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Abstract

Let Fq be the finite field of q elements. Let H ⊆ F∗

q
be a multiplicative subgroup.

For a positive integer k and element b ∈ Fq, we give a sharp estimate for the number of

k-element subsets of H which sum to b.

1 Introduction

Let Fq be the finite field of q elements of characteristic p. Let H ⊆ Fq be a subset. Let

1 ≤ k ≤ |H| be a positive integer. For b ∈ Fq, let MH(k, b) denote the number of k-element

subsets S ⊆ H such that ∑

a∈S

a = b.

The decision version of the k-subset sum problem for H is to determine if MH(k, b) > 0.

This problem arises naturally from a number of important applications in coding theory

and cryptography. It is a well known NP-complete problem, and thus there is not much

more one can say about the solution number MH(k, b) in such a generality. The main

difficulty comes from the combinatorial flexibility in choosing the subset H and thus the

lack of algebraic structure for the subset H. From algorithmic point of view, the dynamic

1MSC: 05A15 11T24 11T99 12E20
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algorithm [2] can be used to show that the decision version of the k-subset sum problem

can be solved in polynomial time if H is a large subset of Fq in the sense that |H| is of size
qǫ for some constant ǫ > 0. From mathematical point of view, we are more interested in

the actual value of the solution number MH(k, b). Ideally, we would like to have an explicit

formula or an asymptotic formula for the solution number MH(k, b). This is apparently too

much to hope for in general. However, we believe that it should be possible to obtain an

asymptotic formula for the number MH(k, b) for k in certain range if H is close to a large

subset of Fq with certain algebraic structure. For example, it is shown in [4] that if Fq −H

is a small set, then a good asymptotic formula for MH(k, b) can be obtained. In addition, if

H = Fq, or F
∗
q or any additive subgroup of Fq, then an explicit formula for MH(k, b) (with

no error term) is obtained in [4][5].

When H is close to a multiplicative subgroup of Fq, the situation is more complicated

as the multiplication operation is different from the addition operation in the subset sum

problem. A multiplicative subgroup is far from the additive structure. The subset sum

problem in this case becomes a highly non-linear algebraic problem with combinatorial

constraints. In this paper, we study the case that H is a multiplicative subgroup of F∗
q

and obtain a sharp asymptotic formula for the number MH(k, b) if the index [F∗
q : H] is

reasonably small. Our main tool is the new sieve formula from [5] together with standard

character sum arguments over finite fields.

From now on, we let H be a multiplicative subgroup of F∗
q with index m. Thus, |H| =

(q − 1)/m. The number of k-subsets of H is
((q−1)/m

k

)
, and the sum could be any element

b of the field Fq. One expects that in favorable cases that the k-subset sums are equally

distributed and thus MH(k, b) should be about 1
q

((q−1)/m
k

)
. The key is then reduced to

estimating the error term. Our main result is the following

Theorem 1.1. Let 1 ≤ k ≤ (q − 1)/m. For b ∈ F∗
q, we have the asymptotic formula

∣∣∣∣MH(k, b) − 1

q

(
(q − 1)/m

k

)∣∣∣∣ ≤
2√
q

(√
q + k + q

mp

k

)
;

and for b = 0, we have
∣∣∣∣MH(k, 0) − 1

q

(
(q − 1)/m

k

)∣∣∣∣ ≤
(√

q + k + q
mp

k

)
,

where p is the characteristic of Fq.

Because of the obvious symmetry

MH(k, b) = MH(|H| − k,
∑

a∈H

a− b),

we may without loss of generality assume that k ≤ |H|/2 = (q − 1)/2m.

Corollary 1.2. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 6 ln q < k ≤ q−1

2m , then MH(k, b) > 0 for all b ∈ Fq.
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Note that even in the case that H is a multiplicative subgroup of F∗
q, we still do not

know a complete polynomial time algorithm to decide if MH(k, b) > 0, if m is large. The

result in above corollary gives a partial answer to this algorithmic question. The case that k

is small (say, k ≤ 6 ln q) can be treated using an easier Brun sieve approach [1], but to get a

non-trivial lower bound, one needs to assume that m is significantly smaller. For example,

in the case k = 2, one may need to assume that m < q1/4 to guarantee the existence of

a non-trivial Fq-rational point on the curve Xm
1 + Xm

2 = b. For algorithmic purpose, the

small k case can often be done by a quick exhaustive search or by using the more efficient

dynamic algorithm.

To illustrate our ideas, we will also consider the following related but somewhat simpler

problem of counting points on diagonal equations with distinct coordinates. Since H is a

subgroup of F∗
q with index m|(q − 1), we have H = {xm|x ∈ F∗

q}. For 0 ≤ k ≤ q − 1, let

N∗
m(k, b) denote the number of solutions of the diagonal equation

xm1 + xm2 + · · ·+ xmk = b,

where the xi’s are in F∗
q and the xi’s are distinct. There is an obvious way to compute

N∗
m(k, b) via the classical inclusion-exclusion principle. Define

X = {(x1, x2, . . . , xk) ∈ (F∗
q)

k|xm1 + xm2 + · · ·+ xmk = b}.

