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ABSTRACT. Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic
codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The
structure of the ambient ring of polycyclic codes over GR(p®, m) and generating sets for its ideals are
considered. It is shown that these generating sets are strong Groebner bases. A method for finding such
sets in the case that a = 2 is also given. The Hamming distance of certain constacyclic codes of length np®
and 2np° over Fpm is computed. A method, which determines the Hamming distance of the constacyclic
codes of length np°® and 2np°® over GR(p®, m), where (1,p) = 1, is described. In particular, the Hamming
distance of all cyclic codes of length p® over GR(p?,m) and all negacyclic codes of length 2p® over Fpm is

determined explicitly.
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1. INTRODUCTION

Important applications of modules over finite rings to error-correcting codes and sequences were in-
troduced in [I7] and [2I]. In particular, [I7] motivated the study of cyclic and negacyclic codes over
Galois rings (see, for example, [II, Bl [, 4] 19 B5, B0}, B6l, B7]). For a recent survey on this topic, we
refer the reader to [I3]. Cyclic codes can be grouped into two classes: simple-root cyclic codes, where
the codeword length and the characteristic of the alphabet are coprime, and repeated-root cyclic codes,
where the codeword length and the characteristic of the alphabet are not coprime. The structure of
simple-root cyclic codes over rings was studied throughly in [30} 19} [6, 14] and certain special generating
sets for these codes were determined therein. On the other hand, repeated-root cyclic codes are also
interesting as they allow very simple syndrome-forming and decoding circuitry and because in some cases
(see [23,B1]) they are maximum distance separable. A partial list of references for the theory of repeated
root cyclic codes includes [7, 8, O] 10, 111, 12, 15] 22] 23], 31 20}, B2] B3], B34, B8]. Amongst these studies,
generating sets that are similar to those in [30] [19] [6l 14] are studied in [22] [I5] 20] for cyclic codes of
length p® over an alphabet whose characteristic is a power p. In [I5] 20], the notion of torsional codes

is used to study generators of these codes. The structural properties of cyclic codes are studied in a
1
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more general setting in [27] 26| 28], 25, [32] from a Groebner basis perspective. Our study unifies the two
approaches above and generalizes them in the following sense: we show that codes in a wider class of
linear codes called polycyclic codes have generating sets sharing the same properties as those described
in [27], 26, 28], 25 [32] 5] 20]. This allows us to study the ideal structure of cyclic codes without the re-
striction that the codes must be simple-root. In particular, we compute the Hamming distance of certain
constacyclic codes of length np® and 2np®, where (n,p) = 1, over a finite field of characteristic p. Then
using this result together with the above generating sets, we give a method to determine the Hamming
distance of certain constacyclic codes of length p® and 2p® over a Galois ring of characteristic a power of
p. As another particular case, we explicitly determine the Hamming distance of all cyclic codes of length
p® over GR(p?, m) which generalizes the results of a recent study [I8].

We study linear codes over Galois rings that have the additional structure that they can be described
as an ideal of a quotient ring, specifically a quotient ring of a polynomial ring over a Galois ring where
the ideal being factored out is generated by a regular polynomial. We begin with studying the structure
GR(p®m)[z] GRp*m)[z] o o Jocal

(9(2)) (9(2))

of the ring where g(z) is a regular primary polynomial. We show that

ring with a simple socle and we determine its maximal ideal and socle. We give necessary and sufficient

conditions for % to be a chain ring. Next, we use the results on these rings to study the structure

of W where f(x) is a regular polynomial. This work uses a factorization given by [24] of regular
polynomials into regular primary polynomials and also the Chinese Remainder Theorem. Via this ring
decomposition, we give details on the structure of W. This provides information on the structure
of the polycyclic codes, and in particular cyclic and constacyclic codes, as their ambient spaces are of the
form of W. as their ambient spaces are of the form of W.

Some special generating sets, for cyclic codes of length p® over GR(p®, m), were studied in [15] by
employing torsional degrees and torsional codes. Later, in [20], Kiah et. al. came up with a unique set of
generators for such codes. We generalize their results to polycyclic codes. More explicitly, we extend the
notion of torsional degree and torsional code to polycyclic codes and we show that polycyclic codes have
generating sets with the same properties as in [15] and [20]. Furthermore, we observe that the unique
generating set studied in [20] is actually a strong Groebner basis which is studied in a series of papers
[25] 26, 27, 28, 32] by Salagean and Norton. We show that a minimal strong Groebner basis actually gives
us all the torsional degrees of a polycyclic code. This allows us to describe how to obtain a generating set
in standard form, which is a minimal strong Groebner basis, from the unique generating set introduced
in [20] and vice versa. Also the torsional degrees, equivalently a minimal strong Groebner basis, can be
used to determine the Hamming distance of a polycyclic code when the Hamming distance of the residue
code is known.

We use the above results to study some constacyclic codes of length np® and 2np® over GR(p®, m).
First we compute the Hamming distance of these codes over the residue field. Then, we give the ideal
structure and the Hamming distance of these codes by using a generating set in standard form. In some
cases, our results give the Hamming distance of all such constacyclic codes.

As another application of our results, we generalize a recent result of [I§] on the Hamming distance
of cyclic codes of length 2° over Z4. We classify all polycyclic codes over GR(p?,m) which gives us a
classification of all cyclic codes of length p°. Then we determine the torsional degrees of these codes in
each case yielding the Hamming distance of all cyclic codes of length p* over GR(p®, m).

This paper is organized as follows. In Section Bl we give some preliminaries and fix our notation. In

Section Bl we study the subambient rings of polycyclic codes along with their torsional degrees and strong
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Groebner bases. We further study these subambients in characteristic p? and determine their torsional
degrees and Hamming distance in Section @ We study the structure of the ambient ring of polycyclic
codes in Section Bl We give some preliminaries for the computation of the Hamming distance of some
constacyclic codes over a finite field in Section [6l Then we compute the Hamming distance of certain
constacyclic codes of length 7p® over F,» and we describe how to determine the Hamming distance of
these codes over GR(p®, m) in Section [l Finally, in Section B we carry out similar computations for
certain constacyclic codes of length 2np®.

2. ALGEBRAIC BACKGROUND

In this section we state some basic facts about finite chain rings, polynomials over Galois rings and we
fix our notation on cyclic and polycyclic codes. For a detailed treatment of the theory of Galois rings,
we refer the reader to [3] or [24].

Let p be a prime number and a,m > 1 be integers. Then F,» denotes the finite field with p™ elements
and GR(p®, m) denotes the Galois ring of characteristic p® with p®™ elements.

Let R be a commutative ring with a unit. R is called a local ring if it has a unique maximal ideal.
An element r € R is said to be nilpotent with nilpotency index t if r* = 0 and t is the least nonnegative
integer with respect to this property. The intersection of all maximal ideals of R is called the Jacobson
of R and is denoted by J(R). The socle of R, denoted by soc(R), is the sum of all ideals of R containing
only themselves and the zero ideal. R is called a chain ring if its ideals are linearly ordered under set
inclusion. In [I4], a useful characterization of finite chain rings is given.

Lemma 2.1 ([I4, Proposition 2.1]). Let R be a finite commutative ring. The following are equivalent.
(1) R is a chain ring.
(2) R is a local principal ideal ring.
(3) R is a local ring and the mazimal ideal of R is principal.
Furthermore, if R is a finite commutative chain ring with the mazimal ideal (v), then the ideals of R are
exactly <1/’> where i € {0,1,...,t} and t is the nilpotency index of v.

It is well-known that the Galois ring GR(p®, m) is a local ring with the maximal ideal (p). Moreover
GR(p®,m) is a finite chain ring and its ideals are <pl> where ¢ € {0,1,...,a}. Let ( be a generator
of the multiplicative group F,= \ {0}. The fact that Z,.[(] = GR(p*,m) is a classical result of finite
ring theory. We can express an element z € GR(p*,m) as z = Z?:O_ 2 v;¢7 where vj € Zya. Let
T = {0,1,¢,...,¢P" 72}, The set T,, is called the Teichmiiller set. Alternatively, we can uniquely
express z € GR(p®,m) as

a—1

z=z0+pzn+--+p Za—1, ZieTm,

which is called the p-adic expansion of z. The map p: GR(p®,m) — F,m defined by pu(z) = 29 is a
ring epimorphism with the kernel (p). Hence % = [Fpm. The finite field Fpm is called the residue
field of GR(p®,m). The map p is called the canonical projection and extends to a homomorphism
between the polynomial rings GR(p®, m)[x] and F,m[z] in a natural way as p(ag + a1z + -+ + apa™) =
plao) + pla)z + -+ + pu(an)z™. We denote u(f(x)) by f(z). Note also that pu maps the ideals of
GR(p® m)[z] to the ideals of F,m[z] and we denote the canonical projection of the ideal I by I.

A polynomial f(z) € GR(p®, m)[z] is called regular if f(x) is not a zero divisor. Moreover, by the
characterization given in [24, Theorem XIII.2], f(z) is regular if and only if one of its coefficients is a
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unit in GR(p®, m). If f(x) can not be expressed as a product of two nonconstant polynomials, then f(x)
is called irreducible and if in addition f(z) is irreducible then f(z) is called basic irreducible.

An ideal I < R is called a primary ideal if for all uv € I, we have u™ € I or v € I for some positive
integer n. A polynomial f(x) is called primary if (f(x)) is a primary ideal. Besides, I < R is called a
prime ideal if for all uv € I, we have u € I or v € I.

Theorem 2.2 ([24] Theorem XIII.11]). Let f(x) € GR(p®, m)[z] be a regular polynomial. Then f(z) =
0g1(x) -+ - gr(x) where § is a unit and g1(x), ..., g-(x) are regular primary coprime polynomials. Moreover,
this factorization is unique up to reordering terms and multiplication by units.

Now we recall the division algorithm in F,m[z] and GR(p®, m)[z]. Since Fpm[z] is a Euclidean domain,
for any v(z) and 0 # g(x) € Fpm[z], there exist unique polynomials y(x),r(z) € Fpm[z] such that

v(z) = g(@)y(z) + ()

where either 0 < deg(r(x)) < deg(g(z)) or r(z) = 0. We define v(z) mod g(x) = r(z), and we use the
notation v(z) = r(x) mod g(x) in the usual sense.

There is also a division algorithm for polynomials in GR(p®, m)[x| (see, for example, [24] Exercise
XIIL.6] or [3, Proposition 3.4.4]). Let f(z) € GR(p®, m)[z] and let h(x) € GR(p®, m)[z] be a regular
polynomial. Then there exist polynomials z(z),b(z) € GR(p®*, m)[x] such that

f(z) = 2(x)h(z) + b(z)
and deg(b(z)) < deg(h(x)) or b(x) = 0.

Throughout this paper, C' stands for a linear code over GR(p®,m) and we identify a codeword ¢ =
(co,c1,...,cn—1) € C with the polynomial ¢(z) = co + c1x + - + en_12V 1 € GR(p®, m)[z]. Let \ €
GR(p*,m)\ {0} and I = (¥ —\). The A-shift of a codeword c is defined to be (Acy_1,co,c1,- -+ ,cN_2).
If a linear code C' is closed under A-shifts, then C' is called a A-cyclic code and in general, such codes are
called constacyclic codes (c.f. [2 Section 13.2]). It is well-known that A-cyclic codes, of length N, over
GR(p®,m) correspond to the ideals of the finite ring
_ GRp*,m)]

7 .
In particular, cyclic (respectively negacyclic) codes, of length N, over GR(p®, m) correspond to the ideals
of the ring R, = GR(p® m)[z]/a (respectively Ry = GR(p®, m)[x]/b), where a = (z — 1) (respectively
b = (zV +1)). Additionally if N is not divisible by p, then C is called a simple-root constacyclic code

Re

and if NV is divisible by p, then C' is said to be a repeated-root constacyclic code.
Now we define a family of linear codes which is a generalization of constacyclic codes. Let f(z) €
GR(p”,m)[z] be an arbitrary regular polynomial, J = (f(z)) and let
GR(p*, m)|z]
7 .

As done above, identifying the codewords with polynomials, we see that the ideals of R are linear

R =

codes and they are called polycyclic codes. Obviously, although the elements of R are equivalence
classes (cosets), they can be uniquely identified with polynomials with degree strictly less than deg f(z).
Consequently, for the rest of this paper, unless otherwise stated, we focus on the ideals of R containing
J and identify I/J with {g(x) : g(x) € I and deg(g(x) < deg(f(x)))} and, for all g(x) such that
deg(g(x)) < deg(f(x)), we identify the equivalence class g(x) + J with g(x).
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Let R = F”MT—M. The map p, defined above, extends to an onto ring homomorphism as p : R — R
where p(g(x) +J) = g(x) + J. For r € R and w € R, we define the scalar multiplication by rw (mod p)
where we consider the multiplication in R. This makes R an R-module.

The Hamming weight of a word is defined to be the number of nonzero entries of the word and the
Hamming weight of a polynomial is defined to be the number of nonzero coefficients of the polynomial. Let
c and ¢(z) be as above. We denote the Hamming weight of ¢ and ¢(z) by wg(c) and wg (c(z)), respectively.
Obviously, the Hamming weight of a codeword and the Hamming weight of the corresponding polynomial
are equal, i.e., wy(c) = wy(c(x)).

The Hamming distance of a linear code C'is defined as

dg(C) = min{wyg(v): 0#veC}.
The following lemma gives us some useful information on dg(C).

Lemma 2.3. Let {0} # C < R be a constacyclic code of length greater than 1 over GR(p®,m) with

C # {0} and C # (1), and let C < R be its canonical projection. Then dy(C) = dy(C) as the
R-modules p* 'R and R are isomorphic. Moreover dy(C),dy(C) > 2.

Proof. The isomorphism is established by sending f(z) € R to p®~ ! f(z) € p* 'R. The bound dy (C),dy (C) >

2 follows from the facts that dg(C) = diy(C) and a proper ideal can not contain a unit. O

3. LOCAL SUBAMBIENTS OF POLYCYCLIC CODES

In this section, the ring
R — CR"m)la]

(f(x))
where f(z) € GR(p®, m)[x] is a regular primary polynomial which is not a unit, is studied. The results of
this section will be used to study the more general case, where f(z) is not necessarily primary in Section
Bl

First we show that R is a local ring and determine its maximal ideal, we determine the socle of R, for
a > 1, we give necessary and sufficient conditions for R to be a chain ring in Lemma 3.4l Then, using
the notion of torsional code and torsional degree, we determine a unique generating set for any ideal of
R in Theorem B.11l Next we observe, in Corollary B.13] that such a generating set is a strong Groebner
basis and if we remove the redundant generators, we obtain a generating set in standard form which is
a minimal strong Groebner basis. Finally, we show that the torsional degrees of a polycyclic code can
immediately be obtained from a generating set in standard form.

