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Abstract

In this paper, we study the complementary dual codes in more general setting

(which are called Galois LCD codes) by a uniform method. A necessary and sufficient

condition for linear codes to be Galois LCD codes is determined, and constacyclic

codes to be Galois LCD codes are characterized. Some illustrative examples which

constacyclic codes are Galois LCD MDS codes are provided as well. In particular, we

study Hermitian LCD constacyclic codes. Finally, we present a construction of a class

of Hermitian LCD codes which are also MDS codes.
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1 Introduction

Linear complementary dual codes (which is abbreviated to LCD codes) are linear codes

that meet their dual trivially. These codes were introduced by Massey in [13] and showed

that asymptotically good LCD codes exist, and provided an optimum linear coding solution

for the two-user binary adder channel. They are also used in counter measure to passive

and active side channel analyses on embedded cryto-systems [2]. Guenda, Jitman and Gul-

liver investigated an application of LCD codes in constructing good entanglement-assisted

quantum error correcting codes [11].

Dinh established the algebraic structures in terms of generator polynomial of all repeated-

root constacyclic codes of length 3ps, 4ps, 6ps over finite field Fpm. Using these structures,

constacyclic LCD codes of such lengths were also characterized (see [4, 6, 5]). Yang and

Massey in [16] showed that a necessary and sufficient condition for a cyclic code of length n

over finite fields to be an LCD code is that the generator polynomial g(x) is self-reciprocal

and all the monic irreducible factors of g(x) have the same multiplicity in g(x) as in xn − 1.

In [15], Sendrier indicated that linear codes with complementary-duals meet the asymptotic

Gilbert-Varshamov bound. Esmaeiliand Yari in [9] studied complementary-dual quasi-cyclic

codes. Necessary and sufficient conditions for certain classes of quasi-cyclic codes to be LCD

codes were obtained [9]. Dougherty, Kim, Ozkaya, Sok and Solé developed a linear program-

ming bound on the largest size of an LCD code of given length and minimum distance [8]. In

recently, Ding, C. Li and S. Li in [3] constructed LCD BCH codes. In addition, Boonniyoma

and Jitman gave a study on linear codes with Hermitian complementary dual [1], and we

also in [14] studied LCD codes over finite chain rings.

Constacyclic codes over finite fields are important classes of linear codes in theoretical

and practical viewpoint. In [10], Fan and Zhang studied Galois self-dual constacyclic codes

over finite fields. Motivated by this work, we will investigate Galois complementary dual

codes (which is abbreviated to Galois LCD codes) over finite fields. Some of them have

better parameters.

In this work, we study the complementary dual constacyclic codes in more general setting

by a uniform method. The necessary background materials of Galois dual and the definition

of Galois LCD codes are given in Section 2. Moreover, we obtain a criteria of Galois LCD

codes. In Section 3, we characterize the generator polynomials of Galois LCD constacyclic

codes. Next, we obtain a sufficient and necessary condition for a code C to be an Galois LCD

constacyclic code over finite fields and give examples that C is an Galois LCD MDS consta-

cyclic over finite fields. Finally, in Section 4, we address the Hermitian LCD constacyclic

codes over finite fields and get a family of Hermitian LCD MDS constacyclic codes.
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2 Galois LCD codes over Fq

Throughout this paper, we denote by Fq the finite field with cardinality | Fq |= q = pe, where

p is a prime and e is a positive integer. Let λ ∈ F∗
q , where F∗

q denotes the multiplicative

group of units of Fq, and let n be a positive integer coprime to q. Any ideal C of the quotient

ring Rn,λ = Fq[X ]/〈Xn − λ〉 is said to be a λ-constacyclic code of length n over Fq. Let

Fn
q = {x = (x1, · · · , xn) | xj ∈ Fq} be n dimensional vector space over Fq. A subspace C of

Fn
q is called a linear code of length n over Fq. We assume that all codes are linear. If a linear

code C over Fq with parameters [n, k, d] attains the Singleton bound d = n− k + 1, then it

is called a maximum-distance-separable (MDS) code.

Let x,y ∈ Fn
q . In [10], Fan and Zhang introduce a kind of inner products, called Galois

inner product, as follows: for each integer k with 0 ≤ k < e , define:

[x,y]k = x1y
pk

1 + · · ·+ xny
pk

n .

It is just the usual Euclidean inner product if k = 0. And, it is the Hermitian inner product

if e is even and k = e
2
. we call

C⊥k = {x ∈ Fn
q |[c,x]k = 0, ∀c ∈ C}

as the Galois dual code of C. It is easy to see that C⊥0 (simply, C⊥) is just the Eucilidean

dual code of C and C
⊥ e

2 (simply, C⊥H ) is just the Hermitian dual code of C.

