
CURVES OF MEDIUM GENUS WITH MANY POINTS

EVERETT W. HOWE

Abstract. The defect of a curve over a finite field is the difference between

the number of rational points on the curve and the Weil–Serre upper bound

for the number of points on the curve. We present algorithms for constructing
curves of genus 5, 6, and 7 with small defect. Our aim is to be able to produce,

in a reasonable amount of time, curves that can be used to populate the online

table of curves with many points found at manypoints.org.

1. Introduction

For every prime power q and non-negative integer g, we let Nq(g) denote the
maximum number of rational points on a smooth, projective, absolutely irreducible
curve of genus g over the finite field Fq. At the turn of the present century, van der
Geer and van der Vlugt published tables [5] of the best upper and lower bounds
on Nq(g) known at the time, for g ≤ 50 and for q ranging over small powers of 2
and 3. In 2010, van der Geer, Lauter, Ritzenthaler, and the author (with technical
assistance from Gerrit Oomens) created the manypoints web site [4], which gives
the currently-known best upper and lower bounds on Nq(g) for g ≤ 50 and for a
range of prime powers q: the primes less than 100, the prime powers pi for p < 20
and i ≤ 5, and the powers of 2 up to 27.

The Weil–Serre upper bound [16] for Nq(g) states that

Nq(g) ≤ q + 1 + gb2√qc.

When q ≥ (g +
√
g + 1)2 the Weil–Serre bound is almost always the best upper

bound currently known for Nq(g); the exceptions come from “exceptional” prime
powers [6, Theorem 4, p. 1682] and from careful case-by-case analyses — see the
introduction to [9] for a summary. On the other hand, lower bounds for Nq(g)
are generally obtained by producing more-or-less explicit examples of curves with
many points. Typically, this is done by searching through specific families of curves
— for instance, families of curves obtained via class field theory as covers of lower-
genus curves, or families of curves with specific nontrivial automorphism groups.
For small finite fields of characteristic 2 and 3, such searches have been carried out
for many genera, so even the earliest versions of the van der Geer–van der Vlugt
tables gave nontrivial lower bounds for many values of Nq(g).

One of the goals of the manypoints web site is to encourage researchers to
consider curves over finite fields of larger characteristics. Curves over these fields
have received far less attention than curves in characteristic 2 or 3, so at present
the table entries for lower bounds for Nq(g) remain unpopulated for most q and g.
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Of course, there are trivial lower bounds for Nq(g): for instance, if C is a hyper-
elliptic curve of any genus over Fq, then either C or its quadratic twist will have
at least q + 1 points. To avoid having to worry about such “poor” lower bounds,
van der Geer and van der Vlugt decided not to print a lower bound for Nq(g) in

their tables unless it was greater than 1/
√

2 times the best upper bound known
for Nq(g). This restriction was adopted for the manypoints table as well, but it
turns out that it is not a strong enough filter when q is large with respect to g.
The administrators of the manypoints site are considering replacing it with the
requirement that a lower bound not be published unless the difference between the
lower bound and q+1 is at least 1/

√
2 times the difference between the best proven

upper bound and q + 1.
Every genus-0 curve over a finite field is isomorphic to P1, so Nq(0) = q + 1

for all q. For g = 1 and g = 2, the value of Nq(g) is also known for all q. For
g = 1 this is due to a classical result of Deuring [3] (see [19, Theorem 4.1, p. 536]);
for g = 2, this is due to work of Serre [16, 15, 17] (see also [11]). There is no
easy formula known for Nq(3), but for all q in the manypoints table the value has
been computed; see the introduction to [14]. For genus 4, the exact value of Nq(4)
is known for 43 of the 59 prime powers q in the manypoints table, and for the
remaining 16 prime powers the lower bound for Nq(4) is within 4 of the best proven
upper bound; see [7] and [8].

In this paper we develop methods for finding curves of genus 5, 6, and 7 with
reasonably many points. Our goal is to find lower bounds for Nq(g) for these genera
that are somewhat close to the best proven upper bounds, in order to “raise the
bar” for what counts as an interesting example. We hope that this will inspire
others to think of new constructions, new search strategies, and faster algorithms.

