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ON THE EQUATIONAL GRAPHS OVER FINITE

FIELDS

BERNARD MANS, MIN SHA, JEFFREY SMITH, AND DANIEL SUTANTYO

Abstract. In this paper, we generalize the notion of functional
graph. Specifically, given an equation E(X,Y ) = 0 with variables
X and Y over a finite field Fq of odd characteristic, we define a
digraph by choosing the elements in Fq as vertices and drawing an
edge from x to y if and only if E(x, y) = 0. We call this graph as
equational graph. In this paper, we study the equational graphs
when choosing E(X,Y ) = (Y 2 − f(X))(λY 2 − f(X)) with f(X)
a polynomial over Fq and λ a non-square element in Fq. We show
that if f is a permutation polynomial over Fq, then every connected
component of the graph has a Hamiltonian cycle. Moreover, these
Hamiltonian cycles can be used to construct balancing binary se-
quences. By making computations for permutation polynomials f
of low degree, it appears that almost all these graphs are strongly
connected, and there are many Hamiltonian cycles in such a graph
if it is connected.

1. Introduction

Let Fq be the finite field of q elements, where q is a power of some odd
prime p. Let F∗

q be the set of non-zero elements in Fq. For any poly-
nomial f ∈ Fq[X ], we define the functional graph of f as a digraph on
q vertices labelled by the elements of Fq, where there is an edge from
x to y if and only if f(x) = y. These graphs have been extensively
studied in recent years; see [1, 5, 8, 9, 11, 13, 14] and the references
therein. The motivation for studying these graphs comes from several
resources, such as Lucas-Lehmer primality test for Mersenne numbers,
Pollard’s rho algorithm for integer factorization, pseudo-random num-
ber generators, and arithmetic dynamics.
In the above construction, we in fact use the equation Y −f(X) = 0.

Then, there is an edge from x to y if and only if y − f(x) = 0. Hence,
more generally, for any equation over Fq:

E(X, Y ) = 0
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with variablesX and Y , we define a digraph by choosing the elements in
Fq as vertices and drawing an edge from x to y if and only if E(x, y) = 0.
We call this graph an equational graph of the above equation. However,
it might happen that this equation has no solution over Fq.
We remark that clearly functional graph and equational graph can

be defined similarly over finite fields of even characteristic. But in this
paper we only consider finite fields of odd characteristic.
In this paper, we consider equational graphs generated by equations

of the form

(1.1) (Y 2 − f(X))(λY 2 − f(X)) = 0

with variables X and Y , where f(X) is a fixed polynomial over Fq and
λ is a fixed non-square element in Fq. Then, there is an edge from x to
y if and only if (y2 − f(x))(λy2 − f(x)) = 0. This yields an equational
graph over Fq, denoted by G(λ, f); see Figure 1 for a simple example.
Since λ is non-square, the out-degree of each vertex x is positive, which
in fact equals to 2 if f(x) 6= 0 (because if there is an edge from x to
y, then there is also an edge from x to −y). However, the in-degree of
x can be from zero to the degree of f . Note that we allow the graph
G(λ, f) to have loops.
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Figure 1. The equational graph G(3, X + 1) over F7

We show that if f is a permutation polynomial over Fq, then ev-
ery (weakly) connected component of the graph G(λ, f) is strongly
connected (see Proposition 2.2) and has a Hamiltonian cycle (see The-
orem 2.4). By distinguishing the edges according to the subequations
(Y 2 − f(X) = 0 or λY 2 − f(X) = 0) they come from, we classify
these Hamiltonian cycles (see Definition 2.7) and show that there is no
Hamiltonian cycle of Type 1 for many such graphs (see Theorem 2.8,
Corollary 2.10 and Theorem 2.11). Moreover, we prove that these
Hamiltonian cycles can be used to construct balancing binary sequences
by associating weights to the edges (see Theorem 2.13).
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Through making computations for permutation polynomials f of low
degree, it appears that almost all these graphs are strongly connected,
and each such connected graph has many Hamiltonian cycles. That
is, using these graphs we can frequently obtain balancing periodic se-
quences of period q. Additionally, we also investigate the graphs G(λ, f)
with polynomials f of low degree in more detail.
We remark that by construction, any graph G(λ, f) with permutation

polynomial f is quite close to be a 2-regular digraph. The result in [4,
Theorem 5.1] implies that almost every 2-regular digraph is strongly
connected, and then the result in [3, Theorem 1] suggests that almost
every 2-regular digraph has a Hamiltonian cycle. We thus can view
such graphs G(λ, f) as typical examples for this.
The paper is organized as follows: Section 2 deals with the case when

f is a permutation polynomial over Fq, and the algorithms for the com-
putations of its connectedness and Hamiltonian cycles are presented in
Section 3. We then study the cases when f is of degree 1, 2 and 3 in
Sections 4, 5 and 6 respectively. Finally we make some comments for
further study.