Notice that C⊥k is linear if C is linear or not.

From the fact that Galois inner product is nondegenerate, it follows immediately that

dimFq
C + dimFq

C⊥k = n.

A linear code C is called Galois LCD if C⊥k ∩ C = {0}, and an Galois LCD code C is

called Galois LCD MDS if C attains the Singleton bound.

Given a vector a = (a1, a2, . . . , an) ∈ Fn
q , we define the pe−kth power of a as

ape−k

= (ap
e−k

1 , ap
e−k

2 , . . . , ap
e−k

n ).

For a linear code C of length n over Fn
q , we define C

pe−k

to be the set {ape−k

| for all a ∈ C}.

Then, it is easy to see that for a linear code C of length n over Fn
q , the Galois dual C⊥k is

equal to the Euclidean (Cpe−k

)⊥ dual of Cpe−k

.

Let A = (aij) be an s × s matrix with entries in Fq , we define A(pe−k) = (ap
e−k

ij ). The

following lemma is clear.

Lemma 2.1. If C is an [n, l, d] linear code over Fq with a generating matrix G, then Cpe−k

is

also an [n, l, d] linear code over Fq with a generating matrix G(pe−k). Moreover, C is Galois

LCD if and only if C ∩ (Cpe−k

)⊥ = {0}.

The following theorem gives a criteria of Galois LCD codes and is analogous to the result

of Eucilidean LCD codes in [13].
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Theorem 2.2. Let C be an [n, l, d] linear code over Fq with generator matrix G. Then C is

Galois LCD if and only if G(G(pe−k))T is nonsingular.

Proof. Suppose that G(G(pe−k))T is singular. Then there exists a nonzero a ∈ Fn
q

such that aG(G(pe−k))T = 0. Taking c = aG, it is clear that c ∈ C\{0} and it satisfies

c(G(pe−k))T = 0. It follows that c ∈ (Cpe−k

)⊥, which is a contraction.

Conversely, assume that G(G(pe−k))T is nonsingular. Let u ∈ Fn
q . If u ∈ C, then there

exists v ∈ Fl
q such that u = vG. It follows that

u(G(pe−k))T (G(G(pe−k))T )−1G = vG(G(pe−k))T (G(G(pe−k))T )−1G = vG = u.

If u ∈ C⊥k , then u(G(pe−k))T = 0, and hence

u(G(pe−k))T (G(G(pe−k))T )−1G = 0(G(G(pe−k))T )−1G = 0.

For any a ∈ C ∩ C⊥k , by a ∈ C, we have a = a(G(pe−k))T (G(G(pe−k))T )−1G, and by a ∈

C⊥k again, we have also a = a(G(pe−k))T (G(G(pe−k))T )−1G = 0. Therefore, C ∩ C⊥k = {0},

i.e., C is Galois LCD.

It is well known that, for a given [n, l, d] code over Fq, there exists an equivalent code

with the same parameters such that its generator matrix is of the form G = [Il A] for some

l × (n− l) matrix A over Fq, where Il is a l × l identity matrix. The generator matrix of a

linear code of this form plays an important role in constructing Galois LCD codes.

The following fact is well known.

Lemma 2.3. Let p be a prime. If p ≡ 1 mod 4, then −1 is a quadratic modulo p.

Theorem 2.4. Let C̃ be an [n, l, d̃] linear code over Fq with generator matrix G̃ = [Il A].

(1) If charFq = 2, then exists a Galois LCD code C over Fq with parameters [2n− l, l, d]

and d ≥ d̃.

(2) If charFq ≡ 1 mod 4, then there exists η ∈ Fq such that η2 = −1 and a linear code C

generated by G = [Il A ηA] is a Galois LCD code over Fq with parameters [2n− l, l, d] and

d ≥ d̃.

Proof. (1) When charFq = 2. Let C be a linear code generated by G = [Il A A] over

Fq. Then

G(G(pe−k))T = Il + A(A(pe−k))T + A(A(pe−k))T = Il.

Therefore, G(G(pe−k))T is nonsingular, which implies code C is Galois LCD.

Next, we show that d(C) ≥ d̃. Let u ∈ C\{0}. Then there exists v ∈ Fl
q\{0} such that

u = vG = [vIl vA vA]. Hence,

WH(u) = WH([vIl vA vA]) ≥ WH([vIl vA]) = WH(v(G̃)) ≥ d̃,

which implies d ≥ d̃.
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(2) When charFq ≡ 1 mod 4. For 0 ≤ k < e, we can assume pe−k = 4t + 1 where t is an

integer. Then η1+pe−k

= η2(2t+1) = −1. Therefore,

G(G(pe−k))T = [Il A ηA][Il A
(pe−k) ηp

e−k

A(pe−k)]T = Il+A(A(pe−k))T +ηp
e−k+1A(A(pe−k))T = Il.