The defect of a curve C of genus g over Fq is the difference between #C(Fq)
and the Weil–Serre upper bound for genus-g curves over Fq. If π1, π1, . . . , πg, πg

are the Frobenius eigenvalues (with multiplicity) of C, listed in complex-conjugate
pairs, then we have

#C(Fq) = q + 1− (π1 + π1 + · · ·+ πg + πg),

so the defect of C is given by

(q + 1 + gb2√qc)−#C(Fq) =

g∑
i=1

(b2√qc+ πi + πi) .

If the Jacobian of C decomposes up to isogeny as the product of the Jacobians of
some other curves Ci, then the multiset of Frobenius eigenvalues for C is the union
of the multisets of Frobenius eigenvalues for the Ci, and it follows that the defect
of C is the sum of the defects of the Ci.

The ideas behind our new constructions for producing curves of genus 5, 6, and
7 with small defect are similar to those used in [8] to produce curves of genus 4 with
small defect. The basic strategy is to search through families of curves D that are
Galois extensions of P1 with group G isomorphic to a 2-torsion group; in practice,
we will consider G ∼= (Z/2Z)2 and G ∼= (Z/2Z)3. The extension D → P1 will then
have #G − 1 subextensions Ci → P1 of degree 2, corresponding to the index-2
subgroups of G. A result of Kani and Rosen [12, Theorem B, p. 308] says that in
this situation, the Jacobian of D is isogenous to the product of the Jacobians of
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CURVES OF MEDIUM GENUS 3

the Ci; it follows that the genus of D is the sum of the genera of the Ci, and the
defect of D is equal to the sum of the defects of the Ci.

Within this basic framework, however, there are many ways of structuring an
algorithm, some of which are much more efficient than others. In Section 2 we
review the genus-4 construction used in our earlier paper [8], and we describe our
new constructions for higher genera in Sections 3, 4, and 5.

At various points in this paper we will find it convenient to consider the minimal
defect Dq(g) for genus-g curves over Fq, which we define by

Dq(g) = q + 1 + gb2√qc −Nq(g).

Giving a lower bound for Nq(g) is equivalent to giving an upper bound for Dq(g).
The computations we describe in this paper were implemented in Magma [1] on

a 2010-era laptop computer, with a 2.66 GHz Intel Core i7 “Arrandale” processor
and 8 GB of RAM.

2. Review of the genus-4 construction

In [8], we presented an algorithm to produce genus-4 curves D of small defect
over finite fields Fq of odd characteristic. The heuristic argument presented in [8]
leads us to expect that as q ranges over all sufficient large primes and over almost
all prime powers, the algorithm will produce a genus-4 curve with defect at most

4 in time Õ(q4/3). The construction has two main ideas: First, if one is given a
genus-2 curve C/Fq that can be written y2 = f1f2 for two cubic polynomials f1
and f2 in Fq[x], then one can efficiently find a value of a ∈ Fq, if such a value
exists, such that the two genus-1 curves E1 and E2 defined by y2 = (x− a)f1 and
y2 = (x− a)f2 have small defect. If such an a exists, and if we let D be the curve
defined by the two equations w2 = (x− a)f1 and z2 = (x− a)f2, then the degree-4
cover D → P1 that sends (x,w, z) to x is a Galois extension, with group (Z/2Z)2,
and we have the following diagram, in which each arrow denotes a degree-2 map:

(1)

D

|| ""
E1

!!

C
��

��

E2

}}
P1.

This is the situation described in Section 1, and we find that the genus of D is 4 and
the defect of D is equal to the sum of the defects of E1, E2, and C. In particular,
since E1 and E2 have small defect, we see that the defect of D is not much larger
than the defect of C.

The second main idea in the construction of [8] is to have a method for efficiently
producing genus-2 curves C with small defect. In [8] this is accomplished by taking
pairs of elliptic curves with small defect, “gluing” them together along their 2- or
3-torsion subgroups using [10, Proposition 4, p. 325] and [2, Algorithm 5.4, p. 185]
to produce genus-2 curves with small defect, and then using Richelot isogenies to
produce more and more curves with small defect from these seed curves.

The algorithm to produce genus-4 curves with small defect works by producing
many genus-2 curves with small defect (using the second idea) until one is produced
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for which one can find a value of a (using the first idea) that leads to a diagram
like Diagram (1).

