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In this paper, the homogeneous weights of matrix product codes over
finite principal ideal rings are studied and a lower bound for the minimum
homogeneous weights of such matrix product codes is obtained.
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1 Introduction

Matrix product codes over finite fields were introduced in [1]. Many well-
known constructions can be formulated as matrix product codes, for example,
the (a|a + b)-construction, the (a + x|b + x|a + b + x)-construction, and, some
quasi-cyclic codes can be rewritten as matrix product codes, see [13]. The refer-
ence [1] also introduced non-singular by columns matrices and exhibited a lower
bound for the minimum Hamming distances of matrix product codes over finite
fields constructed by such matrices. More references on matrix product codes
appeared later, e.g., in [9, 10, 11, 15, 16].

Codes over finite rings have also been studied from many perspectives since
the seminal work [8]. It was also shown later in [18] that a finite Frobenius
ring is suitable as an alphabet for linear coding. Further, [6] showed that, for
any finite ring, there is a Frobenius module which is suitable as an alphabet
for linear coding. Inspired by the idea of module coding, [19] proved that the
biggest class of finite rings which are suitable as alphabets for linear coding
consists of the finite Frobenius rings.

Finite principal ideal rings form an important subclass of finite Frobenius
rings. In particular, all the residue rings ZN of integers modulo an integerN > 1
are principal ideal rings. It is well known that a finite commutative ring is a
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principal ideal ring if and only if it is a product of finite chain rings. The refer-
ence [17] extended the lower bound obtained in [1] for the minimum Hamming
distances of matrix product codes with non-singular by columns matrices over
finite fields to the minimum homogeneous weights of matrix product codes over
finite chain rings.

In this paper, we consider matrix product codes over finite commutative
principal ideal rings, and extend the result on the lower bound for the minimum
homogeneous weights of matrix product codes over finite chain rings to matrix
product codes over finite commutative principal ideal rings.

In the next section, necessary notations and fundamentals are introduced
as preliminaries. In Section 3, we state our main theorem, its corollaries and
some remarks. Since the proof of the main theorem is long and technical, it is
deferred to Section 4.

2 Preliminaries

In this paper, R is always a finite commutative ring.

For the finite commutative ring R and a positive integer ℓ, any non-empty
subset C of Rℓ is called a code over R of length ℓ, or more precisely, an (ℓ,M)
code over R, where M = |C| denotes the cardinality of C; the code C over
R is said to be linear if C is an R-submodule of Rℓ. Recall that the usual
Hamming weight wH on R, i.e., wH(0) = 0 and wH(r) = 1 for all non-zero
r ∈ R, induces in a standard way the Hamming weight on Rℓ, denoted by wH

again, and the Hamming distance dH on Rℓ as follows: wH(x) =
ℓ
∑

i=1

wH(xi) for

x = (x1, · · · , xℓ) ∈ Rℓ, and dH(x,x′) = wH(x − x′) for x,x′ ∈ Rℓ. We also let
dH(C) = min

c6=c
′∈C

dH(c, c′). This is known as the minimum Hamming distance

of the code C.

On the other hand, a homogeneous weight on the finite commutative ring R
is defined to be a non-negative real function wh from R to the real number field
which satisfies the following two conditions:

• wh(r) = wh(r
′) for r, r′ ∈ R, provided Rr = Rr′,

• there is a positive real number λ such that
∑

x∈Rr

wh(x) = λ|Rr| for any

non-zero r ∈ R, where |Rr| denotes the cardinality of the set Rr.

It has been shown in [7] that such a function is uniquely determined (up to a
scalar λ) on R as follows

wh(r) = λ

(

1−
µ(0, Rr)

ϕ(Rr)

)

, (2.1)

where µ is the Möbius function on the lattice of all the principal ideals of R, and
ϕ(Rr) denotes the number of elements x ∈ Rr such that Rx = Rr. Thus, the
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homogeneous weight is uniquely determined up to a positive multiple λ. In the
rest of the paper, we always take λ = 1 in (2.1) for convenience, and denote the
uniquely determined homogeneous weight by wh. As with the Hamming weight,
the function wh on the ring R induces a function wh on Rℓ and a two-variable
function dh on Rℓ; and dh(C) = min

c6=c
′∈C

dh(c, c
′) is said to be the minimum

homogeneous distance of the code C.

Let A = (aij)m×ℓ be an m × ℓ matrix over the finite commutative ring R,
and let C1, · · · , Cm be codes over R of length n. Then

C = [C1, · · · , Cm]A =
{

(c1, · · · , cm)A | c1 ∈ C1, · · · , cm ∈ Cm

}

is called a matrix product code, where the codewords cj of Cj are written as
column vectors, hence (c1, · · · , cm) are n×m matrices.

We say that a square matrix over R is non-singular if its determinant is a
unit of R. By usual linear algebra, a non-singular matrix over R is an invertible
matrix over R. Following [1], we say that the m × ℓ matrix A is non-singular
by columns if, for any k ≤ m, any k × k determinant within the first k rows
of A is a unit of R. It is clear that, if A is non-singular by columns, then
any matrix obtained from A by permuting its columns is still non-singular by
columns. We say that a matrix A is column-permutably upper triangular if A
can be transformed by some suitable permutation of the columns to an upper
triangular matrix A′ = (a′ij)m×ℓ (i.e., a

′
ij = 0 for all 1 ≤ j < i ≤ m).