Then

N∗
m(k, b) = #{(x1, x2, . . . , xk) ∈ X|xi 6= xj , i 6= j}.

Let

Xij = {(x1, x2, . . . , xk) ∈ X|xi = xj , i 6= j}, Xc
ij = X −Xij.

Applying the classical inclusion-exclusion principle, we obtain

N∗
m(k, b) = |

⋂

1≤i≤j≤k

Xc
ij |

= |X| −
∑

1≤i≤j≤k

|Xij |+
∑

1≤i≤j≤k

1≤s≤t≤k

|Xij

⋃
Xst| − · · ·+ (−1)(

k

2)|
⋂

1≤i≤j≤k

Xij |.

Each term on the right side can be estimated using some basic properties of Gauss sum

and Jacobi sum. The main terms are of at most O(qk). However, the number of terms in

the above inclusion-exclusion is 2(
k

2) which can add up to a total error term which may be

greater than the main term O(qk) as soon as k is greater than Ω(
√
q). Fortunately in [5],

J.Y.Li and D. Wan presented a new sieve for distinct coordinate counting problem which

can be used for our estimation. This sieve reduces the number of total terms from 2(
k

2) to

k!, allowing us to deduce non-trivial information for k as large as a fraction of q (and thus

much larger than O(
√
q). We will introduce their sieve briefly in Section 2. Now we state

our main asymptotic formula for the number N∗
m(k, b).
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Theorem 1.3. For all b ∈ F∗
q, we have

∣∣∣∣N
∗
m(k, b)− (q − 1)k

q

∣∣∣∣ ≤
2√
q

(
m
√
q + k +

q

p

)

k

, (1.1)

and for b = 0, we have

∣∣∣∣N
∗
m(k, 0) − (q − 1)k

q

∣∣∣∣ ≤
(
m
√
q + k +

q

p

)

k

,

where (t)k = t(t− 1) · · · (t− k + 1) for a real number t.

Again, we have the symmetry

N∗
m(k, b) = N∗

m(q − 1− k,
∑

a∈H

am − b).

Thus, we may assume that 0 ≤ k ≤ (q − 1)/2.

Corollary 1.4. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 6 ln q < k ≤ q−1

2 then N∗
m(k, b) > 0 for all b ∈ Fq.

Some preliminaries will be introduced briefly in section 2. In section 3, we will illustrate

the asymptotic formula for the number N∗
m(k, b). The punchline will be our asymptotic

formula for MH(k, b).

2 Preliminaries

2.1 Li-Wan’s new sieve

In [5], J.Y. Li and D. Wan presented a new sieve for the distinct coordinate counting

problem. We will introduce it briefly.

Let D be a finite set. For a positive integer k, let Dk = D × D × · · · × D be the

Cartesian product of k copies of D. Let X ⊂ Dk. Every element x ∈ X can be written as

x = (x1, . . . , xk) with xi ∈ D. We are interested in counting the number of elements in X

with distinct coordinates, i.e., the cardinality of the set

X = {(x1, . . . , xk) ∈ X|xi 6= xj, i 6= j}.

Let Sk be the symmetric group. For a given permutation τ ∈ Sk, write its disjoint cycle

product as τ = (i1 · · · ia1)(j1 · · · ja2) · · · (l1 · · · las), where ai ≥ 1, 1 ≤ i ≤ s. Define the sign

of τ as sign(τ) = (−1)k−l(τ),where l(τ) is the number of disjoint cycles in τ . Define

Xτ = {(x1, . . . , xk) ∈ X|xi1 = · · · = xia1 , . . . , xl1 = · · · = xlas}.

We have the following theorem:
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Theorem 2.1.

|X| =
∑

τ∈Sk

sign(τ)|Xτ |.

Moreover, the group Sk acts on Dk by permuting its coordinates, that is

τ ◦ (x1, . . . , xk) = (xτ(1), . . . , xτ(s)).

If X is invariant under the action of Sk, we call it symmetric. A permutation τ ∈ Sk is said

to be of type (c1, . . . , ck) if τ has exactly ci cycles of length i. Let N(c1, . . . , ck) denote the

number of permutations of type (c1, . . . , ck) in Sk. We have the following theorem which

will be used in our main results of this paper.

Theorem 2.2. If X is symmetric, then

|X | =
∑

∑
ici=k

(−1)k−
∑

ciN(c1, . . . , ck)|Xτ |.

2.2 Some combinatorial formulas

In order to prove the main results in this paper, we need to know some combinational

formulas as follows. Their proofs can be found in [5]. Let N(c1, . . . , ck) be the number of

permutations of type (c1, . . . , ck) in Sk. From [6], we can see:

N(c1, . . . , ck) =
k!

1c1c1!2c2c2! · · · kckck!
.

Lemma 2.3. Define the generating function

Ck(t1, . . . , tk) =
∑

∑
ici=k

N(c1, . . . , ck)t
c1
1 · · · tckk .

(1) If t1 = · · · = tk = q, then

Ck(q, . . . , q) = (q + k − 1)k.