We note for future reference that the discussion leading up to Heuristic 5.6 in [8]
suggests that for fixed d and for q →∞ we might expect there to be on the order of
d3/2q3/4 genus-2 curves of defect d. Therefore, we might also expect there to be on
the order of d5/2q3/4 genus-2 curves of defect d or less. Similarly, we might expect
there to be on the order of d3/2q1/4 elliptic curves of defect d or less. Since there
are about 2q elliptic curves over Fq and about 2q3 curves of genus 2, we see that
it is reasonable to expect that a random elliptic curve will have defect at most d
with probability on the order of d3/2/q3/4, while a random genus-2 curve will have
defect at most d with probability on the order of d5/2/q9/4.

3. Constructions for genus-5 curves

Before we describe our algorithms for constructing genus-5 curves with small
defect, we present a technique for efficiently computing all separable quartics and
cubics over a finite field k, up to squares in k∗ and the action of PGL2(k).

Let k = Fq be a finite field of odd characteristic, and let S denote the set of
separable quartics and cubics in k[x]. The group of squares in k∗ acts on S by
multiplication, and the group PGL2(k) acts on S modulo squares as follows: Given
f ∈ S/k∗2 and α ∈ PGL2(k), we let

[
a b
c d

]
be a matrix that represents α, and we

define

α(f mod k∗2) = (cx+ d)4f

(
ax+ b

cx+ d

)
mod k∗2.

Had we chosen a different matrix to represent α, the right-hand side of the preceding
equality would be modified by a square, so we do get a well-defined action of
PGL2(k) on S/k∗2. In one of our algorithms it will be useful to be able to quickly
calculate orbit representatives for S under this combined action.

Given a separable quartic or cubic f ∈ k[x], let C be the curve y2 = f and let
E be the Jacobian of C. Since C has genus 1, E is an elliptic curve, and since
genus-1 curves over k have rational points, there is an isomorphism ϕ : C → E.
Under this isomorphism, the involution ι of C given by (x, y) 7→ (x,−y) becomes
an involution on E, which must be of the form P 7→ P0 − P for some point P0

in E(k). If ϕ′ : C → E is another isomorphism, then there is an automorphism ε
of E and a point Q0 ∈ E(k) such that

ϕ′(P ) = εϕ(P ) +Q0,

so that ϕ′ takes the involution ι on C to the involution P 7→ P ′0 − P on E, where
P ′0 = ε(P0) + 2Q0. Thus, given f ∈ S, we obtain a pair (E, [P0]), where E is an
elliptic curve over k and [P0] is an element of E(k)/2E(k) up to the action of AutE.

Lemma. The map from S to pairs (E, [P0]) defined above induces a bijection be-
tween the orbits of S/k∗2 under the action of PGL2(k) and the set of all pairs
(E, [P0]).

Proof. The pair (E, [P0]) that we obtain from f clearly depends only on the iso-
morphism class of the pair (C, ι), and that isomorphism class is fixed by the actions
of k∗2 and PGL2(k). Thus, we do indeed get a map from orbits to pairs.

Suppose f1 and f2 are two elements of S that give rise to the same pair (E, [P0]).
Let C1 and C2 be the curves y2 = f1 and y2 = f2, respectively, with involutions ι1
and ι2. Then there are isomorphisms ϕ1 : C1 → E and ϕ2 : C2 → E that take ι1
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and ι2 to the involution P 7→ P0−P of E, so the isomorphism ψ = ϕ−12 ϕ1 from C1

to C2 takes ι1 to ι2. It follows that ψ is of the form

(x, y) 7→
(
ax+ b

cx+ d
,

ey

(cx+ d)2

)
for some a, b, c, d, e ∈ k. We see that f1 mod k∗2 = α(f2 mod k∗2), where α is the
class of

[
a b
c d

]
in PGL2(k). Thus, the map from orbits to pairs in injective.

To finish the proof, we need to show that the map from orbits to pairs is sur-
jective. Suppose E is an elliptic curve over k and P0 is a point in E(k). We will
produce a cubic or quartic f that gives rise to the pair (E, [P0]).

Let y2 = g be a Weierstrass model for E, where g ∈ k[x] is a monic cubic. If
P0 is the infinite point on E then we can just take f = g, so assume that P0 is an
affine point (x0, y0). By replacing g(x) with g(x+x0), we may assume that x0 = 0,
so that g is of the form x3 + ax2 + bx+ c2 and P0 = (0, c).