This means that C is a Galois LCD code over Fq.

Similar to (1), we can prove that C is an [2n− l, l, d] code with d ≥ d̃.

Example 1. Let C be a linear code of length 4 over F8 = {0, 1 = α7 = α0, α, α2, α3 =

1+α, α4 = α+α2, α5 = 1+α+α2, α6 = 1+α2} with generator matrix G =

(
1 0 α α

0 1 1 α

)
.

Take k = 1. Then pe−k = 23−1 = 4. Since det[G(G(4))T ] = α 6= 0, we have G(G(4))T is

nonsingular. Hence, C is a Galois LCD MDS code over F8 with parameters [4, 2, 3].

3 Galois LCD constacyclic codes over Fq

In this section, we investigate Galois LCD λ-constacyclic codes over Fq. The following

proposition in [4] is very usual.

Proposition 3.1. Let α, β be distinct nonzero elements of the field Fq. Then a linear code

C of length n over Fq is both α-and β-constacyclic if and only if C = {0} or C = {Fn
q}.

The following lemma can be found in [10].

Lemma 3.2. If C is a λ-constacyclic code of length n over Fq, then C⊥k is a λ−pe−k

-

constacyclic code of length n over Fq .

Corollary 3.3. If λ1+pe−k

6= 1, then any λ-constacyclic C of length n over Fq is a Galois

LCD code.

Proof. Indeed, by Lemma 3.2, if C is a λ-constacyclic code then C⊥k is a λ−pe−k

-

constacyclic code. Thus, C ∩ C⊥k is both λ-and λ−pe−k

-constacyclic. When λ1+pe−k

6= 1, as

C∩C⊥k can not be Fn
q , by Proposition 3.1, C∩C⊥k = {0}, i.e., C is a Galois LCD code.

By Corollary 3.3, when λ1+pe−k

6= 1, any λ-constacyclic code C is a Galois LCD code.

Thus, in order to obtain all Galois LCD λ-constacyclic codes, we only need to look at the

classes of λ-constacyclic codes where λ1+pe−k

= 1.

We first give the definition of reciprocal polynomial in Fq[x]. Then we study the generator

polynomials of Galois LCD λ-constacyclic codes.

For a polynomial f(x) =
∑l

i=0 aix
i of degree l (a0 6= 0) over Fq, let f̃(x) denote the

monic reciprocal polynomial of f(x) given by

f̃(x) = a−1
0 xlf(

1

x
) = a−1

0

l∑

i=0

aix
l−i.
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It is well-known that a nonzero [n, l] λ-constacyclic code C has a unique generator polyno-

mial g(x) of degree n−l, where g(x)|xn−λ. The roots of the code C are the roots of g(x). So,

if ξ1, . . . , ξn−l are the roots of g(x) in some extension field of Fq, then c = (c0, c1, . . . , cn) ∈ C

if and only if c(ξ1) = · · · = c(ξn−l) = 0, where c(x) = c0 + c1x + · · · cn−1x
n−1. Let

h(x) = xn−λ
g(x)

=
∑l

i=0 hix
i. Then we have the following lemma.

Lemma 3.4. With notations as above. Let C be an λ-constacyclic code of length n over Fq.

Then

(1) C⊥ is an λ−1-constacyclic code generated by h̃(x) =
∑l

i=0 h
−1
0 hix

l−i;

(2) C⊥k is an λ−pe−k

-constacyclic code generated by h̃pe−k

(x) =
∑l

i=0 h
−pe−k

0 hpe−k

i xl−i.

Proof. (1) The proof can be found [7].

(2) Set C̃ = 〈h̃pe−k

(x)〉. Suppose that η1, . . . , ηl be the zeros of h̃(x). Then ηp
e−k

1 , . . . , ηp
e−k

l

are the zeros of h̃pe−k

(x). This means that if (c0, c1, . . . , cn) ∈ C⊥, then (cp
e−k

0 , . . . , cp
e−k

n−1 ) ∈ C̃.

The following we first prove that

(C⊥)p
e−k

= (Cpe−k

)⊥.

Suppose G is a generator matrix of C. It is easy to prove that Gpe−k

is a generator matrix

of Cpe−k

.

Similarly, if H is a parity-check for C, then Hpe−k

is a generator matrix of (C⊥)p
e−k

.