(2) If q ≥ d, d|(q − s) and ti = q for d|i, ti = s for d ∤ i, then

Ck(

d−1︷ ︸︸ ︷
s, . . . , s, q,

d−1︷ ︸︸ ︷
s, . . . , s, q, . . . ) = k!

⌊k
d
⌋∑

i=0

( q−s
d + i− 1
q−s
d − 1

)(
s+ k − di− 1

s− 1

)
. (2.1)

Lemma 2.4. For any giver positive integers m,n, q and l, we have

∑

i≥0

(
l + i

n

)(
q − i

m

)
≤

(
l + q + 1

m+ n+ 1

)
.

As a corollary, we get
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Corollary 2.5. For any given positive integers s, d, k, q with q ≥ s and d|(q − s), we have

Ck(

d−1︷ ︸︸ ︷
s, . . . , s, q,

d−1︷ ︸︸ ︷
s, . . . , s, q, . . . ) ≤

(
s+ k +

q − s

d
− 1

)

k

.

P roof.

Ck(

d−1︷ ︸︸ ︷
s, . . . , s, q,

d−1︷ ︸︸ ︷
s, . . . , s, q, . . . ) = k!

⌊k
d
⌋∑

i=0

( q−s
d + i− 1
q−s
d − 1

)(
s+ k − di− 1

s− 1

)

≤ k!

⌊k
d
⌋∑

i=0

( q−s
d + i− 1
q−s
d − 1

)(
s+ k − i− 1

s− 1

)

≤ k!

(
s+ k + q−s

d − 1

k

)
=

(
s+ k +

q − s

d
− 1

)

k

.

2.3 Gauss sums and Jacobi sums

In this subsection, we review and prove some basic properties of Gauss-Jacobi sums that

are needed in our proof.

Definition 2.6. A multiplicative character on F∗
q is a map χ from F∗

q to the nonzero complex

numbers C∗ that satisfies χ(ab) = χ(a)χ(b) for all a, b ∈ F∗
q. We extend the definition to

the whole field Fq by defining

χ(0) =

{
1, χ = 1;

0, otherwise.

Definition 2.7. Let χ be a multiplicative character on Fq and a ∈ Fq. Set

ga(χ) =
∑

t∈Fq

χ(t)ζTr(at),

where ζ = e2πi/p and Tr denotes the trace map from Fq to Fp. The sum ga(χ) is called a

Gauss sum on Fq and we often denote g1(χ) by g(χ).

Proposition 2.8. If χ 6= 1, then |g(χ)| = √
q.

It’s proof can be seen in [3] when q = p, where p is a prime. For q = pr, the proof is

similar.

Definition 2.9. Let χ1, . . . , χn be multiplicative characters on Fq. We define the following

four Jacobi type sums by

J(χ1, . . . , χn) =
∑

y1+···+yn=1

χ1(y1)χ2(y2) . . . χn(yn).

J0(χ1, . . . , χn) =
∑

y1+···+yn=0

χ1(y1)χ2(y2) . . . χn(yn).
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J∗(χ1, . . . , χn) =
∑

y1+···+yn=1

all yi 6=0

χ1(y1)χ2(y2) . . . χn(yn).

J∗
0 (χ1, . . . , χn) =

∑

y1+···+yn=0

all yi 6=0

χ1(y1)χ2(y2) . . . χn(yn).

The first two sums are standard Jacobi sums. The last two sums are related to the first

two sums. These Jacobi type sums have the following properties:

Proposition 2.10. Let χi1 = · · · = χie = 1 but χie+1
6= 1, . . . , χin 6= 1. Then,

J(χ1, χ2, . . . , χn) =

{
qn−1, if e = n,

0, if 1 ≤ e < n.

J0(χ1, χ2, . . . , χn) =





qn−1, if e = n,

0, if 1 ≤ e < n,

0, if e = 0, χ1χ2 . . . χn 6= 1,

χn(−1)(q − 1)J(χ1, χ2, . . . , χn−1) otherwise.

J∗(χ1, χ2, . . . , χn) =

{
1
q [(q − 1)n − (−1)n], if e = n,

(−1)eJ(χie+1
, χie+2

, . . . , χin), if 0 ≤ e < n.

J∗
0 (χ1, χ2, . . . , χn) =

{
1
q [(q − 1)n − (q − 1)(−1)n−1], if e = n,

(−1)eJ0(χie+1
, χie+2

, . . . , χin), if 0 ≤ e < n.

Proof . If y1, y2, . . . , yn−1 are chosen arbitrarily in Fq, then yn is uniquely determined

by the condition y1 + y2 + · · · + yn = 0. Thus J0(1, 1, . . . , 1) = J(1, 1, . . . , 1) = qn−1. An

application of the inclusion-exclusion principle gives

J∗(1, 1, . . . , 1) =
∑

y1+···+yn=1

yi 6=0

1

= qn−1 −
(
n

1

)
qn−2 + (−1)2

(
n

2

)
qn−3 + · · ·+ (−1)n−1

(
n

n− 1

)
q0

=
1

q
[(q − 1)n − (−1)n].