Let f = x4− 2ax2− 8cx+a2− 4b. We compute that the discriminant of f is 212

times the discriminant of g, so f is a separable quartic. If we let C be the curve
y2 = f , then there is an isomorphism ψ : C → E given by

(x, y) 7→
(
y + x2 − a

2
,
x(y + x2 − a)

2
− c
)
,

and we compute that the two infinite points on C are sent to the points P0 and ∞
on E. It follows that the involution ι, which swaps the two infinite points on C,
gets sent to the involution P 7→ P0 − P , which swaps P0 and ∞. Thus every pair
(E, [P0]) comes from an element of S. �

Note that the proof of this lemma gives us an algorithm for producing represen-

tatives for all of the orbits of S/k∗2 under the action of PGL2(k), in time Õ(q): For
each j-invariant in k, we list all the isomorphism classes of elliptic curves E with
that j-invariant, compute the group E(k)/2E(k) up to the action of AutE, and for
a representative point P0 for each element we compute the quartic f that appears
at the end of the proof of the lemma.

We turn now to our constructions of small-defect curves of genus 5 over a finite
field k = Fq of odd characteristic. Our strategy for producing such curves will be
to construct diagrams like Diagram (1), except that the genera of the intermediate
curves will be 2, 1, and 2, instead of 1, 2, and 1. In other words, our aim will be to
construct a diagram

(2)

D

}} !!
C1

  

E
��

��

C2

~~
P1

in which C1 and C2 are genus-2 curves with small defect, E is a genus-1 curve with
small defect, and the arrows are maps of degree 2. This means that we would like
to find genus-2 curves w2 = fg1 and z2 = fg2, where f is a quartic or a cubic
polynomial and g1 and g2 are coprime quadratics, such that both of the genus-2
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curves have small defect, and such that the genus-1 curve y2 = g1g2 also has small
defect. (If f is a quartic, we can also allow one of g1 and g2 to be linear.)

Our first strategy runs as follows. We begin by enumerating separable quartics
and cubics f ∈ k[x] up to the action of k∗2 and PGL2(k), as outlined above. For
each such f we enumerate all quadratic and linear polynomials g, up to squares
in k∗, such that fg is separable of degree 5 or 6 and such that y2 = fg has small
defect. We then consider all pairs (g1, g2) of such g such that g1g2 is separable of
degree 3 or 4, and we check whether y2 = g1g2 has small defect. The meaning of
“having small defect” will change dynamically as we run the algorithm, depending
on the smallest defect we have found so far for a triple (f, g1, g2).

This first strategy works well for small q, and it is guaranteed to find the genus-
5 curve of smallest defect that fits into a diagram like Diagram (2). However,
there are on the order of q quartics and cubics f to consider, and for each f we
have to enumerate on the order of q2 quadratics and linears g, and for each (f, g)
pair we have to compute the number of points on a genus-2 curve. Assuming we
count points näıvely, this means that even just this portion of our first strategy will
already take time roughly on the order of q4.

For larger fields, therefore, we use an alternate strategy. To produce our pairs of
genus-2 curves, we will enumerate many genus-2 curves with small defect, keeping
track of the ones that can be written y2 = h with h the product of a quartic and a
quadratic in k[x]. Suppose we have two such curves, w2 = f1g1 and z2 = f2g2. We
would like to be able to tell whether a change of coordinates (via a linear fractional
transformation in x) could transform f2 into a constant times f1. There are two
necessary conditions for this to happen: First, the degrees of the irreducible factors
of f1 must match those of f2, and second, the j-invariants of the genus-1 curves
y2 = f1 and y2 = f2 must be equal. These two conditions are not quite sufficient —
there’s only one chance in three that two different products of irreducible quadratics
with the same j-invariant can be transformed to constant multiples of one another
via a linear fractional transformation, and there are additional complications for
curves with j-invariant 0 or 1728 — but for our purposes these necessary conditions
will be good enough as a first test.

So our second strategy will be to enumerate genus-2 curves with small defect
that can be written y2 = fg with f a quartic and g a quadratic, and keep a list of
the curves together with the j-invariants and factorization degrees of the associated
quartics f . Whenever a j-invariant and set of factorization degrees occurs twice, and
the associated quartics can be transformed into one another, we will have found two
genus-2 curves y2 = f1g1 and y2 = f2g2 that can be put into Diagram (2) (provided
that the linear fractional transformation that takes f2 to f1 does not take g2 to a
quadratic with a factor in common with g1). Then we need to compute the number
of points on the genus-1 curve in the middle of the diagram to see whether it has
small defect.1

To produce genus-2 curves with small defect, we use the technique mentioned in
the previous section: We “glue together” pairs of elliptic curves with small defect,