Suppose that G =




g1
g2
...

gk




and H =




h1

h2

...

hn−k



. Then Gpe−k

=




gp
e−k

1

gp
e−k

2
...

gp
e−k

k




and Hpe−k

=




hpe−k

1

hpe−k

2
...

hpe−k

n−k



.

For y ∈ (C⊥)p
e−k

, we can assume that

y = t1h
pe−k

1 + · · ·+ tn−kh
pe−k

n−k .

Then for any gp
e−k

j ∈ Gpe−k

, one obtain that

[y, gp
e−k

j ] =

n−k∑

i=1

ti[h
pe−k

i , gp
e−k

j ] =

n−k∑

i=1

ti[hi, gj]
pe−k

= 0.

Therefore, y ∈ (Cpe−k

)⊥, which implies that (C⊥)p
e−k

⊂ (Cpe−k

)⊥.

On the other hand, we verity that if v1, v2, . . . , vk are linear independent vectors in Fq,

then vp
e−k

1 , vp
e−k

2 , . . . , vp
e−k

k are also linear independent vectors in Fq. In fact, assume that

a1v
pe−k

1 + a2v
pe−k

2 + · · ·+ akv
pe−k

k = 0,
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where a1, a2, · · · , ak ∈ Fq, then

ap
k

1 v1 + ap
k

2 v2 + · · ·+ ap
k

k vk = 0.

Since v1, v2, . . . , vk are linear independent vectors in Fq, a
pk

1 = ap
k

2 = · · · = ap
k

k = 0. Hence

a1 = a2 = · · · = ak = 0. This meant that vp
e−k

1 , vp
e−k

2 , . . . , vp
e−k

k are linear independent

vectors in Fq.

According to the fact above proof, we have

dim(C⊥)p
e−k

= n− k = dim(Cpe−k

)⊥.

Summarizing, we have (C⊥)p
e−k

= (Cpe−k

)⊥. Thus

C⊥k = (Cpe−k

)⊥ = {(cp
e−k

0 , . . . , cp
e−k

n−1 )|(c0, c1, . . . , cn) ∈ C⊥}.

It follows that C⊥k ⊂ C̃. Since dimFq
C⊥k = dimFq

C̃, we get C⊥k = C̃.

The following gives a criteria of Galois LCD λ-constacyclic codes. We first take the

following notations:

• ordF∗

q
(λ) = r, where ordF∗

q
(λ) denotes the order of λ in multiplicative group;

• Zrn denotes the residue ring of the integer ring Z modulo rn;

• Z∗
rn denotes the multiplicative group consisting of units of Zrn;

• 1 + Zrn = {1 + rt|t = 0, 1, . . . , n− 1} ⊂ Zrn;

• µs, where gcd(s, rn) = 1, denotes the permutation of the set Zrn given by µs(x) = sx

for all x ∈ Zrn.

Let m be the multiplicative order of q modulo rn, i.e., rn | (qm − 1) but rn ∤ (qm−1 − 1).

Then, in Fqm , there exists a primitive rnth root θ of unity such that θn = λ. It is easy to

check that θi for all i ∈ (1 + Zrn) are all roots of xn − λ. In Fqm [x], we have the following

decomposition:

xn − λ =
∏

i∈(1+Zrn)

(x− θi).

Since gcd(q, n) = 1 and r | (q − 1), it follows that q ∈ Z∗
rn ∩ (1 + Zrn) and 1 + Zrn is µq-

invariant. Let (1+Zrn)/µq denote the set of µq-orbits on 1+Zrn, i.e., the set of q-cyclotomic

cosets on 1 + Zrn. For any q-cyclotomic coset Q on 1 + Zrn, the polynomial MQ(x) =∏
i∈Q(x − θi) is irreducible in Fq[x]. We further get a monic irreducible decomposition as

follows:

xn − λ =
∏

Q∈(1+Zrn)/µq

MQ(x).

The defining set of the λ-constacyclic code C is defined as

P = {1 + ir ∈ (1 + Zrn)|θ
1+ir is a root of C}.
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It is clearly to see that P is a union of some q-cyclotomic cosets modulo rn and dimC =

n− | P |.

Similar to cyclic codes, there exists the following BCH bound for constacyclic codes

(see[12]).

Theorem 3.5. (The BCH bound for constacyclic codes) Suppose that gcd(q, n) = 1. Let

C = 〈g(x)〉 be an λ-constacyclic code of length n over Fq with the roots {θ1+ri|i1 ≤ i ≤

i1 + d− 1}. Then the minimum distance of C is at least d.