Similarly,

J∗
0 (1, 1, . . . , 1) =

∑

y1+···+yn=0

yi 6=0

1

=
∑

s∈F∗
q

∑

y1+···+yn−1=−s

yi 6=0

1

= (q − 1)J∗(χ1, . . . , χn−1)

=
1

q
[(q − 1)n − (q − 1)(−1)n−1].
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If e = 0, then none of the χi is trivial and thus χi(0) = 0. We obtain

∑

y1+···+yn=1

χ1(y1)χ2(y2) . . . χn(yn) =
∑

y1+···+yn=1

yi 6=0

χ1(y1)χ2(y2) . . . χn(yn),

as the term χ1(y1)χ2(y2) . . . χn(yn) yields 0 if there is some yi = 0. Hence, we complete

the proof of J∗(χ1, χ2, . . . , χn) = J(χ1, χ2, . . . , χn). The proof of J∗
0 (χ1, χ2, . . . , χn) =

J0(χ1, χ2, . . . , χn) is similar.

If 1 ≤ e < n, without loss of generality, we may assume that χ1, χ2, . . . , χe are trivial

and the rest are nontrivial. Then

∑

y1+···+yn=0

χ1(y1)χ2(y2) . . . χn(yn)

= qe−1
∑

ye+1,ye+2,...,yn

χe+1(ye+1)χe+2(ye+2), . . . , χn(yn)

= qe−1
∑

ye+1

χe+1(ye+1)
∑

ye+2

χe+2(ye+2) · · ·
∑

yn

χn(yn) = 0.

Thus J0(χ1, χ2, . . . , χn) = 0, and similarly for J(χ1, χ2, . . . , χn). For J
∗ Jacobi sum, we can

apply the inclusion-exclusion principle and deduce

J∗(χ1, χ2, . . . , χn) =
∑

y1+···+yn=1

yi 6=0,1≤i≤n

χe+1(ye+1) . . . χn(yn)

=
∑

y1+···+yn=1

yi 6=0,1≤i≤e

χe+1(ye+1) . . . χn(yn)

=
∑

y1+···+yn=1

χe+1(ye+1) . . . χn(yn)−
∑

y2+···+yn=1

χe+1(ye+1) . . . χn(yn)

+ · · ·+ (−1)e
∑

ye+1+···+yn=1

χe+1(ye+1) . . . χn(yn)

= J(1, . . . , 1, χe+1, . . . , χn) + · · ·+ (−1)eJ(χe+1, . . . , χn)

= (−1)eJ(χe+1, . . . , χn).

The proof for J∗
0 (χ1, χ2, . . . , χn) is similar.

Finally, if e = 0, then

J0(χ1, χ2, . . . , χn) =
∑

s

∑

y1+y2+···+yn−1=−s

χ1(y1)χ2(y2) . . . χn−1(yn−1)χn(s)

We can assume s 6= 0 in the above sum and define y′i = −yi/s. Then

∑

y1+···+yn−1=−s

χ1(y1)χ2(y2) . . . χn−1(yn−1)

= χ1χ2 . . . χn−1(−s)
∑

y′1+y′2+···+y′n−1=1

χ1(y
′
1)χ2(y

′
2) . . . χn−1(y

′
n−1)

= χ1χ2 . . . χn−1(−s)J(χ1, χ2, . . . , χn−1).

8



Combining these results, we have

J0(χ1, χ2, . . . , χn) = χ1χ2 . . . χn−1(−1)J(χ1, χ2, . . . , χn−1)
∑

s 6=0

χ1χ2 . . . χn(s).

The last sum is 0 if χ1χ2 . . . χn 6= 1 and q− 1 if χ1χ2 . . . χn = 1. The proposition is proved.

Proposition 2.11. If χ1, χ2, . . . , χn are nontrivial and χ1χ2 . . . χn 6= 1, we have

g(χ1)g(χ2) . . . g(χn) = J(χ1, χ2, . . . , χn)g(χ1χ2 . . . χn).

Corollary 2.12. If χ1, χ2, . . . , χn are nontrivial and χ1χ2 . . . χn = 1, then

(1)

g(χ1)g(χ2) . . . g(χn) = χn(−1)qJ(χ1, χ2, . . . , χn−1).

(2)

J(χ1, χ2, . . . , χn) = −χn(−1)J(χ1, χ2, . . . , χn−1).

P roof. The proofs of Proposition and corollary above 2.11 can also be seen in [3] when

q = p, and when q = pr, the proofs are similar.

Proposition 2.13. Assume that χ1, χ2, . . . , χn are nontrivial.

(1) If χ1χ2 . . . χn 6= 1, then

|J(χ1, χ2, . . . , χn)| = q(n−1)/2.

(2) If χ1χ2 . . . χn = 1, then

|J0(χ1, χ2, . . . , χn)| = (q − 1)q(n/2)−1.

and

|J(χ1, χ2, . . . , χn)| = q(n/2)−1.

As a corollary, if all the χi are nontrivial, we have

|J(χ1, χ2, . . . , χn)| ≤ q(n−1)/2. (2.2)

Proof. Their proofs are directly from Proposition 2.11, Proposition 2.8, Proposition 2.10

and Corollary 2.12.

