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ON THE CLASSIFICATION OF SELF-DUAL [20, 10, 9]
CODES OVER GF(7)

MASAAKI HARADA AND AKIHIRO MUNEMASA

In memory of Yutaka Hiramine

Abstract. It is shown that the extended quadratic residue code
of length 20 over GF(7) is a unique self-dual [20, 10, 9] code C such
that the lattice obtained from C by Construction A is isomorphic
to the 20-dimensional unimodular lattice D+

20, up to equivalence.
This is done by converting the classification of such self-dual codes
to that of skew-Hadamard matrices of order 20.

1. Introduction

Let GF(p) be the finite field of order p, where p is prime. As described
in [16], self-dual codes are an important class of linear codes for both
theoretical and practical reasons. For p ≡ 1 (mod 4), a self-dual code
of length n over GF(p) exists if and only if n is even, and for p ≡ 3
(mod 4), a self-dual code of length n over GF(p) exists if and only
if n ≡ 0 (mod 4). It is a fundamental problem to classify self-dual
codes over GF(p) and determine the largest minimum weight among
self-dual codes over GF(p) for a fixed length. Much work has been
done towards classifying self-dual codes over GF(p) and determining
the largest minimum weight among self-dual codes of a given length
over GF(p) for p = 2 and 3 (see [16]).
Self-dual codes over GF(7) have been classified for lengths up to

12 (see [9]), and the largest minimum weight d7(n) among self-dual
codes of length n over GF(7) has been determined for n ≤ 28 (see [7,
Table 2]). For example, it is known that d7(20) = 9 and the extended
quadratic residue code QR20 of length 20 over GF(7) is a self-dual
[20, 10, 9] code (see [5]).
There are 12 nonisomorphic 20-dimensional unimodular lattices hav-

ing minimum norm 2 (see [3, Table 16.7]), and one of them is D+

20. Let
A7(C) denote the unimodular lattice obtained from a self-dual code C
over GF(7) by Construction A.

2010 Mathematics Subject Classification. 94B05.
Key words and phrases. self-dual code, skew-Hadamard matrix, unimodular

lattice.
1

http://arxiv.org/abs/1509.03731v2


2 MASAAKI HARADA AND AKIHIRO MUNEMASA

In this paper, we convert the classification of self-dual [20, 10, 9] codes
C over GF(7) such that A7(C) is isomorphic to D+

20 to that of skew-
Hadamard matrices of order 20. The main aim of this paper is to
give the following partial classification of self-dual [20, 10, 9] codes over
GF(7).

Theorem 1. Up to equivalence, the extended quadratic residue code of

length 20 over GF(7) is a unique self-dual [20, 10, 9] code C over GF(7)
such that A7(C) is isomorphic to D+

20.

All computer calculations in this paper were done with the help of
Magma [1].

2. Preliminaries

In this section, we give definitions and notions on self-dual codes,
unimodular lattices and skew-Hadamard matrices. Some basic facts
on these subjects are also provided.

2.1. Self-dual codes. An [n, k] code C over GF(p) is a k-dimensional
subspace of GF(p)n. The value n is called the length of C. The weight

wt(x) of a vector x ∈ GF(p)n is the number of non-zero components
of x. A vector of C is called a codeword of C. The minimum non-zero
weight of all codewords in C is called the minimum weight of C and
an [n, k] code with minimum weight d is called an [n, k, d] code. The
weight enumerator W (C) of C is given by W (C) =

∑n

i=0
Aiy

i, where
Ai is the number of codewords of weight i in C. The dual code C⊥ of
C is defined as

C⊥ = {x ∈ GF(p)n | x · y = 0 for all y ∈ C},

under the standard inner product x · y. A code C is called self-dual if
C = C⊥. Two codes C and C ′ are equivalent if there exists a (1,−1, 0)-
monomial matrix M with C ′ = {cM | c ∈ C}.