From now on, we always assume thatR is a finite commutative principal ideal
ring, i.e., R is a finite commutative ring in which any ideal can be generated
by one element, or equivalently, there are finite chain rings R1, · · · , Rs and an
isomorphism:

R
∼=
−→ R1 × · · · ×Rs , r 7−→ (r1, · · · , rs). (2.2)

With this isomorphism, we can identify R with R1 × · · · × Rs and write r =
(r1, · · · , rs). For t = 1, · · · , s, by Jt we denote the unique maximal ideal of the
chain ring Rt (note that Jt = 0 if Rt is a field). Hence Rt/Jt is a finite field,
and we further assume that

Ft = Rt/Jt ∼= GF(qt) for t = 1, · · · , s, and q1 ≤ q2 ≤ · · · ≤ qs, (2.3)

where GF(qt) denotes the Galois field of order qt. For each t, there is an integer
et ≥ 1, called the nilpotency index of the chain ring Rt, such that

Jet−1
t 6= 0 but Jet

t = 0, t = 1, · · · , s. (2.4)

Note that J0
t = Rt for any t.

We list some easy facts for later use. Since any ideal I of R has the form
I = I1 × · · · × Is with It being an ideal of Rt for t = 1, · · · , s, it follows that
R/I = R1/I1 × · · · ×Rs/Is is still a principal ideal ring.
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Next, if elements ut1, ut2, · · · , utqt of Rt satisfy that

Ft = Rt/Jt =
{

ut1 + Jt, ut2 + Jt, · · · , utqt + Jt
}

,

then, for any integer k with 0 < k ≤ et and any element a of the set difference
Jk−1
t \ Jk

t , we have that

Jk−1
t /Jk

t =
{

ut1a+ Jk
t , ut2a+ Jk

t , · · · , utqta+ Jk
t

}

. (2.5)

Recall Formula (2.1) and rewrite it as (recall that we have set λ = 1):

wh(r) = 1− µ(r)
ϕ(r) ,

where µ(r) = µ(0, Rr) and ϕ(r) = ϕ(Rr). Since R is a product of chain rings
as in Eqn (2.2) and (r1, · · · , rs) ∈ R1 × · · · × Rs, both µ and ϕ satisfy that

µ
(

(r1, · · · , rs)
)

= µ(r1) · · ·µ(rs), ϕ
(

(r1, · · · , rs)
)

= ϕ(r1) · · ·ϕ(rs);

thus, the homogeneous weight wh on R is (see [5, Theorem 4.1])

wh(r) = wh(r1, · · · , rs) = 1−
∏s

t=1
µ(rt)
ϕ(rt)

.

Further, for rt ∈ Rt, there is (as long as rt 6= 0) a unique integer frt with

0 < frt ≤ et such that rt ∈ J
et−frt
t \ J

et−frt+1
t , then we have (see [5] for

details):

µ(rt) =











1, rt = 0,

−1, frt = 1,

0, frt > 1,

ϕ(rt) =











1, rt = 0,

qt − 1, frt = 1,

q
frt
t − q

frt−1
t , frt > 1.

For a non-zero element r = (r1, · · · , rs) of R, setting

Tr = {1 ≤ t ≤ s | rt 6= 0}, T̄r = {t ∈ Tr | rt ∈ Jet−1
t }, (2.6)

we obtain a formula to calculate the homogeneous weight on R as follows:

wh(r1, · · · , rs) =















0, r = 0,

1, T̄r 6= Tr,

1− (−1)|Tr|
∏

t∈Tr

1
qt−1 , T̄r = Tr.

(2.7)

From Formula (2.7) one can see that (take any q2 ≥ q1 if s = 1):

1− 1
(q1−1)(q2−1) ≤ wh(r) ≤ 1 + 1

q1−1 , ∀ 0 6= r ∈ R. (2.8)

We next recall a few facts on matrices over a finite commutative principal
ideal ring R. For any t, by (2.3), we have a surjective homomorphism

ρt : R −→ Ft, r 7−→ ρt(r) (2.9)

with kernel It = R1×· · ·×Rt−1×Jt×Rt+1×· · ·×Rs, i.e., R/It ∼= Rt/Jt = Ft.
By a fundamental argument on determinants in linear algebra, one can prove
(alternatively, a proof may be found in classical references such as [14]):
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Lemma 2.1. Let A = (aij)m×ℓ be an m× ℓ matrix over R.

(i) If A is non-singular by columns, then, for any non-trivial quotient ring
R̄ = R/I (i.e., I is an ideal of R with I 6= R), the matrix Ā =

(

āij
)

m×ℓ

over R̄ is non-singular by columns.

(ii) If the matrix ρt(A) =
(

ρt(aij)
)

m×ℓ
over Ft is non-singular by columns for

all t = 1, · · · , s, then A is non-singular by columns.

By the above lemma and with the help of Eqn (2.5), it is easy to prove the
following result which is an extension of [1, Prop. 3.3] and [17, Prop. 1].

Lemma 2.2. Assume that m > 1. There exists an m× ℓ matrix over R which
is non-singular by columns if and only if m ≤ ℓ ≤ min{q1, · · · , qs}.

The following result has appeared in [3, Lemma 4.1].

Lemma 2.3. Assume that an m×ℓ matrix A over R is non-singular by columns
and 1 ≤ k ≤ m. Then the minimum Hamming distance of the linear code in Rℓ

generated by the first k rows of A is ℓ− k + 1.