3 Solutions with distinct coordinates

Recall that MH(k, b) denotes the number of k-element subsets S ⊆ H such that
∑

a∈S a = b.

Namely, MH(k, b) is the number of unordered k-tuples (x1, x2, . . . , xk) with distinct xi ∈ H

such that

x1 + x2 + · · ·+ xk = b. (3.1)

9



If we denote NH(k, b) be the number of ordered k-tuples with distinct coordinates satisfying

the equation above, it’s clear that NH(k, b) = k!MH(k, b).

Note that H = {ym|y ∈ F∗
q}. If (x1, x2, . . . , xk) is a k-tuple satisfying the equation

above, then there exist some yi ∈ F∗
q such that xi = ymi , 1 ≤ i ≤ k, and (y1, y2, . . . , yk) is a

k-tuple satisfying the following equation

ym1 + ym2 + · · ·+ ymk = b. (3.2)

Let N∗
m(k, b) be the number of ordered k-tuples (y1, y2, . . . , yk) with distinct yi ∈ F∗

q satis-

fying equation (3.2).

Remark 3.1. The number of solutions with distinct coordinates in H for equation (3.1)

(i.e.NH (k, b)) is not equal to the number of solutions with distinct coordinates in F∗
q for

equation (3.2)(i.e.N∗
m(k, b)). However there exists a delicate relationship between them,

which will be described in details later.

3.1 Estimate for N∗
m(k, b) with b 6= 0

As defined above,

N∗
m(k, b) = #{(x1, x2, . . . , xk) ∈ (F∗

q)
k|xm1 + xm2 + · · ·+ xmk = b, xi distinct for 1 ≤ i ≤ k}.

For a positive integer d and element a ∈ Fq, we shall use the following well known relation:

#{x ∈ Fq|xd = a} =
∑

χd=1

χ(a),

where χ runs over all multiplicative characters of Fq of order dividing d.

In this subsection, we will estimate N∗
m(k, b) for b ∈ F∗

q.

Lemma 3.2. Let d1, · · · , dn be positive integers. Define

N∗ = #{(x1, . . . , xn) ∈ (F∗
q)

n|a1xd11 + · · ·+ anx
dn
n = b},

where b, ai(1 ≤ i ≤ n) are in F∗
q. Then, we have

∣∣∣∣N
∗ − 1

q
[(q − 1)n − (−1)n]

∣∣∣∣ ≤
n−1∑

e=0

∑

1≤ie+1<ie+2<···<in≤n

n∏

j=e+1

(dij − 1)
√
qn−e−1. (3.3)

10



Proof. Without loss of generality, we can assume b = 1 and di|(q − 1).

N∗ =
∑

y1+···+yn=1

yi 6=0

n∏

i=1

#{aixdii = yi} =
∑

y1+···+yn=1

yi 6=0

n∏

i=1

∑

χ
di
i =1

χi(
yi
ai
)

=
∑

χ
d1
1 =···=χdn

n =1

n∏

i=1

χ−1(ai)
∑

y1+···+yn=1

yi 6=0

χ1(y1) · · ·χn(yn)

=
1

q
[(q − 1)n − (−1)n]

+
n−1∑

e=0

∑

χ
d1
1

= · · · = χdn
n = 1

χi1
= · · · = χie

= 1

χie+1
, . . . , χin

6= 1

n∏

i=1

χ−1(ai)J
∗(χ1, . . . , χn)

=
1

q
[(q − 1)n − (−1)n]

+
n−1∑

e=0

∑

χ
d1
1

= · · · = χdn
n = 1

χi1
= · · · = χie

= 1

χie+1
, . . . , χin

6= 1

n∏

i=1

χ−1(ai)(−1)eJ(χie+1
, . . . , χin).

With Proposition 2.13, we have

∣∣∣∣N
∗ − 1

q
[(q − 1)n − (−1)n]

∣∣∣∣ ≤
n−1∑

e=0

∑

1≤ie+1<ie+2<···<in≤n

n∏

j=e+1

(dij − 1)
√
qn−e−1.

As a corollary, if di = m, for all 1 ≤ i ≤ k, then

∣∣∣∣N
∗ − 1

q
[(q − 1)n − (−1)n]

∣∣∣∣ ≤
n−1∑

e=0

(
n

e

)
(m− 1)n−e√qn−e−1 (3.4)

< (1 + (m− 1)
√
q)n/

√
q. (3.5)

Theorem 3.3. For all b ∈ F∗
q, we have

∣∣∣∣N
∗
m(k, b) − (q − 1)k

q

∣∣∣∣ <
2√
q

(
m
√
q + k +

q

p

)

k

.