1 Warning: On versions of Magma at least up to V2.22-3, using #HyperellipticCurve(f) to

count the number of points on y2 = f will produce incorrect results when f is a quartic with
nonsquare leading coefficient over a finite field with more then 106 elements. This affects us when

q = 175 or q = 195.
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q range q range q range q range

3 6–6 11 4–5 19 3–6 67 0–8
32 5–8 112 0–0 192 0–0 71 0–0
33 3–6 113 0–0 193 0–5 73 3–9
34 0–4 114 0–0 194 0–4 79 0–5
35 2–13 115 0–0 195 0–15 83 2–8
5 6–6 13 5–9 23 3–5 89 0–4
52 4–8 132 0–4 29 2–4 97 0–5
53 3–12 133 0–9 31 5–5
54 0–8 134 0–8 37 4–8
55 0–17 135 0–8 41 0–5
7 5–7 17 5–8 43 3–9
72 0–0 172 0–4 47 0–5
73 3–9 173 2–10 53 0–4
74 0–8 174 0–4 59 2–7
75 0–15 175 0–5 61 0–5

Table 1. The best upper and lower bounds known for the minimal
defect Dq(5) for the odd values of q represented in the manypoints
table, as of 29 March 2017. The upper bounds in boldface come
from computations described in this paper.

and then use Richelot isogenies to find more and more genus-2 curves with Jacobians
isogenous to the product of the given elliptic curves.

As we continue to compute, we will find more and more examples. If at a certain
point we have found a genus-5 curve with defect d, then we know that we can stop
looking for better examples once we have examined all of the genus-2 curves with
defect at most d that we can construct using the technique described above. If
we continue to run the algorithm until this has happened, we say that we have
run the algorithm to completion. Running to completion simply means that we
have reached a point when we know that continuing to run the algorithm will not
produce any examples better than what we have already found.

We ran the first algorithm for all of the odd prime powers q listed in the
manypoints table with q ≤ 192. On the modest laptop described in Section 1,
the computation took 50 minutes for q = 172 and 108 minutes for q = 192. For
the larger q in the manypoints table, we were able to run the second algorithm
to completion; the computation for q = 195 took nearly 30 hours. In Table 1 we
present the current lower and upper bounds on the minimal defect Dq(5) for the
odd values of q listed in the online table, with the upper bound in boldface if it
was obtained from our computations. Equations for the curves we found can be
obtained from the manypoints site by clicking on the appropriate table entry.

One could also try to construct curves of genus 5 by considering diagrams like Di-
agram (1) in which the genera of the intermediate curves are 1, 3, and 1; Soomro [18]
takes this approach.

http://www.manypoints.org
http://www.manypoints.org
http://www.manypoints.org
http://www.manypoints.org
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4. Constructions for genus-6 curves

We work over a finite field k = Fq of odd characteristic. The genus-6 curves that
we will construct will fit into a diagram

(3)

D

|| ""
C1

!!

C2

��

��

C3

}}
P1,

where the curves C1, C2, and C3 have genus 2 and where the arrows represent
degree-2 maps. Then the defect of D will be the sum of the defects of the Ci. To
produce such a diagram, we need to find three cubic polynomials f1, f2, and f3
such that each curve Ci is given by y2 =

∏
j 6=i fj . (Actually, one of the fi could be

a quadratic; this will be the case when two of the Ci have a Weierstrass point at
infinity.) And, of course, we want the Ci to have small defect.

Before we describe how to construct good triples (f1, f2, f3), we note that we can
define an action of PGL2(k) on the set of separable cubics and quadratics in k[x],
up to multiplicative constants in k∗, analogous to the action we defined in Section 3
for quartics and cubics up to squares in k∗. Given a cubic or quadratic f ∈ k[x]/k∗

and α ∈ PGL2(k), we let
[
a b
c d

]
be a matrix that represents α, and we define

α(f mod k∗) = (cx+ d)3f

(
ax+ b

cx+ d

)
mod k∗.

Since everything is defined only up to k∗, this does not depend on the choice of
representative for α. Now we set g1 = x(x − 1), and we fix irreducible quadratic
and cubic polynomials g2 and g3. It is easy to see from the 3-transitive action of
PGL2(k) on P1(k) that every separable cubic or quadratic polynomial h ∈ k[x]
can be transformed by an element of PGL2(k) into a constant times one of the
polynomials g1, g2, or g3, depending on the degrees of the irreducible factors of h.