3 The main results

We keep the notations of (2.2), (2.3) and (2.4). In this section, we state our
main theorem, its corollaries and some remarks. The main theorem will be
proved in the next section.

Theorem 3.1. Let the notations be as in (2.2) and (2.3), and assume that
q2 > q1 + 1 provided s > 1. Let A = (aij)m×ℓ be an m × ℓ matrix over R
which is non-singular by columns, and let Cj be an (n,Mj) code over R, for

j = 1, · · · ,m. Then C = [C1, · · · , Cm]A is an
(

nℓ,
m
∏

j=1

Mj

)

-code over R with

dh(C) ≥ min
{

ℓdh(C1), (ℓ− 1)dh(C2), · · · , (ℓ−m+ 1)dh(Cm)
}

. (3.1)

Furthermore, equality holds in (3.1) if one of the following conditions is satisfied:

(C1) A is column-permutably upper triangular;

(C2) C1, C2, · · · , Cm are linear codes and C1 ⊇ C2 ⊇ · · · ⊇ Cm.

With the help of the results in [3], we have a consequence of the theorem for
the dual codes of matrix product codes.

Corollary 3.2. Keep the notations as in (2.2), (2.3), and assume that q2 >
q1 + 1 provided s > 1. If A is an m × m matrix over R which is non-
singular by columns, and Cj is an (n,Mj)-linear code over R, for j = 1, · · · ,m,
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then the dual code C⊥ of the matrix product code C = [C1, · · · , Cm]A is an
(

nm,
m
∏

j=1

(|R|n/Mj)
)

-linear code over R with

dh(C
⊥) ≥ min

{

mdh(C
⊥
m), (m− 1)dh(C

⊥
m−1), · · · , 1 · dh(C

⊥
1 )
}

.

Furthermore, equality holds if one of the following conditions is satisfied:

(C1) A is column-permutably upper triangular;

(C2) C1, C2, · · · , Cm are linear codes and C1 ⊇ C2 ⊇ · · · ⊇ Cm.

Proof. For a square matrix A over R which is non-singular by columns, it is
shown in [3, Theorem 3.3] that A is invertible and J(A−1)T is non-singular by
columns too, where (A−1)T denotes the transpose of the inverse A−1 and

J =











0 · · · 0 1
0 · · · 1 0
...

...
...

...
1 · · · 0 0











,

and C⊥ = [C⊥
1 , · · · , C⊥

m](A−1)T . Noting that JJ = I, where I denotes the
identity matrix, and [C⊥

1 , · · · , C⊥
m]J = [C⊥

m, · · · , C⊥
1 ], we have that

C⊥ = [C⊥
1 , · · · , C⊥

m]JJ(A−1)T = [C⊥
m, · · · , C⊥

1 ]J(A−1)T .

It is easy to check that, if A satisfies (C1) then so does J(A−1)T ; and similarly
for (C2). Thus the conclusions are derived from Theorem 3.1.

In fact, in [3], a very precise description for the structure of C⊥, where
C = [C1, · · · , Cm]A, was obtained in a more general setting, where R is any
finite commutative Frobenius ring and A does not need to be square and non-
singular by columns. It is therefore possible to obtain a lower bound for the
minimum homogeneous distance of C⊥ in that general setting, see [4].

Remark 3.3. In the case when s = 1, i.e., R is a finite chain ring, Theorem 3.1
contains the result [17, Proposition 2] and a generalization of the main result
of [9]; moreover, Corollary 3.2 bounds from below the homogeneous distance of
the dual codes of matrix product codes.

The residue ring ZN of integers modulo an integer N > 1 is one of the best-
known finite principal ideal rings. Writing N = pe11 · · · pess , where p1 < · · · < ps
are primes and et > 0 for t = 1, · · · , s, we see that the Chinese Remainder
Theorem:

ZN
∼= Zp

e1
1

× · · · × Zp
es
s
,

r (mod N) 7→
(

r (mod pe11 ), · · · , r (mod pess )
)

,

is just the version for ZN of the decomposition (2.2). Therefore, the assumption
“q2 > q1 + 1 provided s > 1” in Theorem 3.1 translates into the assumption
“p2 6= 3 provided p1 = 2” for ZN ; and we obtain the following result from
Theorem 3.1 at once.
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Corollary 3.4. Let N > 1 be an integer which is not divisible by 6. Let A
be an m × ℓ matrix over ZN which is non-singular by columns, and let Cj be
an (n,Mj)-code over ZN , for j = 1, · · · ,m. Then C = [C1, · · · , Cm]A is an
(

nℓ,
m
∏

j=1

Mj

)

-code over ZN with

dh(C) ≥ min
{

ℓdh(C1), (ℓ− 1)dh(C2), · · · , (ℓ−m+ 1)dh(Cm)
}

. (3.2)

Furthermore, equality holds if one of the following conditions is satisfied:

(C1) A is column-permutably upper triangular;

(C2) C1, C2, · · · , Cm are linear codes and C1 ⊇ C2 ⊇ · · · ⊇ Cm.

There is also an analogous version of Corollary 3.2 for ZN , with the same
assumption “N is not divisible by 6”.

