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Abstract

In this paper, we present three classes of complete permutation monomials over
finite fields of odd characteristic. Meanwhile, the compositional inverses of these
complete permutation polynomials are also proposed.
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1. Introduction

Let p be a prime number and q = pn. Let Fq denote the finite field of order
q and F

∗
q the set of all non-zero elements of Fq. A polynomial f(x) ∈ Fq[x] is

called a permutation polynomial (PP) of Fq if the associated polynomial func-
tion f : c 7→ f(c) from Fq to Fq is a permutation of Fq. For a permutation
polynomial f(x) ∈ Fq[x] there exists (a unique) f−1(x) ∈ Fq[x] such that
f(f−1(x)) ≡ f−1(f(x)) ≡ x(mod xq − x). We call f−1(x) the compositional
inverse of f(x). Permutation polynomials were studied first by Hermite [8] and
later by Dickson [5]. Permutation polynomials have been an active topic of study
in recent years due to their important applications in cryptography, coding the-
ory, combinatorial designs theory. A permutation polynomial f(x) ∈ Fq[x] is
a complete permutation polynomial (CPP) over Fq if f(x) + x permutes Fq as
well. The study of complete permutation polynomials started with the work of
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Niederreiter and Robinson [14]. Finding new PPs and CPPs of finite fields is a
difficult problem and there are rare classes of CPPs known. More investigations
on PPs and CPPs can be found in [1, 2, 3, 4, 6, 9, 10, 15, 17, 19, 20].

Our interest in complete permutation polynomials arises from a recent paper
by Tu et al. [16] in which several classes of complete permutation polynomials
over finite fields of even characteristic were constructed. More precisely, they
considered three classes of complete permutation monomials and a class of tri-
nomial complete permutation polynomials. In [14], Niederreiter and Robinson
pointed out that the compositional inverse of a complete permutation polyno-
mial is also a complete permutation polynomial. As one of our main results
in this paper we present three new classes of monomial complete permutations
over finite fields of odd characteristic, not corresponding to any known monomial
complete permutation. In order to prove the complete permutation behavior of
the second class of monomials, some properties of Dickson polynomials will be
employed.

The rest of this paper is organized as follows. Some preliminaries and nota-
tions are given in Section 2. In Section 3, we propose three classes of monomial
complete permutations over finite fields of odd characteristic and present their
compositional inverses.

2. Notations and preliminaries

Let p be a prime number and q = pn. For any positive integer n with
a divisor m ≥ 1, the trace function, denoted by Trnm(x), from Fpn to Fpm is
defined as

Trnm(x) = x+ xpm

+ xp2m

+ · · ·+ xp(n/m−1)m

.

The determination of permutation polynomials is a nontrivial problem, and
some simple examples of permutation polynomials can be obtained from the
following result.

Lemma 2.1. [12] The monomial xn is a permutation polynomial of Fq if and
only if gcd(n, q − 1) = 1.

A well-known criterion for permutation polynomial which will be frequently
used in this paper is the following lemma:

Lemma 2.2. [12] The polynomial f ∈ Fq[x] is a permutation polynomial of Fq

if and only if for every nonzero γ ∈ Fq,

∑

x∈Fq

ωTrn1 (γf(x)) = 0, (1)

where ω is a primitive p-th root of unity.
Now we recall the knowledge of Dickson polynomials over Fq. Dickson poly-

nomials are a special source of permutation polynomials over finite fields. The
reader can refer to the monograph of Lidl, Mullen and Turnwald [13] for many
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useful properties and applications of Dickson polynomials. A Dickson polyno-
mial is defined by

Dn(x, a) =

⌊n
2 ⌋

∑

i=0

n− i

n

(

n− i

i

)

(−a)ixn−2i,

where a ∈ Fq, ⌊n/2⌋ is the floor function, i.e., the biggest integer less than or
equal to n/2, and

(

n−i
i

)

is the combinatorial number of n− i chooses i.
Further, the family of Dickson polynomials Dn(x, a) ∈ Fq[x] can also be

defined by the recurrence relation

Di+2(x, a) = xDi+1(x, a) − aDi(x, a), i = 0, 1, · · ·

with initial values
D0(x, a) = 2, D1(x, a) = x.

For example, the first few Dickson polynomials over F3m are given below.