We construct triples (f1, f2, f3) as follows. We start enumerating genus-2 curves
C with small defect, and we keep track of the ones that can be written y2 = h1h2,
where h1 and h2 are cubics. For every such representation of C, we apply a linear
fractional transformation that takes h1 to a constant times one of our three fixed
polynomials g1, g2, g3. That means we can write C as y2 = gif for some cubic
(or, in some circumstances, quadratic) polynomial f . Whenever we add a new pair

(gi, f) to our growing list, we look at all other pairs (gi, f̂) already on our list, and

we check to see whether y2 = ff̂ is a curve with small defect. If so, by setting

f1 = f and f2 = f̂ and f3 = gi we have a triple (f1, f2, f3) that gives us a genus-6
curve with small defect.

We continue enumerating genus-2 curves C with small defect until we reach
the defect of the current record-holding triple (f1, f2, f3). At this point we are
guaranteed that we will find no curves of smaller defect by using this construction,
and again we say that we have run the algorithm to completion.

One way of producing genus-2 curves of small defect is simply to make a list of all
curves of the form y2 = gif for i = 1, 2, 3 and for f ranging over the separable cubic
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and quadratic polynomials in k[x], up to squares in k∗. Then one can compute the
defects of the curves in the list, and sort the list accordingly.

If the field k is too large for this to be feasible, and if k has a proper subfield,
one can instead consider only the cubics and quadratics f with coefficients in the
subfield. This is much faster, but of course results in missing many possible curves
that might have small defect.

A third possibility is to use the procedure already described in earlier sections:
gluing together pairs of elliptic curves of small defect, and using Richelot isogenies
to obtain even more genus-2 curves.

And finally, we have a fourth algorithm with a slightly different flavor, which
depends on the observation that a random element of PGL2(Fq) has order 3 with
probability approximately 1/q. (More precisely, by computing the centralizer of the
image of

[
0 −1
1 1

]
in PGL2(Fq), one shows that the fraction of elements of PGL2(Fq)

of order 3 is equal to either 1/q or 1/(q − 1) or 1/(q + 1), depending on whether q
is congruent to 0, 1, or 2 modulo 3.)

We enumerate genus-2 curves with small defect by gluing together elliptic curves
and using Richelot isogenies. Suppose C is such a curve, say given by an equation
y2 = g, where g is a sextic polynomial, and suppose we can write g as f1f2, where
f1 and f2 are cubics. We compute all of the linear fractional transformations µ that
take the roots of f2 to the roots of f1. Suppose further that one such µ has order 3
in PGL2(k); if we assume that µ behaves like a random element of PGL2(k), this
will happen with probability about 1/q. In this case, we write µ = (ax+b)/(cx+d);
the condition that µ has order 3 means that a2 + ad + d2 + bc = 0. Let e be the
constant such that f2(x) = ef1(µ)(cx+ d)3, and set f3(x) = ef2(µ)(cx+ d)3. Note
that then

ef3(µ)(cx+ d)3 = −e3(a+ d)9f1(x).

We see that change of variables (x, y) 7→ (µ, e−1y/(cx+ d)3) gives an isomorphism
from the curve y2 = f2f3 to the curve y2 = f1f2, and if −e(a + d)3 is a square,
say −e(a + d)3 = s2, then (x, y) 7→ (µ, e−1s3y/(cx + d)3) gives an isomorphism
from y2 = f3f1 to y2 = f2f3. Thus, if −e(a+ d)3 is a square, the triple (f1, f2, f3)
gives us a diagram like Diagram (3) in which the three curves C1, C2, and C3 are
all isomorphic to the small-defect curve C that we started with. Then the genus-6
curve D has defect equal to three times the defect of C.

Asymptotically, we expect this last algorithm to be much faster than the other
three, because we are waiting on an event with probability roughly 1/q, rather than
the much rarer event that a random genus-2 curve has small defect. As we noted
in Section 2, the heuristics from [8] lead us to expect that the probability that a
random genus-2 curve over Fq has defect at most d grows like d5/2q−9/4.