2.2. Unimodular lattices. An n-dimensional (Euclidean) lattice is a
discrete subgroup of rank n in Rn. A lattice L is unimodular if L = L∗,
where the dual lattice L∗ is defined as

L∗ = {x ∈ Rn | (x, y) ∈ Z for all y ∈ L},

under the standard inner product (x, y). The norm ‖x‖2 of a vector
x ∈ Rn is (x, x). The minimum norm of L is the smallest norm among
all nonzero vectors of L. Two lattices L and L′ are isomorphic, denoted
L ∼= L′, if there exists an orthogonal matrix A with L′ = {xA | x ∈ L}.
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Let C be a code of length n over GF(p) and let ε1, . . . , εn be an
orthogonal basis of Rn satisfying (εi, εj) = pδi,j , where δi,j is the Kro-
necker delta. Then we define the lattice Ap(C) obtained from C by
Construction A as

Ap(C) = {
1

p

n
∑

i=1

xiεi | x = (x1, . . . , xn) ∈ Zn, x mod p ∈ C}.

It is known that Ap(C) is unimodular if and only if C is self-dual. A
set {f1, . . . , fn} of n vectors f1, . . . , fn in an n-dimensional lattice L
with (fi, fj) = kδi,j is called a k-frame of L. Clearly, Ap(C) contains a
p-frame. Conversely, if a unimodular lattice L contains a p-frame, then
there is a self-dual code C over GF(p) with Ap(C) ∼= L (see [8]).
Let C be a self-dual [20, 10, d] code over GF(7) with d ∈ {8, 9}. Then

it is easy to see that A7(C) has minimum norm 2. It is known that
there are 12 nonisomorphic 20-dimensional unimodular lattices having
minimum norm 2 (see [3, Table 16.7]), and one of them is D+

20. The
lattice D+

20 is defined from the root lattice D20 as follows:

D20 = {
20
∑

i=1

αiei | (α1, . . . , α20) ∈ Z20,
20
∑

i=1

αi ≡ 0 (mod 2)},

D+

20 = 〈D20,
1

2
1〉,

where ei = (δ1,i, . . . , δ20,i) (1 ≤ i ≤ 20) and 1 denotes the all-one vector.
Note that D20 is the even sublattice of D+

20, that is, the sublattice
consisting of vectors of even norm in D+

20.

2.3. Skew-Hadamard matrices. A Hadamard matrix of order n is
an n×n (1,−1)-matrix H such that HH⊤ = nI, where I is the identity
matrix and H⊤ denotes the transposed matrix of H . It is well known
that the order n is necessarily 1, 2, or a multiple of 4. Two Hadamard
matrices H and K are said to be equivalent if there are (1,−1, 0)-
monomial matrices P and Q with K = PHQ. All Hadamard matrices
of orders up to 32 have been classified (see [10, Chap. 7] for orders up
to 28 and [11] for order 32, see also [18]).
A Hadamard matrix H of order n is called a skew-Hadamard matrix

ifH+H⊤ = 2I. Skew-Hadamard matrices are a class of Hadamard ma-
trices, which has been widely studied (see e.g., [4], [13]). The numbers
of inequivalent skew-Hadamard matrices of orders 4, 8, 12, 16, 20, 24 are
1, 1, 1, 3, 2, 11, respectively [13]. We denote by S1 the Paley Hadamard
matrix of order 20, which is a skew-Hadamard matrix. The other skew-
Hadamard matrix of order 20 can be found in [12] and we denote the
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matrix by S2. Moreover, we have verified with the help of Magma

that S2 is equivalent to had.20.toncheviv in [18].
The following lemma can be proved in the same manner as [15,

Lemma 3].

Lemma 2. Let F be a square matrix all of whose entries are integers.

If FF⊤ = kI and p is a prime divisor of k such that p2 ∤ k, then F
generates a self-dual code over GF(p).

Hence, the code over GF(7) generated by the row vectors of H + 2I
is self-dual, where H is a skew-Hadamard matrix of order 20.

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1, which is the main
result of this paper.