2. The case of permutation polynomials

Here, in the graph G(λ, f) we choose f to be a permutation poly-
nomial over Fq. That is, the map x 7→ f(x) is a bijection from Fq

to itself. We refer to [10, Chapter 7] for an extensive introduction on
permutation polynomials.
Recall that q is odd, and λ is a non-square element in Fq.

2.1. Basic properties. First, it is easy to determine the in-degrees
and out-degrees of the vertices in the graph G(λ, f).

Proposition 2.1. Let f be a permutation polynomial over Fq. If
f(0) 6= 0, then in the graph G(λ, f), the vertex 0 has in-degree 1 and
out-degree 2, the vertex f−1(0) has in-degree 2 and out-degree 1, and
any other vertex x (x 6= 0 and x 6= f−1(0)) has in-degree 2 and out-
degree 2. Otherwise, if f(0) = 0, then in the graph G(λ, f), the vertex
0 has in-degree 1 and out-degree 1, and any other vertex x (x 6= 0) has
in-degree 2 and out-degree 2.

Proof. The proof is quite straightforward. We only need to note that
the map x 7→ f(x) gives a bijection from Fq to itself. �

Moreover, each (weakly) connected component of the graph G(λ, f)
is strongly connected.
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Proposition 2.2. In each graph G(λ, f) with permutation polynomial
f , every vertex lies in a cycle, and also every edge lies in a cycle. In
particular, every connected component is strongly connected.

Proof. Let C be an arbitrary connected component of the graph G(λ, f).
For our purpose, it suffices to show that given an edge from x to y in C,
there is a (directed) path from y to x. Notice that by Proposition 2.1
the in-degree and out-degree of each vertex in the graph G(λ, f) are
both positive. Then, starting from x, we draw the predecessors of x,
and the predecessors of the predecessors of x, and so on; this gives a
subgraph, say G1. While starting from y, we draw the successors of y,
and the successors of the successors of y, and so on; this gives another
subgraph, say G2. If G1 and G2 have a common vertex, then everything
is done. So, we only need to prove that these two subgraphs indeed
have a common vertex.
Now, by contradiction, suppose that G1 and G2 have no common

vertex. Then, the edge from x to y is not in G1 and also not in G2.
Without loss of generality, we can assume that G2 does not contain the
vertex 0. So, noticing y 6= 0 and y 6= f−1(0) and using Proposition 2.1,
in G2 the vertex y has out-degree 2 and in-degree at most 1, and any
other vertex in G2 has out-degree 2 and in-degree at most 2. Thus, the
sum of out-degrees in G2 is greater than the sum of in-degrees. But
in fact they must be equal. Hence, G1 and G2 indeed have a common
vertex. �

The following proposition suggests that the graph G(λ, f) can be
complicated.

Proposition 2.3. Each graph G(λ, f) with permutation polynomial f
is not a bipartite graph.

Proof. By contradiction, assume that the graph G(λ, f) over Fq is a
bipartite graph. Then, the vertex set can be separated into two subsets,
say S1 and S2, such that there are no edges among the vertices in S1

and also there are no edges among the vertices in S2. So, there are no
loops in G(λ, f), which implies f(0) 6= 0. Without loss of generality,
we assume that f−1(0) ∈ S1 and 0 ∈ S2. Let m = |S1| and n = |S2|.
Then, by Proposition 2.1, the sum of out-degrees of the vertices in S1

is equal to 2(m − 1) + 1, and the sum of in-degrees of the vertices in
S2 is equal to 2(n− 1) + 1. By assumption, we must have

2(m− 1) + 1 = 2(n− 1) + 1,
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which implies that m = n, and so m+ n is an even integer. However,
m+ n = q, and q is odd. This leads to a contradiction. So, G(λ, f) is
not a bipartite graph. �

2.2. Existence of Hamiltonian cycles. For each graph G(λ, f) over
Fq with permutation polynomial f , by Propositions 2.1 and 2.2 its
connected components are close to be strongly connected 2-regular di-
graphs except at the vertex 0 when f(0) = 0. Note that not every
strongly connected 2-regular digraph (even without loops) has a Hamil-
tonian cycle; see, for example, [7, Corollary 3.8.2]. However, for the
graph G(λ, f), its connected components all have Hamiltonian cycles.

