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Abstract. Starting with a result in combinatorial number theory we prove that (apart
from a couple of exceptions that can be classified), for any elements a1, . . . , an of GF (q),
there are distinct field elements b1, . . . , bn such that a1b1 + · · ·+ anbn = 0. This implies
the classification of hyperplanes lying in the union of the hyperplanes Xi = Xj in a
vector space over GF (q), and also the classification of those multisets for which all
reduced polynomials of this range are of reduced degree q− 2. The proof is based on the
polynomial method.

1. Introduction

This paper is devoted to a result formulated in three different terminologies. We start
with a result in combinatorial number theory which might resemble Snevily’s conjecture
[7]. Then we derive two consequences (which are essentially equivalent to the original
result), one about the range of polynomials over a finite field, and one about hyperplanes
in a vector space over a finite field fully lying in the union of certain fixed hyperplanes.

Although perhaps the consequence about the range of polynomials solves a more natural
question (and raises interesting open problems), our proof is most easily formulated in
the additive combinatorial terminology, so we start with this result. It was motivated by
a result of Stéphane Vinatier [8].

Theorem 1.1. Suppose {a1, a2, . . . , ap} is a multiset in the finite field GF (p), p prime.
Then after a suitable permutation of the indices, either

∑
i iai = 0, or a1 = a2 = · · · =

ap−2 = a, ap−1 = a+ b, ap = a− b for field elements a and b, b 6= 0.

In the paper [8] Vinatier proves a similar result (though with a slightly different termi-
nology) with the extra assumption that a1, . . . , ap, when considered as integers, satisfy
a1 + · · ·+ ap = p.

Before going further, let us recall that Snevily’s conjecture states that for any abelian
group G of odd order (written multiplicatively), and positive integer n ≤ |G|, for any sets
{a1, . . . , an} and {b1, . . . , bn} of elements of G, there is a permutation π of the indices, such
that the elements a1bπ(1), a2bπ(2), . . . ,anbπ(n) are different. Alon proved this for groups
of prime degree [2] and later Dasgupta, Károlyi, Serra and Szegedy [5] for cyclic groups.
Alon’s result is in fact more general: he only assumes that {a1, . . . , an} is a multiset. Let
us remark that if this general version was true for cyclic groups (it is obviously not), then
there would be no exception in Theorem 1.1, and the proof would easily follow from this
general version.
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Theorem 1.1 will follow from the following more general result, where p is replaced by an
arbitrary prime power q and the number of elements is arbitrary.

Theorem 1.2. Suppose {a1, a2, . . . , an} is a multiset in the finite field GF (q), with n ≤ q.
Then one can find distinct field elements b1, b2, . . . , bn such that

∑
i aibi = 0, unless one

of the following holds:

(i) n = q and after permutation of the indices, a1 = a2 = · · · = aq−2 = a, aq−1 = a+b,
aq = a− b for field elements a and b, b 6= 0.

(ii) n = q − 1, and after permutation of the indices, a1 = a2 = · · · = aq−2 = a,
aq−1 = 2a for a field element a 6= 0.

(iii) n ≤ q−1 and after permutation of the indices, a1 = a2 = · · · = an−2 = 0, an−1 = b,
an = −b for a field element b 6= 0.

Note that if we let n = q = p, p prime in Theorem 1.2, then we get Theorem 1.1
(one should note that a permutation of the indices 1, 2, . . . , p and different field elements
b1, b2, . . . , bp are the same).

In Sections 2 and 3 we derive two consequences of Theorem 1.2. The proof will be given
in Section 4, finally, Section 5 is devoted to remarks and open problems.

We end this introduction with recalling Lucas’ theorem and Alon’s Combinatorial Null-
stellensatz.

Lucas’ theorem tells how binomial coefficients behave modulo a prime p. Let the p-
adic expansion of n and k be n =

∑r
i=1 nip

i−1 and k =
∑r

i=1 kip
i−1, respectively. Then(

n
k

)
≡
(
n1

k1

)
· · ·
(
nr

kr

)
modulo p. For a proof, see [6]. We will use this often without explicitly

referring to it.

Alon’s Combinatorial Nullstellensatz [1] states that if a polynomial vanishes for all sub-
stitutions from the direct product of certain sets, then it is in a certain ideal. We will
only use the following particular case:

Theorem 1.3. If a polynomial G(Y1, . . . , Yk) over the finite field GF (q) vanishes for all
substitutions, then it can be written in the following form:

G(Y1, . . . , Yk) = (Y q
1 − Y1)f1 + · · ·+ (Y q

k − Yk)fk,

where the fis are polynomials in Y1, . . . , Yk of degree at most deg(G)− q.

Proof. See Alon [1]. �

Finally, let us recall that for any finite field GF (q),
∑

x∈GF (q) x
k = 0 when 1 ≤ k ≤ q− 2,

and
∑
xq−1 = −1. We will often use this later.

2. A result about polynomials of prescribed range

In this section we give another formulation of Theorem 1.2. Although it might seem to
be a consequence, it is essentially equivalent to the original result.
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Before explaining the problem to be solved, recall that over the finite field GF (q) any
function can be represented by a polynomial of degree at most q − 1. The degree of such
a polynomial is called the reduced degree of the polynomial (function). Before stating our
result, let us state a lemma, which can be easily proved using the fact mentioned at the
end of the introduction.