D2(x, a) = x2 − 2a,

D3(x, a) = x3,

D4(x, a) = x4 − ax2 + 2a2x,

D5(x, a) = x5 + ax3 − a2x.

We also have the following fundamental result.

Lemma 2.3. [12] For a nonzero element a ∈ Fq, Dickson polynomial Dn(x, a)
over Fq is a permutation polynomial if and only if gcd(n, q2 − 1) = 1.

In Section 3, we will show that the complete permutation polynomials in the
second class are related to some properties of Dickson polynomials.

The following two lemmas will be used in Section 3.

Lemma 2.4. [14] Let f(x) be a complete permutation polynomial over Fq. Then
f−1(x) is also a complete permutation polynomial over Fq.

Lemma 2.5. [18] Pick d > 0 with d|q − 1, and let ζ be a primitive d-th root

of unity in Fq. Then the polynomial x
q−1
d +1 + ax(a 6= 0) is a permutation

polynomial of Fq if and only if the following conditions are satisfied:
(i) (−a)d 6= 1;
(ii) For all 0 ≤ i < j ≤ d− 1,

(

a+ ζi

a+ ζj

)

q−1
d

6= ζj−i.

3



3. Three classes of monomial CPPs over finite fields of odd charac-

teristic

In this section, three classes of monomial polynomials over finite fields of
odd characteristic are explored. The study of these monomials will start with a
technique used by Dobbertin [7], Leander [11] and Tu et al.[16].

We fix p as an odd prime number in this section. Let the integer n = 2m
for an odd integer m. Since m is odd, the polynomial x2 + 1 is irreducible over
F3m as it is irreducible over F3. Let α be a root of x2 + 1. Then the order of α
is 4 in the multiplicative group of F32m = F3m(α). In the sequel let

x = x0 + x1α, x0, x1 ∈ F3m

be an arbitrary element of F32m . Since m is odd, we have 3m ≡ 3(mod 4) and
α3m = α3. We conclude that

Tr2mm (α) = Tr2mm (α3) = 0, Tr2mm (α2) = 1, (2)

and therefore

Tr2mm (x) = Tr2mm (x0 + x1α) = 2x0. (3)

Theorem 3.1. For any positive odd integer m and a nonzero element v in
F32m with Tr2mm (v) = 0, the monomial v−1x3m+2 is a complete permutation
polynomial over F32m .
Proof: Denote

S = {v0 + v1α : v0, v1 ∈ F3m , v0 = 0}\{0}, (4)

where α is defined as above. By Eqs.(2) and (3), we know that S is the set
of all nonzero elements v in F32m with Tr2mm (v) = 0. For each v ∈ S, from
Lemma 2.1, the monomial v−1x3m+2 is a permutation polynomial over F32m ,
since gcd(32m−1, 3m+2) = gcd(3m−1, 3m+2) = gcd(3m−1, 3) = 1. To prove
v−1x3m+2 is a CPP over F32m , it is sufficient to show that x3m+2 + vx is a PP
over F32m for each v ∈ S.

Note that gcd(32m − 1, 3m + 2) = 1, hereafter the nonzero γ ∈ F32m will be
represented as γ = β3m+2 for a unique nonzero β ∈ F32m . Then we have

∑

x∈F32m

ωTr2m1 (γ(x3m+2+vx))

=
∑

x∈F32m

ωTr2m1 ((βx)3
m+2+β3m+1v(βx))

=
∑

x∈F32m

ωTr2m1 (x3m+2+β3m+1vx)

=
∑

x∈F32m

ωTrm1 (Tr
2m
m (x3m+2+β3m+1vx)).
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By expressing x ∈ F32m as x0 + x1α and Eq.(2), we compute

Tr2mm (x3m+2)

= Tr2mm

(

(x0 + x1α)
3m+2

)

= Tr2mm

(

(x0 + x1α
3m)(x0 + x1α)

2
)

= Tr2mm
(

x3
0 + 2x0x

2
1 + (2x2

0x1 + x3
1)α+ x0x

2
1α

2 + x2
0x1α

3
)

= 2(x3
0 + x0x

2
1)

since α3m = α3 for odd m.
Note that (β3m+1)3

m−1 = 1, we have β3m+1 ∈ F3m and β3m+1v ∈ S. By Eq.
(4), we can assume that β3m+1v = u = u1α with u1 ∈ F3m , and then

Tr2mm (β3m+1vx) = Tr2mm (u1α(x0 + x1α)) = Tr2mm (u1x0α+ u1x1α
2) = u1x1.