Remark 3.5. Recall that, to be a geometric distance, a two-variable real func-
tion must meet three conditions: it is positive, it is symmetric, and it satisfies
the triangle inequality. It is known that the homogeneous distance dh may not
be a geometric distance. References [2] and [12] contain extensive studies on
weights on integral residue rings: in particular, a necessary and sufficient condi-
tion for the homogeneous distance dh on Zℓ

N to be a geometric distance is that
N is not divisible by 6. By Corollary 3.4 and Example 3.6 below, this condition
is also necessary and sufficient for Inequality (3.2) to hold.

The assumption “q2 > q1 + 1 provided s > 1” in Theorem 3.1 will play
a crucial role in the proof of the theorem. Moreover, the following example
illustrates that the assumption cannot be removed.

Example 3.6. Let the notations be as in (2.2), (2.3) and (2.4). Assume that
s > 1 and q1 +1 = q2 ≤ q3 ≤ · · · ≤ qs and let q = q1. Let ut1, ut2, · · · , utqt ∈ Rt

be as in Eqn (2.5). In the present case, we can choose them as follows:

• for t = 1, u11 + J1, · · · , u1q + J1 are just all the elements of F1 = R1/J1;

• for t = 2, since q2 = q + 1, we can take u21 + J2, · · · , u2q + J2 to be all
non-zero elements of F2 = R2/J2;

• for t ≥ 3, since qt > q, we can take ut1 + Jt, · · · , utq + Jt to be distinct
elements of Ft = Rt/Jt.

Let βj = (u1j , u2j , · · · , usj) ∈ R = R1 × · · · ×Rs for j = 1, · · · , q, and let

A =

(

1 1 · · · 1
β1 β2 · · · βq

)

.

It is easy to see (cf. Lemma 2.2) that A is non-singular by columns. Let

a = (a1, 0, 0, · · · , 0), b = (0, b2, 0, · · · , 0) ∈ R = R1 × · · · ×Rs,
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where a1 ∈ Je1−1
1 \ {0} and b2 ∈ Je2−1

2 \ {0}. Set C1 = Ra and C2 = Rb, then
both are linear codes over R of length 1. Then we have the matrix product code
C = [C1, C2]A. By Formula (2.7), we have that

dh(C1) = wh(a) = 1 + 1
q−1 , dh(C2) = wh(b) = 1 + 1

q2−1 = 1 + 1
q
.

Since 1 + 1
q−1 > 1 + 1

q
, we get

min{qdh(C1), (q − 1)dh(C2)} = (q − 1)
(

1 + 1
q

)

= q − 1
q
.

On the other hand, there is a codeword c of C as follows:

c = (a, b)A = (a+ bβ1, a+ bβ2, · · · , a+ bβq)

with
a+ bβj = (a1, b2u2j, 0, · · · , 0), j = 1, · · · , q.

By Eqn (2.5), b2u2j , for j = 1, · · · , q, are all the non-zero elements of Je2−1
2 ,

and by Formula (2.7), wh(a+ bβj) = 1− 1
(q1−1)(q2−1) = 1− 1

q(q−1) , so

wh(c) = q
(

1− 1
q(q−1)

)

= q − 1
q−1 < q − 1

q
= min{qdh(C1), (q − 1)dh(C2)}.

Therefore,
dh(C) < min{qdh(C1), (q − 1)dh(C2)},

which implies that Inequality (3.1) does not hold for the matrix product code
C = [C1, C2]A.

4 Proof of Theorem 3.1

We continue to keep the notations of (2.2), (2.3) and (2.4) and assume that
q = q1 ≤ q2 ≤ · · · ≤ qs.

Let A = (aij)m×ℓ be a matrix over R which is non-singular by columns;
then ℓ ≤ q = q1 if m > 1 (see Lemma 2.2). Let C1, · · · , Cm be codes over R of
length n. Consider the matrix product code

C = [C1, · · · , Cm]A = {(c1, · · · , cm)A | c1 ∈ C1, · · · , cm ∈ Cm} . (4.1)

Since the proof of Inequality (3.1) is long and delicate, we put the key steps in
Subsections 4.1–4.3; these subsections show that the following inequality holds
for all 1 ≤ k ≤ m by splitting into various cases:

wh

(

(c1, · · · , ck,0, · · · ,0)A
)

≥ (ℓ − k + 1)wh(ck).

Subsection 4.4 then completes the proof of Theorem 3.1.
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4.1 k × ℓ Non-singular by Columns Matrices

Let A be as above, let 2 ≤ k ≤ m, and let A1, · · · , Ak be the first k rows of A.

Let r1, · · · , rk ∈ R with rk 6= 0 and let α = r1A1 + · · · + rkAk ∈ Rℓ. We
have seen from Lemma 2.3 that

wH(α) = wH(r1A1 + · · ·+ rkAk) ≥ ℓ− k + 1.

Lemma 4.1. Let the notations be as above.

(i) If wH(r1A1 + · · · + rkAk) = ℓ − k + 1, then wh(r1A1 + · · · + rkAk) =
(ℓ − k + 1)wh(rk).

(ii) If wH(r1A1+· · ·+rkAk) > ℓ−k+1 and one of the following two conditions
holds:

• k ≥ 3,

• k = 2 and ℓ < q1,

then wh(r1A1 + · · ·+ rkAk) ≥ (ℓ − k + 1)wh(rk).

Proof. Write α = r1A1 + · · ·+ rkAk = (α1, · · · , αℓ), where

αj = r1a1j + · · ·+ rkakj , j = 1, · · · , ℓ.