Lemma 3.6. If λ1+pe−k

= 1, then −pe−k(1 + rZrn) = 1 + rZrn (mod rn).

Proof. Since λ1+pe−k

= 1 and ordF∗

q
(λ) = r, we have r | (1 + pe−k). Suppose that

1 + pe−k = rt. Then for 1 + ir ∈ (1 + Zrn) we have

−pe−k(1 + ir) = −pe−kir − (pe−k + 1) + 1 = (−pe−ki− t)r + 1 (mod rn) ∈ (1 + Zrn)

Thus, we obtain −pe−k(1 + rZrn) = 1 + rZrn (mod rn).

Theorem 3.7. Let CP be an λ-constacyclic code of length n over Fq with the defining set

P , where λ1+pe−k

= 1. Let P = (1 + Zrn) \ P . Then

(1) −pe−kP is the defining set of a Galois dual code of CP , i.e., −pe−kP is the defining

set of the λ−pe−k

-constacyclic code C⊥k

P .

(2) CP is a Galois LCD λ-constacyclic code if and only if −pkP = P .

Proof. (1) According to Lemma 3.6, −pe−kP ⊂ (1+Zrn). It is easy to see that −pe−kP

is a union of some q-cyclotomic cosets containing in (1 + Zrn) and | P | + | −pe−kP |= n.

It is clear that

xn − λ =
∏

i∈(1+Zrn)

(x− θi) =
∏

i∈P

(x− θi)
∏

i∈(−P )

(x− θi).

By Lemma 3.4(2), the generator polynomial of λ−pe−k

-constacyclic code C⊥k

P is

h̃pe−k

(x) = h−pe−k

0 xl
∏

i∈(−P )

(
1

x
− θ−i)p

e−k

=
∏

i∈(−P )

(x− θip
e−k

) =
∏

j∈(−pe−kP )

(x− θj).

Thus, −pe−kP is the defining set of the λ−pe−k

-constacyclic code C⊥k

P .

(2) Let fP (x) =
∏

i∈P (x − θi). Then, according to the definition of P , fP (x) is check

polynomial of CP .

Similarly, let f−pe−kP (x) =
∏

i∈(−pe−kP )(x−θi). Then, by (1), f−pe−kP (x) is check polyno-

mial of C⊥k

P . Therefore, CP∩C
⊥k

P = {0} if and only if P∩(−pe−kP ) = φ, i.e., CP∩C
⊥k

P = {0}

if and only if −pe−kP = P . This means that CP is a Galois LCD λ-constacyclic code if and

only if −pkP = P .
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Example 2. Let p = 11, e = 3, i.e., q = 113 = 1331.Take k = 1, n = 5 and λ = −1. Then

r = 2, rn = 10. Consider

1 + 2Z10 = {1, 3, 5, 7, 9}.

The q-cyclotomic cosets modulo 10 containing in 1 + 2Z are

Q1 = {1}, Q3 = {3}, Q5 = {5}, Q7 = {7}, Q9 = {9}.

It is easy to check that −11Q1 = Q9,−11Q9 = Q1,−11Q3 = Q7,−11Q7 = Q3,−11Q5 = Q5.

Take P = Q3 ∪ Q5 ∪ Q7. Then −11P = P . According to Theorem 3.7(2), CP is a Galois

LCD MDS code with parameters [10, 7, 4].

Theorem 3.8. Let CP is an λ-constacyclic code of length n over Fq with the defining set

P , where λ1+pe−k

= 1. For any P ⊂ (1 + rZrn), CP is a Galois LCD λ-constacyclic code if

and only if there exists some integer j such that pej−k ≡ −1 mod rn.

Proof. Since −pk ≡ qj mod rn for some integer j, we have −pks ≡ qjs mod rn for any

s ∈ P . Thus, −pkP ⊂ P .

On other hand, let P = ∪t
i=1Qsi for some positive integer t, whereQsi = {si, qsi, . . . , q

mi−1si} ⊂

(1 + rZrn) and mi is the smallest integer satisfying qmisi ≡ si mod rn for i = 1, . . . , t. For

every si, we have −sip
k ≡ siq

j mod rn since −pk ≡ qj mod rn. Thus, −sip
k ∈ Qsi for

i = 1, . . . , t. Furthermore, si ≡ siq
mi

= siq
jqmi−j ≡ −sip

kqmi−j = −pk(siq
mi−j) mod rn,

which implies si ∈ −pkQsi ⊂ −pkP .

Therefore, −pkP = P , i.e., CP is a Galois LCD λ-constacyclic code.