Combining with the fact Trm1 (z3) = Trm1 (z) for any z ∈ F3m , we have

∑

x∈F32m

ωTr2m1 (γ(x3m+2+vx))

=
∑

x∈F32m

ωTrm1 (Tr2mm (x3m+2+β3m+1vx))

=
∑

x0,x1∈F3m

ωTrm1 (2x3
0(x

6
1+1)+u1x1)

=
∑

x1∈F3m

ωTrm1 (u1x1)
∑

x0∈F3m

ωTrm1 (2x
3
0(x

6
1+1))

= 0

since the equation x6
1+1 = 0 has no solution in F3m (−1 is a non-square element

in F3m for odd m).
Hence, for every nonzero γ ∈ F32m , we have

∑

x∈F32m

ωTr2m1 (γ(x3m+2+vx)) = 0.

By Lemma 2.2, the assertion is proved.

Remark 1. Besides x2 + 1, we can also use the other two irreducible polyno-
mials of degree 2 over F3 to prove Theorem 3.1. In the case of x2 + 2x+ 2, the
corresponding set S is S = {v0+v1α : v0, v1 ∈ F3m , v0 = v1}\{0}. In the case of
x2+x+2, the related set S should be S = {v0+v1α : v0, v1 ∈ F3m , v1 = 2v0}\{0}.

Proposition 3.2. For any positive odd integer m and v in F
∗
32m with Tr2mm (v) =

0, the monomial v2·3
2m−1−3m−1

x2·32m−1−3m−1

is a complete permutation polyno-
mial over F32m .
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Proof: In Lemma 2.4, put f(x) = v−1x3m+2. Observe that

(3m + 2)(2 · 32m−1 − 3m−1)

= 2 · 33m−1 + 32m − 2 · 3m−1

≡ 1(mod 32m − 1).

We get that

f−1(x) = v2·3
2m−1−3m−1

x2·32m−1−3m−1

.

This leads to the claimed result from Lemma 2.4.

In what follows, we will propose the second class of complete permutation
monomials over finite fields of characteristic 3 based on the properties of Dickson
polynomials.

First, we start with a similar analysis as in Theorem 3.1. Let n = 2m,
where m is odd. Then gcd(32m − 1, 2 · 3m + 3) = gcd(3m − 1, 2 · 3m + 3) =
gcd(3m − 1, 5) = 1. Since m is odd, the polynomial x2 + 2x + 2 is irreducible
over F3m as it is irreducible over F3. Let α be a root of x2 + 2x + 2. Then α
is a primitive element of F9 and F32m = F3m(α). Thus, each x ∈ F32m can be
written as

x = x0 + x1α, x0, x1 ∈ F3m .

Because m is odd, 3m ≡ 3(mod 8), and then α3m = α3. We have

Tr2mm (α) = Tr2mm (α3) = 1,Tr2mm (α2) = Tr2mm (α6) = 0, (5)

and therefore

Tr2mm (x) = Tr2mm (x0 + x1α) = 2x0 + x1. (6)

Theorem 3.3. For any positive odd integer m, the monomial v−1x2·3m+3 is a
complete permutation polynomial over F32m if v is a nonzero element in F32m

with Tr2mm (αv) = 0 or Tr2mm (α3v) = 0, where α ∈ F32m is a root of the equation
x2 + 2x+ 2 = 0.
Proof: Denote

S = {v0 + v1α : v0, v1 ∈ F3m , v0 = 0 or v1 = 2v0}\{0},

where α is a root of x2 + 2x + 2. By Eqs.(5) and (6), we conclude that S is
the set of all nonzero elements v in F32m with Tr2mm (αv) = 0 or Tr2mm (α3v) = 0.
Note that gcd(32m−1, 2 ·3m+3) = 1, the monomial v−1x3m+2 is a permutation
polynomial over F32m by Lemma 2.1 for every v ∈ S. The rest of the proof is
to show that x2·3m+3 + vx permutes F32m for every v ∈ S.
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Note that gcd(32m − 1, 2 · 3m + 3) = 1. Then each γ ∈ F
∗
32m is uniquely

written as β2·3m+3 for a β ∈ F
∗
32m . We have

∑

x∈F32m

ωTr2m1 (γ(x2·3m+3+vx))

=
∑

x∈F32m

ωTr2m1 ((βx)2·3
m+3+β2·3m+2v(βx))

=
∑

x∈F32m

ωTr2m1 (x2·3m+3+β2·3m+2vx)

=
∑

x∈F32m

ωTrm1 (Tr
2m
m (x2·3m+3+β2·3m+2vx)).