Lemma 2.1. Suppose f(x) = cq−1x
q−1 + · · · + c0 is a polynomial over GF (q). Then∑

x f(x) = −cq−1 and
∑

x xf(x) = −cq−2.

For a multiset M of size q of the field elements we say that M is the range of the
polynomial f if M = {f(x) : x ∈ GF (q)} as a multiset (that is, not only values, but also
multiplicities need to be the same). Suppose we have a multiset M and wish to find a
low degree polynomial with range M . By Lemma 2.1, if the sum of elements of M is not
zero, then every reduced polynomial of this range will have reduced degree q− 1 and vice
versa, if the sum is zero, then a reduced polynomial of range M will automatically have
degree at most q − 2.

Theorem 2.2. Let M = {a1, . . . , aq} be a multiset in GF (q), with a1 + · · · + aq = 0.
There is no polynomial with range M of reduced degree at most q − 3 if and only if M
consists of q − 2 a-s, one a+ b and one a− b for field elements a and b, b 6= 0.

Proof. By Lemma 2.1, polynomials with range M have reduced degree q− 1 if and only if∑
ai 6= 0. If

∑
ai = 0, then the second statement of Lemma 2.1 shows that a polynomial

f with range M has reduced degree at most q − 3 if and only if
∑

x xf(x) = 0.

On the other hand, there is a bijection between polynomials with range M and the
ordered sets (b1, . . . , bq) (that is, permutations) of GF (q): a permutation corresponds to
the function f(bi) = ai. Under this correspondence the condition

∑
x xf(x) = 0 translates

to
∑
aibi = 0. Hence our claim follows from Theorem 1.2 (with the choice n = q).

�

Though the statement of the above theorem looks very innocent, it seems that one needs
the whole machinery of Section 4 for the proof. After this result, the natural question is
to look for polynomials of degree lower than q − 3 with prescribed range. This seems to
be a very difficult problem.

One might conjecture that the only reason for a multiset (with sum equal to zero) not
to be the range of a polynomial of degree less than q − k is that there is a value of
multiplicity at least q−k (note that a value of mutiplicity m in the range guarantees that
any polynomial of this range has degree at least m). We will get back to this in Section
5.

3. A consequence about hyperplanes of a vector space over GF (q)

In this section we prove a result about vectorspaces over finite fields, which is again
essentially equivalent to Theorem 1.2

Let q denote a prime power and denote by V the vector space of dimension n over the
finite field GF (q) consisting of all n-tuples (X1, X2, . . . , Xn). Finally, denote by Hij the
hyperplane with equation Xi = Xj (i 6= j). We are interested in hyperplanes fully
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contained in ∪i 6=jHij. Note that if n > q, then by the pigeon-hole principle the whole
space is contained in this union, so the problem is non-trivial only for n ≤ q. Our main
result is the following.

Theorem 3.1. Suppose n ≤ q and H ⊆ ∪i 6=jHij is a hyperplane in V , H 6= Hij for any
i 6= j. Then one of the following holds:

(i) n = q, H = {(X1, . . . , Xn) :
∑

iXi + c(Xj − Xk) = 0} for a field element c 6= 0
and indices j 6= k;

(ii) n = q − 1, H = {(X1, . . . , Xn) :
∑

iXi +Xj = 0} for an index j.

Proof. Let H =< (a1, . . . , an) >⊥. The condition that H is contained in ∪i 6=jHij translates
to the condition that whenever a1x1 + · · · + anxn = 0, necessarily xi = xj for an i 6= j,
or equivalently, there are no distinct elements x1, . . . , xn such that a1x1 + · · ·+ anxn = 0.
Hence we are in (i) or (ii) or (iii) of Theorem 1.2.

It is easy to see that Theorem 1.2 (i) implies (i) of the theorem being proved. If we have
(ii) from Theorem 1.2, then (ii) holds here, finally, from 1.2 (iii) we get that H = Hij for
an i and j, contradiction. �

It is not difficult to see that the hyperplanes given in (i) and (ii) are really contained in
the union.

Finally we show that affine hyperplanes only give one more example.

Theorem 3.2. All affine hyperplanes contained in ∪i 6=jHij are linear (for n ≤ q), except
when n = q and the hyperplane is a translate of (1, . . . , 1)⊥.

Proof. Suppose the affine hyperplane {(X1, . . . , Xn) : a1X1 + · · ·+anXn = c} is contained
in ∪i 6=jHij. First choose arbitrary distinct field elements x1, . . . , xn. Let d = a1x1 + · · ·+
anxn. By the assumption, d 6= c. If d 6= 0, then ( c

d
x1, . . . ,

c
d
xn) is in our hyperplane, a

contradiction, unless c = 0, what we wanted to prove.

If d = 0, then interchange the values of two coordinates, xi and xj say, to have a1x1 +
· · ·+ anxn = (ai− aj)(xj − xi). This is non-zero for well-chosen i and j (unless all the ais
are the same), so we can make the above trick to prove c = 0.