In this section we assume f(x) is a regular primary polynomial that is not a unit. By [24] Theorem
XIIL.6], f(z) = vf*(x) where v is a unit and f*(z) is monic and regular. Since (f(z)) = (vf*(z)) and
because of our interest in R, assume f(x) is monic. By Proposition [24, XII1.12], f(x) = §(z)h(z)! +pB(z)
for some d(z), h(z), B(x) € GR(p®, m)[z] where d(x) is a unit and h(z) is a basic irreducible polynomial.
Since §(x) is a unit, by [24, Theorem XIIL.2], §(z) = dp+pd’(x) for some §y € GR(p®, m) that is a unit and
some () € GR(p®, m)[z]. Also, since h(z) is basic, h(z) = h(x) + pa(z) for some a(z) € GR(p*, m)|z].
So, f(x) = doh(z)! and f(z) = Soh(z)! + pB'(x) for some B'(x) € GR(p®, m)[z].

Assume f(z) = dh(z)t + pB(x) where 6 € GR(p®, m) is a unit and h(z) is a basic irreducible such that
h(x) = h(x). By the fact that f(x) is monic, we know that tdeg h(x) > deg 5(z). Furthermore, without
loss of generality, we may assume h(zx) is monic. By this assumption, 6 = 1 since f(x) is monic. Hence,
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f(z) is a monic regular primary polynomial such that f(z) = h(x)! + pB(x) where h(z) is a monic basic
irreducible polynomial such that h(z) = h(z).
We show that (p, h(z)) is the unique maximal ideal of R.

Lemma 3.1. The ring R is local with maximal ideal J(R) = (p+ (f),h(z) + (f))-

Proof. As discussed in page 262 of [24], any maximal ideal in GR(p®, m)|x] is of the form (p, g(x)) where
g(x) is a basic irreducible polynomial. Assume f(z) € (p,g(z)) where g(z) € GR(p®, m)[x] is a basic
irreducible polynomial. Then for some a(x),b(x) € GR(p®, m)[x]

f(@) = a(@)p+bz)g(z),

f(@) = b(x)g(z),

h(x)' = b(x)g(x).
This shows that h(z)|g(z) which implies g(x)|h(z) and g(z) = h(z)+pc(z) for some c(x) € GR(p®, m)[z].
So, (p, g(x)) = (p, h(x)) meaning (p, h(x)) is the only maximal ideal containing f(x). Hence, (p + (f),h(z) + (f))
is the unique maximal ideal of R. O

In the case of finite fields, R is a chain ring.

GR(p,m)|x]

Lemma 3.2. The quotient ring @ 18 a chain ring with exactly the following ideals
GR
<(;)5$>)[x‘] = (h(@)" +{£)) 2 (hl@)" + () 2 -+ 2 (hlx)' +(f)) = 0.

Proof. By Lemma B.1], GRTQC»)M is local with J <%> = (h(x) + (f)). By Lemma 1] the result

follows. O

Now we determine the socle of R and show that it is simple.
Lemma 3.3. The ring R has simple socle with soc(R) = (p* ‘h(z)'™t + (f)).
(

Proof. Let g(z) + (f) € R. Let £ be the largest integer such that p‘(g(x) + (f)) # 0. By Lemma [3.1]
J(R) = (h(z) + (f)). By Lemma 23 and Lemma B2 and the fact that p‘(g(z) + (f)) € (p*~1 + (f)),
it can be shown that (p®~'h(z)~t + (f)) C (g(z) + (f)). So (p" *h(z)"'+ >> is contained in any
principal ideal. Since J(R) annihilates (p®~'h(z)"~! + (f)), soc(R) = (p® 'h(z)""! + (f)). It is clearly
simple. O

)
p

Lemma tells us when the alphabet is a finite field, then R is a chain ring. However, R is not a
chain ring in general. As a counter example, consider <f§[ﬂ>. We have 22 — 1 = (z +1)? — 2(z + 1).
Clearly, (z +1) ¢ (2) in (Uf;‘[_%. Assume 2 € (z+1). Then 2 = gy (x)(z + 1) + go(x)(z% — 1) € Zy[x].
Evaluating at = —1, we get 2 = 0 in Z4. This is a contradiction. Thus we have shown (2) ¢ (x + 1)

and (x + 1) ¢ (2). By Lemma B.1], J< x2[ i>) = (2,2 + 1). Since J <<Z4m>) is 2-generated, by Lemma

2.1 (5%3[_% is not a chain ring.

The next theorem shows exactly when R is a chain ring based on the parameters a,t, h(z) and 5(z)
of f(z).
Theorem 3.4. The ring R is a chain ring if and only if any one of the conditions is met
(1) a=1
2) t=1
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(3) B(x) & (p, h(x))-

Proof. Assume a = 1. By Lemma [32] R is a chain ring.

Assume t = 1 then h(z) = f(x) — pB(x) € (p, f(x)). So, h(z) + (f) € (p+ (f)). By Lemma B.1]
J(R) = (p+(f)). Hence, by Lemma [ZT] R is a chain ring.

Assume B(z) ¢ (p,h(z)). Then B(z) + (f) ¢ J(R) which implies 5(z) + (f) is a unit in R. So,
(b {f)) = (h(@)' + (f)) which implies p+ (f) € (h(z)+ {f)). By Lemma BT, J(R) = (h(z) + ().
Hence, by Lemma 2.I] R is a chain ring.

Now assume a > 1, t > 1 and f(x) € (p, h(z)). We want to show that R is not a chain ring so assume

(

the contrary. This implies (p + (f)) C (h(x) + (f)) or (h(z) +{f)) C (p+(f)). So, p € (h(x), f(2))
or h(z) € (p, f(z)). First, assume p € (h(z), f(x)) which implies B(z) € (p,h(x)) = (p, h(x), f(z)) =
(h(z), f(x)). So,
f(@) = h(@)" + pB(z) = h(z)" + p(y(2)h(z) + a(z)f(2))
for some v (z), a(z) € GR(p*, m)[z] and
f(2)(1 = pa(z)) = h(z) (h(x)' ™" + py(@)) -

Since (1 —pa(z)) is invertible in GR(p®, m)[z], f(z) € (h(z)). So, p € (h(z), f(z)) = (h(z)). Since a > 1,
p # 0. This is a contradiction since p cannot be a nonzero multiple of A(z).
Next, assume h(x) € (p, f(z)). Then,

h(z)' = [y(2)p + al2) f(2)] = f(z) - pB(z)
for some y(z),a(x) € GR(p®*,m)[z]. This implies,
[a(2) f(2)])" = f(@).

Since t > 1, by comparing degrees we see this is a contradiction. Hence, R is not a chain.

Below are two examples that show the distinctions between the particular cases in Theorem [3.4]
Example 3.5. Let a > 1,p = 2,5 > 0 and f(z) = 22" + 1. Then
¥ 4+1 = (z+1-1)% +1
= (@+1)* - ( o )(x+1)25‘1+---— <2S>(x+1)+1+1
25 — 1 1
= (z+1)¥ +28(z)

where B(z) = (x + 1)g(x) + 1 for some g(z) € R. In [§] it was shown that Lf@)m is a chain ring with
the maximal ideal (z + 1).

Example 3.6. Let a > 1,p = 2,5 > 0 and f(z) = 22" — 1. Then

-1 = z+1-1)% -1

S

= (z+1)% - (282_ 1>(x+1)25‘1+-~-— <218>(a;+1)+1—1
= (z+1)* +28(2)

where (x + 1)|5(z). In [22] it was shown that
is not a chain ring.

W is local with the maximal ideal (2, (z + 1)) and
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Theorem [3.4] shows that R is not a principal ideal ring in general. Through the next series of results
we will show the existence of a particular generating set which turns out to be a strong Groebner basis.

Let g(z) € GR(p*, m)[z] and n be the largest integer such that deg(g(x)) > ndeg(h(z)). By the
division algorithm, we can find g, (z),r1(z) € GR(p®, m)[x] such that

9(x) = gn(z)h(2)" + ri(2),
where 71(z) = 0 or deg(r1(z)) < ndeg(h(z)). Note that deg(g,(x)) < deg(h(z)). Next we can find
gn—1(z),m2(z) € GR(p*, m)[x] such that
ri(x) = qn_l(x)h(x)"_1 + ro(x)
where ro(x) = 0 or deg(ra(x)) < (n—1)deg(h(x)). Note that deg(g,—1(z)) < deg(h(x)). We can continue
this process until we have ¢, (), gn—1(2),...,q(z) € GR(p*, m)[z] where
9(@) = g(@)h(@)" + - + q(x)h(z) + qo(x)

(
where for 0 < i < n, either deg(g;(x)) < deg(h(z)) or g;(z) = 0. With some manipulation g(x) can be
represented in the following form

(3.1) g(x) = p°h(x)°ao(x) + - + P’ h(x)" an(x)
where 0 <r <a—1 and

o «;(z) & (p,h(x))

e 0<jo<-<j<a-—1

e ig>--->1,.>0.

Since f(x) is regular and monic, g(z) can be divided by f(z) initially. Then it is not hard to see that
for some ¢(z) € GR(p®, m)|z]

9(x) = g(x) () + P h(z)Cag(x) + - - + " h(z)" . (x)

where 7, a;(z), je and iy are as above with ¢ > ij.

In [I5] and [20], a unique generating set for an ideal o o 2] was developed. The polynomial

)z
p 1>
oP" — 1 is of the type f(x) is. Notice 27° — 1 = (z — 1)?" + pB(x). We will now find a similar generating
set for an ideal of R.

f GR(pa,m
Definition 3.7 (cf. [I5] Definition 6.1]). Let C' < R. For 0 <i < a — 1, define
Tor;(C) = {u(v): p'veC}.

Tor;(C) is called the it torsion code of C. Torg(C) = u(C) is usually called the residue code of C.
Note that for a code C over GR(p®, m), we have Tor;(C) C Tor;+1(C).
Lemma 3.8. Let C <R. Then
: GR(p,m)|z]

for some 0 < T; <t.

Proof. Since C <4 R, Tor;(C) < %:)";[m]. The claim follows by Lemma [3.2] O

Definition 3.9. In Lemma B8] T; is the i*" torsional degree of C which we denote by T;(C). The
torsional degrees form a non-increasing sequence, i.e., t > To(C) > --- > T,1(C) > 0.



POLYCYCLIC CODES WITH APPLICATIONS TO REPEATED-ROOT CODES 9

For any &(z) + (f) € R, we can divide £(x) by f(x), as f(z) is regular, and get £(x) = q(z)f(z) +7(x)
such that either r(x) = 0 or deg(r(x)) < deg(f(x)). So &(z) + (f) = r(x) + (f). This implies that
R = {a(z) + (f) : a(z) € GR(p*,m)[x],deg(a(x)) < deg(f(z))}. Throughout the remainder for this
section, the elements of R will be represented as polynomials of degree less than deg(f(x)).

Definitions [3.7 and and Lemma [3.8] are expansions to polycyclic codes of the ideas first presented
in Section 6 of [I5] in the context of cyclic codes. The following theorem is a generalization of Theorem

6.5 of [15].

Theorem 3.10. Let C < R. Then C = (Fy(xz),pFi(z),...,p" " F,1(z)) where Fy(z) =0 if T;(C) = ¢,
and Fi(z) = h(z)"© 1 pri(z) for some v (x) € GR(p*, m)z], if TH(C) < 1.

Proof. Denote T;(C) by T;. If C =0, we are done. So assume C' # 0. Let r be the smallest nonnegative
integer such that T, < t. For every 0 < i < r — 1, set F;(x) = 0. For r < i < a — 1, pick Fj(x) €
GR(p®,m)[x] such that p'F;(z) € C and u(F;(z)) = h(z)%. So, Fi(x) = h(z)i + pyi(x) for some

7i(z) € R. Note that such an F;(z) exists because Tor;(C) = (h(z)"1) < %. Let g(z) € C. As

was shown earlier (see Equation (B.1])),
(3.2) g(x) = P (h(x)" 0j, () + pBo(x))
for some oj,(z), Bo(x) € GR(p®*, m)[x] where ig < t and 0j,(z) # 0. Let op(z) = -+ = gj,—1(z) = 0. Let
g1(x) = g(a) — P h(z)" ooy () Fy ().
Note that since Torj,(C) = (h(z)"0), it follows by [B2) and the fact that o, (z) is a unit in
that ¢9 > T},. Since T}, < t, we have
gi(@) = P(h@) 0 (z) + pho(x)) — P h(z) gy (a)[A(x) o + pyj(x)]
= pj0+1,80(x) - pj0+1h(x)i0_Tj0 7o (%) 7)o (2)-
So, g1(z) € (PPN C. If g1(x) =0, let 0j,41(x) =+ = 04—1(z) = 0 and we are done. If not, then, as
was done with g(x), we can view g1(z) as
gi(z) = p" (M(x)" 0j, (x) + pBi(2))

for some oj,(x), f1(x) € GR(p*, m)[x] where iy < t, jo < ji1 and oj,(x) # 0. Let ojy1(z) = - =
oj—1(x) = 0. Let

GR(p®,m)[z]
(f(=@))

92(x) = g1(@) — P h(2)* o, () F, ().
Since T}, < t, we have
ga(x) = P (h(z)" 0y, (2) + pBi(x)) — P A(a)" Doy (@) [h(x) T + pyj, (2)]
P Bu(a) — " () o (2), (2).
So ga(z) € (PN C. If go(a) = 0, then let 0j,11(2) = -+ = 0a—1(x) = 0. Note that since jo < j1 < a,
this is a finite process. So

a—1
g(x) =Y _p'h(z) "oi(x)Fi(z) € (Fo(x),pFi(x), ..., p" 'Fa 1)
=0

Hence C' C (Fy(z),pFi(z),...,p" ' Faq(z)). Since p'Fy(z) € C, for all 0 < i < a — 1, we have the
equality
C = (Fy(z),pFi(z),...,p" ' Faoi(2)).
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0

As was stated in [20], Theorem 6.5 of [15] does not provide a unique set of generators. Neither does our
generalization in Theorem 3101 We now show, as in [20], that there does exist a unique set of generators
given some extra constraints. Although this is a generalization of Theorem 2.5 in [20], the proof here
only differs from that one in a few details. However, we present the proof in its entirety here for the sake
of completeness.