(i) Since wH(r1A1+· · ·+rkAk) = ℓ−k+1, there are exact k−1 zeros among
α1, · · · , αℓ. Without loss of generality, we assume that α1 = · · · = αk−1 = 0
and αj 6= 0, for j = k, k + 1, · · · , ℓ. In particular,



















r1a11 + · · ·+ rk−1ak−1,1 = −rkak1
r1a12 + · · ·+ rk−1ak−1,2 = −rkak2

...
...

...
...

r1a1,k−1 + · · ·+ rk−1ak−1,k−1 = −rkak,k−1.

By the non-singularity by columns of A, the coefficient matrix (aji)(k−1)×(k−1)

of the above linear system is non-singular, i.e., invertible, hence r1, · · · , rk−1

are all linear combinations of rkak1, · · · , rkak,k−1. Therefore, rj ∈ Rrk for
j = 1, · · · , k − 1, k; hence all αj ∈ Rrk, i.e.,

0 6= Rαj ⊆ Rrk , j = k, k + 1, · · · , ℓ.

Suppose that there is an index t with k ≤ t ≤ ℓ such that Rαt $ Rrk. Con-
sidering the quotient ring R̄ = R/Rαt, then r̄k 6= 0 and Ā = (āij)m×ℓ is still
non-singular by columns (see Lemma 2.1). However,

ᾱ1 = · · · = ᾱk−1 = 0 and ᾱt = 0,

hence
wH(r̄1Ā1 + · · ·+ r̄kĀk) ≤ ℓ− k < ℓ− k + 1,
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which contradicts the fact that wH(r̄1Ā1 + · · ·+ r̄kĀk) ≥ ℓ− k+ 1 (see Lemma
2.3). Therefore, Rαj = Rrk for all j = k, k + 1, · · · , ℓ, and

wh(r1A1 + · · ·+ rkAk) =

ℓ
∑

j=k

wh(αj) =

ℓ
∑

j=k

wh(rk) = (ℓ − k + 1)wh(rk).

(ii) In this case, there are at least ℓ−k+2 non-zeros among α1, · · · , αℓ. By
Inequality (2.8), we get

wh(α) ≥ (ℓ− k + 2)
(

1− 1
(q1−1)(q2−1)

)

(4.2)

and
(ℓ− k + 1)

(

1 + 1
q1−1

)

≥ (ℓ− k + 1)wh(rk). (4.3)

It is an elementary calculation to check that

(x + 1)
(

1− 1
(q1−1)(q2−1)

)

≥ x
(

1 + 1
q1−1

)

⇐⇒ x ≤ q1 − 1− q1
q2

. (4.4)

Recall that ℓ ≤ q1 ≤ q2. If k ≥ 3, or if k = 2 and ℓ < q1, then ℓ − k + 1 ≤
q1 − 1− q1

q2
. In both cases, we can apply Formula (4.4) to (4.2) and (4.3), with

x = ℓ− k + 1, and obtain wh(α) ≥ (ℓ − k + 1)wh(rk).

Proposition 4.2. Let A and c1 ∈ C1, · · · , ck ∈ Ck be as in (4.1) and assume
that ck 6= 0. If one of the following two conditions holds:

• k ≥ 3,

• k = 2 and ℓ < q1,

then
wh

(

(c1, · · · , ck,0, · · · ,0)A
)

≥ (ℓ − k + 1)wh(ck).

Proof. Let ci1k, · · · , ciwk be all the non-zero entries of ck = (c1k, · · · , cnk)
T .

Then wh(ck) = wh(ci1k)+ · · ·+wh(ciwk). Noting that the ith row of the matrix
(c1, · · · , ck,0, · · · ,0)A is ci1A1 + · · ·+ cikAk, where A1, · · · , Ak are as above,
we have

wh

(

(c1, · · · , ck,0, · · · ,0)A
)

=
∑n

i=1 wh

(

ci1A1 + · · ·+ cikAk

)

≥
∑w

t=1 wh

(

cit1A1 + · · ·+ citkAk

)

≥
∑w

t=1(ℓ− k + 1)wh(citk)

= (ℓ− k + 1)wh(ck),

where the second “≥” follows from Lemma 4.1.
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4.2 2× q1 Non-singular by Columns Matrices

In the following, we let q = q1 and assume that A =

(

1 1 · · · 1
β1 β2 · · · βq

)

is a

2× q matrix over R which is non-singular by columns. Write

βj = (u1j , u2j , · · · , usj) ∈ R1 ×R2 × · · · ×Rs.

Let a, b ∈ R with b 6= 0, and write a = (a1, · · · , as) and b = (b1, · · · , bs) with
at, bt ∈ Rt for t = 1, · · · , s. Consider the word

α = (a, b)A = (α1, · · · , αq) ∈ Rq, (4.5)

where

αj = a+ bβj =
(

a1 + b1u1j , · · · , as + bsusj

)

, j = 1, · · · , q.

Then wH(α) ≥ q − 1. From Lemma 4.1(i), we have seen that

wh(α) = (q − 1)wh(b) if wH(α) = q − 1. (4.6)

In the following, we further assume that αj 6= 0 for all j = 1, · · · , q.

Lemma 4.3. If wh(b) = 1, then wh(α) ≥ (q − 1)wh(b).