P roof . Let X∗ = {(x1, . . . , xk) ∈ (F∗
q)

k|xm1 + · · · + xmk = b}. As X∗ is symmetric, we

can apply

N∗
m(k, b) =

∑
∑

ici=k

(−1)k−
∑

ciN(c1, . . . , ck)|X∗
τ |,

where τ is of type (c1, . . . , ck), and X∗
τ = {(x11, . . . , xkck) ∈ (F∗

q)
∑

ci |xm11+ · · ·+xm1c1 +2xm21+

· · ·+2xm2c2 + · · ·+kxmk1+ · · ·+kxmkck = b}. In order to compute N∗
m(k, b), we should compute

|X∗
τ | first. Denote

δi(p) =

{
0, p ∤ i;

1, p|i

11



and n =
∑

ci(1− δi(p)). Then,

|X∗
τ | = (q − 1)

∑
ciδi(p)#{(· · · , xiti , · · · ) ∈ (F∗

q)
n|

∑

1≤i≤k;1≤ti≤ci,

p∤i

ixmiti = b}.

Applying (3.4), we have

∣∣∣∣|X
∗
τ | −

1

q
(q − 1)

∑
ci

∣∣∣∣ ≤ (q − 1)
∑

ciδi(p) + (q − 1)
∑

ciδi(p)(1 + (m− 1)
√
q)

∑
ci(1−δi(p))/

√
q

< 2(q − 1)
∑

ciδi(p)(1 + (m− 1)
√
q)

∑
ci(1−δi(p))/

√
q.

Then apply Theorem 2.2 and Corollary 2.5, we have

∣∣∣∣N
∗
m(k, b)− (q − 1)k

q

∣∣∣∣ <
2√
q

(
(m− 1)

√
q + k +

q − (m− 1)
√
q

p

)

k

≤ 2√
q

(
(m− 1)

√
q + k +

q − 1

p

)

k

≤ 2√
q

(
m
√
q + k +

q

p

)

k

.

Theorem 3.4. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 3 ln 4q < k ≤ q−1

2 then N∗
m(k, b) > 0 for all b ∈ F∗

q.

Proof . Replacing c by a smaller constant if necessary, we may assume that m <

c
√
q − 1 <

√
q, then (m− 1)

√
q ≤ m

√
q − 1. By Theorem 3.3, it is sufficient to prove

(q − 1)k
q

≥ 2√
q

(
q − 1

p
+ k +m

√
q − 1

)

k

,

that is
(q − 1)k

( q−1
p + k +m

√
q − 1)k

≥ 2
√
q.

This holds obviously when the following inequality holds:

q − 1
q−1
p + k +m

√
q − 1

≥ (4q)
1
2k .

Since m < c
√
q − 1 and k ≤ q−1

2 , it is sufficient to prove the following inequality holds:

q − 1
q−1
p + k +m

√
q − 1

≥ 1
1
p + 1

2 + c
≥ (4q)

1
2k .

Now, p ≥ 3 and thus 1/p + 1/2 ≤ 5/6. It is sufficient to choose a positive constant c

satisfying the inequality c ≤ 1

(4q)
1
2k

− 5
6 . This is possible if (4q)

1
2k < e1/6, where e is the

natural number. That is, if k > 3 ln 4q. The proof is complete.
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3.2 Estimate for N∗
m(b, 0)

We now turn to the study of the number N∗
m(k, b) when b = 0.

Lemma 3.5. Let d1, · · · , dn be positive integers. Let

N∗
0 = #{(x1, . . . , xn) ∈ (F∗

q)
n|a1xd11 + · · ·+ anx

dn
n = 0},

where ai ∈ F∗
q. Then,

∣∣∣∣N
∗
0 − 1

q
(q − 1)n

∣∣∣∣ ≤
q − 1

q
+

n−1∑

e=0

∑

lie+1
die+1

+···+
lin
din

∈Z

1≤lij
≤dij

−1

(q − 1)q
n−e
2

−1. (3.6)

Proof . Without loss of generality, we can assume di|(q − 1).

N∗
0 =

∑

y1+···+yn=0

yi 6=0

n∏

i=1

#{aixdii = yi} =
∑

y1+···+yn=0

yi 6=0

n∏

i=1

∑

χ
di
i =1

χi(
yi
ai
)

=
∑

χ
d1
1 =···=χdn

n =1

n∏

i=1

χ−1(ai)
∑

y1+···+yn=0

yi 6=0

χ1(y1) · · ·χn(yn)

=
1

q
[(q − 1)n − (q − 1)(−1)n−1]

+

n−1∑

e=0

∑

χ
d1
1

= · · · = χdn
n = 1

χi1
= · · · = χie

= 1

χie+1
, . . . , χin

6= 1

n∏

i=1

χ−1(ai)J
∗
0 (χ1, . . . , χn)

=
1

q
[(q − 1)n − (q − 1)(−1)n−1]

+

n−1∑

e=0

∑

χ
d1
1

= · · · = χdn
n = 1

χi1
= · · · = χie

= 1

χie+1
, . . . , χin

6= 1

χie+1
χie+2

. . . χin
= 1

n∏

i=1

χ−1(ai)(−1)eJ0(χie+1
, . . . , χin).

By the estimation for the sums J0 and J in Proposition 2.13, we have

∣∣∣∣N
∗
0 − 1

q
(q − 1)n

∣∣∣∣ ≤
q − 1

q
+

n−1∑

e=0

∑

lie+1

die+1

+ · · · +
lin
din

∈ Z

1 ≤ lij
≤ dij

− 1

1 ≤ ie+1 < · · · < in ≤ n

(q − 1)q
n−e
2

−1.