We would like to point out that there is a little inaccuracy in the statement of Theorem 2.5 in [20].
Let 7p,[u] be the set of polynomials in u whose coefficients are in 7y,. The h; ¢(u) in their theorem is said
to be an element of 7, [u] which is not necessarily true. What is true is that h;¢(u) is either 0 or a unit
and that

Toyj—1

hje(u) = Cje(u— 1)F
k=0

with ¢ j¢ € T and ¢ j ¢ # 0. It should also be pointed out that h;¢(u) is a unit precisely because (u— 1)
is nilpotent (which is not stated but fairly easy to show) and ¢ ;¢ is a unit.

Theorem 3.11. Let C' < R. Then there exist fo(x), fi(x),..., fa—1(x) € R such that

C = (folx),pfi(@),...,p" " fau1(z))

where fi(xz) =0, if T;(C) =t otherwise

a—1—1

fiw) = h(@) T+ > 7 pIh(e) ai(x)

Jj=1

where t; ; deg(h(z)) + deg(ai,;j(x)) < Tiv;(C) deg(h(x)) and each o j(x) ¢ (p, h(x)) \ {0}.
Furthermore, the set { fo(x),pf1(x),...,p* L fa_1(2)} is the unique generating set with these properties.

Proof. Denote T;(C) by T;. When C = 0, the result holds. Assume C # 0. By Theorem BI0, C' =
(Fo(z),pFi(),...,p" ' F,_1(z)) where F;(z) = 0 when T; = ¢, otherwise Fj(z) = h(z)% + py;(z) for
some v;(z) € GR(p®, m)[x]. The torsional degrees of C' form the non-increasing sequence t > Ty > --- >
T,—1 > 0. Since C' # {0} there is a least positive integer r such that ¢ > T,, > --- > T,_1 > 0. For
0<i<r—1, F(x) =0. Let fi(zx) =0for 0 <i<r—1. Forr <i<a-—1, Fi(z) # 0. Since we
are considering p'F(z) and Fj(z) can be put in the form as shown in equation (B.I]), without loss of

generality we can write

a—1—i  t—1
Fi(z) =h()" + Y > hx)feu(z)
j=1 k=0
o degh—1 1 ..
where g; jx(7) = > 0,0" bijrax’ with b1 € T

Let

fa—l(ﬂf) = Fa—l(ﬂf) = h(aj)Ta—l'
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Now,
Fa—?(x) = Ta ? +pzh Qa 2,1,k )
= h(z)T
Tou-1—1 t—1
+p Z W) qa—2,1,k(x) + h(z)To~ Z h(@)" T 1 g g1 (@)
k=Ts-1
Let

fa—2(x) - Fa—2( pfa 1 Z h k Ta- IQa 2,1,k( )

k=Ta-1
t—1
= Fyo(w) —ph()’* > h(@)" e genq k(x)
k=Ta-1
To—1—-1
= Tamz 4y Z h(z)*qq—o1 1()
To-1—1
= (@) 4 ph(a)lert Y h(a) g, k(@)
k=ta—2,1

where t,_21 is the smallest k such that g,—2 1 x(x) # 0 if such a k exists, otherwise

Z":’t;j’l h(m)k_t“*“*qa_g,Lk(x) =0 and t,_2 can be arbitrary. It is easy to see

C = (Fy(x),pFi(x),...,p" *Fazs(2),p" > faz(@), p* " faz1(x))

and that f,_o(z) and f,—1(x) satisfy the conditions in the theorem.
We proceed by induction. Assume fii1(z),..., fo—1(x) satisfy the conditions of the theorem and that

C = (Fo(x),pFi(2),...,p' Fy(x),p ™ fisa (@), ... . p"  faor (@) -
After subtracting appropriate multiples of p'*! fi 1 (z),...,p? ! fo_1(z) from Fj(x) we can find an element
fi(x) such that

a—1—i Ti4;—1

filw) = @+ 3P Y h@) i)

j=1 k=0
a—1—i Titj—-1
= h@)"+ Y Ph@) Y h(@) g ()
j=1 k=t; ;
where g; j ,(z) = fo%h_l cijyxt for some c, gkt € Tm and for fixed j, t;; is the smallest k& such that
gijk(x) # 0 if such a k exists, otherwise Ek’“ ! h(z)F~tiig; i 1(r) = 0 and t;; can be arbitrary. Let

i (z) = Z”ti;l h(z)k=tig; i (@), If a; j(x) # 0, a; j(x) is a unit since o j(x) € (p, h(z)). It is easy to
see that
C - <F0(‘T)7pF1(‘T)7 e 7pi_1ﬂ—1(x)7pifi(‘r)7 o 7pa_1fa—1(‘r)>

and f;(x),..., fa—1(z) satisfy the conditions in the theorem. Hence, we have fy(x),..., fo—1(z) such that

C = (folx),pfi(x),....p" " fac1(2)).
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i

Now we show the uniqueness of such a generating set. Assume that f(;(a:), -+, f._q(z) also satisfy the
conditions in the theorem. Say

a—1—1 Tz+]1

f( Tl+ Zp] Z h gz,]k
7j=1

and
a—1—1 Titj—1

f,( Tl+ Zp] Z h gz,]k

where g; j k(2), g; j £ (¥) € Ti[z] of degree less than h(x). Assume fi(z) — fi(z) # 0. Then for some j, k,
Gijk(x) — g;]k(x) # 0. Let jo be the smallest j in the above sum such that g; j z(x) — g;]k(:n) # 0. Then

a—1—1 Tiy;—1
p(filz) - pitio " pito Z (@) (91,50 (%) — g4 (@))-
J=Jjo

Since the difference of two distinct elements of 7, is not divisible by p, for all j, k in the above sum,
either gwk(a:) - g;]k(a:) is 0 or not divisible by p. By the assumption on jo then, p’(f;(x) — f;(z)) €
C N (p'tio) \ (p"™7ot1) . Since this is a nonzero element of C' with degree less than Tj,;, deg(h), this

’

contradicts the definition of Tj;;,. Hence f;(z) = f; (). O

Now, in Corollary BI3] we show that if we remove the redundant generators in Theorem B.I1] then
we obtain a result similar to [32], Theorem 4.1]. There they prove it in a slightly different setting namely
GR(p®,m) is replaced by an arbitrary finite chain ring and f(x) is either 2™ — 1 or 2™ 41 (i.e., cyclic and
negacyclic codes over a finite chain ring). We will also prove this result later in the case that f(z) is an
arbitrary regular polynomial.

Definition 3.12 (adapted from [27, Definition 4.1]). Let G = {p” f;,(2),...,p’" f;,(z)} C R, for some
0 <r <a-—1, such that

() 0<jo<-<jr<a-—1,

(2) t>kjy>--->k;, >0,

(3) fiu(w) = h(a)™i + 27 p'h(w) ity o (w) where 5, ¢ deg(h(x)) + deg(a, o(x)) < kj, deg(h(x))

and each o, ¢(z) & (p, h(x)) \ {0},

(4) P f (@) € (Pt fin (@), 07 £ (2),

(5) PO f(x) € (P fio(x), ..., 07" fj, (2)) in GR(p®, m)[z].
The set G is called a generating set in standard form. Moreover, by [25] Theorem 5.4], the set G is a

minimal strong Groebner basis.
Corollary 3.13. Let C < R. There exists a generating set in standard form for C.
Proof. Let {fo(x),...,p* ' fo_1(x)} be a generating set for C' as in Theorem BIIl Let jo = min{i|fi(x) #
0} and set k; = T;(C'). Then
C = (P fio(@)s.oc 0" farr(2)).

Assume there exist Torsional degrees of C', T;,T;+1, such that T; = T;y; for some i > jy. It should
be clear that p"*! f;11(x) € (p'fi(x), p" ™2 fizo(z),...,p*  fa—1(x)). So after removing these unnecessary
generators we have, for some r such that 1 <r <a —1,

C - <pj0fjo(‘7:)7 e 7pjrfjr(‘7:)> :



POLYCYCLIC CODES WITH APPLICATIONS TO REPEATED-ROOT CODES 13

Then the properties ([)-[@)) of Definition are satisfied.
Now, assume p’ f(z) ¢ <pj°f0(:17), . ,pj"fr(:n)> in GR(p®, m)[x]. We consider

Gio(T) = pjof(x) - h(x)t_TjOpjofjo(x)
(33) = PR e, (2) + o pRh() e as (2)

where the representation ([3)) is as in (31]). Note that g;,(x) € C' when we consider g;,(x) as an element
of R. If ko < jpr, say jg—1 < ko < jq for some q < r, then 2z, > T}, _, otherwise we get a contradiction to
the torsional degree. Now, for an appropriate polynomial, say v(z), we get

9jg—1 = gjo(x)_v(x)p]qilquﬂ(x)
(3.4) = pPh(z)"ay, (z)+ -+ h(x)" oy, (2)

where the representation ([3.4) is as in (1)) and ¢y > ko. Continuing like this, we obtain a non-zero
polynomial g(z) € (p’") such that

PP () = p fix)Bi(x) + g(x),
i=0
where deg g(x) < deg f-(z). Now, in R
g(z) = = 3 P fi()Bi o).
i=0

So, g(z) € C. But, T}, deg h(x) > deg g(x) which is a contradiction of the torsional degree. Hence (&) of
Definition holds. O

Corollary 3.14. Let C < R. Then C is at most min{a,t}-generated.

Proof. Follows from the facts that the number of distinct torsional degrees that are degrees of generators
in the generating set in Corollary BI3] is less than ¢ and that the number of generators there does not
exceed a. O

Now we observe a relation between the generating sets introduced in [20, Theorem 2.5] and generating
sets in standard form for cyclic codes studied in [25].

Remark 3.15. By [25] Theorem 3.2] and Corollary BI3] a generating set as in Theorem B.IT] (and in
particular, in [20, Theorem 2.5]) for C' 9 R is actually a strong Groebner basis (see [28, Definition 3.8]
for a definition). Moreover, given a generating set G' as in Theorem B.IT] if we remove the redundant
elements from @, as described in the proof of Corollary B.13] we obtain a generating set as in Corollary
B3l i.e., a generating set in standard form which is a minimal strong Groebner basis, for C.

Our final result of this section shows that if one can produce a generating set in standard form, the

torsional degrees can easily be found.

Theorem 3.16. Let {p’ f; (2),...,p" f;, (2)} be a generating set in standard form for C <R where
fii(x) = h(@)¥i + pBj,(x) for some Bj,(x) € R. Then for e < jo, T(C) = t; for ji < e < jita,
Te(C) = kj, and for e > j., Te(C) = kj, .
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Proof. For e < jg, Tore(C') = 0so T(C) = t. Clearly, T},(C) < kj, and Tj,(C) = kj,. Now, let j; <e <
jip1 for some 4. There exists a polynomial f.(z) = h(z)7(©) + pp(x) where deg(p(z)) < deg(h(x))T.(C)
such that p€f.(z) € C. In the following we are working in GR(p®, m)[z]. Since e > jy, we have

pefe(x) € (PP fjo(a), .. 07" £, (), " f(2)) -

By B.I2),

pefe(x) € (P fio (@), .., P fi () -
We know T¢(C) < kj,. Assume To(C) < kj,. By the properties in BI2@) and BI2[), deg fj,(x) > --- >
deg fj,(x) > deg fe(x) which implies

pefe(x) € <pji+1fji+1 ($)7 cee 7pjrfjr(x)> :
This is a contradiction since by the property BI2(), e < ji+1 < -+ < j» < a — 1 which implies

P fe(@) & (0P fio (@), 0 £ ()
So, Te(C) = kj,. For e > jy,, the proof is similar. O

Remark 3.17. Remark[B.I5land Theorem B.I6limply that we can go back and forth between a generating
set as in Theorem B.IT] and a generating set in standard form. Given a generating set as in Theorem B.1T],
we can obtain a generating set in standard form as explained in Remark[B.I5l Conversely, suppose that we
are given a generating set G = {p/ f; (z),...,p’" f; (x)} in standard form. We know, by Theorem B.16]
that f;,(x) = h(z)" + pBj,(z). Define F.(z) =0 for 0 < e < jo, Fu(x) = p°fj,(z) for j; < e < ji41 and
F.(x) = p’" f;.(z) for j, < e < a. Then, by Theorem B8, the set G' = {Fy(z),pFi(x),...,p* ' Fa1(z)}
is as in Theorem Now applying the operations in the proof of Theorem B.IT] to G, we obtain a
generating set as in Theorem [B.1T1

4. SUBAMBIENTS IN CHARACTERISTIC p?

Throughout this section, we work in characteristic p? and we assume f(x) € GR(p?, m)[z] is a regular
primary polynomial and let Ro = W.

Recently, the Hamming distance of cyclic codes of length 2° over GR(4,1) has been determined in
[18]. Applying the results of Section B], we extend this result in two ways. First, we consider the problem
for a more general class of linear codes which are called polycyclic codes. We show how to obtain the
torsional degrees of polycyclic codes over a Galois ring of characteristic p?. This gives us the Hamming
distance if the Hamming distance of the residue code is known. Second, we generalize this result of [18] to
cyclic codes of length p® over any Galois ring of characteristic p?. We explicitly determine the Hamming
distance of all cyclic codes of length p* over GR(p?,n).

First, in Lemmald.Il we classify all polycyclic codes in characteristic p® where f(z) is a regular primary
polynomial. This also gives us a classification of all cyclic codes of length p°. Then, in Lemma and
Lemma (3], we determine the torsional degrees of polycyclic codes. Using this together with some
observations on the polynomial 2P° — 1, we determine the Hamming distance of all cyclic codes of length
p® in characteristic p? in Lemma A8

As was explained in Section B without loss of generality, we can assume f(z) is monic, f(x) = h(z)" +
pB(z) where B(z) € GR(p?, m)[z] and either 3(x) = 0 or deg B(z) < tdeg h(x). Also, we may assume h(z)
is a monic basic irreducible polynomial. Moreover, if 3(x) # 0 we can express 8(z) as 8(z) = h(z)"8'(z)

such that §'(z) = Z;:%_v vj(z)h (x) where v < t, yo(z) # O0y0(z) & (), vi(z) € GR(p*, m)[z] and
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deg(v;(z)) < deg(h(z)) (see the explanation in Section [3]). Since we are working in characteristic p? we
may also assume that v;(x) € Tp,[z]. This can be seen by noting that pv;(x) = p¥;(x).