Lemma 3. Let C be a self-dual [20, 10, 9] code over GF(7). If ξ ∈
A7(C) and ‖ξ‖2 = 2, then

|{i | 1 ≤ i ≤ 20, |(ξ, εi)| ≥ 2}| ≤ 1.

Proof. Write

ξ =
1

7

20
∑

i=1

xiεi, x = (x1, . . . , xn) ∈ Z20, x mod 7 ∈ C.

Since for each j ∈ {1, . . . , 20},

x2

j = 7‖
1

7
xjεj‖

2

≤ 7‖
1

7

20
∑

i=1

xiεi‖
2

= 7‖ξ‖2

= 14,

we have

(1) xj ≡ 0 (mod 7) ⇐⇒ xj = 0 ⇐⇒ (ξ, εj) = 0.

Set

a1 = |{i | 1 ≤ i ≤ 20, |(ξ, εi)| = 1}|,

a2 = |{i | 1 ≤ i ≤ 20, |(ξ, εi)| ≥ 2}|.

Then by (1) we have

a1 + a2 = wt(x) ≥ 9,



ON THE CLASSIFICATION OF SELF-DUAL [20, 10, 9] CODES OVER GF(7) 5

and we have

a1 + 4a2 ≤
20
∑

i=1

(ξ, εi)
2

= 7‖ξ‖2

= 14.

Thus a2 ≤
5

3
, and hence a2 ≤ 1. �

Proposition 4. Let C be a self-dual [20, 10, 9] code over GF(7) with

A7(C) ∼= D+

20. Then there exists a skew-Hadamard matrix H of order

20 such that C is generated by the row vectors of H + 2I over GF(7).

Proof. Let Ψ : A7(C) → D+

20 be an isomorphism. Since ‖Ψ(εj)‖
2 =

‖εj‖
2 = 7 is odd, Ψ(εj) /∈ D20. Thus Ψ(εj) ∈

1

2
1+D20 ⊂

1

2
(1 + 2Z)20,

and hence there exist odd integers fi,j such that

Ψ(εj) =
1

2

20
∑

i=1

fi,jei.

Let F denote the 20×20 matrix whose (i, j) entry is fi,j . Then F⊤F =
28I. In particular,

20
∑

h=1

f 2

h,i = 28.

Since fh,i are odd integers, we see that there exists a unique hi such
that fhi,i = ±3. Since FF⊤ = 28I, the mapping i 7→ hi is a bijection
from {1, . . . , 20} to itself.
Now we may assume without loss of generality

fh,i =

{

3 if h = i,

±1 otherwise.

Set H = F − 2I. Then all the entries of H are ±1, and the diagonal
entries are 1.
We claim H+H⊤ = 2I. To prove this, we need to show fh,i+fi,h = 0

for 1 ≤ h < i ≤ 20. Suppose fh,i = fi,h for some 1 ≤ h < i ≤ 20. Set
ξ = Ψ−1(eh + fi,hei). Then ‖ξ‖2 = ‖eh + ei‖

2 = 2, and

(ξ, εi) = (Ψ(ξ),Ψ(εi))

= (eh + fi,hei,
1

2

20
∑

j=1

fj,iej)

=
1

2
(fh,i + fi,hfi,i)
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= 2fi,h.

Similarly,

(ξ, εh) = (Ψ(ξ),Ψ(εh))

= (eh + fi,hei,
1

2

20
∑

j=1

fj,hej)

=
1

2
(fh,h + f 2

i,h)

= 2.

These contradict Lemma 3, and complete the proof of the claim.
Since

H⊤H = (F⊤ − 2I)(F − 2I)

= 28I − 2(H⊤ +H + 4I) + 4I

= 20I,

H is a Hadamard matrix.
Finally, since

D+

20 ∋ 2ei

=
1

14

20
∑

h=1

28δh,ieh

=
1

14

20
∑

h=1

20
∑

j=1

fi,jfh,jeh

=
1

7

20
∑

j=1

fi,j
1

2

20
∑

h=1

fh,jeh

=
1

7

20
∑

j=1

fi,jΨ(εj)

= Ψ(
1

7

20
∑

j=1

fi,jεj),

we have

1

7

20
∑

j=1

fi,jεj ∈ A7(C).