Conversely, take P1 = {1, q, q2, . . . , qm1−1}, where m1 is the smallest integer satisfying

qm1 ≡ 1 mod rn. By the assumption, CP1 is a Galois LCD λ-constacyclic code. According

to Theorem 3.7(2), we have −pkP1 = P1. This means that there exists some integer j such

that −pk = qj mod rn, i.e., pej−k ≡ −1 mod rn.

Remark 3.9. It follows from Theorem 3.8 that if rn divides 1 + pej−k, then every λ-

constacyclic code of length n over Fq is a Galois LCD code.

In light of the proof of above theorem, the following two corollaries are straightforward.

Corollary 3.10. If Qs ⊂ (1 + rZrn) is an q-cyclotomic coset modulo nr, then −pkQs = Qs

if and only if s(1 + pej−k) ≡ 0 mod rn for some integer j.

Corollary 3.11. Let P = Qs ∪ (−pkQs) and −pkQs 6= Qs, where Qs ⊂ (1 + rZrn). Then

−pkP = P if and only if p2ks ≡ qjs mod rn for some integer j.

Theorem 3.12. Let CP is an λ-constacyclic code of length n over Fq with the defining set

P , where λ1+pe−k

= 1. For any P ⊂ (1 + rZrn), CP is a Galois LCD λ-constacyclic code if

and only if Q1 = Q−pk , where Q1 = {1, q, q2, . . . , qm1−1}, where m1 is the smallest integer

satisfying qm1 ≡ 1 mod rn.

9



Proof. If Q1 = Q−pk , then for any s ∈ (1+rZrn), Qs = Q−pks . For any P ⊂ (1+rZrn),

we know that P = ∪t
i=1Qsi with Qsi ∈ (1 + Zrn)/µq. Thus −pkP = P , i.e., CP is a Galois

LCD λ-constacyclic code.

Conversely suppose for any P ⊂ (1 + rZrn), CP is a Galois LCD λ-constacyclic code. In

particular, setting P = Q1, CQ1 is a Galois LCD λ-constacyclic code. Therefore, −pkQ1 =

Q1, which implies that Q1 = Q−pk .

Lemma 3.13. Let p be an odd prime and n a positive integer such that ordrn(p
e−k) = 2.

If the group Z∗
rn has a unique element of order 2, i.e.,[−1]rn is a unique element of order

2 in Z∗
rn, where [−1]rn denotes the reside class modulo rn containing −1, then, for any

s ∈ (1 + Zrn), we have Qs = −pkQs.

Proof. According to the assumption that ordrn(p
e−k) = 2, from the assumption that

[−1]rn is a unique element of order 2 in Z∗
rn, it follows that pe−k ≡ −1 mod rn, i.e., pe ≡

−pk mod rn. Therefore, for any s ∈ (1 + Zrn), we have −pkQs = Qs.

Example 3. Let p = 5, e = 3, i.e., q = 53 = 125. Take k = 1, n = 13 and λ = −1. Then

r = 2, rn = 26. Consider

1 + 2Z26 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}.

The q-cyclotomic cosets modulo 26 containing in 1 + 2Z26 are

Q1 = {1, 5, 21, 25}, Q3 = {3, 11, 15, 23}, Q7 = {7, 9, 17, 19}, Q13 = {13}.

Since 53−1 ≡ −1 mod 26, according to Theorem 3.8 produce 15 Galois LCD codes, but only

5 types of parameters [13, 12, 2], [13, 9, 4], [13, 8, 4], [13, 4, 8], [13, 5, 7], respectively.

Example 4. Let p = 13, e = 3, i.e., q = 133 = 2197. Taking k = 2, n = 9 and λ = −1.

Then r = 2, rn = 18. Consider

1 + 2Z18 = {1, 3, 5, 7, 9, 11, 13, 15, 17}.

The q-cyclotomic cosets modulo 18 containing in 1 + 2Z18 are Q1 = {1}, Q3 = {3}, Q5 =

{5}, Q7 = {7}, Q9 = {9}, Q11 = {11}, Q13 = {13}, Q15 = {15}, Q17 = {17}. It is easy

to check that −132Q1 = Q11,−132Q11 = Q13,−132Q13 = Q17,−132Q17 = Q7,−132Q7 =

Q5,−132Q5 = Q1,−132Q3 = Q15,−132Q15 = Q3,−132Q9 = Q9. Taking P1 = {1, 5, 7, 11, 13, 17}

P2 = {1, 5, 7, 9, 11, 13, 17}, P3 = {1, 3, 5, 7, 11, 13, 15, 17}, P4 = {3, 15}, P5 = {3, 9, 15}, and

P6 = {9}. Then −132Pi = Pi for 1 ≤ i ≤ 6. According to Theorem 3.7(2), CP1 is a Galois

LCD code with parameters [9, 3, 3], CP2 is a Galois LCD code with parameters [9, 2, 6], CP3 is

a Galois LCD MDS code with parameters [9, 1, 9], CP4 is a Galois LCD code with parameters

[9, 7, 2], CP5 is a Galois LCD code with parameters [9, 6, 2], CP6 is a Galois LCD MDS code

with parameters [9, 8, 2].
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4 Hermitian LCD constacyclic codes over Fq

In this section we study constacyclic Hermitian LCD codes over Fq, where q = pe and e = 2a.