Assume C'QRy. Since C' is finite we have that C' = (fi(z),. .., fo(x)) for fi(x) € Ra where deg(fi(x)) <
deg(f(z)), i.e. C is finitely generated. Without loss of generality we can assume that if p { f;(z) then fi(x)
)

and C' C (p). First assume C ¢ (p). In this case, it can be shown by looking at the representation (B.I)
that if p{ f;(z) then f;(z) = h(z)¥ + ph(z)%6;(x) and that if p|f;(z), fi(x) = ph(z)%6;(x) where &;(x) is
a unit with ¢; deg(h(x)) +deg(d;(x)) < k; deg(h(x)) where at least one generator is not divisible by p. Let
k; = oo if not defined. Let j be such that k; = min{k;}1",. Let g;(z) = fi(x) — f;(x)h(x)* ki if p{ fi(x)
and g;(x) = fi(x) if p|fi(x). Now, we see that C' = (g1(x),...,9j-1(2), fj(z),gj+1(x),..., gn(x)). Notice
gi(z) € Ron(p) for i # j. Again, without loss of generality we may assume for i # j that g;(x) = ph(z)%.
Let j’ be such that ¢;; = min{l;}!'_,. So, gi(x) — g; (a;)h(a:)zg_zg = 0. Hence, C' = (fj(z), gy (z)). Finally,
if k; < ;s then f;(z)|g;(z) and C = (fj(x)). Now, assume C C (p). Then fi(z) = ph(x)%d;(z) is a unit.
Without loss of generality, we can assume f;(x) = ph(z)%. As above let j be such that Uy = man{l;}1;.
So, fi(x) — fi(x)h(x)*~% = 0. Hence, C = (f;(x)). From this discussion we have the following lemma.

is monic and if p| f;(x) that the leading coefficient of f;(x) is p. We consider two cases here, when C' € (p

Lemma 4.1. Let C < Ry. Then C can be expressed in one of the following forms.

where in any case k. b,n <t, { <n <k and §(z) = Z?;é_é n;(x)h(x)? where n;(z) € Tmlz], no(z) # 0
and deg(n;(x)) < deg(h(x)).
k—1—¢

Proof. The only thing that needs justification is the fact that 6(z) = > ;2" n; (z)h(x)? where n;(x) €
Tmlz], no(z) # 0 and deg(n;(z)) < deg(h(z)). By the discussion before this lemma, 6(z) is a unit so,
d(x) ¢ (p,h(x)). By the discussion in Section Bl §(z) = E?;é_z n;(z)h(z)? where n;(z) € GR(p?, m)|z],
no(z) # 0 and deg(n;(x)) < deg(h(z)). Finally, n;(z) € Tp[x] since we are working in characteristic p?
which means pn;(x) = pij; (). O

The results of Section Bl assume the torsional degrees of a code are known. The next three lemmas will
focus on finding the torsional degrees of a code so we can apply the results of Section [3] with the ultimate
goal of this section being the determination of the Hamming distance of a code. For the following recall
form the beginning of this section that ¢,v, h(x), B(x), 8’ (x),v,(x) are parameters of f(x).

Lemma 4.2. Let C <Ry and n < t. If C = (ph(z)") then To(C) =t and T1(C) = n.

Proof. The result on Ty(C') is obvious. Since every codeword is divisible by p and h(z)", clearly T1(C) =
n. U

Lemma 4.3. Assume B(x) = 0. Let C Q9 Rq, k,l,n < t, n <k, §(x) ¢ (p,h(x)) and deg(d(z)) <
(k — ) deg(h(z)).
(1) If C = (h(z)*) then Ty(C) = k and T1(C) = k.
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(2) If C = (h(z)* + ph(2)*s(z)) then Ty(C) =k and T1(C) = min(k,t — k + £).

(3) If C = (h(z)*, ph(z)") then Ty(C) = k and T1(C) = min(k,n).

(4) If C = (h(z)* + ph(z)*6(z), ph(z)") then To(C) =k and Ty(C) = min(k,t — k + £, n).
Proof. The results on Ty(C') are obvious. We concentrate on T;(C').
(@) The only way to create a codeword divisible by p is to multiply the generator by p or by a large
enough power of h(x). Since h(z)! = f(z) = 0 in Ra, h(x)*h(x)"=% = h(z)! = f(z) = 0. Multiplying by
any smaller multiple of h(z) will not produce a polynomial divisible by p. Hence any codeword divisible
by p is divisible by ph(z)* and so T1(C) = k.
(@) Noting that (h(z)*+ph(z)*6(x))h(z)"™" = h(z)'+ph(z)=F+5(x) = ph(z)=F+5(x) and p (h(x)* + ph(z)6(z))
p(h(z)¥ we see that Ty (C) = min(k,t — k + ¢) following similar arguments as in ().
@) This can be argued similar to ().
(@) This can be argued similar to (2I). O

Lemma 4.4. Assume f(x) # 0. Let C < Ro, k,l,n < t, n <k and §(z) = E?;é_z n;(x)h(z)? where
nj(x) € Tmlz], mo(x) # 0 and deg(n;(x)) < deg(h(z)).

(1) If C = (h(z)*) then Ty(C) = k and T1(C) = min(k,v).

(2) If C = (h(z)* + ph(x)*s(z)) then Ty(C) =k and

y(C) = min(k,v,t —k+0) ifv#Et—k+/{
ne min(k,v + z) ifv=t—k+/¢

where = = min ({7 (2) £ n3(2)} U {£)).
(3) If C = (h(z)*, ph(x)™) then Ty(C) =k and Ti(C) = min(k,v,n).
(4) If C = (h(z)* + ph(z)*6(x), ph(z)™) then To(C) =k and

min(k,v,t —k+4¢,n) ifv£t—k+/{
nC) =9 . .
min(k,v + z,n) ifv=t—k+/{
where z = min ({j|v;(x) # n;(x)} U {t}).
Proof. The results on T(C') are obvious. We concentrate on T7(C').
(@) The only way to create a codeword divisible by p is to multiply the generator by p or by a large enough
power of h(z). Now, h(z)"*h(z)* = h(z)t = —ph(z)’B'(xz). We know f'(z) is a unit since yo(z) # 0 so,
T1(C) = min(k,v).
@) First,
B(@)' ™ (@) + ph(2)0(@)) = hl@)! +ph()' " 5()

= —ph(2)"B'(z) + ph(z)'*+6(z).

If v<t—Fk+/then

t—1—v ' k—1—¢ '
—ph(x)"B'(z) + ph(x)"~"8(x) = —ph(2)” | vo(z) + (@)l (x) = h(2) 0N 7 n(a)h(z) |
In this case T1(C) = min(k,v). If v >t — k + ¢ then

—ph(x)"B'(x)+ph(x)"**5(x) = ph(z) = (770(:17) + nj(x)h(z)) = h(a)’~ 0 (@) (fv)) -
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In this case T1(C) = min(k,t — k + £). Next, consider the case v =t — k + £. Here, if 5'(x) = §(z) then
—ph(x)" B (z) + ph(z)F5(x) = 0 so Ty (C) = k. Finally, if §/(z) # 6(x) then for some 0 < j' < t,
vy (x) # nj(x). Since vj(x),n;(x) € Tm[x] we have that v, (x) —n.(x) is not divisible by p and is therefore
a unit. Then

t—1—v k—1—¢
~ph(z)" B ) Hph(a) ) = —ph(e) (@) )+ DD @ @)~ Y @)
j=z+1 j=z+1
Since z <t — 1 — v, in this final case, T7(C') = min(k,v + 2).
@) This can be argued similar to ().
(@) This can be argued similar to (2I). O

Now that the torsional degrees of any code can be computed, the techniques in Section [3can be applied
to produce a generating set as in Theorem BTl or Definition Our goal here is to show how the
hamming distance can be computed. Notice in Section [ that ultimately 7,_;(C) will determine the
Hamming distance of C, i.e., dg(C) =dy (<h(x)T1(C)>>.

In the remaining part of this section, we study cyclic codes of length p® over GR(p?,m) and show
how to determine their Hamming distances. To do so we apply the results from the beginning of this
section. The following two lemmas are immediate consequences of Kummer’s Theorem (see [16] for the
statement) which we will need for our calculations.

Lemma 4.5. Let k < p° and let £ be the largest integer such that p‘|k. Then p®~*| (7;:)

Lemma 4.6. Let 0 < i < p. We have (Z.pi’il) = pu € GR(p?,m) where p 1 u.

To apply the results of this section, we need to show that the ambient ring is of the correct type. To
do so, we only need to show that an appropriate polynomial is used for the generator of the ideal being
factored out . For cyclic codes of length p®, this polynomial is 27" — 1 of course. We now show why

this is an appropriate polynomial. By Lemma and Lemma and the fact that we are working in
GR(p*,m),

-1 = (-1 +1F -1

= (z—-1)P +

= (z—1)P +

We want to show that we can express 2P° — 1 in the form needed to use the results form this section.

s

Lett=p°, v=p""1 hiz) =x—1and B (z) = 257:_02 Yips—1(x — 1)"P""" where Vips—1 = ((”1;%1) (mod p)
for 0 <7 < p—1and v; = 0 for all other j. Note, v; € Tp,. This shows that xP" — 1 is the type of
polynomial we need.

The following is a special case of Lemma [41]

Lemma 4.7. Let C' < %. Then C can be expressed in one of the following forms.

(1) {0),
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2) 1),

3) (p(z =1)"),

(@) ((@—1"),

(5) (&= 1)" +plz —1)"s(z)),

(6) ((z = 1)*plz —1)"),

(7) {(z = 1* +p(z — 1)'6(x), pla = 1)")

where in any case k,{,n < p®, n <k and §(z) = Zf 01 677]-(:17 — 1)) where nj € Ty, and no # 0.

Now, restating Lemma and Lemma [ for cyclic codes of length p® and using the fact that
du(C) = du({(z — 1)T1(D))), we determine the Hamming distance of all cyclic codes of length p* over
GR(p*,m) in the following lemma. Note that ((z — 1)T1(®)) is a cyclic code of length p* over Fpm and
its Hamming distance is given in Theorem

Lemma 4.8. LethM k. l,n <p®, n<kandd(z)= Zféénj(a;—l)jwherenjeTmand

(1)
no # 0. Then dp(C) = dy ({(z — 1)11(©))) where Ty(C) and T1(C) are as follows.
(1) If C = ((z — 1)¥) then Ty(C) = k and Ty(C) = min(k,p*~1).
(2) If C = ((z — 1)F + p(xz — 1)*(x)) then Ty(C) = k and

min(k,p*~ L, p* —k+40) ifpt#EpS—k+ 4
min(k, p*~! + 2) ifps ™t =pS —k+¢

T (C) = {

where = = min ({j]; # 17} U {°}).
(3) If C = ((x — 1)*,p(x — 1)) then Ty(C) = k and T1(C) = min(k,p*~*,n).
(4) If C = ((z — 1)F + p(x — 1)%6(x), p(x — 1)) then Ty(C) = k and

min(k, p*~ 1, p* —k+£€,n) if Pt #£pt— k4L
min(k,p*~! + z,n) ifps ™l =pS—k+¢

7 (C) = {

where z = min ({j|v; # n;} U{p"}).
(5) If C = (p(x — 1)™) then Ty(C) = p® and T1(C) = n.

5. STRUCTURE OF POLYCYCLIC CODE AMBIENTS

In this section, we study the structure of the code ambient for polycyclic codes over a Galois ring
which is the ring W where f(x) is a regular monic polynomial. Throughout this section assume
that f(z) € GR(p®,m)[x] is regular. By Theorem 22 f(z) = d(x)fi(z)--- fs(z) where the d(z) €
GR(p®,m)[z] is a unit and {fi(z) € GR(p*, m)[z]}7_; is a set of regular primary co-prime polynomials
that are not units. By the fact that §(z) is a unit, we may assume without loss of generality that
fi(x) = hi(z)% + pB;i(z) where h;(z) is a monic basic irreducible polynomial such that h;(z) = h;(z). We
know that t; deg h;(x) > deg f3;(x). Since we are interested in W and (f(z)) = (6(z)" f(2)), we
assume 0(z) =1, so f(x) = fi(z)--- fs(x). Additionally, throughout this section let R = GRpZm[] ang

(f(=))
let fl(x) — H_L;:l,j;ﬁi f](lﬂ) for 1 S 7 S S.

Theorem 5.1. For R, we have the following

(1) R =@y (file)+ () and (Ji(w) + (f)) = Sl

(2) Any mazimal ideal of R is of the form <pfl( )+ filz) + (), hifi(z) + fi(x) + (f>>= (p+ (f), hi(x) + (f)

for some 1 <i<s,
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(3) J(R) =iy (p+ (), i) + (£)) = <p+<f> ITi_s i) + (),
(4) s0c(R) = @y (P hi(@) = fulw) + () ) = (0" Ty hal@)s™t + ().

Proof. () It is not hard to see that since the f;(x) are co-prime, N{fi(z)) = [[ (fi(z)) = (f(x)) (see
discussion on pg. 94 in [24]). By the Chinese Remainder Theorem,

GR (p*,m)
"= @ o
Define ¢; : R — W via ¢; : a(z) + (f) = a(z) + (f;). Since <fz‘($) + <f>> = {a(@) fi(z) +
(f)|dega(z) < deg fi(x)} we have that <f (x) + <f>> = GRp m [m].
[@)- @) There exists idempotents é;(z) + (f) € <f} > for 1 < i < s such that (¢;(z) + (f)) =

(@) +(f)) and 1+ (f) = 21, ez<x> + {f). So,

(file) +(f)) =

_ < S @+ i)

i=1,i%j

Using ([Il) and Lemmas Bl and B3] the results follow. O

Theorem 5.2. The following are equivalent:
(1) R is not a principal ideal ring.
(2) @ > 1 and there exists a factor from a primary co-prime factorization of f(x), g(x), where
g(x) = h(z) + pB(x) and h(x) is basic irreducible, t > 1 and B(x) € {p, h(z)).
(3) a > 1, f(x) is not square free and if f'(x) is the square free part of f(x), and we write f(x) =
' (z)a(x) + py(z) then ¥(z) =0 or a(x) and ¥(x) are not co-prime.