Finally, if all the ais are the same, then one can easily find distinct xis to give a1x1 +
· · ·+ anxn 6= 0 (and make the above trick), unless n = q, which was the exceptional case
in the claim. �

4. Proof of Theorem 1.2

The proof will be carried out in several steps. We will assume q ≥ 11. Small cases can
be handled easily. We will also suppose q is odd. For the proof of the even case (which is
relatively easier) see the last subsection of the present section.

In Subsection 1 we make some easy observations (with elementary combinatorial proofs).
As we will see, the theorem easily follows from the n = q case (that is why results in
Sections 2 and 3 are essentially equivalent to the result being proved).
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In Subsection 2, using algebraic methods, we will derive an identity about a polynomial
that will reflect the combinatorial properties of a multi-set {a1, . . . , ak} for which one
cannot find distinct field elements b1, . . . , bk such that a1b1 + · · · + akbk = 0. The proof
will be more or less standard application of the Nullstellensatz.

The essential part of the proof of Theorem 1.2 will be carried out in Subsection 3, where
(after supposing that one cannot find distinct field elements b1, . . . , bq such that a1b1 +
· · · + aqbq = 0), we will use the information gained in Subsection 2 to deduce first that
most of the ais are equal, and later that exactly q − 2 of them are equal.

Subsection 4 will be devoted to the q even case.

4.1. Easy combinatorial observations.

Proposition 4.1. In Theorem 1.2 everything follows from the n = q case.

Proof. If n < q, then extend the set of ais to a set of size q with an+1 = · · · = aq = 0.
After this everything easily follows from the n = q case. �

Hence from now on, we only consider the n = q case. We are looking for an ordering
b1, . . . , bq of the elements of GF (q) in such a way that

∑
aibi = 0.

Lemma 4.2. If for a multiset {a1, . . . , aq} there is no ordering b1, . . . , bq of the elements of
GF (q) such that

∑
aibi = 0, then the same holds for any translation {a1 + c, . . . , aq + c}

and any non-zero multiple {ca1, . . . , caq}.

Proof. Straightforward. �

Note that if the ais are different, then it is easy to find a suitable ordering for which∑
i biai = 0 holds (for instance let bi = ai). Hence by the previous lemma, we can suppose

that 0 is not among the ais.

Lemma 4.3. Theorem 1.2 is true if n = q odd and the ais admit at most 3 different values.

Proof. If all the ais are the same, then any ordering results in
∑

i aibi = 0, so suppose
there are at least two values.

After transformation suppose that 0 is the value with largest multiplicity and the remain-
ing two values are 1 and a (here a = 1 is possible).

First suppose a = 1 and that the 1-s are a1 = · · · = am = 1. We determine an appropriate
ordering recursively. Let b1 6= 0 arbitrary, b2 = −b1, b3 any non-zero value, which has not
been used, b4 = −b3,... If m is even, then after we determined the first m bis, the rest of
the values is arbitrary. If m is odd, then bm = 0 and the rest is arbitrary.

Next suppose a 6= 1 and that a1 = · · · = am = 1, am+1 = · · · = am+l = a, and the rest
is zero. If at most one of m and l is odd, then we can do the same as above. If m and l
are both odd, then we can get rid of one 1 and one a by letting b1 = −a and bm+1 = 1
and do the same trick as above for the rest of the values (note that q is large enough and
m+ l < 2q/3).

This does not work if a = −1. If m = l = 1, then we have that our set is q − 2 zeros, a 1
and a −1, this is the exceptional case of the claim of the theorem. If one of them, m say,
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is at least 3, then b1 = A, b2 = B, b3 = C, bm+1 = A+B + C with well-chosen A, B and
C, and the same trick again. �

In subsection 3, using algebraic tools we will be able to prove equations of the form
(a1 − a2)(a2 − a3)... = 0 for any permutation of the indices. From this, we will try to
deduce that most of the ais are the same. The following easy observations will be very
useful tools for this.

Lemma 4.4. Suppose the multiset {a1, . . . , ak} contains at least 3 different values and
denote by l the maximal multiplicity in the set. Let m1, m2 and m3 be natural numbers
with m1 + 2m2 + 3m3 = k. Then one can partition the ais into m3 classes of size 3, m2

classes of size 2 and m1 classes of size 1 in such a way, that elements in the same class
are pairwise different, provided we have one of the following cases.

(i) m2 = 0, m1 = 1, l ≤ m3;
(ii) m2 = 1, m1 = 0, l ≤ m3 + 1;

(iii) m3 = 0, l ≤ m1 +m2;
(iv) m3 = 1, m2 = 0, l ≤ m1;
(v) m3 = 1, m2 = 1, l ≤ m1 + 1.

Proof. First permute the ais in such a way that equal elements have consecutive indices.
This implies that if |i− j| ≥ l, then ai and aj are different.