By Eqs.(5), (6) and α3m = α3, one has that

Tr2mm (x2·3m+3)

= Tr2mm

(

(x0 + x1α)
2·3m+3

)

= Tr2mm

(

(x0 + x1α
3m)2(x0 + x1α)

3
)

= Tr2mm
(

x5
0 + (2x4

0x1 + x2
0x

3
1)α

3 + (2x0x
4
1 + x3

0x
2
1)α

6 + x5
1α

)

= 2x5
0 + 2x4

0x1 + x2
0x

3
1 + x5

1.

Because (β2·3m+2)3
m−1 = 1, we have β2·3m+2 ∈ F3m and β3m+1v ∈ S. Let

β2·3m+2v = u = u0 + u1α with u0, u1 ∈ F3m . Then

Tr2mm (β3m+1vx)

= Tr2mm (ux)

= Tr2mm ((u0 + u1α)(x0 + x1α))

= Tr2mm
(

u0x0 + (u0x1 + u1x0)α+ u1x1α
2
)

= 2u0x0 + u0x1 + u1x0

due to Tr2mm (α) = 1 and Tr2mm (α2) = 0. Thus,

∑

x∈F32m

ωTr2m1 (γ(x2·3m+3+vx))

=
∑

x∈F32m

ωTrm1 (Tr
2m
m (x2·3m+3+ux))

=
∑

x0,x1∈F3m

ωTrm1 (2x5
0+2x4

0x1+x2
0x

3
1+x5

1+2u0x0+u0x1+u1x0). (7)
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Case (i). When u0 = 0, Eq.(7) can be rewritten as
∑

x0,x1∈F3m

ωTrm1 (2x5
0+2x4

0x1+x2
0x

3
1+x5

1+u1x0)

=
∑

x0∈F3m

ωTrm1 (2x5
0+u1x0)

∑

x1∈F3m

ωTrm1 (x5
1+x2

0x
3
1−x4

0x1)

=
∑

x1∈F3m

ωTrm1 (x5
1) +

∑

x0∈F
∗

3m

ωTrm1 (2x5
0+u1x0)

∑

x1∈F3m

ωTrm1 (x5
1+x2

0x
3
1−x4

0x1).(8)

Since gcd(5, 3m − 1) = 1, x5
1 permutes F3m by Lemma 2.1 and then

∑

x1∈F3m

ωTrm1 (x5
1) = 0.

Note that polynomial x5
1 + x2

0x
3
1 − x4

0x1 is a Dickson polynomial of degree 5
over F3m for any nonzero x0 ∈ F3m . Since gcd(5, 32m − 1) = 1, by Lemma 2.3,
x5
1 + x2

0x
3
1 − x4

0x1 permutes F3m which gives
∑

x1∈F3m

ωTrm1 (x5
1+x2

0x
3
1−x4

0x1) = 0

for any nonzero x0 ∈ F3m . Consequently, when u0 = 0, the sum in Eq.(8) equals
to

∑

x0,x1∈F3m

ωTrm1 (2x5
0+2x4

0x1+x2
0x

3
1+x5

1+u1x0) = 0.

Case (ii). When u1 = 2u0, substituting x0 by y − x1 in Eq.(7) yields
∑

x0,x1∈F3m

ωTrm1 (2x
5
0+2x4

0x1+x2
0x

3
1+x5

1+u0(x0+x1))

=
∑

y∈F3m

ωTrm1 (2y5+u0y)
∑

x1∈F3m

ωTrm1 (−(x5
1+y2x3

1−y4x1))

=
∑

x1∈F3m

ωTrm1 (−x5
1) +

∑

y∈F
∗

3m

ωTrm1 (2y5+u0y)
∑

x1∈F3m

ωTrm1 (−(x5
1+y2x3

1−y4x1)).