We implemented all four algorithms. We applied the first to all odd q < 100
listed in the manypoints table. (For q = 97 this took 8 minutes on the laptop
computer described in Section 1.) We applied the second to all odd q > 100
from the manypoints table, using the largest subfield of cardinality less than 100.
(This took 2 minutes for q = 74.) We applied the third method to the q with
100 < q < 193 and the fourth method to the q with q ≥ 193. (The third method
took 370 minutes for q = 173 and the fourth method took 15 minutes for q = 195.
However, for q = 175 the fourth method took nearly 28 hours, because the smallest
defect found — 108 — is quite large.) In Table 2 we present the current lower and
upper bounds on the minimal defect Dq(6) for the odd values of q listed in the online

http://www.manypoints.org
http://www.manypoints.org
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q range q range q range q range

3 8–8 11 3–8 19 3–8 67 0–12
32 8–11 112 0–0 192 0–0 71 0–8
33 4–12 113 0–0 193 0–14 73 2–6
34 0–0 114 0–6 194 0–6 79 0–6
35 2–14 115 0–0 195 0–18 83 2–12
5 6–8 13 6–6 23 3–8 89 0–4
52 4–6 132 0–0 29 2–8 97 0–8
53 3–14 133 0–14 31 6–10
54 0–0 134 0–0 37 6–12
55 0–20 135 0–24 41 2–10
7 6–10 17 6–10 43 6–14
72 0–8 172 0–0 47 3–6
73 3–16 173 2–12 53 3–6
74 0–0 174 0–0 59 3–10
75 2–42 175 0–108 61 0–8

Table 2. The best upper and lower bounds known for the minimal
defect Dq(6) for the odd values of q represented in the manypoints
table, as of 29 March 2017. The upper bounds in boldface come
from computations described in this paper.

table, with the upper bound in boldface if it was obtained from our computations.
Equations for the curves we found can be obtained from the manypoints site by
clicking on the appropriate table entry.

5. Constructions for genus-7 curves

We work over a finite field k = Fq of odd characteristic. In our previous con-
structions, we produced degree-4 Galois extensions of P1 with group (Z/2Z)2 by
adjoining to k(x) the square roots of two polynomials. For our genus-7 construction,
we will instead produce degree-8 Galois extensions with group (Z/2Z)3 by adjoining
the square roots of three polynomials f1, f2, f3. According to the previously-cited
result of Kani and Rosen [12, Theorem B, p. 308], the resulting curve D will have
Jacobian isogenous to the product of the Jacobians of the seven curves

y2 = f1, y
2 = f2, y

2 = f3, y
2 = f2f3, y

2 = f1f3, y
2 = f1f2, and y2 = f1f2f3,

and the defect of D will be the sum of the defects of these seven curves. In order
to produce a curve of genus 7, we will therefore want to have a method of choosing
the polynomials f1, f2, and f3 so that the sum of the genera of the seven associated
curves is 7.

We used two methods to find such polynomials. The first method involves taking

f1 = s1(x− 1)g1, f2 = s2(x− 1)g2, and f3 = sx,

where g1 and g2 are monic quadratic polynomials that are coprime to one another
and to x− 1, and where s, s1, and s2 are nonzero constants that only matter up to

http://www.manypoints.org
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squares. Up to squares in k[x], the other polynomials we then have to consider are

f2f3 = ss2x(x− 1)g2

f1f3 = ss1x(x− 1)g1

f1f2/(x− 1)2 = s1s2g1g2

f1f2f3/(x− 1)2 = ss1s2xg1g2.

These seven polynomials give us hyperelliptic curves of genus 1, 1, 0, 1, 1, 1, and 2,
respectively, so the curve C will have genus 7.

To produce f1, f2, and f3 of this form such that all of the seven associated curves
have small defect, we begin by enumerating the monic quadratic polynomials h such
that the genus-1 curves y2 = (x − 1)h and y2 = x(x − 1)h both have twists with
small defect. Then we let g1 and g2 range over the set of such h, and we check to
see whether we can choose constants s, s1, and s2 such that the curves defined by
f1, f2, f1f3, and f2f3 simultaneously have small defect. If we succeed in doing so,
we then check whether the genus-1 curve defined by f1f2 has small defect, and if
it does, we check whether the genus-2 curve defined by f1f2f3 has small defect.