(i) We have k = 3m3 +1 and l ≤ m3. Let the i-th class consist of ai, ai+m3 and ai+2m3

for i = 1, . . . ,m3; and let ak be the last class (of size 1).
(ii) We have k = 3m3 + 2 and l ≤ m3 + 1. Let the i-th class consist of ai, ai+m3+1 and

ai+2m3+2 for i = 1, . . . ,m3; and let am3+1 and a2m3+2 form the last class (of size 2).
(iii) We have k = 2m2 + m1 and l ≤ m1 + m2. Let the i-th class consist of ai and

ai+m1+m2 for i = 1, . . . ,m2; and the rest of the classes (of size 1) is arbitrary.
(iv) We know that our multiset has at least three different values, that is all we need

for this case.
(v) If m1 = 0, then we can use the already proved case (ii). Otherwise we have at least

6 elements. If we have at least 4 different values, then one of them has multiplicity
bigger than 1. It is easy to see that the arrangement is possible. If there are
exactly 3 different values, then by l ≤ m1 + 1, we know that at least two values
occur more than 1 time. Again it is easy to find the desired arrangement.

�

4.2. The algebraic tool.

After the above easy observations, we introduce the main tool of the proof.

Theorem 4.5. Suppose a1, . . . , ak are non-zero field elements with the property that there
are no distinct field elements b1, . . . , bk such that

∑
i aibi = 0. Define the following poly-

nomial:

G(Y1, . . . , Yk) =
(
(Y1 + · · ·+ Yk)

q−1 − 1
)
D(Y1, . . . , Yk),
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where D is the following determinant:∣∣∣∣∣∣∣∣∣∣
ak−1

1 ak−2
1 Y1 ak−3

1 Y 2
1 . . . Y k−1

1

. . . . .

. . . . .

. . . . .
ak−1
k ak−2

k Yk ak−3
k Y 2

k . . . Y k−1
k

∣∣∣∣∣∣∣∣∣∣
Then

G(Y1, . . . , Yk) =
k∑
i=1

(Y q
i − Yi)fi,

where the fis are polynomials in Y1, . . . , Yk of degree at most the degree of G minus q.

Proof. First consider the following polynomial:

F (X1, . . . , Xk) =
(
(a1X1 + · · ·+ akXk)

q−1 − 1
) ∏

1≤i<j≤k

(Xi −Xj).

We wish to prove that F vanishes for all substitutions.

Note that
∏

1≤i<j≤k(Xi − Xj) assures that F can only be non-zero if the substituted
X1, . . . , Xk are different.

On the other hand, (a1X1 + · · ·+ akXk)
q−1 − 1 = 0 if and only if a1X1 + · · ·+ akXk 6= 0.

By the assumption, such Xis cannot be all distinct.

Before going further note that
∏

1≤i<j≤k(Xi − Xj) is (maybe −1 times) the following
Vandermonde determinant: ∣∣∣∣∣∣∣∣∣∣

1 X1 X2
1 . . . Xk−1

1

. . . . . . .

. . . . . . .

. . . . . . .
1 Xk X2

k . . . Xk−1
k

∣∣∣∣∣∣∣∣∣∣
Now replace the variables of F with Yi := aiXi (i = 1, . . . , k). Using that

∏
1≤i<j≤k(Xi −

Xj) is essentially the Vandermonde determinant, this shows that F is zero everywhere if
and only if this is true about

(
(Y1 + · · ·+ Yk)

q−1 − 1
)
D1(Y1, . . . , Yk),

where D1 is the following determinant:∣∣∣∣∣∣∣∣∣∣
1 (Y1/a1) (Y1/a1)

2 . . . (Y1/a1)
k−1

. . . . .

. . . . .

. . . . .
1 (Yk/ak) (Yk/ak)

2 . . . (Yk/ak)
k−1

∣∣∣∣∣∣∣∣∣∣
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Finally note that one can get G from this polynomial by multiplying the i-th row of the
determinant by ak−1

i 6= 0 for i = 1, . . . , k.

Hence G is zero for all substitutions. By Theorem 1.3, G has the claimed form. �

The above theorem shows that in any term of G of maximal degree, at least one of the
Yis has degree at least q. The main idea of the proofs of the next subsection is that we
determine the coefficient (in terms of the ais) of well-chosen terms with all degrees at
most q − 1 to deduce conditions on the ais.

4.3. The essential part of the proof.

Now we are ready to prove that there is a value among the ais with large multiplicity. We
have to deal with the prime case (which is much easier) separately.

Lemma 4.6. Suppose q = p prime and there is no ordering b1, . . . , bp of the elements of
GF (p) such that

∑
i aibi = 0. Then at least p+2

3
of the ais are the same.

Proof. After transformation suppose 0 is not among the ais. Consider the polynomial G
from Theorem 4.5 with k = p. By 4.5, terms of maximal degree of G have at least one Yi
with degree at least p. We distinguish two cases according to whether p ≡ 1 (mod 3) or
p ≡ 2 (mod 3).

First suppose 3|p− 1 and let us find the coefficient of the following term:

Y p−1
1 Y p−1

2 Y p−1
3 Y p−4

4 Y p−4
5 Y p−4

6 · · ·Y 3
p−3Y

3
p−2Y

3
p−1.

First of all note that the degree of this term equals the degree of G, which is (p−1)(p+2)
2

.
By the sentence after Theorem 4.5, the coefficient (depending on the ais) has to be zero.