Thus the i-th row of F = H + 2I belongs to C. The fact that F
generates the self-dual code C follows from Lemma 2. �
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We say that skew-Hadamard matrices H and H ′ of order n are skew-
Hadamard equivalent if there exists a (1,−1, 0)-monomial matrix P
with PHP⊤ = H ′. Let H and H ′ be skew-Hadamard matrices of order
20. Let C(H) denote the code over GF(7) generated by the row vectors
of H+2I. If H and H ′ are skew-Hadamard equivalent, then C(H) and
C(H ′) are equivalent. By Proposition 4, we can convert the classifi-
cation of self-dual [20, 10, 9] codes C over GF(7) with A7(C) ∼= D+

20

to that of skew-Hadamard matrices of order 20, up to skew-Hadamard
equivalence. The existence of a skew-Hadamard matrix of order n is
equivalent to the existence of a doubly regular tournament of order
n− 1 [17]. It is known that there are two doubly regular tournaments
of order 19, up to isomorphism (see [14]). This implies that there are
two skew-Hadamard matrices of order 20, up to skew-Hadamard equiv-
alence. Indeed, let H be a skew-Hadamard matrix of order 20 and let
D be the diagonal matrix whose diagonal entries are the first row of
H . Then

DHD =

(

1 1

−1⊤ M

)

.

Here the 19×19 (1, 0)-matrix (M+J)/2−I is the adjacency matrix of
a doubly regular tournament of order 19, where J is the 19×19 all-one
matrix. Hence, isomorphic doubly regular tournaments of order 19 give
skew-Hadamard matrices of order 20, which are skew-Hadamard equiv-
alent. The matrices S1 and S2 give the two skew-Hadamard matrices
of order 20, up to skew-Hadamard equivalence.
We have verified with the help of Magma that the two self-dual

codes C(S1) and C(S2) have the following weight enumerators:

W (C(S1)) =1 + 6840y9 + 47880y10 + 200640y11 + 957600y12

+ 3625200y13 + 10766160y14 + 25701984y15

+ 48495600y16 + 68276880y17 + 68299680y18

+ 43155840y19 + 12940944y20,

W (C(S2)) =1 + 1080y8 + 5040y9 + 40320y10 + 215760y11

+ 977040y12 + 3571200y13 + 10751040y14

+ 25814304y15 + 48431880y16 + 68208840y17

+ 68403000y18 + 43106160y19 + 12949584y20,

respectively. In particular, C(S1) is a [20, 10, 9] code, while C(S2)
has minimum weight 8. By Proposition 4, C(S1) is a unique self-
dual [20, 10, 9] code C over GF(7) with A7(C) ∼= D+

20. In addition, we
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have verified with the help of Magma that A7(QR20) ∼= D+

20. This
completes the proof of Theorem 1.

Remark 5. The above argument yields that C(S1) is equivalent to
QR20. A general case including this fact was described in [2, p. 1041]
without proof.

4. Some other constructions of self-dual [20, 10, 9] codes

Finally, in this section, we investigate some other constructions of
self-dual [20, 10, 9] codes over GF(7). Note that D+

20 is the unique
20-dimensional unimodular lattice with minimum norm 2 and kissing
number 760. For a given self-dual [20, 10, 9] code C over GF(7), one can
determine whether A7(C) is isomorphic to D+

20 or not, by computing
the kissing number of A7(C) with the help of Magma. If A7(C) is
isomorphic to D+

20, then by Theorem 1, we have that C is equivalent
to QR20.