In particular, when di = m for all 1 ≤ i ≤ n, we have

∣∣∣∣N
∗
0 − 1

q
(q − 1)n

∣∣∣∣ ≤
q − 1

q
+

q − 1

q
[

n−1∑

e=0

(
n

e

)
(m− 1)n−e√qn−e]

=
q − 1

q
(1 + (m− 1)

√
q)n ≤ (1 + (m− 1)

√
q)n.
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Theorem 3.6. We have
∣∣∣∣N

∗
m(k, 0) − (q − 1)k

q

∣∣∣∣ ≤
(
m
√
q + k +

q

p

)

k

. (3.7)

Proof . Let X∗
0 = {(x1, . . . , xk) ∈ (Fk

q)
∗|xm1 + · · ·+ xmk = 0}. As X is symmetric we can

apply

N∗
m(k, 0) =

∑
∑

ici=k

(−1)k−
∑

ciN(c1, . . . , ck)|X∗
0τ |,

where τ is of type (c1, . . . , ck), and X∗
0τ = {(x11, . . . , xkck) ∈ (F∗

q)
∑

ci |xm11 + · · · + xm1c1 +

2xm21 + · · · + 2xm2c2 + · · ·+ kxmk1 + · · · + kxmkck = 0}. In order to compute N∗
m(k, 0), we need

to compute X∗
0τ first. Let δi(p), n be defined the same way as before. We have

|X∗
0τ | = (q − 1)

∑
ciδi(p)#{(· · · , xiti , · · · ) ∈ (F∗

q)
n|

∑

1≤i≤k;1≤ti≤ci,

p∤i

ixmiti = 0}.

With the result of Lemma 3.5, we can conclude

∣∣∣∣∣|X
∗
0τ | −

(q − 1)
∑

ci

q

∣∣∣∣∣ ≤ (q − 1)
∑

ciδi(p)(1 + (m− 1)
√
q)n.

Applying Theorem 2.2 and Corollary 2.5, we have

∣∣∣∣N
∗
m(k, 0) − (q − 1)k

q

∣∣∣∣ ≤
∑

∑
ici=k

N(c1, c2, . . . , ck)(q − 1)
∑

ciδi(p)(1 + (m− 1)
√
q)n

≤
(
(m− 1)

√
q + k +

q − 1

p

)

k

≤
(
m
√
q + k +

q

p

)

k

.

Theorem 3.7. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 6 ln q < k ≤ q−1

2 then N∗
m(k, 0) > 0.

P roof . The proof is similar to the proof of Theorem 3.4.

4 The subset sum problem

Suppose H is a subgroup of F∗
q, so H = {xm|x ∈ F∗

q}, as F∗
q is a cyclic group. Our goal is

to estimate NH(k, b) ( and thus MH(k, b)), which is the number of solutions with distinct

coordinates in H of the following equation

x1 + x2 + · · ·+ xk = b.

Actually, let

X̃ = {(x1, x2, . . . , xk) ∈ Hk|x1 + x2 + · · ·+ xk = b}.

14



Then

NH(k, b) = #{(x1, x2, . . . , xk) ∈ X̃|xi distinct},

Obviously, X̃ is symmetric. So we can apply Li-Wan’s new sieve formula to compute

NH(k, b).

4.1 Estimate for NH(k, b) with b 6= 0

Similar to the analysis above, we need to compute X̃τ first, where τ is a permutation of

type (c1, c2, . . . , ck) in Sk, and X̃τ = {(x11, . . . , x1c1 , . . . , xkck) ∈ H
∑

ci |x11 + · · · + x1c1 +

· · ·+ kxkck = b}. Note that
∑

ici = k.

Theorem 4.1. For any b ∈ F∗
q, we have

∣∣∣∣NH(k, b)− 1

q

(
q − 1

m

)

k

∣∣∣∣ ≤
2√
q

(√
q + k +

q

mp

)

k

.

P roof . As H = {xm|x ∈ F∗
q}, we can write xiti = ymiti for some yiti ∈ F∗

q, where

1 ≤ i ≤ k, 1 ≤ ti ≤ ci. So X̃τ equals the following

X∗
τ = {(y11, . . . , y1c1 , . . . , ykck) ∈ (F∗

q)
∑

ci |ym11 + · · ·+ ym1c1 + · · · + kymkck = b}.

Note that ym = (y′)m iff y = y′ξ, where ξ is an m-th root of unity. The number of variables

in X̃τ is
∑

ci, so

|X̃τ | =
|X∗

τ |
m

∑
ci
,

where |X∗
τ | has been computed in section 3.1. Then |X̃τ | is given by

1

m
∑

ci
(q − 1)

∑
ciδi(p)#{(· · · , xiti , · · · ) ∈ (F∗

q)
n|

∑

1≤i≤k

1≤ti≤ci,p∤i

ixmiti = 0}.

Thus ∣∣∣∣|X̃τ | −
1

q
(
q − 1

m
)
∑

ci

∣∣∣∣ ≤
2(q − 1)

∑
ciδi(p)(1 + (m− 1)

√
q)

∑
ci(1−δi(p))

m
∑

ci
√
q

.