We claim that apart from a nonzero scalar (depending on the ais), this coefficient is

(a1−a2)(a2−a3)(a3−a1)(a4−a5)(a5−a6)(a6−a4) · · · (ap−3−ap−2)(ap−2−ap−1)(ap−1−ap−3).

To see this note that all terms of D are of the form Y p−1
π(1) Y

p−2
π(2) · · ·Y 0

π(p), where π is a

permutation of the indices {1, . . . , p}. To get the term above, we need 1, 2 and 3 for π(1),
π(2), π(3) (any order), then 4, 5 and 6 for π(4), π(5), π(6) (any order),... For any such
π, we need the term Y 0

π(1)Y
1
π(2)Y

2
π(3)Y

0
π(4)Y

1
π(5)Y

2
π(6) · · · from (Y1 + · · · + Yp)

p−1 to have the

desired product. All such terms come from (Y1 + · · · + Yp)
p−1 with the same non-zero

coefficient.

Finally, note that the terms we need from D are exactly the ones coming from the following
part of the determinant:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2
1Y

p−3
1 a1Y

p−2
1 Y p−1

1

a2
2Y

p−3
2 a2Y

p−2
2 Y p−1

2

a2
3Y

p−3
3 a3Y

p−2
3 Y p−1

3

a5
4Y

p−6
4 a4

4Y
p−5
4 a3

4Y
p−4
4

a5
5Y

p−6
5 a4

5Y
p−5
5 a3

5Y
p−4
5

a5
6Y

p−6
6 a4

6Y
p−5
6 a3

6Y
p−4
6

a8
7Y

p−9
7 a7

7Y
p−8
7 a6

7Y
p−7
7

a8
8Y

p−9
8 a7

8Y
p−8
8 a6

8Y
p−7
8

a8
9Y

p−9
9 a7

9Y
p−8
9 a6

9Y
p−7
9

.
.

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since the ais are non-zero, we can divide by suitable powers of them to see that the
coefficient we are looking for is essentially the product of Vandermonde determinants,
which is exactly what we claimed.

Before we write up G, we can permute the ais, hence we get that for any permutation π
of the indices,

(aπ(1) − aπ(2))(aπ(2) − aπ(3))(aπ(3) − aπ(1))(aπ(4) − aπ(5))(aπ(5) − aπ(6))(aπ(6) − aπ(4)) · · ·

· · · (aπ(p−3) − aπ(p−2))(aπ(p−2) − aπ(p−1))(aπ(p−1) − aπ(p−3)) = 0. (1)

Now suppose the maximal multiplicity in the multiset {a1, . . . , ap} is l ≤ p−1
3

. By Lemma
4.4 (i), this implies that we can find a permutation of the indices such that the first
3 elements are different, the second 3 are different, ... ,the last 3 are different. This
contradicts (1), so the proof of the 3|p− 1 case is done.

Now suppose 3|p+ 1 and let us find the coefficient of the following term:

Y p−1
1 Y p−1

2 Y p−1
3 Y p−4

4 Y p−4
5 Y p−4

6 · · ·Y 4
p−4Y

4
p−3Y

4
p−2Yp−1Yp.

We claim that apart from a nonzero scalar (depending on the ais), this coefficient is

(a1 − a2)(a2 − a3)(a3 − a1)(a4 − a5)(a5 − a6)(a6 − a4) · · ·

· · · (ap−4 − ap−3)(ap−3 − ap−2)(ap−2 − ap−4)(ap−1 − ap).

The rest is similar to the proof of the previous case. Here we need to use Lemma 4.4 (ii)
at the end. �

Lemma 4.7. Suppose q = ph > 9 for an odd prime p and h > 1, and that there is no
ordering b1, . . . , bq of the elements of GF (q) such that

∑
i aibi = 0. Then at least q+3

2
of

the ais are the same.

Proof. The proof is similar to the previous one, but it will be much more difficult to
determine the coefficient of the appropriate term in G.
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After transformation suppose 0 is not among the ais. Consider the polynomial G from
Theorem 4.5 with k = q. By 4.5, terms of maximal degree of G have at least one Yi with
degree at least q.

The term to give information about the ais this time is the following:

(

q∏
i=1

Y i−1
i ) · (Y1Y3Y5 · · ·Y2p−3)(Y2p−1Y2p · · ·Y3p−3)

p(Yp2+1Yp2+2 · · ·Yp2+p−1)
p2 · · ·

· · · (Yph−1+1Yph−1+2 · · ·Yph−1+p−1)
ph−1

The degree of this term is 1+2+ · · ·+(q−1)+(p−1)(1+p+p2 + · · ·+ph−1) =
(
q
2

)
+q−1,

this is the degree of G. A little calculation shows that all Yis have degree at most q − 1
in this term.