• Some self-dual [20, 10, 9] codes over GF(7) were constructed
in [6, Table 6] and [7, Table 7] as double circulant codes and
quasi-twisted codes, respectively (see [7] for the construction).
We have verified that A7(C) ∼= D+

20 for all double circulant self-
dual [20, 10, 9] codes C. Also, we have verified that A7(C) ∼=
D+

20 for all quasi-twisted self-dual [20, 10, 9] codes C. These
imply that all double circulant self-dual [20, 10, 9] codes and all
quasi-twisted self-dual [20, 10, 9] codes are equivalent to QR20.

• Let A and B be 5× 5 circulant (resp. negacirculant) matrices.
A [20, 10] code over GF(7) with the following generator matrix

(

I
A B

−B⊤ A⊤

)

is called a four-circulant (resp. four-negacirculant) code. By
exhaustive search, we have verified that A7(C) ∼= D+

20 for
all four-circulant self-dual [20, 10, 9] codes C. Also, we have
verified that A7(C) ∼= D+

20 for all four-negacirculant self-dual
[20, 10, 9] codes C.

• Let C be a self-dual code of length 20 over GF(7). Let x be
a vector with x · x = 0. Then C(x) = 〈C ∩ 〈x〉⊥, x〉 is a self-
dual code over GF(7). By exhaustive search, we have verified
that A7(QR20(x)) ∼= D+

20 for all vectors x in a set of complete
representatives of GF(7)20/QR20 with x · x = 0.

Moreover, our extensive search failed to discover a self-dual [20, 10, 9]
code C over GF(7) with A7(C) 6∼= D+

20. We are lead to conjecture that
QR20 is a unique self-dual [20, 10, 9] code over GF(7).
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[9] M. Harada and P.R.J. Österg̊ard, Self-dual and maximal self-orthogonal codes
over F7, Discrete Math. 256 (2002), 471–477.

[10] A.S. Hedayat, N.J.A. Sloane and J. Stufken, Orthogonal Arrays, Springer-
Verlag, New York, 1999.

[11] H. Kharaghani and B. Tayfeh-Rezaie, Hadamard matrices of order 32, J. Com-
bin. Des. 21 (2013), 212–221.

[12] C. Koukouvinos, Yamada-Williamson Constructions of nXn Skew-Hadamard
Matrices for n=4,12,20,28,36,44,52,60,68,76,84,92,100, published electronically
at http://rangevoting.org/SkewHad.html.

[13] C. Lin and W.D. Wallis, Symmetric and skew equivalence of Hadamard ma-
trices, Congr. Numer. 85 (1991), 73–79.

[14] B. McKay, Digraphs, published electronically at
http://cs.anu.edu.au/~bdm/data/digraphs.html.

[15] A. Munemasa and H. Tamura, The codes and the lattices of Hadamard matri-
ces, European J. Combin. 33 (2012), 519–533.

[16] E. Rains and N.J.A. Sloane, “Self-dual codes,” Handbook of Coding Theory,
V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177–
294.

[17] K.B. Reid and E. Brown, Doubly regular tournaments are equivalent to skew
Hadamard matrices, J. Combin. Theory Ser. A 12 (1972), 332–338.

[18] N.J.A. Sloane, A Library of Hadamard Matrices, published electronically at
http://neilsloane.com/hadamard/index.html.

http://www.codetables.de/
http://rangevoting.org/SkewHad.html
http://cs.anu.edu.au/~bdm/data/digraphs.html
http://neilsloane.com/hadamard/index.html


10 MASAAKI HARADA AND AKIHIRO MUNEMASA

Research Center for Pure and Applied Mathematics, Graduate School

of Information Sciences, Tohoku University, Sendai 980–8579, Japan

E-mail address : mharada@m.tohoku.ac.jp

Research Center for Pure and Applied Mathematics, Graduate School

of Information Sciences, Tohoku University, Sendai 980–8579, Japan

E-mail address : munemasa@math.is.tohoku.ac.jp


	1. Introduction
	2. Preliminaries
	2.1. Self-dual codes
	2.2. Unimodular lattices
	2.3. Skew-Hadamard matrices

	3. Proof of Theorem ??
	4. Some other constructions of self-dual [20,10,9] codes
	References