Proof. (1) <= (@) By Theorem 2.2 there exists a primary coprime decomposition of g(z). Then the
result follows from Theorems (5.1] and [3.4]

@)=@) Since t > 1, f(z) is not square free. This also shows h(z)|f(z) and h(z)|a(z). Since
B(z) € (p,h(x)), we have B(z) € (k). This implies h(x)|(g(z) (mod p?)). Since g(z)|f(z), we see
h(z)|¥(x). So, a(z) and J(x) are not co-prime.

@)= @) Since f(x) is not square free and &(x) and 4(z) are not co-prime there exists a basic irreducible
polynomial h(z) such that h(z)!|f(z) for some ¢t > 1 and h(z)|5(x). So there exists a factor g(x) of
f(x) such that g(x) = h(z)" 4+ pB(z) for some B(x). Since h(zx)|¥(z), we have that h(x)|3(x). Hence,
B(x) € (p, h(x)). 0

Remark 5.3. The equivalence in Theorem [(5.2] of (Il) and (B]) was presented in [32] with an alternative
proof.
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Lemma 5.4. Let R be a ring with direct sum decomposition R = ®' | R;. Assume, for any positive
integer i, that I; <4 R; is at most k-generated. Then I < R is at most k-generated.

Proof. Let I < R. Then I = @} ,I; for I; € R;. Then I; is generated by some f;1,..., fit € R;. Let
gj = fij + -+ foj for 1 < j < k. Then (fi,..., fn;) = (g;) and hence I = (g1,...,9k)- O

Now we generalize Proposition B.I3] to the case where f(z) is an arbitrary regular polynomial.
Theorem 5.5. Let C <<R. Then

— <pj0g0($), . ,pj"gr(ﬂf»

where 0 <r <a—1 and

(1) 0<jo< - <jr<a-1
(2) gi(x) monic fori=0,...,r,
(3) deg f(z )>deggo( ) > > deggr(z),
(4) pji“gz ) € (PI+igii(a ) P gr(2))
(5) pof(z) € (Pgo(x),...,p"g,(z)) in GR(p?,m)[x].
Proof. Follows from Proposition B.13, Theorem [5.1] and Lemma [5.4] O

The structure of the ambient space of cyclic codes over finite chain rings was studied in [26], [28§],
[27] and [32]. For any ideal of the ambient space, the authors of those papers came up with a special
generating set called strong Groebner basis (SGB). They showed that SGB can be used to determine the
Hamming distance of the corresponding code. It is easy to see that their results also hold for the ideals
of R. So we have the following result.

Theorem 5.6. Let C' <R where C = (p/g; (x),...,p'"g; () is as in Theorem 53 Then dg(C) =
du ((p"'gj, (%)) = du({g;,. ().

Proof. For v(x) € C, if p*v(x) # 0 then wy(v(x)) > wy(pFv(z)). Let c(z) € C such that dH(I) =
wr(c(z)). Let ¢ be the largest integer such that p‘c(z) # 0. Hence, plc(z) € C{(p*~') = (p*~g;,).
Also wy (c(z)) = wy (pFe(x)) by the minimality of ¢(z). Hence, dy ((p*~'g;, (z))) = wy(pe(z)) = dH( ).
The equality dg((p*~'g;,(2))) = du ((gj, (x))) follows from Lemma O

6. ON THE HAMMING WEIGHT OF (2" 4 )V

We develop some tools, that we use in Section [0 and Section B], to compute the Hamming distance of
some constacyclic codes over finite fields.

We begin by partitioning the set {1,2,...,p° — 1} into three subsets. These subsets arise naturally
from the technicalities of our computations as described in Section [0 and Section B If 7 is an integer
satisfying 1 <1 < (p — 1)p* !, then there exists a uniquely determined integer 3 such that 0 < 8 < p —2
and

Bp*t+1<i<(B+1)p*t

Moreover since

ps o ps—l < ps o ps— s

< <P Pt =pt -
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S

for an integer 7 satisfying (p — 1)p*~ ' +1 =p* —p*~! +1 < i < p® — 1, there exists a uniquely determined

integer k such that 1 <k <s—1 and
(61) p° _pS—k +1<i<p’ _ps—k—l‘

Besides if i is an integer as above and k is the integer satisfying 1 < k < s — 1 and (G.1), then we have

k s—k—1 s—k—1

ps_ps— <ps_ps—k+p <ps_ps—k+2p < ...

<p*=p 4 (p-1)pH!

and p* — p*F 4 (p — D)p*~F~1 = p° — p>~F=1 So for such integers i and k, there exists a uniquely

determined integer 7 with 1 < 7 < p — 1 such that

ps _ps—k + (7_ _ 1)ps—k—1 +1<i< ps _ps—k + Tps—k—l.

Thus
p—2
{1,2,...,p°" 1} U{z BTyl <i< (B + 1)ps—1}
p=1
(6.2) R
Ul [ =P+ i <i<pt - R rpt R
k=171=1

gives us a partition of the set {1,2,...,p% — 1}.

Throughout this section ¢ denotes a power of p. Let N be a positive integer and v € F, \ {0}. Our
computations in Section [l and Section [ are based on expressing the Hamming weight of an arbitrary
nonzero codeword in terms of wg ((2” 4+ ~)™V). In [23], the Hamming weight of the polynomial (x4 )V
is given as described below. Let e,n, N and 0 < bg,b1,...,be—1 < p — 1 be positive integers such that
N < p® and let v € F, \ {0}. Let N = be_1p°~ ! + -+ +bip + bo, 0 < b; < p, be the p-adic expansion of
N. Then, by [23 Lemma 1], we have

e—1

(6.3) wg((x+7)N) = [](ba +1).

d=0
As suggested in [23], identifying « with 2" in (G3]), we obtain

e—1

(6.4) wr (@ + 7)) = [[(ba+1).
d=0

The following two lemmas are consequences of (6.4]) and we will use them in our computations fre-
quently.

Lemma 6.1. Let m,n,1 < B8 < p— 2 be positive integers and v € F, \ {0}. If m < p* — Bp*~! — 1, then
wr (2 + 7)™ ) > g 4 2,

Proof. Since
m<p =B —1=(p-F-1p"  + -1 P+ (- Dp+p— 1,
either
m = Lp '+ (p-1p* 2+ - +(p-1p+p—1 or

m = as_1p* '+ +a1p+ag
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holds, where 0 < L <p—3—-2,0<ag,a1,...,a5s9<p—1and 0 <as,_1 <p— B —1 are integers such
that ay < p—1 for some 0 < ¢ < s—1. According to the p-adic expansion of m, we consider the following
two cases.

First, we assume that m = Lp*~'4(p—1)p*~2+- - -+ (p—1)p+p—1. Then m+pp* 1 +1 = (L+p+1)p*~L.
So using [64), we get wy((x7 +~)™ PP Y = L+ 42> 42,

Second, we assume that m = as_1p°~' + - 4+ a1p + ap. Then the p-adic expansion of m + Bp*~! + 1
is of the form m + Bp*~ ' +1 =bs 1p* L+ -+ bip+ by where 0 < by, b1,...,bs_o <p—1 and

(6.5) bs—1 = as_1+ 3.
Let k be the least nonnegative integer with a; < p — 1. Then it follows that
(6.6) 0<b,<p—-1
So, using (4], (1) and ([G.6]), we get
wir (@ + 7)) 2 (B aa + D0+ 1) 2 (BH1)2> 542
O

Lemma 6.2. Let m,n,1 <7 <p—1,1 <k < s—1 be positive integers and v € Fy\ {0}. If m <
P = (7= D T = L then wpg (@20 4 )T TP > (74 1)ph,
Proof. Since
m < pF—(r—1)pF1t-1
= (p-r+p -1
= (=P -4+ (p—Dp+p— 1,

either
m o= Lp" " (p-DpF P+ (p-Dptp -1 or
m = ag_j_1p" "+t ap+ag
holds, where 0 < L <p—7—1,0<ag,a1,...,a5s_p_2o <p—1and 0 < as_j_1 <p— 7 are some integers

such that 0 < ay < p—1 for some 0 < ¢ < s—k —1. According to the p-adic expansion of m, we consider
the following two cases.
First, we assume that m = Lp** "1 4+ (p—1)p**24... 4 (p—1)p+p— 1. Then the p-adic expansion
of m+p* —p*~F 4+ (r — 1)p* =1 + 1 is of the form
mAp* —p P (=D TP L= (p - D T e (p - D+ (L )T

So, using B4, we get wyr((x" + )™t P TP S (24 )k,
Second, we assume that m = as_p_1p° * "'+ --- +ai1p + ap. Then the p-adic expansion of m + p* —
p*F + (1 — 1)p*~F~1 4+ 1 is of the form

m +ps _ps—k + (T . 1)ps—k—1 +1 = (p . 1)ps—1 NN (p . 1)ps—k
—H)s_k_lps_k_l + -+ bip+ b
where 0 < by, b1,...,bs__1 < p— 1 are integers. It is easy to see that

(6.7) bs_p1=as_p_1+7—1.
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Let £y be the least nonnegative integer with 0 < as, < p — 1. Then
(6.8) 0<by, <p-—1
Using ([6.7), (6-8]) and ([6.4]), we get

wir((z )PP s R (1) (b + 1)
> 2rp*
> (r+1)p".

O

In [23], the authors have shown that the polynomial (2" + )" has the so-called “weight retaining
property” (see |23, Theorem 1.1]). As a result of this, they gave a lower bound for the Hamming weight
of the polynomial g(z)(z" + )" where g(x) is any element of F,[z]. Let n, N,y and g(x) be as above.
Then, by [23, Theorem 1.3 and Theorem 6.3], the Hamming weight of g(x)(z" + )" satisfies

(6.9) wr(g(x) (@ + 7)) 2 wa(g(z) mod 2 +7) - wi((a” +)).

Now we examine the Hamming weight of the polynomials (27 4 41)P" (2" + 42), over F,[z], where
0 <i<p® Let 0 <i<p® bean integer and 1,72 € Fy \ {0}. Let

(2" +72)" = a;z™ + a; 12"V 4 4 g
where ag, aq,...,a; are the binomial coefficients. Note that
(@ +7)7 (2" +792) = (@ 447 ) (@™ + a0y + o+ aghh)
= ") g P ) gy 4 gz
+aind @ 4 ai19f 210D+ agnd s,

Therefore w (27 + v1)P (27 + 72)%) = 2wy (" + 72)?).

7. CERTAIN CONSTACYCLIC CODES OF LENGTH 7p®

Let 7 and s be positive integers. Let v, A € Fym \ {0} such that 47" = —\. All A-cyclic codes, of length

np®, over F,m correspond to the ideals of the finite ring
_ Fpm ]
(2" — )’

Suppose that " + 7 is irreducible over Fym. Then the monic divisors of 2" — X\ = (2" +~)P" are exactly
the elements of the set {(2” +v)": 0 <i < p*}. So if 2" + X is irreducible over F,m, then the A-cyclic
codes, of length np*, over Fym, are of the form (2" ++)!) where 0 < i < p*. In this section, we determine
the Hamming distance of all A-cyclic codes of length np*® over Fpm and GR(p®, m). In Theorem [L.G, we
determine the Hamming distance of <(a:" + ’y)l> As a particular case, we obtain the Hamming distance
of negacyclic codes of length 2p* over Fym where 22 + 1 is irreducible over Fym[z]. Using Theorem
together with the results of Section [l and Section Bl we determine the Hamming distance of a cyclic code
of length p* over GR(p®, m).

Let C = ((a" +~)’) where 0 < i < p® is an integer and 2" + v € Fym[z] is irreducible. Obviously if
i =0, then C' =R, i.e., C is the whole space Fzgf, and if ¢ = p®, then C' = {0}. For the remaining values
of i, we consider the partition of the set {1,2,...,p° — 1} given in (6.2]).

If 0 <i < p*L then dy(C) is 2 as shown in Lemma [Tl
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For p*~! < i < p®, we first find a lower bound on the Hamming weight of an arbitrary nonzero codeword
of C' in Lemma and Lemma [(4l Next in Corollary and Corollary [Z.5], we show that there exist
codewords in C, achieving these previously found lower bounds. This gives us the Hamming distance of
C.

We summarize our results on R in Theorem We observe that Theorem gives the Hamming
distance of negacyclic codes, of length 2p®, over F,m where p =3 mod 4 and m is an odd number. We
close this section by describing how to determine the Hamming distance of certain polycyclic codes, and

in particular constacyclic codes, of length np* over GR(p®, m).
Lemma 7.1. Let 1 <i < p*~! be an integer and let C = {(z" +~)"). Then dg(C) = 2.
Proof. The claim follows from Lemma and the fact that

—1 1 s—1

=™ 447 e

(@ )" @ ) = @ )
O
Let C = {(2" + ~)") for some integer 0 < i < p*. For any 0 # c(z) € C, there exists a 0 #
f(z) € Fylz] such that c(x) = f(x)(2" + ) mod (2" + ~)?". Dividing f(x) by (2 + 7)P" ¢, we get
f(z) = q(z)(z" + 7)P =t + r(x) where q(z),r(x) € Fylz] and 0 < deg(r(z)) < np* —ni or r(z) =0 . We
observe that
c(z) = fl@)@"+7)
= (q(@)(@" + )P 7" +r(@)) (@ + )
(" + )P +r(@) (@ + )’
(274 ~)" mod (z7 4 ~)F".

= q(x

()
= r(x)
Consequently, for any 0 # c(x) € C, there exists 0 # r(z) € Fym[z] with deg(r(x)) < np® — ni such that
c(x) = r(z)(a" + )", where we consider this equality in Fpm[z]. Therefore the Hamming weight of ¢ € C
is equal to the nonzero coefficients of r(z)(z" 4+ )" € F,[x], i.e., wy(c) = wy(r(z)(a" + v)?).

In the following lemma, we give a lower bound on dg(C) when p*~! < i.
Lemma 7.2. Let 1 < 8 < p—2 be an integer and let C' = (2 +~)PP" '+, Then dg(C) > B+ 2.
Proof. Let 0 # c(x) € C, then there exists 0 # f(z) € F,[z] such that
() = fa) (@ +7) T mod (@ 4 )

s—1 s

—n=(p—B)p*~t —n. We choose m to be the largest
nonnegative integer with (z4~)™|f(x). Clearly deg(f(x)) < (p—8)np*~' —n implies m < (p—fB)p*~' ~1.