Proof. Since wh(b) = 1, there is at least one k such that bk /∈ Jek−1
k . Take

Ik = R1 × · · · ×Rk−1 ×Jek−1
k ×Rk+1 × · · · ×Rs, and consider the quotient ring

R̄k := R/Ik ∼= Rk/J
ek−1
k . Then the matrix Ā over R̄k is still non-singular by

columns (see Lemma 2.1), b̄ = b̄k 6= 0, and the elements

αj =
(

a1 + b1u1j, · · · , ak + bkukj , · · · , as + bsusj

)

, j = 1, · · · , q,

are mapped to
ᾱj = āk + b̄kūkj , j = 1, · · · , q.

Then, for the word ᾱ = (ā, b̄)Ā =
(

ᾱ1, · · · , ᾱq

)

over R̄k, its Hamming weight
satisfies wH(ᾱ) ≥ q − 1. Since q ≥ 2, there is at least one non-zero entry, say
ᾱt 6= 0, i.e., ak + bkukt /∈ Jek−1

k . Hence, wh(αt) = 1. Noting that wh(αj) ≥
1− 1

(q−1)(q2−1) for j 6= t (see Formula (2.8)), we have

wh(α) =
q
∑

j=1

wh(αj) ≥ 1+ (q− 1)
(

1− 1
(q−1)(q2−1)

)

≥ q− 1 = (q− 1)wh(b). ✷

Note that wh(b) 6= 1 if and only if bt ∈ Jet−1
t for t = 1, · · · , s.

Lemma 4.4. If b = (b1, · · · , bs) with bt ∈ Jet−1
t , for t = 1, · · · , s, and wh(a) =

1, then wh(α) ≥ (q − 1)wh(b).
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Proof. Similar to the proof above, we can assume that ak /∈ Jek−1
k for some k.

Since bk ∈ Jek−1
k , it follows that ak + bkukj /∈ Jek−1

k for all j = 1, · · · , q. Thus
wh(αj) = 1 for all j = 1, · · · , q, and

wh(α) =
q
∑

j=1

wh(αj) = q = (q − 1)
(

1 + 1
q−1

)

≥ (q − 1)wh(b). ✷

From now on, we further assume that

a = (a1, · · · , as), b = (b1, · · · , bs) with at, bt ∈ Jet−1
t for t = 1, · · · , s, (4.7)

and let

Ta = {1 ≤ t ≤ s | at 6= 0}, Tb = {1 ≤ t ≤ s | bt 6= 0}, T = Ta ∪ Tb. (4.8)

Lemma 4.5. Let t0 = min
t∈T

t. If q < qt0 , then wh(α) ≥ (q − 1)wh(b).

Proof. Since b = (0, · · · , 0, bt0 , · · · , bs), by Formula (2.7), we have that wh(b) ≤
1 + 1

qt0−1 . On the other hand, aj + bjutj = 0 for any t < t0, so

αj = (0, · · · , 0, aj + bjut0j , · · · , aj + bjusj),

hence wh(αj) ≥ 1 − 1
(qt0−1)(qt0+1−1) (when t0 = s, set qt0+1 to be any integer

greater than qt0). Since q − 1 ≤ qt0 − 2 ≤ qt0 − 1 −
qt0

qt0+1
, we can use (4.4) to

obtain

wh(α) =
q
∑

j=1

wh(αj) ≥ q
(

1− 1
(qt0−1)(qt0+1−1)

)

≥ (q − 1)
(

1 + 1
qt0−1

)

≥ (q − 1)wh(b). ✷

In the following, we further assume that

1 ∈ T , and q2 > q1 + 1 if s > 1. (4.9)

Lemma 4.6. If Tb = {t′} contains only one index t′ with 1 ≤ t′ ≤ s, then
wh(α) ≥ (q − 1)wh(b).

Proof. First, assume that t′ = 1. Then b = (b1, 0, · · · , 0) ∈ R1 × · · · ×Rs with
0 6= b1 ∈ Je1−1

1 , so wh(b) = 1 + 1
q−1 (recall that q = q1), and

αj =
(

a1 + b1u1j , a2, · · · , as
)

.

Taking I = J1 ×R2 × · · · ×Rs and R̄ = R/I ∼= R1/J1 = F1, then

Ā =

(

1 1 · · · 1
ū11 ū12 · · · ū1q

)

12



is a matrix over the field F1 which is still non-singular by columns, so as elements
of the field F1, the entries ū11, ū12, · · · , ū1q must be distinct. Since |F1| = q,
we conclude that ū11, ū12, · · · , ū1q must consist of all the elements of F1. By
Eqn (2.5), b1u11, b1u12, · · · , b1u1q are just all the elements of Je1−1

1 , hence

a1 + b1u11, a1 + b1u12, · · · , a1 + b1u1q

are again just all the elements of Je1−1
1 . In other words, exactly one of them is

0, and the other (q − 1) terms are non-zero. By Formula (2.7),

wh(αj) =











1− (−1)|T | ·
∏

t∈T

1
qt−1 , if a1 + b1u1j 6= 0,

1 + (−1)|T | ·
∏

16=t∈T

1
qt−1 , if a1 + b1u1j = 0.

Therefore,

wh(α) =

q
∑

j=1

wh(αj)

=



1 + (−1)|T | ·
∏

16=t∈T

1

qt − 1



+ (q − 1)

(

1− (−1)|T | ·
∏

t∈T

1

qt − 1

)

= 1 + (−1)|T | ·
∏

16=t∈T

1

qt − 1
+ (q − 1)− (−1)|T | ·

∏

16=t∈T

1

qt − 1

= q = (q − 1)

(

1 +
1

q − 1

)

= (q − 1)wh(b).