It is easy to see that one way to get this term in G is to take
∏q

i=1 Y
i−1
i from the Van-

dermonde part and the rest from (Y1 + · · ·+ Yq)
q−1. We will prove that besides this, the

only way to get this term with a non-zero coefficient is to interchange the role of some
pairs of variables with the same degree. These pairs are: Y1 and Y2 (both of degree 1),
Y3 and Y4 (both of degree 3),..., Y2p−3 and Y2p−2 (both of degree 2p− 3); Y2p−1 and Y3p−1

(both of degree 3p − 2), Y2p and Y3p (both of degree 3p − 1),...,Y3p−3 and Y4p−3 (both
of degree 4p − 4); Yp2+1 and Y2p2+1 (both of degree 2p2), Yp2+2 and Y2p2+2 (both of de-
gree 2p2 + 1),...,Yp2+p−1 and Y2p2+p−1 (both of degree 2p2 + p− 2);...;Yph−1+1 and Y2ph−1+1

(both of degree 2ph−1), Yph−1+2 and Y2ph−1+2 (both of degree 2ph−1 + 1),...,Yph−1+p−1 and
Y2ph−1+p−1 (both of degree 2ph−1 + p− 2).

Let us look for the term in question. From the Vandermonde part, all terms are of the
form Y 0

π(1) · · ·Y
q−1
π(q) for a permutation π of the indices. In the term in question, we have

only two Yis of degree less than 2: Y1 and Y2, hence {π(1), π(2)} = {1, 2}. Similarly
we get that {π(2k − 1), π(2k)} = {2k − 1, 2k} for k ≤ p − 1. This shows that the part
coming from (Y1 + · · · + Yq)

q−1 starts with Yπ(1)Yπ(3) · · ·Yπ(2p−3). The coefficient of such
a term in (Y1 + · · · + Yq)

q−1 starts with (q − 1)(q − 2) · · · (q − p + 1) (times something
depending on the degrees of the rest of the Yis). If the degree of any of the rest of the Yis
is not divisible by p, then (by Lucas’ theorem) the coefficient is zero, since it is divisible
by (q − 1)(q − 2) · · · (q − p + 1)

(
q−p
k

)
with a k not divisible by p. Hence we only have

to consider those possibilities, when the term coming from (Y1 + · · ·+ Yq)
q−1 starts with

Yπ(1)Yπ(3) · · ·Yπ(2p−3) and continues with all the Yis having degree divisible by p.

So far we have identified all Yis coming from the Vandermonde part of degree at most 2p−
3. After this, in the term in question we have (Y2p−1Y3p−1)

3p−2(Y2pY3p)
3p−1 · · · (Y3p−3Y4p−3)

4p−4.
These should come from the Vandermonde part from the terms of degrees between 2p− 2
and 4p − 4. Since we know that the corresponding terms of the part coming from
(Y1 + · · · + Yq)

q−1 all need to have degree divisible by p, the only possibility is that
we have {π(2p − 1), π(3p − 1)} = {2p − 1, 3p − 1}, {π(2p), π(3p)} = {2p, 3p},...,{π(3p −
3), π(4p− 3)} = {3p− 3, 4p− 3}.
After this there are terms with unique degrees, hence the Vandermonde part has to have

this part: Y 4p−3
4p−2 Y

4p−2
4p−1 · · ·Y

p2−1
p2 .
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Hence we already know that the part coming from (Y1 + · · · + Yq)
q−1 starts with p − 1

terms of degree 1, then p− 1 terms of degree p. This means that the rest of the Yis have
to have degree divisible by p2, since otherwise we would get a coefficient starting with

(q − 1)(q − 2) · · · (q − p+ 1)

(
q − p
p

)(
q − 2p

p

)
· · ·
(
q − (p− 1)p

p

)(
q − p2

k

)
,

where k is not divisible by p2, but this is zero.

One can continue by induction on i to show that the part coming from the Vandermonde
determinant has to have the following form:

q∏
i=1

Y i−1
π(i) ,

where (as we promised above) π is a permutation of the indices such that π(i) = i, except
for a couple of values: {π(1), π(2)} = {1, 2}, {π(3), π(4)} = {3, 4},..., {π(2p− 3), π(2p−
2)} = {2p− 3, 2p− 2};
{π(2p− 1), π(3p− 1)} = {2p− 1, 3p− 1}, {π(2p), π(3p)} = {2p, 3p},...,{π(3p− 3), π(4p−
3)} = {3p− 3, 4p− 3};
{π(p2 + 1), π(2p2 + 1)} = {p2 + 1, 2p2 + 1}, {π(p2 + 2), π(2p2 + 2)} = {p2 + 2, 2p2 +
2},...,{π(p2 + p− 1), π(2p2 + p− 1)} = {p2 + p− 1, 2p2 + p− 1};
...