So, by Lemma [6.1] we get
(7.1) wi (2" +4)" ) > 842,

We may assume that deg(f(z)) < np® — nBp

For f(x) = g(x)(z" + )™, we have g(x) mod z" 4+ # 0 by our choice of m, so
(7.2) wg(g(x) mod (27 +~)) > 0.
Now using (1)), (Z2) and (69]), we obtain

wir(e(z)) = wy(gla)(x +~)" P+
> wp(g(z) mod (¢ +y))ww (2" +~)™)
> [B+2.



POLYCYCLIC CODES WITH APPLICATIONS TO REPEATED-ROOT CODES 25

0

Next we show that the lower bound given in Lemma is achieved when p*~! < i < (p — 1)p*~! and
this gives us the exact value of dy(C).

Corollary 7.3. Let 1 < B3 <p—2, fp* L +1<i < (B+1)p* ! be integers and let C = ((x" + 7)?).
Then dp(C) =+ 2.

Proof. Lemma [Z2 and C C (2" +~)P"" 1) imply dg(C) > B + 2. We know, by (@A), that wg ((z +
NEHDPTYY = g 49 Clearly (¢ +~) PP € € as (B + 1)p*t > i. Thus dg(C) < 8+ 2. Hence
dH(C) = [+ 2.

U

Having covered the range p*~! < i < (p — 1)p*~ !, now we give a lower bound on dy(C) when
(p— 1)p*~! < i < p* in the following lemma.

Lemma 7.4. Let 1 <7 <p—1,1<k<s—1 be integers and let C = (a7 + )P 7" " HT=Dp " 141y
Then dg (C) > (7 + 1)p*.

Proof. Let 0 # c(x) € C, then there is 0 # f(x) € Fpm[z] such that

() = fa)(a )PP mod (a7 )
We may assume that
(7.3) deg(f(z)) <mp*™* —n(r = 1)p*F 71—,

Let m be the largest nonnegative integer with (2" 4 ~)™|f(x). Then there exists g(z) € Fpm[x] such that
f(z) = g(x)(z" +v)™. By [@3), we have m < p~% — (1 — 1)p**~1 — 1. So, by Lemma 6.2 we get

(7.4) wir (@ 4 )PP DT L S k(e ),

The maximality of m implies 2" 4+~ 1 g(x) and therefore g(x) mod x" + ~ # 0. So we have
(7.5) wg(g(z) mod z7 +v) > 0.

Now using (6.9]), (C4) and (7.35]), we obtain

wi(e(@)) = wp(g(x)(@" 4 )PP e
> wp(g(x) mod & 4wy (@ )P
> pF(r+1).
This completes the proof. ]

For (p — 1)p*~! < i < p*, we determine dy(C) in Corollary where we show the existence of a
codeword that achieves the lower bound given in Lemma [T4]

Corollary 7.5. Let 1 <7 <p—1,1 <k <s—1 and i be integers such that
ps _ps—k + (7_ _ 1)ps—k—1 +1<i< ps _ps—k + Tps—k—l.
Let C = ((z" +7)"). Then dy(C) = (1 + 1)p".

Proof. LemmalTdland C C ((z7+~)P"P" " +=Dp " 41 implies dyy (C) > (r+1)pF. We know, by (64),
that wiy (2717777 = (4 ). Clearly (a7-47)7' 747" € O as pr—pt—b-p b=t >
i. So dy(C) < (74 1)p¥. Thus we have shown dy(C) = (7 + 1)p*. O
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We summarize our results in the following theorem.

Theorem 7.6. Let p be a prime number, Fym a finite field of characteristic p, v € Fy \ {0} and n be a
positive integer. Suppose that z" 4+ v € Fy[x] is irreducible. Then the \-cyclic codes over Fg, of length
np®, are of the form C[i] = {(z" +~)"), where 0 < i < p* and A\ = —?". Ifi =0, then C is the whole
space Fzgf and if i = p®, then C' is the zero space {0}. For the remaining values of i, if p = 2, then

1, if 1=0,
2 if 1<i<257!
dy(Cli]) = ' - '
H( [Z]) 2]<;+1, Zf 9s _25—k+1 é i S 928 _28—k+728—k—1
where 1 <k <s—1,

if p is odd, then

2, if 1<i<p,

B+2, if Bt 1<i<(B+1)p*~! where 1< <p—2,

(T“‘l)pk, if ps_ps_k+(7'—1)ps_k_1+1Siﬁps—p‘g—k—l—TpS_k_l
where 1<7<p—1 and 1<k<s-—1.

dr (Cli]) =

Remark 7.7. If we replace n with 1 and v with —1 in Theorem [7.6], then we obtain the main results of
[10] and [29]. Namely, we obtain [I0, Theorem 4.11] and [29] Theorem 3.4].

Theorem is still useful when the polynomial x" + 7 is reducible over the alphabet [Fjm.

Remark 7.8. Note that <(x’7 + 7)i>, 0 <4 < p® are ideals of R independent of the fact that =" + ~ is
irreducible. So our results from Lemma [1] to Corollary hold even when the polynomial 7 4+ v is
reducible over F,=. But then, the cases considered above do not cover all the A-cyclic codes of length p°.
In other words, if " 4 ~ is reducible, then there are A-cyclic codes other than <(x’7 + 7)i>, 0<i<ps
and their Hamming distance is not determined here.

Now we will apply Theorem [T.0 to a particular case. Namely, we will consider the negacyclic codes over
[F,m of length 2p® where p is an odd prime. In order to apply Theorem [G] the polynomial z? + 1 must
be irreducible over F,m. A complete irreducibility criterion for 22 + 1 is given in the following lemma.

Lemma 7.9. Let p be an odd prime and m be a positive integer. The polynomial x*> + 1 € Fpm[x] is
irreducible if and only if p = 4k + 3 for some k € N and m is odd.

Proof. Follows from the order of the multiplicative group of Fpm. g

Let C be a negacyclic code of length 2p® over Fym. If 22 +1 is irreducible over Fpm, then the Hamming
distance of C' is given in the following theorem.

Theorem 7.10. Let p = 4k + 3 be a prime for some k € N and let m € N be an odd number. Then the
negacyclic codes over Fpm, of length 2p®, are of the form C[i] = {(z* 4+ 1)), where 0 < i < p*, and

2, if 1<i<p!,

8+ 2, if B+ 1<i<(B+1)p*~! where 1< B <p—2,

(T Pk i PP —p P (r = 1< < pt e rpt
where 1<7<p—1 and 1<k<s—1.

du(Cli]) =
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For the other values of p and m, z? + 1 is reducible over F,m and in this case, we determine the
minimum Hamming distance of C' in Section

Now we describe how to determine the Hamming distance of certain polycyclic codes of length np®
over GR(p®,m) and, in particular, this gives us the Hamming distance of certain constacyclic codes of
length np°. Let 70, Ao € GR(p®,m) be units such that 7, = v, A\g = A and vgs = —\g. According to our
assumption in the beginning of this section, we have that =" + 7, is irreducible.

Let f(z) = (2" + )" + pB(z) € GR(p*, m)[z] with deg(B(z)) < np*. Note that f(z) in this form is
a primary regular polynomial so the techniques of Section [3] can be applied.

Let Ry = GRp mlz] et 0 = <pjogo(:17), . ,pj"gr(x)> <1 Ro where the generators are as in Theorem

(f(=))
As was done in ([B]), we can express g,(z) in the canonical form

gr(2) = P (2" 4+ 70)Pao(z) + -+ + p* (@ 4+ 70)% g1 ()

where each «;(x) is either a unit or 0. For 0 # g,(z), we have ag(x) # 0 since p { g,(x). Therefore
ap(x) is a unit. So, by Theorem (.6l we deduce that dy(C) = dg({9-(z))) = dg({(z7 + ~v)¢)). Now
dp ({(z + ~)¢)) can be determined using Theorem

Remark 7.11. Let 7,7, A, A\g be as above. The Ap-cyclic codes of length np® over GR(p®, m) are the

ideals of the ring W. Since ™" — \g = (2" + )" + pB (), for some B(z) € GR(p®, m)[x]

with deg(8' () < np®, we can determine the Hamming distance of the Ag-cyclic codes of length np® over
GR(p®,m) as described above.

8. CERTAIN CONSTACYCLIC CODES OF LENGTH 2np°

We assume that p is an odd prime number, 1 and s are positive integers, F,m is a finite field of
characteristic p and A, &, ¢ € Fpm \ {0} throughout this section.
Suppose that ¥P° = X and 2*? — 1) factors into two irreducible polynomials over Fpm as

(8.1) 2 —p = (2" =€) (" +€).

In this section, we compute the Hamming distance of A-cyclic codes, of length 2np®, over F,m where
(B is satisfied. Next, we determine the Hamming distance of certain polycyclic codes, and in particular
certain constacyclic codes, of length np°® over GR(p®, m). We know that A-cyclic codes of length 2np*
over F,m correspond to the ideals of the finite ring

_ Fpm 2]
e )
Note that, by Proposition B.I, we have R = (z" +£P") @ (2" — ¢P°) and (2" + &P°) = %7
<x’7ps — §ps> = % Moreover, by Proposition [ the maximal ideals of R are (x" — &) and

(z" + €). Since the monic polynomials dividing 2%"" — \ are exactly the elements of the set {(27 —&)*(2"+
€71 0<i,j <p®}, the Acyclic codes, of length 2np*, over F,m are of the form ((z7 — &)*(z" + £)7),
where 0 < 14,5 < p® are integers.

Let C = ((a7 — &) (2" + £)7). If (4,5) = (0,0), then C = R. If (,5) = (p®,p°), then C = {0}. For the
remaining values of (i, j), we consider the partition of the set {1,2,...,p* — 1} given in (G2)).
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In order to simplify and improve the presentation of our results, from Lemma [B.4] till Corollary B.21],
we consider only the cases where i > j explicitly. We do so because the cases where j > ¢ can be treated
similarly as the corresponding case of i > j.

Now we give an overview of the results in this section. If i =0, or j =0, or 0 < 7,5 < p*~!, then the
Hamming distance of C' can easily found to be 2 as shown in Lemma [B.J] and Lemma

If0<j<p*ltand p> ' +1<i<p® then dy(C) is computed in Lemma 84 Corollary 8.5, Lemma
and Corollary

Ifpst+1<j<i<(p—1)p*L, then dy(C) is computed in Lemma B8 and Corollary

IfpP 't +1<j<(p—1)p* ' <i<p®—1,then dy(C) is computed in Lemma BI0 and Corollary BITl

If (p—1)p* ' +1<j<i<p®—1, then dg(C) is computed in Lemma BI2, Corollary BI3] Lemma
and Corollary

Finally if i = p® and 0 < j < p® — 1, then dy(C) is computed from Lemma till Corollary

At the end of this section, we summarize our results in Theorem

We begin our computations with the case where ¢ = 0 or j = 0.

Lemma 8.1. Let 0 < i,j < p° be integers, let C = ((x" — €)%Y) and D = (2" + £)7). Then dg(C) =
dy(D) = 2.
Proof. Since

(2" — &P T2 — €)' = 2™ — ¢ € C and

(@ + P (2 + &) = 2™ +¢” €D,
we have dy(C),dg (D) < 2. On the other hand, dy(C),dy (D) > 2 by Lemma 23l Hence dy(C) =
dy (D) = 2. O
Lemma 8.2. Let C = (2" — &)!(z" + &)7), for some integers 0 < i, < p*~' with (i,5) # (0,0). Then
dp(C) =2.
Proof. By Lemma 23] we have dy(C) > 2 and

N G e R S - e
implies that dy(C) < 2. Hence dy(C) = 2. O
Let C = ((a" — &) (2" + £)7) for some integers 0 < 7,5 < p® with (0,0) # (i,5) # (p°,p°). Let

0 # c(z) € C, then there exists 0 # f(x) € Fym[x] such that c(x) = f(z) (27— €) (2" +&)7 mod x2P" — )\,
Dividing f(z) by (27 — &)P "1 (2" + £)P°~I | we get

f(@) = g@)(@” = & (@ + P 4 r(x)
where ¢(z), r(z) € Fy[z] and, either r(z) = 0 or deg(r(x)) < 2np® — ni — nj. Since

c(x) = flz)(a" &) (2" +¢)

S

= (g(@)(@" =P (@ + O 4 r(x)) (" — €)' (2" +€)
= q@)(@" =P (@ + &P +r(x) (" — &) + &)
= r(@)(@" — &)z + &)Y mod z2?" — )\,

we may assume, without loss of generality, that deg(f(x)) < 2np® — ni — nj. Moreover wy(r(z)(z" —
)" (a" +¢€)7) = wr(c) as deg(r(x) (2" — €)' (x" +€)7) < 2np°.
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Let g and jo be the largest integers with (27 — £)®©|f(x) and (27 + €)% |f(z). Then there exists
g(x) € Fym[z] such that f(z) = (27 — §)"(a” + £)7°g(x) and (2" — &) 1 g(x), (27 + &) { g(x). Clearly
deg(f(x)) < 2np® — ni — nj implies ig + jo < 2p® — i — j. Therefore ig < p* — i or jo < p® — j must hold.

Soif ig > p®—1, then jy < p®—7j. For such cases, the following lemma will be used in our computations.

Lemma 8.3. Let i, 7,19, jo be nonnegative integers such that i > j, ig > p®—i and jo < p*—j. Let c(x) =
(a7 — €)io+i(a + E)i+ig(w) with " — € 1 g(x) and 2 + € £ g(x). Then wy(e(w)) = 2wp (@21 — €2)inti).

Proof. Since ig > p®—1i and —jg > —p®+j+1, we have ig — jo > j—i+1 or equivalently ig — jo+i—j > 1.
So c(z) = (221 — £2)Joti(gn — ¢)lo—joti=ig(x). Dividing (2" — &)o~Ioti=ig(z) by 227 — £2, we get

(8.2) (a" — &) g(x) = (2* — )q(x) +r(z)

for some ¢(z),r(xz) € Fy[z] with r(z) = 0 or deg(r(x)) < 2n. Let 6; and 63 be any roots of 27 — § and
o + &, respectively, in some extension of Fm. Obviously 61 and 6y are roots of (227 — ¢2)q(z). First we
observe that 7(61) = 0 as 6; is a root of LHS of (82]). Second we observe that r(f2) # 0 as 65 is not a root
of LHS of (82]). So it follows that r(z) is a nonzero and nonconstant polynomial implying wg (r(z)) > 2.