Note that the above argument still works well for T = {1} (in particular, it
works well for s = 1) provided we adopt the convention that

∏

16=t∈T

1
qt−1 = 1.

Next, we assume that t′ > 1. Then s ≥ 2 and

wh(b) ≤ 1 + 1
q2−1 ,

wh(αj) ≥ 1− 1
(q−1)(q2−1) , j = 1, · · · , q.

Since q2 ≥ q + 2, i.e., q2 − 1 ≥ q + 1, and q ≥ 2, it follows that:

wh(α)− (q − 1)wh(b) ≥ q
(

1− 1
(q−1)(q2−1)

)

− (q − 1)
(

1 + 1
q2−1

)

= 1− q
(q−1)(q2−1) −

q−1
q2−1

= 1− q
(q−1)(q2−1) −

(q−1)2

(q−1)(q2−1)

≥ 1− q+(q−1)2

(q−1)(q+1) = q−2
q2−1 ≥ 0.

In other words, wh(α) ≥ (q − 1)wh(b).
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Lemma 4.7. If |Tb| ≥ 2, then wh(α) ≥ (q − 1)wh(b).

Proof. By Formula (2.7), wh(b) = 1− (−1)|Tb|
∏

t∈Tb

1
qt−1 , thus

wh(b) ≤ 1 +
1

(q − 1)(q2 − 1)(q3 − 1)

(put any q3 ≥ q2 if s = 2). On the other hand, by (2.8), we have

wh(αj) ≥ 1−
1

(q − 1)(q2 − 1)
.

Noting that q2 − 1 ≥ q + 1 and q3 − 1 > q − 1 ≥ 1, we have that

wh(α) − (q − 1)wh(b)

≥ q
(

1− 1
(q−1)(q2−1)

)

− (q − 1)
(

1 + 1
(q−1)(q2−1)(q3−1)

)

= 1− q
(q−1)(q2−1) −

1
(q2−1)(q3−1)

> 1− q
(q−1)(q+1) −

1
(q+1)(q−1)

= 1− 1
q−1 ≥ 0.

We have obtained the desired inequality wh(α) ≥ (q − 1)wh(b).

Summarizing Eqn (4.6) and Lemmas 4.3–4.7, we have that, if q2 > q1 + 1
provided s > 1, then the homogeneous weight of the word (4.5) satisfies

wh

(

(a, b)A
)

≥ (q − 1)wh(b). (4.10)

Thus, similar to Proposition 4.2, we obtain the following conclusion.

Proposition 4.8. Let A = (aij)m×q1 be non-singular by columns, and let c1 ∈
C1, c2 ∈ C2 and c2 6= 0. Assume the following condition holds

• q2 > q1 + 1 provided s > 1.

Then
wh

(

(c1, c2,0, · · · ,0)A
)

≥ (q1 − 1)wh(c2).

Proof. It is clear that, for any q1 × q1 diagonal matrix D whose diagonal
entries are all units of R, we have that

wh

(

(c1, c2,0, · · · ,0)AD
)

= wh

(

(c1, c2,0, · · · ,0)A
)

. (4.11)

Since A is non-singular by columns, any element of the first row of A is a unit
of R, so there is a suitable diagonal matrix D such that all entries of the first
row of AD are 1. Thus, we can assume that the first row of A is the all-1 vector.
Then, as in the proof of Proposition 4.2, we can obtain the conclusion of the
proposition by using (4.10) .
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4.3 1× ℓ Non-singular by Columns Matrices

A 1×ℓ non-singular by columns matrix is none other than a matrix consisting of
only one row, all of whose entries are units. This is essentially the key ingredient
in the proof of the following result.

Proposition 4.9. Let A = (aij)m×ℓ be non-singular by columns, and 0 6= c1 =
(c11, · · · , cn1)

T ∈ C1. Then

wh

(

(c1, 0, · · · ,0)A
)

≥ ℓwh(c1).

Proof. By the non-singularity by columns of A, all the entries a11, · · · , a1ℓ of
the first row of A are units in R. Thus,

wh

(

(c1, 0, · · · ,0)A
)

=

ℓ
∑

j=1

wh(a1jc1) =

ℓ
∑

j=1

wh(c1) = ℓwh(c1). ✷

4.4 Completion of the Proof of Theorem 3.1

Now we can complete the proof of Theorem 3.1.

First, we prove Inequality (3.1).

Let c = (c1, · · · , cm)A and c′ = (c′1, · · · , c
′
m)A be any two distinct code-

words of the code C. Then, not all of bj = cj − c′j , for j = 1, · · · ,m, are zero.
Hence, c− c′ = (b1, · · · ,bm)A 6= 0 and

dh(c, c
′) = wh(c − c′) = wh

(

(b1, · · · ,bm)A
)

.

It is enough to show that dh(c, c
′) is bounded below by one of the entries in

the braces of the right hand side of (3.1) of Theorem 3.1. Since not all of
b1, · · · ,bm are 0, there is an index k with 1 ≤ k ≤ m such that bk 6= 0 but
bk+1 = · · · = bm = 0.

If k = 1, by Proposition 4.9, we have

dh(c, c
′) = wh

(

(b1,0, · · · ,0)A
)

≥ ℓwh(b1) = ℓwh(c1 − c′1) ≥ ℓdh(C1).