Since x5
1 + y2x3

1 − y4x1 is a Dickosn polynomial of degree 5 in variable x1 for
any fixed y ∈ F3m , by a similar analysis as above, we know also that

∑

x0,x1∈F3m

ωTrm1 (2x
5
0+2x4

0x1+x2
0x

3
1+x5

1+u0(x0+x1)) = 0

for u1 = 2u0.
Finally, we have

∑

x∈F32m

ωTr2m1 (γ(x2·3m+3+vx)) = 0

for each nonzero γ ∈ F32m and so by Lemma 2.2 the desired result is proved.

8



Proposition 3.4. For any positive odd integer m, the monomial v−
2·3m−3

5 x− 2·3m−3
5

is a complete permutation polynomial over F32m for any nonzero element v in
F32m with Tr2mm (αv) = 0 or Tr2mm (α3v) = 0, where α ∈ F32m is a root of the
equation x2 + 2x+ 2 = 0.
Proof: Set f(x) = v−1x2·3m+3. Note that

(2 · 3m + 3)(2 · 3m − 3) = 4 · 32m − 9 ≡ −5(mod 32m − 1).

Since gcd(5, 32m − 1) = 1, it follows that

(2 · 3m + 3)(−
2 · 3m − 3

5
) ≡ 1(mod 32m − 1),

where 1
5 is the inverse of 5 in the unit group of Z32m−1.

Therefore, the compositional inverse of f(x) is v−
2·3m−3

5 x− 2·3m−3
5 . This proves

that v−
2·3m−3

5 x− 2·3m−3
5 is a complete permutation polynomial from Lemma 2.4.

In the rest of this section, we will consider the complete permutation prop-
erty of some more monomials over Fp2m . Assume n = 2m is even. For any
u ∈ Fpn , denote u = upm

. Let U be a subgroup of the multiplicative group F
∗
pn

defined by U = {u ∈ Fpn : uu = 1} and denote Us = {us : u ∈ U} for a positive
integer s.

Theorem 3.5. Let positive integers n, m and s satisfy n = 2m and gcd(2s−
1, pm + 1) = 1. If 2s | pm + 1 and gcd(s − 1, pm + 1) = 1, then the monomial
v−1xs(pm−1)+1 is a complete permutation polynomial over Fp2m for each v ∈
U \ Us.
Proof: Condition gcd(2s−1, pm+1) = 1 implies gcd(s(pm−1)+1, p2m−1) =
gcd(s(pm−1)+1, pm+1) = gcd(2s−1, pm+1) = 1. We know that v−1xs(pm−1)+1

permutes Fp2m from Lemma 2.1. Thus it suffices to prove that xs(pm−1)+1 + vx

is a permutation polynomial over Fp2m . Put d = pm+1
s in Lemma 2.5 and then

xs(pm−1)+1 + vx = x
p2m−1

d +1 + vx.

When v ∈ U\Us, we have

(−v)d = (−v)
pm+1

s = (−1)2·
pm+1

2s v
pm+1

s 6= 1

due to 2s | pm +1 and v ∈ U\Us. According to Lemma 2.5, it remains to prove
that condition (ii) in Lemma 2.5 holds for each v ∈ U \Us, here ζ is a primitive
(pm + 1)/s-th root of unity in Fp2m .

If on the contrary one has that

(

v + ζi

v + ζj

)s(pm−1)

= ζj−i (9)

9



for some 0 ≤ i < j ≤ d− 1. Note that v ∈ U and vp
m

= v̄ = v−1. Then Eq. (9)
is equivalent to

(

v + ζi

v + ζj

)spm

= ζj−i

(

v + ζi

v + ζj

)s

,

and
(

v−1 + ζ−i

v−1 + ζ−j

)s

=

(

ζj + ζj−iv

ζj + v

)s

= ζs(j−i)

(

ζi + v

ζj + v

)s

= ζj−i

(

v + ζi

v + ζj

)s

which implies ζ(s−1)(j−i) = 1. Since gcd(s − 1, pm + 1) = 1 and s | pm + 1, we

have gcd(s − 1, d) = gcd(s− 1, p
m+1
s ) = 1. However, ζ is a primitive d-th root

of unity, ζ(s−1)(j−i) 6= 1 for all 0 ≤ i < j ≤ d− 1 which induces that

(

v + ζi

v + ζj

)s(pm−1)

6= ζj−i

for all 0 ≤ i < j ≤ d − 1. It follows from Lemma 2.5 that xs(pm−1)+1 +
vx also permutes Fp2m . That is to say, if the above conditions are satisfied,

the monomial v−1xs(pm−1)+1 is a complete permutation polynomial over Fp2m .