Therefore
(8.3) wy (2" — )07 g(x)  mod 2 — €%) = wp(r(z)) > 2.
Using (6.9) and (B3)), we obtain
wi(e(@)) = w((@® — YT (a7 — )TN g (a)
> wp((@® = &Y wn (@7 - T g(a) mod 2 - £7)

Y]

2 (a1 - €3)7H)
O

Now we have the machinery to obtain the Hamming distance of C' for the ranges p*~! < i < p® and
0<yj<p

In what follows, for a particular range of i and j, we first give a lower bound on dg(C') in the related
lemma. Then in the next corollary, we determine dy(C') by showing the existence of a codeword that
achieves the previously found lower bound.

We compute dg(C) when 0 < j < p*~! < i < 2p*~! in the following lemma and corollary.

Lemma 8.4. Let C = (2 — )P H(27 4 €)). Then du(C) > 3.

Proof. Pick 0 # c¢(z) € C where ¢(z) = f(z)(@" — P (27 + £) mod 227" — X for some 0 # f(z) €
Fpm [z] with deg(f(z)) < 2np® —np®~1 —2n. Let g and jo be the largest integers with (27 — £)%| f(x) and
(2" 4 €)70|f(x). Then f(z) is of the form f(z) = (27 — &)™ (2" + £)0g(x) for some g(z) € Fpm|[z] with
21 — &4 g(x) and 2 + € 1 g(z). Note that ig < p* —p*~1 — 1 or jo < p* — 1 holds.

If iy < p* — p*~! — 1, then, by Lemma [6.1]

(8.4) wy (2" — )0 > 3,
Moreover the inequality
(8.5) wr(g(x)(z7 + €T mod 2" — €) > 0

holds since 2" — ¢ 1 g(x). Now using ([69]), (84]) and (83, we obtain
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wi(e(@) = wr(f@) @ - (2l +¢))

(5.6 = (@ — o (@ 4 g)ivtg(a))
' > wpy((@? = &0 wy (a7 + €70t g(x)  mod & — )
> 3.
If ig > p® — p*~1 — 1, then jo < p* — 1. Clearly wg ((x?" — £2)%+7) > 2. So, by Lemma B3] we have
(8.7) wr(c(x)) > 2wy (2?7 — 2701 > 4.
Now combining (8.0) and (87), we obtain wy(c(z)) > 3, and hence dy (C) > 3. O

Corollary 8.5. Let i, be integers with 2p°~!' > i > p*~t > j > 0 and let C = ((x" — &)} (z" +£)7). Then
dy(C) = 3.

Proof. Since C' C ((z7—&)P" T (21+¢)), we know, by LemmaRA] that dg (C) > 3. For (27—£)2" " (z7+
¥ e C, we have

(" = P (@ + O e
So di(C) < 3 and hence di (C) = 3. O

s—1 _ (:1}277 _ 52)217371 - :1;‘47”7

s—1 s—1

s—1
— 2827 2

For 2p*~! <i < p®and 0 < j < p*~!, dy(C) is computed in the following lemma and corollary.
Lemma 8.6. Let C = ((z"1 — €)% +1(a" +¢€)). Then dy(C) > 4.

Proof. Pick 0% c(z) € C where c¢(z) = f(z)(z" — )2 (2" + ¢) mod 227" — X for some 0 #£ f(z) €
Fpm[z] with deg(f(x)) < 2np® — 2np*~1 — 2n. Let i and jo be the largest integers with (z7 — £)%|f(z)
and (2 + £)°|f(z). Then f(z) is of the form f(z) = (27 — &) (2" + £)70g(z) for some g(z) € Fym[]
with 27 — € 1 g(z) and 27 + € | g(x). Note that ip < p* — 2p*~! — 1 or jo < p® — 1 holds since
deg(f(x)) < 2np® — 2np*~" — 2n.

If iy < p* — 2p*~1 — 1, then, by Lemma [6.1] we have

(8:8) wp (" = T > 4
Since z7 — £ { g(x),
(8.9) wrr(9(x)(@" + €)% mod " — €) > 0

holds. Now using (B8], (83) and ([69]), we obtain
wi(e(z)) = wy(f(z)(@" - al +€))
= wy((a" — &) T @ 4 )0ty (z))
wi (2" + )0 g(x)  mod 2" — E)wp (" — )0

4.

v

Y

If ig > p* — 2p*~1 — 1, then jo < p* — 1. Clearly wy((z%7 — £2)70t1) > 2. So, by Lemma B3] we have
wr(c(r)) > 2wy (21 — €2)70+1) > 4. Hence dy(C) > 4. O

Corollary 8.7. Let 2p*~' < i < p® and 0 < j < p*~! be integers, and let C = ((x" — &)1 (2" +&)7). Then
dy (C) = 4.

Proof. Since C' C (2 —£)2P" 1 (214 €)), we know, by Lemma B8] that dy (C) > 4. For (2 — )P (2 +
P e C, we have wy (2 — )P" (2 + €)P" ') = 4. Thus dg(C) < 4 and hence dg(C) = 4. O
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Next we consider the cases where p*~! < j < i < p°. We begin with computing dz(C) when p*~! <
j<i<(p—1)p*! in the following lemma and corollary.

Lemma 8.8. Let 1 < 8 < 8 < p— 2 be integers and C = ((x" — &)PP" " +1(gn +§)5lp371+1>. Then
dg(C) > min{f +2,2(8" +2)}.

Proof. Let 0 # ¢(z) € C. Then there exists 0 # f(x) € Fym|[2] such that ¢(z) = f(2)(x — )PP" +1 (27 4
5)6,”371“ mod z2"° — X\. We may assume that deg(f(x)) < 2np® —nBp*~! —nB p*~! —2n. We consider
the cases 8 = 8 and 3 < 3 separately.

First, we assume that 3 = 8. Then C = ((2 — )PP (27 + £)B/p571+1> = ((a2n — £2)Pr 1ALy,
Let m be the largest nonnegative integer with (227 — ¢2)™|f(x). We have m < p® — fp*~! — 1 as
deg(f(x)) < 2np* — 2nBp*~! — 2n. So, by Lemma [G.1] we get

(8.10) wir (@1 — 3PPy > gy,

Clearly f(z) is of the form f(x) = (2% — £2)™g(z) for some g(z) € Fym[z] where 227 — £2 { g(x). So g(x)
mod 227 — ¢2 £ 0 and therefore

(8.11) wr(g(x) mod x* — €2) > 0.
So if 8= A, then using (810), (BII) and [E3), we get
wy(c(r)) = wy((z? — )T Hy(2))
> wp(g(z) mod x®! — €2)wy (2?1 — €2)m+oP 1)
> pB+2

Second, we assume that 8° < 3. For ¢(z) = f(z) (2" — &)1 (27 + §)Blp371+1 mod 2" — X, let g
and jo be the largest integers with (27 — &)|f(x) and (2 +&)70|f(z). Since deg(f(x)) < 2np* —nBp* ' —
nB p*~t — 21, we have ig+jo < 2p° — Bp* L — B p* 1 —2. Thusig < p*—fBp*t—lorjo<p°—fBp'—1
holds.

If ig < p* — Bp*~! — 1, then, by Lemma [6.1] we have

(8.12) wy ((z — €)1y > g4 9

Note that (" + £)j0+5lp571+1g(:17) mod z7 — £ # 0 since 7 — £ 4 (27 + £)j0+6/p571+1g(x). Therefore

(8.13) wp (2" + §)jo+6,p571+1g(x) mod z" — &) > 0.
Using ([6.9), (812) and (8I3]), we obtain
wi(e(x) = wp((a? — €O @ 4 £ P H g )
(8.14) > wy((@ + € P Hg(z) mod @ — Ehwp (7 — )0t
> B+2.

If ig > p* — Bp*~! — 1, then jo < p* — B'p*1 — 1. By Lemma B3| we get
(8.15) wir(e(x)) 2 2wp (¢ — EYPorIrT,
For wg ((z?" — 52)]'0‘%,”871“), we use Lemma [6.1] and get

(8.16) wir((@1 — 2)iotB Py > g 4o,
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Combining (815 and (8I6]), we obtain
(8.17) wi(e(x)) > 2(8 +2).

So if 8 < f, then, by 8I4) and (BIT), we get that wg(c(x)) > min{B + 2,2(8 + 2)}. In both cases,
namely 8= and ' < 8, we have shown that dj(C) > min{g + 2,2(3 +2)}. O

Corollary 8.9. Let j <i, 1< < <p—2 be integers such that

i < (B+1p! and
i< (B +ph

Let C = ((x" — €)' (2" + £)7). Then dy(C) = min{3 + 2,2(3 +2)}.

B>t +1

<
Bpt+1 <

Proof. We know, by Lemma B8, that dz(C) > min{8 + 2,2(8" + 2)}. So it suffices to show dy(C) <
min{f + 2,2(6" +2)}.

First, (8 4+ 1)p* > 4, implies that (27 — &)B+DP ™" (g1 4 &)(B+DP* ™ — (z21 _ ¢2)(B+pr"™" ¢ ©. By
@), we get wy((z21 — ¢2)B+DP"") = 4 2. Therefore

(8.18) dyr(C) < B +2.

Second, we consider (2 — &)P" (2" + 5)(5’“)1,371 € C. Using [6.4) and the fact that p* > (8" + 1)p~,
we get

wir((@” =& @+ &) ) = 2w (@ +OF ) = 268 +2)
So
(8.19) dg(C) < 2(8 +2).

Combining (BI8) and (®I9), we deduce that dy(C) < min{s + 2,2(8" + 2)}. Therefore dy(C) =
min{S + 2,2(8 +2)}. O

The following lemma and corollary deal with the case where p*~! < j < (p — 1)p*~! < i < p°.

Lemma 8.10. Let 1 < 7 <p—-1,1 < <p—-2, 1<k < s—1 be integers and C = {(z" —
G P S (g )P Then dpg (C) > 2(B + 2).

Proof. Let 0 # c¢(x) € C. Then there exists 0 # f(x) € Fy[x] such that ¢(z) = S iy A Gl S S U N
€)' +1f(z) mod 22" — X and deg(f(z)) < np® +np*~F — n(r — Lp*F1 — nBp=t — 2. Let i
and jo be the largest integers with (27 — &)®|f(x) and (2" + £)%|f(x). Then f(x) is of the form
f(z) = (27— &) (a + )P0 g(x) for some g(z) € Fym|[z] such that 27 — £t g(z) and 27 + £ 1 g(z). Clearly
io+jo <p*+pF— (1 =Dkt = BpsTt —2. Soig < p*F — (r = 1)p* "L —1or jo <p*—pBpiTt -1
holds.

If ig < p*~% — (r — 1)p*~#~1 — 1, then, by Lemma 83} we have

(8.20) wi (2 — £)iotP’=pFHr=DpF Ty Sy 1)k
Since 7 — £ { g(x),

(8.21) wp (2" + §)j°+5p871+lg(x) mod z" —§) > 0.
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Using (820), (82I) and (63]), we obtain

wi(e(@)) = wy((a" — &)t TP IR (g )0t g ()
> wp((@? + € () mod & — &)wp((ah — £)i0tr T HE-DpTE
> (r+1)pF
> 2p
> 2(8+2).

If ig > p*~% — (r — 1)p*~#~1 — 1, then jy < p° — Bp*~' — 1. So, by Lemma B3] we get
(8.22) wir(c(@)) > 2wy (@ — 2Tt i+,
For wy((#21 — ¢2)J0+8p" ' +1) " we use Lemma .1 and get
(8.23) wi (221 — €2)fotAr Ty — g 4 9
Combining [822)) and [B23)), we obtain wg(c(x)) > 2(5 +2). So dg(C) > 2(5 + 2). O
Corollary 8.11. Leti,7,1 <7 <p—-1,1<<p—2and 1<k <s—1 be integers such that

=1 and

i < ps_ps—k+7ps—
j < (B+1Lph

Let C = (a7 — €)' (2" + €)). Then dpr(C) = 2(5 + 2).

ps o ps—k + (,7_ o 1)ps—k—l +1

<
Bp~t+1 <

Proof. Since ((z—&)pP"—#" " HT=Dp" I (0 4 €)B 7+ 1) 5 O we know, by LemmaBI0, that dy (C) >
2(8 +2). So it suffices to show dg(C) < 2(8 + 2). We consider (27 — &)P" (2" + £)B+DP™" ¢ €. Note
that wgy((z" — 5)(6+1)p871) = B+ 2 by @4). So, using the fact that p* > (8 + 1)p*~!, we obtain
wi (27 — P (2 + €)BFHIP ™) = 2(8 4 2). So dy(C) < 2(8 + 2), and hence d(C) = 2(8 + 2). O

From Lemma B2 till Corollary BI5] we compute dg(C) when (p — 1)p*~ < j <i < p°.
Lemma 8.12. Letlgkgs—l,lgf <r<p-1,
i = pP—p P -1)p 41 and
jo= p - —p
be integers and C' = ((x" — €)' (z" + £)7). Then dy(C) > min{2(r" + 1)p*, (1 + 1)p*}.

Proof. Let 0 # c(z) € C. Then there exists 0 # f(z) € Fym|[x] such that c(x) = f(z)(2" — &)"(a" + &)

mod z?"° — X\ and deg(f(z)) < 2np°® — in — jn. Let iy and jo be the largest integers with (27 — &)|f(z)

and (27 +&)7|f(z). Then f(x) is of the form f(z) = (2" — &) (2" 4 £)70g(z) for some g(x) € Fpm [x] with

2" —¢ 4 g(x) and 2"+ € 1 g(x). Clearly ig+ jo < 2p° — i — j and therefore ig < p* —i or jo < p® — j holds.
If i < p® — 4, then by Lemma [6.2], we have

(8.24) wr (" = &)PF) > (r + 1)p.
Since 2 — £ { g(x), we have g(z)(x" + £)7077 £ 0 mod 2 — ¢ and therefore

(8.25) wr (g(z)(x" 4 )70 mod 27 — €) > 0.
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Using (8:24)), (823) and (63)), we obtain

wi(e(x)) = wy((x"— &) (.w"ﬁr §)itiog(x)) o
(8.26) > wp(g(x) (2" +£)° mod 2 — Hwy((z" — £)'T)
> (T +1)pk.

