in Fp, hence we may use

it to construct a codeword c as in Lemma 4.1.1. By the way we constructed

our field, f(s) is a qth power for all s ∈ Fp since s(p−1)/ℓ is an ℓth root of unity

for s ∈ F∗
p. Hence when s ∈ Fp, we have

χq(f(s)) =

{

1 s not a root of f
0 s a root of f

,

where χq(x) is the character introduced in Chapter 4. Moreover, note that the

elements of M form a (cyclic) subgroup G of index ℓ in Fp, and that for every

s ∈ G we have f ′(s) = (p−1)
ℓ
s(p−1)/l−1 = (p−1)

ℓs
, since s(p−1)/ℓ = 1 for all s ∈ G.

We now go back to Lemma 4.1.1 to see that

w(c) =
(q − 1)p

q
− 1

q





∑

s∈Fp

(χq(f(s)) + · · ·+ χq(f(s))q−1)

+
∑

s∈M,γs=1

(χq(f
′(s)) + · · ·+ χq(f

′(s))q−1) + · · ·

+
∑

s∈M,γs=q−1

(

χq(
f (q−1)(s)

(q − 1)!
) + · · ·+ χq(

f (q−1)(s)

(q − 1)!
)q−1

)

]

.

=
(q − 1)p

q
− 1

q

[

(q − 1) · (p− (p− 1)

ℓ
) + 0 + · · ·+ 0

]

=
(q − 1)(p− 1)

qℓ

where every sum after the first two is zero by virtue of the fact that the polyno-

mial f(t) has no repeated roots, and
∑

s∈M,γs=1(χq(f
′(s))+· · ·+χq(f ′(s))q−1) =
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∑

s∈G(χq(f
′(s)) + · · ·+ χq(f

′(s))q−1) = 0 since G is a group.

To complete the theorem we vary ℓ, choosing for each ℓ the smallest

prime p that splits completely in the field K corresponding to ℓ. Let D be

the discriminant of K. From the estimates of [10] and [9] we may bound p

in terms of D. In particular, we conclude that log p ≪ logD and under the

generalized Riemann hypothesis, p≪ (logD)2. To prove our theorem we want

to estimate D in terms of ℓ. In order to do this, note that the only primes that

ramify in K are q and ℓ. We now use Hensel’s bound on the discriminant (see

[14] remark 1 after Proposition III.13), which tells us that the contribution of

a ramified prime to the discriminant has exponent at most n(n+ 1), where n

is the absolute degree of K. Hence D ≤ (ql)n(n+1). Estimating n, it is clear

from looking at how we defined the field K that n ≤ (ℓ − 1) · qℓ+1. Plugging

this back in for D, we may conclude that

log p ≪ logD

≤ log(qℓ)(ℓ−1)qℓ+1[(ℓ−1)qℓ+1+1]

≪ [(ℓ− 1)qℓ+1]2 log qℓ

It follows that

log log p ≪ 2(ℓ+ 1) log q + 2 log(ℓ+ 1) + log log qℓ

≪ ℓ log q ≪ ℓ

since q remains constant for any given family of qth power residue codes.
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Finally, note that we have

dp ≤ w(c) ≤ (q − 1)(p− 1)

qℓ

≪ (q − 1)(p− 1)

q log log p
≪ p

log log p
.

which is what we desired. A similar argument also gives us the desired result

when the generalised Riemann hypothesis is assumed to be true.

To see that we have found our asymptotically bad family of qth power

residue codes for any given q, we note that limℓ→∞
dp

p
≪ limℓ→∞

p
log log p

/p =

limℓ→∞
1

log log p
= 0, since p is the length of the code constructed using the

prime ℓ, and tends to infinity as ℓ approaches infinity. Hence we have found

an asymptotically bad family of qth power residue codes, as desired.
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Chapter 6

Conclusion

In this thesis, we have defined a new family of codes, the qth power

residue codes, found a lower bound on their minimal distance, and proved

that there exists an asymptotically bad subfamily of these codes for every

prime q. While the discovery of such a subfamily does not seem to bode well,

I am optimistic that the lower bound found for these codes can be substantially

improved. I would like to see the bound dmin ≥ q
√
p, which would correspond

to the square root bound for the quadratic residue codes. I currently have no

reason to believe that this bound does not hold, and am quite optimistic that

it does.

Ideally, we would like to be able to find an asymptotically good family

of these qth power residue codes. The construction of such a family seems

very difficult, if not impossible; for many years coding theorists have strug-

gled to find a better bound for the quadratic residue codes, but have only

succeeded on slight improvements to the square root bound, a conclusion that

would seem to imply that any family of quadratic residue codes of increasing

lengths would have asymptotic minimum distance approaching zero. Finding

an asymptotically good subfamily would therefore be tantamount to proving
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this better bound.

Eventually, I would not only like to work on improving the current

lower bound on the qth power residue codes, but also develop reliable method

for decoding them. Finding the automorphism group that fixes these codes

would also be a worthwhile goal, as it could help us find out even more about

their properties and potential usefulness in the world of coding theory.
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Appendix 1

Table of minimum weights

for qth power residue codes
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q = 3
p Factors of a0(x) Calculated dmin Singleton Bound Bound from Theorem 4.3.1
61 6 10 21 2
67 3 10 23 3
73 6 10 25 2
103 3 9-14 35 4
151 3 9-17 51 4
q = 5
31 10 3-4 7 2
191 10 7-17 39 2
q = 7
43 7 4 7 2
281 14 5-22 41 2
q = 13
157 26 5-6 14 2
443 26 4-22 35 2

Table 1.1: Table of minimum distances for selected qth power residue codes
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