As analyzed above, applying Theorem 2.2 and Corollary 2.5, we can conclude

∣∣∣∣NH(k, b)− 1

q

(
q − 1

m

)

k

∣∣∣∣ ≤
2√
q

∑
∑

ici=k

N(c1, c2, . . . , ck)

(
q − 1

m

)∑
ciδi(p)(1 + (m− 1)

√
q

m

)n

≤ 2√
q

(
(m− 1)

√
q + 1

m
+ k − 1 +

q − 1

mp

)

k

≤ 2√
q

(√
q + k +

q

mp

)

k

.

As a corollary, we have
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Corollary 4.2. For b ∈ F∗
q, we have

∣∣∣∣∣MH(k, b)− 1

q

( q−1
m

k

)∣∣∣∣∣ ≤
2√
q

(√
q + k + q

mp

k

)
.

Theorem 4.3. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 3 ln 4q < k ≤ q−1

2m then MH(k, b) > 0 for all b ∈ F∗
q.

Proof . Replacing c by a smaller constant if necessary, we may assume that
√
q ≤ c q−1

m .

By Corollary 4.2, it is sufficient to prove

1

q

(q − 1

m

)
k
≥ 2((c+

1

2
)
q − 1

m
+

q − 1

mp
)k/

√
q.

That is, ( q−1
m

)
k

((c+ 1
2)

q−1
m + q−1

mp )k
≥ 2

√
q.

This holds obviously when the following inequality holds:

1

c+ 1
2 +

1
p

≥ (4q)
1
2k ,

equivalently,

c ≤ 1

(4q)
1
2k

− (
1

p
+

1

2
).

Since p ≥ 3, we have 1/p + 1/2 ≤ 5/6. The existence of such a positive constant c is

possible if (4q)
1
2k ≤ e1/6, where e is the natural number. That is if k > 3 ln 4q. The proof

is complete.

4.2 Estimate for MH(k, 0)

In the following, we discuss the case when b = 0.

Let

X̃0 = {(x1, x2, . . . , xk) ∈ Hk|x1 + x2 + · · ·+ xk = 0}.

Then

NH(k, 0) = #{(x1, x2, . . . , xk) ∈ X̃0|xi distinct}.

Obviously, X̃0 is symmetric. So we can apply the new sieve formula to compute NH(k, 0).

Similar to the analysis above, we need to compute X̃0τ first, where τ is a permutation of

type (c1, c2, . . . , ck) in Sk, and X̃0τ = {(x11, . . . , x1c1 , . . . , xkck) ∈ H
∑

ci |x11 + · · · + x1c1 +

· · ·+ kxkck = 0}. Note that
∑

ici = k.

Theorem 4.4. ∣∣∣∣NH(k, 0) − 1

q

(
q − 1

m

)

k

∣∣∣∣ ≤
(√

q + k +
q

mp

)

k

.
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Proof . As H = {xm|x ∈ F∗
q}, we can write xiti = ymiti for some yiti ∈ F∗

q, where

1 ≤ i ≤ k, 1 ≤ ti ≤ ci. So X̃0τ is related to

X∗
0τ = {(y11, . . . , y1c1 , . . . , ykck) ∈ (F∗

q)
∑

ci |ym11 + · · ·+ ym1c1 + · · ·+ kymkck = 0}

by the formula

|X̃0τ | =
|X∗

0τ |
m

∑
ci
,

where |X∗
0τ | has been computed in section 3.2. It follows that |X̃0τ | is given by

1

m
∑

ci
(q − 1)

∑
ciδi(p)#{(. . . , xiti , . . . ) ∈ (F∗

q)
n|

∑

1≤i≤k

1≤ti≤ci,p∤i

ixmiti = 0}.

Thus ∣∣∣∣|X̃0τ | −
1

q
(
q − 1

m
)
∑

ci

∣∣∣∣ ≤
(q − 1)

∑
ciδi(p)(1 + (m− 1)

√
q)

∑
ci(1−δi(p))

m
∑

ci
.

As analyzed above, applying Theorem 2.2 and Corollary 2.5, we can conclude

∣∣∣∣NH(k, 0) − 1

q

(q − 1

m

)
k

∣∣∣∣ ≤
∑

∑
ici=k

N(c1, c2, . . . , ck)

(
q − 1

m

)∑
ciδi(p)(1 + (m− 1)

√
q

m

)n

≤
(
(m− 1)

√
q + 1

m
+ k − 1 +

q − 1

mp

)

k

≤
(√

q + k +
q

mp

)

k

.

As a corollary, we have

Corollary 4.5. ∣∣∣∣∣MH(k, 0) − 1

q

( q−1
m

k

)∣∣∣∣∣ ≤
(√

q + k − 1 + q
mp

k

)
.

Theorem 4.6. Let p > 2. There is an effectively computable absolute constant 0 < c < 1

such that if m < c
√
q and 6 ln q < k ≤ q−1

2m , then MH(k, 0) > 0.

P roof . The proof is similar to the proof of Theorem 4.3.
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