If ig > p® — i, then jy < p® — j. So, by Lemma R3] we have
(8.27) wi (c(x)) > 2wy ((x?7 — 2)To17),

For wg ((2?" — £2)7017), we use Lemma 6.2 and get

(8.28) wr (27 = €2)°) > (' + 1)p",
Combining ([827]) and (828)), we obtain
(8.29) wg(c(z)) > 2(r + 1)pF.

Now, using (820) and (829), we deduce that wy(c(z)) > min{2(r" + 1)p¥, ( + 1)p*}. Hence dp(C)

min{2(7’l +1)p*, (7 + 1)pF}.

>
O

Corollary 8.13. Let j <i, 1<k<s—1,1< 7 <7 <p-—1 be integers such that

PP (r—1DpF 1l < i <
P _ps—k + (7_’ _ 1)ps—k—1 +1 <

J
Let C = ((x" — €)' (z" 4+ £)7). Then dy(C) = min{2(r" + 1)p*, (1 + 1)p*}.

and

Proof. Since ({1 — £)P" =P M Hr—1p* = 141 (4 +f)ps_pkk*'(#_l)ps*kflﬂ> D C, we have, by Lemma R12]
that dy (C) > min{2(7 + 1)p*, (7 + 1)p*}. So it suffices to show dg (C) < min{2(7" + 1)p*, (1 + 1)p*}.

s s s— ! s—k— .
First, we consider (271 — £)P" (2 + £)P"~7" "+7 2" ¢ O Since

wir((@?+ T = (7 1,
we have wH(([L‘n . é_)ps (,Z'T] + S)ps_psfl_i_(q—’_1)1)-5‘71971) _ 2(7_/ + 1)pk SO

(8.30) dy(C) < 2(r + 1)p~

Second, we consider (227 — 52)ps_p87k+(T_l)p37k71+1 € C. By Lemma [6.4] we get

(O ) i A G R I CARES D
Thus

(8.31) dg(C) < (14 1)p".

Now combining (830) and ([&31), we deduce that dz(C) < min{2(r + 1)p*, ( + 1)p*}. Hence dy (C) =

min{2(7" + 1)pF, (r + 1)pF}.

Lemma 8.14. Letlgkzl<k’§s—1,1§7'/,T<p—1,

SEF4(r—1)p* "1 +1 and

i = p-p
j = ps_ps—k +(T’_1)ps—k—l+1

be integers and C' = ((z" — €)' (x4 €)7). Then dy(C) > 2(7" + l)pk,.

O
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Proof. Let 0 # c(x) € C. Then there exists 0 # f(x) € Fpm[z] such that c(x) = (27 — &)* (2" + &)’ f(x)

mod z?"° — X\ and deg(f(z)) < 2np°® —in — jn. Let iy and j be the largest integers with (27 — £)|f(z)

and (27 + £)°|f(z). Then f(z) is of the form f(z) = (27 — &) (2" + £)70g(z) for some g(z) € Fym[]

with 2" — £ 1 g(x) and 2" + £ 1 g(x). Clearly iy + jo < 2p® —i — j. So ig < p* —i or jy < p® — j holds.
If ip < p® — i, then, by Lemma[6.2] we have

(8.32) wy (2" — €)7H0) > (7 + 1)pF > 2(7 + 1)p* .

Since 2" — £ { g(x), we have (27 + €)%+ g(x) mod 2" — ¢ # 0 and therefore

(8.33) wr (2" + €)7°Tg(z) mod 27 — &) > 0.
Using (832)), (833) and (6.9]), we obtain
wr(c(x)) = wy((a” — &)@ + € g(x))
> wp((z" + € g(x) mod 2" — (2" - ")
> 27 + 1)

If ig > p® — i, then jy < p® — j. So, by Lemma R3] we have
(8.34) wi(c(x)) > 2wy ((x?1 — 2)017),

For wy (2?7 — €2)7017) we use Lemma [6.2] and get

!

(8.35) wr (21 — €2)0T7) > (7' + 1)p .
Now combining (834) and (838]), we obtain wg(c(z)) > 2(7 + 1)pk,. Hence dy (C) > 2(7 + 1)pk,. O
Corollary 8.15. Leti,j,1 < K <k<s— 1,1 < T/,T < p—1 be integers such that

ps o ps—k 4 Tps—k—l and
ps— ps—k, + T’ps—k,—l'

i

J

ps o ps—k 4 (T o 1)ps—k—1 1
P _ps—k + (7.’ o 1)ps—k -1 +1

IN A
IN A

Let C = ((z — &)/(x" + €)7). Then dg(C) = 2(r + 1)pF .
Proof. Since ((z7 — &P =P " H=Dp L (g  gyptpt (' =Dp “'1y 5 ¢, we know, by Lemma

BI4 that dy(C) > 2(7 + 1)ka. So it suffices to show dy (C) < 2(7 + 1)ka. We consider (27 — &)P" (2" +
gp T e By (6.4)), we have

1 /

wir((@ + PP AT ()b

S S S / / 4
Moreover since (27 — £)P" = 2" — £P°" and p* > p° — p*~F + 7 p*F ~1 we get

K - !

wir (@ — EP" (a7 + PP TP Zo(r 1yt
So dy(C) < 2(1 + 1)pk, and therefore dy (C) = 2(7 + 1)ka. O

Finally it remains to consider the cases where ¢ = p® and 0 < j < p°.

Lemma 8.16. Let C = (2" — £)P (2" + €)). Then dy(C) > 4.
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Proof. Pick 0 # c(z) € C. Then there exists 0 # f(z) € Fym[z] such that c(z) = f(z)(2" — )P (27 + €)
mod 22" — X\ and deg(f(x)) < 2np° —np* —n = np°® —n. Let ig and jy be the largest nonnegative integers
such that (27 — &) |f(x) and (27 + £)70|f(z). Clearly ig + jo < p® — 1 as deg(f(x)) < np* —n. So, since
ip > p* —p* = 0 and jo < p® — 1, by Lemma B3 we get wy(c(x)) > 2wy ((x?7 — £2)%0+1). Obviously
wg (21 — €2)Jo+1) > 2 and therefore wy(c(x)) > 4. Hence dy(C) > 4. O

Corollary 8.17. Let 0 < j < p*~! be an integer and C = {(z" — &)P" (2 + £)7). Then dg(C) = 4.

Proof. Since ((z7 — &)P" (2" + €)) D C, we know, by Lemma BI6] that dy(C) > 4. So it suffices to
show dp(C) < 4. We consider (27 — £)P" (2" + €)P" " € C. Clearly wy((z — )P (z7 + €)P" ') = 4. So
di(C) <4 and hence dy(C) = 4. O

For i = p® and p*~! < j < p*, the Hamming distance of C' is computed in the following lemmas and
corollaries. Their proofs are similar to those of Lemma [8.16] and Corollary [B.10!

Lemma 8.18. Let 1 < 8 < p — 2 be an integer and C = ((z — &)P" (27 + £)°P" 7+ Then dy(C) >
2(8+2).

Corollary 8.19. Let 1 < 8 <p—2, Bp* 1 +1 < j < (B+1)p*~! be integers. Let C = {(x—&)P" (2"+£)7).
Then di(C) =2(8 +2).

Lemma 8.20. Let1 <7 < p—1,1 <k < s—1,j be integers and C = ((x1—&)P" (a14£)P" P +=Dp F 141y
Then dg (C) > 2(1 + 1)p*

Corollary 8.21. Let 1 <7 <p—-1,1<k <s—1,j be integers such that
ps _ps—k + (T o 1)ps—k—1 +1 S] < ps _ps—k + Tps—k—l.
Let C = {(x" — )P (2" + &)I). Then dg(C) = 2(7 + 1)p*

We summarize our results in the following theorem.

Theorem 8.22. Let p be an odd prime, a,s,n be arbitrary positive integers. Let X\, &, v € Fpm \ {0} such
that X = P". Suppose that the polynomial x*" — 1 factors into two irreducible polynomials as x>" — 1 =
(27— &)(z"+€). Then all A-cyclic codes, of length 2np*, over Fym are of the form ((z" — £)" (2" + £)7) C
Fpm [z] /(2" — \), where 0 < i,j < p® are integers. Let C = ((z7 — &) (z" + £)7) C Fpm[z]/(z?P" — \).
If (i,7) = (0,0), then C is the whole space IE‘?,Z%’S, and if (1,7) = (p*,p®), then C is the zero space {0}.
For the remaining values of (i,7), the Hamming distance of C' is given in Table [

Remark 8.23. There are some symmetries in most of the cases, so we made the following simplification
in Table [l For the cases with *, i.e., the cases except 2 and 7, we gave the Hamming distance of C
when i > j. The corresponding case with j > 4 has the same Hamming distance. For example in 1%,
the corresponding case is i = 0 and 0 < j < p®, and the Hamming distance is 2. Similarly in 6*, the
corresponding case is Bp* ' +1 < i < (B+1)p* ' and p*—p*F+(r—1)p*F 141 < j < pP—p*~hprp ATl
and the Hamming distance is 2(5 + 2).

The results in Table [ still hold when the polynomials 2”7 + £ and 2" — £ are reducible except the fact
that the cases in Table [Il do not cover all the A-cyclic codes of length 2np® over Fpm.

Remark 8.24. Note that ((z7 — &)*(z" + £)7),0 < i,j < p® are ideals of R independent of the fact that
2 — ¢ and 2 — £ are irreducible over F,m. So the above results from Lemma B4l till Corollary hold
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TABLE 1. The Hamming distance of all non-trivial constacyclic codes, of the form ((z"7 —
£)!(x" + €)7), of length 2np* over Fpm. The polynomials " — ¢ and 2 + £ are assumed
to be irreducible. The parameters 1 < 8 < g <p—2,1 < 7@ < 7 < p—1,
1<, 7MW <p_1,1<k<s—1,1<k” <k <s—1below are integers. For the
cases with *, i.e., the cases except 2 and 7, see Remark

Case | i j di(C)
1% 0<i<p’ j=0 2
2 0<i<p? 0<j<pt 2
3 | pl<i<2p! 0<j<p! 3
4% 2 < i < p* 0<j<pt 4
. / . / mln{ﬂ + 2
5% Bp* Tl +1<i<(B+1)p*! Bpt+1<i< (B +1)pst ) ’
2(6 +2)}
ps _ps—k + (T o 1)ps—k—1 B ) B
6* sTly1<j< 1)ps—1 2 2
IR PP P — Bp* +1<ji<(B+1)p (B+2)
s s—k s—k—1 s s—k s—k—1
— —1 — —1
. P + (7 _zp L P + (7 _Lp R
+1<i<p’—pF+7p° +1 <3< p°—p" " +71p°
P _ps—k + (T(l) _ 1)ps—k—1 ps — ps—k + (,7_(2) _ 1)ps—k—l min{
8* +1<i< pt—ph +1<j< p-pF 2(r® + 1)p,
ps — ps—k, + (,7_(3) _ 1)ps—k,—l ps — ps—k” + (7(4) _ 1)ps—k”—1
g% +1<i< ps _ps—k/ +1<j< p* _ps—k” 2(7.(4) + 1)pk
+T(3)ps—k/—1 +7_(4)ps—k”—1
0% |i=p° Bl 1< <(B+1)p! 2(8 +2)
ps o ps—k + (,7_ o 1)ps—k—1
1n* |i=p +1<j< pP—pk 2(7 + 1)p*
+Tp8—k—1

even when the polynomials " — £ and z" + £ are reducible. But in this case, there are more A-cyclic
codes than the ones of the form ((z — £)* (2" +£)7),0 < 4,j < p* and their Hamming distance is not
given in this paper.

In the last part of this section, we determine the Hamming distance of some polycyclic codes of length
2np® over GR(p®, m) whose canonical images are as above. In particular, this gives us the Hamming
distance of certain constacyclic codes of length 2np® over GR(p®, m). Let Ao, & € GR(p®, m) be units
and g = A, §; = €. So 58‘7’5 = X\ and, 27 — &, and 2" + &, are irreducible. The polynomial 227" — X\,

factors into two coprime polynomials as
2P =N =2 -G = (@ — )@+ ).
Let fi(x) = (2" — &) +ppi(z) and fo(z) = (2 — )P + pPa(x) with deg(B1(x)), deg(B2(z)) < np°.

Let f(z) = fi(z)fo(x) and Ry = W. Note that fi(z) and f2(x) are primary regular polynomials
and therefore we can use the arguments of Section Bl
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By Proposition B, we get Ro = (fi(x)) @ (f2(z)). Additionally, by Proposition 5.1l we know that
(fi(z)) = W and (fa(z)) = W are local rings and the maximal ideals of R are (p, 27 + &)
and (p, 2™ — &p).

Now given g(z) € Ro, we will see how to determine (g(z)) C R. Since (g(x)) = ((x7 — &)do (a7 + £)71),

we have g(z) = (27 — £)70 (2" + €)71u(x) where u(z) is a unit in R. In order to determine jy, we consider

the substitution 2’ = (27 — & + &)’ for every i > 7, we get

g(x) = aLiUL + -+ ana:" —|—an_1gj’7_1 + - +ap

= (@ = )"y () + (@7 = €)' a1 () - + o)

where h;(z) are polynomials such that deg(h;(z)) < n for d;, > ¢ > 0. Then jy is the least integer with
the property p{ hj,(z). Similarly, via the substitution z* = (2" + & — &) %z" for every i > 7, the integer
71 can be determined.

Let C = (gi1(x),...,g-(x)) < Rp be a polycyclic code, where the generators are as in Theorem
By Theorem B8, we have dy(C) = dg((g-(2))). The canonical image (g,(z)) of (g.(x)) can be

determined as described above. Say (g,(z)) = <(m77 — &)i(am +§)3> for some 0 < 7,7 < p°. Then

dH(<(a;77 — £)i(xn + §)3>) can be determined using Theorem

Remark 8.25. Note that 27" — égs = (2 — &)P" + pbi(x) and 2" + 585 = (@ + &)”° + pPa(z)
for some f;(z), f2(z) € Ro. In the above setup, if we take fi(z) = (2" — &)P + pfi(x) and fo(z) =
(" +E&)P° +p32(a:), then we obtain the Hamming distance of A-cyclic codes of length 2np® over GR(p*, m).
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