Suppose that k = 2, then m ≥ 2 and, by Lemma 2.2, ℓ ≤ q1.

If ℓ < q1, by Proposition 4.2, we have

dh(c, c
′) = wh

(

(b1,b2,0, · · · ,0)A
)

≥ (ℓ− 1)wh(b2)

= (ℓ − 1)wh(c2 − c′2) ≥ (ℓ− 1)dh(C2).

Otherwise, ℓ = q1, and by Proposition 4.8, we still have

dh(c, c
′) = wh

(

(b1,b2,0, · · · ,0)A
)

≥ (ℓ− 1)wh(b2) ≥ (ℓ− 1)dh(C2).

The remaining case is that of k > 2. By Proposition 4.2, we obtain

dh(c, c
′) = wh

(

(b1, · · · ,bk,0, · · · ,0)A
)

≥ (ℓ− k + 1)wh(bk)

= (ℓ − k + 1)wh(ck − c′k) ≥ (ℓ − k + 1)dh(Ck).
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Next, assume that A is column-permutably upper triangular. Since any
permutation of columns does not change the weights and other parameters of
the resulting codewords, we can assume that A is upper triangular:

A =











a11 a12 · · · a1m · · · a1ℓ
a22 · · · a2m · · · a2ℓ

. . .
...

...
...

amm · · · amℓ











.

Since A is non-singular by columns, every element of the first row is a unit
of R. Similarly, every (2 × 2)-determinant within the first two rows is a unit,

in particular, det

(

a11 a1j
a2j

)

is a unit, i.e., every a2j, for j = 2, · · · , ℓ, is a unit

of R. Continuing this reasoning, we see that

• all aij for 1 ≤ i ≤ m and i ≤ j ≤ ℓ are units of R.

For any k with 1 ≤ k ≤ m, take ck, c
′
k ∈ Ck such that dh(ck, c

′
k) = dh(Ck). We

have two codewords of C as follows:

c = (0, · · · ,0, ck,0, · · · ,0)A, c′ = (0, · · · ,0, c′k,0, · · · ,0)A,

whose homogeneous distance is

dh(c, c
′) = wh(c − c′) = wh

(

(0, · · · ,0, ck − c′k,0, · · · ,0)A
)

= wh

(

0, · · · ,0, akk(ck − c′k), · · · , akℓ(ck − c′k)
)

=

ℓ
∑

j=k

wh

(

akj(ck − c′k)
)

=

ℓ
∑

j=k

wh(ck − c′k)

= (ℓ− k + 1)dh(Ck).

Thus dh(C) ≤ min{ℓdh(C1), · · · , (ℓ −m + 1)dh(Cm)}. It follows that equality
must hold in (3.1).

Finally, assume that C1, · · · , Cm are linear and C1 ⊇ · · · ⊇ Cm. Write
A = (aij)m×ℓ. Since a11 is a unit of R, we can add a suitable multiple of the
first row to the ith row, for each 2 ≤ i ≤ m, such that the entries of the first
column of A below a11 are changed into 0, that is, there are b21, · · · , bm1 ∈ R
such that










1
b21 1
...

. . .

bm1 1





















a11 a12 · · · a1ℓ
a21 a22 · · · a2ℓ
...

...
...

...
am1 am2 · · · amℓ











=











a11 a12 · · · a1ℓ
a′22 · · · a′2ℓ
...

...
...

a′m2 · · · a′mℓ











.

Similarly, a′22 is also a unit of R, and we can add a suitable multiple of the
second row to the ith row, for 3 ≤ i ≤ m, such that the entries below a′22 of the
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second column are changed into 0. Continuing in the same manner, we obtain
a lower triangular m×m matrix

P =











1
b21 1
...

...
. . .

bm1 bm2 · · · 1











such that PA is an upper triangular matrix, which is still non-singular by
columns.

Since

• C = [C1, · · · , Cm]A =
(

[C1, · · · , Cm]P−1
)

(PA),

• P−1 still has the form P−1 =











1
b′21 1
...

...
. . .

b′m1 b′m2 · · · 1











,

• [C1, · · · , Cm]P−1 = [C1, · · · , Cm] (since C1, · · · , Cm are linear and C1 ⊇
C2 ⊇ · · · ⊇ Cm),

it follows that
C = [C1, · · · , Cm](PA),

where PA is upper triangular. Hence, by the result above, equality holds
in (3.1).
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[16] F. Özbudak and H. Stichtenoth, Note on Niederreiter-Xing’s propagation rule for

linear codes, Appl. Algebra Engrg. Comm. Comput., 13 (2002), 53–56.

[17] B. van Asch, Matrix-product codes over finite chain rings, Appl. Algebra Engrg.
Comm. Comput., 19 (2008), 39–49.

[18] J. Wood, Duality for modules over finite rings and applications to coding theory,
Amer. J. Math., 121 (1999), 555–575.

[19] J. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer.
Math. Soc., 136 (2008), 699–706.

18

http://arxiv.org/abs/1107.1529

	1 Introduction
	2 Preliminaries
	3 The main results
	4 Proof of Theorem ??
	4.1 k Non-singular by Columns Matrices
	4.2 2q1 Non-singular by Columns Matrices
	4.3 1 Non-singular by Columns Matrices
	4.4 Completion of the Proof of Theorem ??