By Theorem 3.7, 3.8, 3.12, we have the following corollary.

Corollary 4.1. Let CP is an λ-constacyclic code of length n over Fq with the defining set

P , where λ1+pa = 1. For any P ⊂ (1 + rZrn), CP is a Hermitian LCD λ-constacyclic code

if and only if one of the following statements holds

(1) −paP = P .

(2) Q1 = Q−pa, where Q1 = {1, q, q2, . . . , qm1−1}, where m1 is the smallest integer satis-

fying qm1 ≡ 1 mod rn.

(3) There exists some integer j such that (pa)2j−1 ≡ −1 mod rn.

By Corollary 3.3, if λ1+pa 6= 1, then any λ-constacyclic code of length n over Fp2a is

Hermitian LCD. Then we only need to look at the classes of λ-constacyclic codes where

λ1+pa = 1. In this case, we gives a necessary condition for any λ-constacyclic code of length

n over Fp2a to be Hermitian LCD.

Theorem 4.2. Let λ be a primite rth root of unity over Fp2a and r = 2b1r′(b1 > 0, r′ odd).

Let n = 2b2n′(b2 > 0, n′ odd), and let q be an odd prime power such that (n, q) = 1. If

for any λ-constacyclic code of length n over Fp2a is Hermitian LCD, then r | pa + 1 and

pa + 1 ≡ 0 (mod 2b1+b2).

Proof. By Corollary 4.1 (3), there exists some integer j such that (pa)2j−1 ≡ −1 mod rn.

Therefore,

rn | (pa)2j−1 + 1 ⇒ 2b1+b2r′n′ |
(pa)2j−1 + 1

pa + 1
(pa + 1).

Obviously, (pa)2j−1+1
pa+1

is odd, we have pa + 1 ≡ 0 (mod 2b1+b2).

We can check the following lemma.

Lemma 4.3. For some positive integer t, let A = ∪t
i=1Qsi, where Qsi = {si, p

esi, . . . , (p
e)mi−1si} ⊂

(1+rZrn) and mi is the smallest integer satisfying (pa)misi ≡ si mod rn for i = 1, . . . , t. As-

sume that −pasi ≡ v1i mod rn,−pasi(p
e) ≡ v2i mod rn, . . . ,−pasi(p

e)mi−1 ≡ vmi,i mod rn, for i =

1, . . . , t, and P = (∪t
i=1Qsi) ∪ (∪t

i=1{v1i, . . . , vmi,i}). Then −paP = P .

Theorem 4.4. Let Qs1 , . . . , Qst, Qw1 , . . . , Qwl
be all the p2a-cyclotomic cosets containing in

(1 + rZrn) which satisfy −paQsi = Qsi, i = 1, . . . , t, and −paQwj
6= Qwj

, j = 1, . . . , l. Then

the total number of Hermitian LCD λ-constacyclic codes of length n over Fpe is equal to

2t+h − 1, where l = 2h and h is a positive integer.

Proof. Let −paQwj
= Qwj

and τ be a permutation of {1, 2, . . . , l} which satisfies

τ(j) = j for j = 1, 2, . . . , l. Then we have Qwτ(j)
= Qw

τ2(j)
= Qwj

since p2aQwj
= Qwj

.
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Hence, τ 2(j) = j for j = 1, 2, . . . , l, i.e., τ 2 = I, where I denote an identity permutation of

{1, 2, . . . , l}

By assumption, we know that τ(j) 6= j for j = 1, 2, . . . , l. Since τ 2 = I, τ must be a

product of mutually disjoint transpositive like (x1y1) . . . (xhyh). Therefore, l = 2h for some

integer h. Without loss of generality, for j = 1, 2, . . . , h, we assume that τ(j) = h + j, then

τ(h + j) = j. Hence, by Lemma 4.3, the total number of Hermitian LCD λ-constacyclic

codes of length n over Fpe is equal to 2t+h − 1.