We were able to run this algorithm to completion for the q in the manypoints

table up to 173. On the laptop described in Section 1, the computation for q = 173

took just over 29 hours.
The second method involves taking

f1 = s1x(x− 1)(x− b)
f2 = s2(x− a)(x− b)(x− c)
f3 = s3x(x− a)(x− d),

where a, b, c, and d are elements of k that are distinct from one another and from
0 and 1, and where s1, s2, and s3 are nonzero constants that only matter up to
squares. Up to squares in k[x], the other polynomials we then have to consider are

f2f3/(x− a)2 = s2s3x(x− b)(x− c)(x− d)

f1f3/x
2 = s1s3(x− 1)(x− a)(x− c)(x− d)

f1f2/(x− b)2 = s1s2x(x− 1)(x− a)(x− c)
f1f2f3/(x(x− a)(x− b))2 = s1s2s3(x− 1)(x− c)(x− d).

Each of these seven polynomials gives us a curve of genus 1, so the curve D will
have genus 7.

(This construction of a (Z/2Z)3-extension of P1 of genus 7 such that all the qua-
dratic subextensions have genus 1 can be viewed as a generalization of a method
of constructing the Fricke–Macbeath curve [13]; the description of the Fricke–
Macbeath curve discussed on pp. 533–534 of [13] makes this clear. In fact, if we
take

a = −ζ − ζ6, b = ζ2 + ζ5, c = ζ3 + ζ4 + 1, and d = −ζ − ζ6 − 1,

where ζ is a primitive 7-th root of unity, we find that our curve is geometrically
isomorphic to the Fricke–Macbeath curve, because the linear fractional transforma-
tion x 7→ (x + ζ)/(x + ζ−1) sends the set of ramification points {0, 1,∞, a, b, c, d}
to the set {1, ζ, ζ2, ζ3, ζ4, ζ5, ζ6}. Indeed, our construction was inspired by seeing
several records on the manypoints site produced by Jaap Top and Carlo Verschoor
by studying twists of the Fricke–Macbeath curve.)

http://www.manypoints.org
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q range q range q range q range

3 9–9 11 4–10 19 0–12 67 4–16
32 9–12 112 0–0 192 0–0 71 0–8
33 3–14 113 0–24 193 0–23 73 6–21
34 0–12 114 0–28 194 0–28 79 0–7
35 2–21 115 0–82 195 0–105 83 3–18
5 8–10 13 6–11 23 3–11 89 0–8
52 4–12 132 0–12 29 3–12 97 0–15
53 3–20 133 0–37 31 6–17
54 0–20 134 0–28 37 6–14
55 0–39 135 0–60 41 2–10
7 7–7 17 4–14 43 7–11
72 0–0 172 0–0 47 3–15
73 3–27 173 2–26 53 4–12
74 0–16 174 0–12 59 5–17
75 4–45 175 0–123 61 3–11

Table 3. The best upper and lower bounds known for the minimal
defect Dq(7) for the odd values of q represented in the manypoints
table, as of 29 March 2017. The upper bounds in boldface come
from computations described in this paper.

Our strategy is to compute all the values of λ ∈ k such that the curve y2 =
x(x − 1)(x − λ), or its quadratic twist, has small defect. Then we choose four
such values λ1, λ2, λ3, and λ4, and compute the values of a, b, c, and d such that
the curves defined by y2 = f1, y2 = f3, y2 = f1f3, and y2 = f1f2f3 have those
λ-invariants (for a given ordering of their 2-torsion points). Then we check to see
whether we can choose the constants s1, s2, and s3 so that the curves have small
defect. If we succeed, we then check to see whether the remaining three curves
have small defect. We can do this quickly by first checking to see whether their
λ-invariants are among those we computed at the beginning.

Of course, what we mean by “small defect” will change dynamically as we run
our algorithm, depending on the curves we find.

We ran this algorithm to completion on all odd q < 175 from the manypoints

list. (For q = 135 this took nearly 50 hours.) For q = 175 and q = 195, we ran the
algorithm for more than a week on a newer and faster desktop machine, but stopped
with partial results and did not run to completion. Combining the examples we
found using both algorithms, we obtain the results presented in Table 3. The table
gives the current lower and upper bounds on the minimal defect Dq(7) for the
odd values of q listed in the online table, with the upper bound in boldface if it
was obtained from our computations. Equations for the curves we found can be
obtained from the manypoints site by clicking on the appropriate table entry.

6. Conclusion

Even as we were writing this paper and implementing the algorithms described
here, other researchers were adding new lower bounds for values of Nq(g) in the

http://www.manypoints.org
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manypoints table, including many for g = 5. Some of these bounds were better than
the results obtained by our methods, some were not. We hope that the inclusion
of our new lower bounds in the online table will encourage further development of
algorithms to produce curves with many points.
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