{π(ph−1 + 1), π(2ph−1 + 1)} = {ph−1 + 1, 2ph−1 + 1}, {π(ph−1 + 2), π(2ph−1 + 2)} = {ph−1 +
2, 2ph−1 + 2},...,{π(ph−1 + p− 1), π(2ph−1 + p− 1)} = {ph−1 + p− 1, 2ph−1 + p− 1}.
This means that apart form a non-zero constant (including powers of those ai for which
we did not have a choice for π(i)), the term coming from the Vandermonde part is the
product of 2× 2 determinants of the form∣∣∣∣ aq−1−k

i Y k
i aq−1−k−pm

i Y k+pm

i

aq−1−k
j Y k

j aq−1−k−pm

j Y k+pm

j

∣∣∣∣ .
Dividing such a term with the non-zero (aiaj)

q−1−k−pm
and using that x → xp

m
is an

automorphism of the field, we end up in a situation similar to the prime case:

(a1 − a2)(a3 − a4) · · · (a2p−3 − a2p−2)·
(a2p−1 − a3p−1)(a2p − a3p) · · · (a3p−3 − a4p−3)·

(ap2+1 − a2p2+1)(ap2+2 − a2p2+2) · · · (ap2+p−1 − a2p2+p−1)·
...

(aph−1+1 − a2ph−1+1)(aph−1+2 − a2ph−1+2) · · · (aph−1+p−1 − a2pp−1+p−1) = 0

Similarly to the prime case, this is true after any permutation of the indices. The number
of brackets here is h(p− 1), so by Lemma 4.4 (iii), we only need q − p(h− 1) ≥ q+1

2
, this

is true for q > 9 odd.
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�

Let N denote the maximal multiplicity in the multiset {a1, ..., aq}. By the previous two
claims N is large. After translation, suppose the value in question is zero. We need
to show that if there is no ordering bi of the field elements achieving

∑
i aibi = 0, then

n = q − 2. The plan is to use the same machinery for the remaining non-zero ais.

Lemma 4.8. Suppose a1, . . . , ak are non-zero elements of GF (q) with k < 2q/3 if q = p
prime and k ≤ q−3

2
if q = ph, h ≥ 2, admitting at least 3 different values and with the

property that no value occurs more than q − k times. Either there are different elements
b1, . . . , bk such that

∑
aibi = 0 or k = 3.

Proof. Consider the polynomial G from Theorem 4.5. By 4.5, terms of maximal degree
of G have at least one Yi with degree at least q.

Just like previously, we look for appropriate terms in G to gain information about the ais.

If 4 ≤ k ≤ q+3
2

holds, then consider the following term (of maximal degree):

Y
(q−5)/2+k
1 Y

(q−5)/2+k
2 Y k−3

3 Y k−3
4 Y k−5

5 Y k−6
6 · · ·Y 0

k .

It is easy to see that there are only four terms coming from (Y1 + · · · + Yq)
q−1 that

(multiplied by the appropriate term coming from the Vandermonde part) can contribute

to this term. These four terms are YiY
q−1
2

j Y
q−3
2

k , where i = 3 or 4 and {j, k} = {1, 2}. Each

of them comes with coefficient (q− 1)
(

q−2
(q−1)/2

)
6= 0. Hence we have (a1− a2)(a3− a4) = 0.

Just like previously, this is true for any permutation of the indices. By Lemma 4.4, this
implies that there is a value among the ais with multiplicity at least k − 1 contradicting
the assumption that the ais admit at least 3 values.

Now consider the k > q+3
2

case, and note that this case can occur only if q = p prime. We
have to distinguish between two cases according to whether p ≡ 1 or 2 (mod 3).

If 3|p− 1, then consider the following term (of maximal degree):

Y
k+(p−7)/3
1 Y

k+(p−7)/3
2 Y

k+(p−7)/3
3 Y k−4

4 Y k−5
5 · · ·Y 0

k .

It is easy to see that the coefficient is a non-zero term times

(a1 − a2)(a2 − a3)(a3 − a1),

implying (by Lemma 4.4) that there is a value among the ais with multiplicity at least
k − 2. This contradicts the assumption that no value has multiplicity more than q − k.

If 3|p+ 1, then one should consider the following term (of maximal degree):

Y
k+(p−8)/3
1 Y

k+(p−8)/3
2 Y

k+(p−8)/3
3 Y k−4

4 Y k−4
5 Y k−6

6 Y k−7
7 · · ·Y 1

k−1Y
0
k .

Here the coefficient is essentially

(a1 − a2)(a2 − a3)(a3 − a1)(a4 − a5).

It is not difficult to see that similarly to the previous case, this leads to contradiction.
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�

Proof. (of Theorem 1.2) By Proposition 4.1, we can suppose k = q and by Lemma 4.3
that there are at least 4 different values among the ais. Suppose there is no ordering
b1, . . . , bq of the elements of GF (q) giving

∑
i aibi = 0. We have to find a contradiction.

After transformation (by Lemma 4.2 and the sentence after its proof) suppose 0 is not
among the ais and apply Lemma 4.6 or 4.10 to find a lot of identical among the ais. Apply
a transformation to make this value zero and apply Lemma 4.8 for the rest of the ais.
We cannot have different bis for these indices such that

∑
aibi = 0 (here the sum is only

for those i-s, for which ai 6= 0), because otherwise the bis could be easily extended to an
ordering of the field such that

∑
i aibi = 0. Hence we have k = 3, that is, the multiset

{a1, . . . , aq} contains q − 3 zeros and 3 distinct non-zero elements, a, b and c say.

Suppose a+ b 6= 0. Then ba+ (−a)b+ 0c = 0, a contradiction.