Remark 4.5. It follows from the proof of Theorem 4.4 that if −paQwj
= Qwj

then−paQwj
=

Qwj
.

Example 5. Let p = 11, e = 2, i.e., q = 112 = 121. Taking n = 10 and λ = 1. Then

r = 1, rn = 10. Thus, q-cyclotomic cosets modulo 10 are Q0 = {0}, Q1 = {1}, Q2 =

{2}, Q3 = {3}, Q4 = {4}, Q5 = {5}, Q6 = {6}, Q7 = {7}, Q8 = {8}, Q9 = {9}. It is easy

to check that −11Q1 = Q1,−11Q2 = Q8,−11Q3 = Q7,−11Q4 = Q6,−11Q5 = Q5. By

Theorem 4.4, the total number of Hermitian LCD cyclic codes of length 10 over F112 is equal

to 63. Taking P1 = {4, 5, 6}, P2 = {3, 4, 5, 6, 7}, and P3 = {2, 3, 4, 5, 6, 7, 8}. Then CP1, CP2

and CP3 are Hermitian LCD MDS codes with parameters [10, 7, 4], [10, 5, 6] and [10, 3, 7],

respectively.

Lemma 4.6. Let p be an odd prime and n a positive integer such that ordrn(p
a) = 2(1+2j)

for some integer j. If the group Z∗
rn has a unique element of order 2, i.e.,[−1]rn is a unique

element of order 2 in Z∗
rn, where [−1]rn denotes the residue class modulo rn containing −1,

then, for 0 ≤ i ≤ n − 1, −paQ1+ri = Q1+ri, where Q1+ri is an p2a-cyclotomic coset modulo

rn containing 1 + ri in 1 + rZrn, and | Q1 |= 1 + 2j.

Proof. Since (pa)2(1+2j) ≡ 1 mod rn, from the assumption that [−1]rn is a unique

element of order 2 in Z∗
rn, it follows that (p

a)1+2j ≡ −1 mod rn. Therefore,

(p2a)1+j ≡ −pa mod rn.

This implies that −pa(1+ ri) ≡ (1+ ri)(p2a)1+j mod rn, i.e., −paQ1+ri = Q1+ri, for 0 ≤ i ≤

n− 1.

As ordrn(p
a) = 2(1 + 2j), obviously, | Q1 |= 1 + 2j.

Using the aforementioned lemma, some optimal Hermitian LCD λ-constacyclic codes of

length n over Fq can be constructed .

Theorem 4.7. Let p be an odd prime and n a positive integer such that ordrn(p
a) = 2. If

the group Z∗
rn has a unique element of order 2, i.e.,[−1]rn is a unique element of order 2 in

Z∗
rn, where [−1]rn denotes the residue class modulo rn containing −1, then, for 2 ≤ d ≤ n,

there exists a Hermitian LCD MDS λ-constacyclic code with parameters [n, n + 1− d, d].
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Proof. By Lemma 4.6, we have Q1 = −paQ1 = {1} and −pa ≡ 1 mod rn. Therefore,

for each i, 1 ≤ i ≤ n− 1,

−pa(1 + ri) ≡ 1 + ri mod rn. (4.1)

According to the assumption that ordrn(p
a) = 2, we obtain

p2a(1 + ri) ≡ 1 + ri mod rn. (4.2)

Combing Equation (4, 1) and (4, 2), for each i, 1 ≤ i ≤ n− 1, we show that −paQ1+ri =

Q1+ri = {1 + ri}.

Let the defining set of an λ-constacyclic code C = 〈g(x)〉 of length n over Fq be the set

P = ∪d−2
i=0Q1+ri, where 2 ≤ d ≤ n. Then −paP = P . By Corollary 4.1, the code C is a

Hermitian LCD λ-constacyclic code and dimC = n + 1 − d. Obviously, the defining set P

consists of d−1 consecutive integers {1, 1+r, 1+2r, . . . , 1+(d−2)r}. Using Theorem 3.5, the

minimum distance of C is at least d. Thus, we conclude that C is an λ-constacyclic Hermitian

LCD code with parameters [n, n+ 1− d,≥ d]. Applying the classical code Singleton bound

to C yields a Hermitian LCD MDS λ-constacyclic code with parameters [n, n+1−d, d].

Example 6. Let p = 3, a = 2, r = 2, and n = 5. Then p2a ≡ 1 mod 10 and Z∗
10 = {1, 3, 7, 9}

has a unique element 9 of order 2. Applying Theorem 4.7 produce 9 Hermitian LCD MDS

negacyclic codes with parameters [5, 1, 5], [5, 2, 4], [5, 3, 3], [5, 4, 2],respectively.
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