Corollary 3.6. For any positive odd integer m and any v ∈ U\U2, the mono-
mial v−1x2(3m−1)+1 is a complete permutation polynomial over F32m .
Proof: Since s = 2 and p = 3, one can easily check that gcd(s− 1, 3m + 1) =
gcd(1, 3m + 1) = 1, gcd(2s− 1, 3m + 1) = gcd(3, 3m + 1) = 1 and 4 | 3m + 1 for
any positive odd integer m. By Theorem 3.5, the monomial v−1x2(3m−1)+1 is a
complete permutation polynomial over F32m for each v ∈ U\U2.

Proposition 3.7. Let notations be defined as in Corollary 3.6. Then the mono-
mial v3

2m−1+2·3m−1

x32m−1+2·3m−1

is a complete permutation polynomial over
F32m for each v ∈ U\U2.
Proof: Note that

[2(3m − 1) + 1](32m−1 + 2 · 3m−1)

= 2 · 33m−1 + 32m − 2 · 3m−1

≡ 1(mod 32m − 1).

Applying Lemma 2.4 with f(x) = v−1x2(3m−1)+1, we have

f−1(x) = v3
2m−1+2·3m−1

x32m−1+2·3m−1

.

Thus, the conclusion follows from Lemma 2.4.
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Corollary 3.8. For any prime p with p ≡ 7(mod 12) and any positive odd
integer m, the monomial v−1x2(pm−1)+1 is a complete permutation polynomial
over Fp2m for each v ∈ U\U2.
Proof: Note that when s = 2 and p ≡ 7(mod 12), it can be verified that
gcd(2s − 1, pm + 1) = gcd(3, pm + 1) = 1 and 4 | pm + 1 for any positive odd
integer m. From Theorem 3.5, if v is a non-square element of U , then the
monomial v−1x2(pm−1)+1 is a complete permutation polynomial over Fp2m for

any prime p with p ≡ 7(mod 12).

Proposition 3.9. Let notations be defined as in Corollary 3.8. Then the mono-

mial v
3−2(pm−1)(2pm+1)

3 x
3−2(pm−1)(2pm+1)

3 is a complete permutation polynomial
over Fp2m for each v ∈ U\U2.

Proof: Set f(x) = v−1x2(pm−1)+1. Note that 3 | pm − 1 for p ≡ 7(mod 12).
One can check that

[2(pm − 1) + 1]

[

3− 2(pm − 1)(2pm + 1)

3

]

− 1

= 2pm − 2−
4pm(pm − 1)(2pm + 1)

3
+

2(pm − 1)(2pm + 1)

3

=
(pm − 1) [6− 4pm(2pm + 1) + 2(2pm + 1)]

3

=
−8(pm − 1)(p2m − 1)

3

≡ 0(mod p2m − 1).

This shows that

[2(pm − 1) + 1]

[

3− 2(pm − 1)(2pm + 1)

3

]

≡ 1(mod p2m − 1).

Therefore, we obtain that

f−1(x) = v
3−2(pm−1)(2pm+1)

3 x
3−2(pm−1)(2pm+1)

3 .

Using Lemma 2.4, we know that the monomial v
3−2(pm−1)(2pm+1)

3 x
3−2(pm−1)(2pm+1)

3

is also a complete permutation polynomial over Fp2m for each v ∈ U\U2.

4. Conclusion

It is well-known that complete permutation polynomials have many impor-
tant applications in combinatorial designs, coding theory etc. We present three
classes of complete permutation monomials over finite fields of odd character-
istic. Meanwhile, the compositional inverses of these complete permutation
polynomials are also proposed. In the proofs of the permutation behavior of
these polynomials, we need to use different methods than that employed in
[16]. Interestingly, we found that the complete permutation polynomials in the
second class are related to Dickson polynomials.
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