�

4.4. Proof for q even.

The proof is similar for q even. We can use Lemma 4.2 and 4.1 (the proof presented works
for q even). Lemma 4.3 should be replaced by the following.

Lemma 4.9. If our multiset has only 1 or 2 different values and n = q is even, then
Theorem 1.2 is true.

Proof. If our set has only one value (of multiplicity q) then any ordering of GF (q) is good,
so suppose we have two values.

After transformation we can achieve that 0 is the value with multiplicity ≥ q/2 and 1 is
the other value with multiplicity ≤ q/2. Hence all we need is that for any m ≤ q/2, there
are distinct field elements b1, . . . , bm such that b1 + · · ·+ bm = 0. Denote by G an additive
subgroup of GF (q) of index 2. Let b1, · · · , bm−1 be arbitrary distinct elements of G. If
b1 + · · ·+ bm−1 is distinct from all the bis, then let bm = b1 + · · ·+ bm−1 and we have the
m elements we were looking for.

If b1 + · · · + bm−1 equals one of the bis, bm−1 say, then we have b1 + · · · + bm−2 = 0. Let
a ∈ GF (q) \G. Replace bm−2 with bm−2 + a, keep bm−1, and let bm = bm−1 + a. It is easy
to see that the bis are distinct and their sum is zero. �

Lemma 4.4 and Theorem 4.5 are true for q even (the proofs presented did not assume q
is odd). Lemma 4.10 should be replaced by the following.

Lemma 4.10. Suppose q = 2h > 8, and that there is no ordering b1, . . . , bq of the elements
of GF (q) such that

∑
i aibi = 0. Then at least q/2 + 1 of the ais are the same.

Proof. After transformation suppose 0 is not among the ais. Consider the polynomial G
from Theorem 4.5 with k = q. By 4.5, terms of maximal degree of G have at least one Yi
with degree at least q.

Consider the following term:
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Y1

h−1∏
i=1

Y 2h−i

i+2

q∏
i=1

Y i−1
i

Similarly to Lemma 4.10, one can use Lucas’ theorem to find the coefficient of this term.
One can prove that to have the above term with non-zero coefficient, then from the
((Y1 + · · ·+ Yk)

q−1 − 1) part we need h variables on powers 1, 2, 4, . . . , 2h−1. Using similar
observations as before, we can conclude that this implies that the coefficient of our term
(apart from the usual non-zero constant) is

(a1 − a2)
h−1∏
i=1

(ai+2 − ai+2+2h−i).

Thus this number must equal zero for any permutation of the indices which implies that
there is a value in our multiset with multiplicity ≥ q − h+ 1 because of Lemma 4.4 (iii).

�

Instead of Lemma 4.8, one can immediately prove the following.

Lemma 4.11. Suppose a1, . . . , ak are non-zero elements of GF (q), q even with 1 < k <
q/2. Either there are different elements b1, . . . , bk such that

∑
aibi = 0 or all the ais are

the same.

Proof. Consider the polynomial G from Theorem 4.5. By 4.5, terms of maximal degree
of G have at least one Yi with degree at least q.

Consider the following term:

(YkYk−1)
q/2+k−2 · Y k−3

k−2 · · ·Y
1
2 Y

0
1 .

It is easy to see that there are only two possibilyties to get this term and the coefficient
we have (apart from a non-zero constant) is ak − ak−1. This implies ak−1 = ak and, since
we can permute the indices at the beginning, that all the ais are the same. �

After these lemmas, the proof is easy.

5. Final remarks

We would like to remark that for the prime case, that is Theorem 1.1, Péter Csikvári found
a relatively short elementary proof [4]. It very much seems however that for general prime
powers there is no proof without algebraic techniques.

The result presented in this paper raises natural problems, that seem to be very hard.
Instead of the problem considered in Theorem 1.2, one can ask for distinct elements
b1, . . . , bk such that

∑
i b
l
iai = 0 for l = 1, ..., L, where L is a prescribed integer (we

get back our result if we let L = 1). This corresponds to looking for polynomials of
prescribed range of degree at most q − 2− L, a problem already mentioned in Section 2.
Let us formulate a conjecture about this.
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Conjecture 5.1. Suppose M = {a1, . . . , aq} is a multiset of GF (q) with a1+· · ·+aq = 0,
where q = ph, p prime. Let k <

√
p. If there is no polynomial with range M of degree less

than q − k, then M contains an element of multiplicity at least q − k.

To explain why one needs an upper bound on k in the above conjecture, let us suppose
that q = p is prime and define the multiset as 1 with multiplicity m, −m with multiplicity
1 and 0 with mutliplicity p−m− 1. By a result of Biró [3], all polynomials of this range
have degree at least roughly 3p/4, unless m = p−1

2
or p−1

3
or 2p−1

3
. This shows that for

q = p prime, we need k < p/4.

The problem considered in Theorem 1.1 could also be generalized to finite (abelian) groups
(written multiplicatively) by taking any elements a1, . . . , an of the group and looking for

different degrees b1, . . . , bn from [1, |G|] such that ab11 · · · a
bk
k = 1. (Here, to avoid trivial

cases, for every i one should not allow those bis for which abii = 1 holds.)
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