Theorem 2.4. In each graph G(λ, f) over Fq with permutation poly-
nomial f , every connected component has a Hamiltonian cycle.

Proof. Let C be an arbitrary connected component of the graph G(λ, f).
By contradiction, suppose that C has no Hamiltonian cycle. Then, by
Proposition 2.2, we choose a maximal cycle, say M , in C such that if
the vertex 0 lies in C, then 0 also lies in M . Note that by the maximal
assumption, the cycle M can not be enlarged.
First, since C has no Hamiltonian cycle, the cycle M does not go

through all the vertices of C. Then, at least one of the vertices in M
has a successor not in M ; see Figure 2. In Figure 2, the vertex y0 is
a successor of the vertex x0 and is outside of the cycle M . Note that
if the vertex 0 lies in C, then it also lies in M . So, we have y0 6= 0,
and thus the in-degree of y0 is 2. By construction and noticing that
the out-degree of each vertex is at most two, the vertex y0 must have a
predecessor not inM , say z0 (because there is an edge from z0 to −y0).
In fact, either x0 = f−1(y2

0
), z0 = f−1(λy2

0
), or x0 = f−1(λy2

0
), z0 =

f−1(y2
0
).

• • •✲ ✲ ✲ · · · · · · · · · • •✲

✬ ✩✛

• •❄

✻

✛

x0
−y0

y0 z0

Figure 2. The cycle M

Now, in Figure 2, by Proposition 2.2, the edge from z0 to y0 lies in
a cycle, say C1. If this cycle does not intersect with M , then we can
emerge the cycles M and C1 by dropping the edge from x0 to −y0 and
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the edge from z0 to y0. This gives a larger cycle, but this contradicts
with the maximal assumption on M . So, the cycle C1 must intersect
with M . Then, there must exist a vertex, say x1, in C1 and also in M
such that along the cycle C1 the path from x1 to y0 does not intersect
with M except the vertex x1; see Figure 3 for example. As the above,
y1 6= 0, and the vertex z1 does not lie in M .

• •✲ ✲ · · · · · · • •✲ ✲ · · · · · · • •✲

✬ ✩✛

• •❄

✻

✛

x0
−y0

y0
z0 • •❄

✻

✛✛· · · · · ·

x1 −y1

y1 z1

Figure 3. Going through the procedure

We then go through the above procedure again and again, and thus
we obtain an infinite sequence of vertices in M : x0, x1, x2, . . .. For
example, in Figure 3, by Proposition 2.2, the edge from z1 to y1 lies in
a cycle, say C2. As the above, the cycle C2 must intersect with M , and
there must exist a vertex, say x2, in C2 and also in M such that along
the cycle C2 the path from x2 to y1 does not intersect with M except
the vertex x2. Then, we draw vertices y2,−y2, z2 and the edges among
them as before (note that y2 6= 0, and z2 does not lie in M).

• •✲ ✲ · · · · · · • •✲ ✲ · · · · · · • •✲

✬ ✩✛

• •❄

✻

✛

x2 = x0
−y0

y0
z0 • •❄

✻

✛✛· · · · · ·

x1 −y1

y1 z1

✫ ✪✲

Figure 4. The case x2 = x0

Since M is a finite cycle, we must have xi = xj for some integers
i, j ≥ 0. Without loss of generality, we assume x2 = x0. Then, the
picture looks like Figure 4. By going through the edges from x1 to
y1, to z0, to y0, to z1 and then to −y1, we can enlarge the cycle M .
This contradicts with the maximal assumption on M . Therefore, the
connected component C indeed has a Hamiltonian cycle. �
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We remark that the result in Theorem 2.4 can hold for some non-
permutation polynomials, such as f(X) = X2.

Remark 2.5. For a connected graph G(λ, f) over Fq, by Theorem 2.4
there is a Hamiltonian cycle travelling through all the q vertices, and
then outputing the vertices along the Hamiltonian cycle can give a
pseudo-random number generator.

2.3. Classification of Hamiltonian cycles. Recall that the edges of
a graph G(λ, f) come from either Y 2 = f(X) or λY 2 = f(X). Using
this we can classify the Hamiltonian cycles of connected components
of G(λ, f).
We first associate weights to the edges in G(λ, f).

Definition 2.6. For any edge (x, y) in G(λ, f), if the edge comes from
the relation y2 = f(x), then its weight is 0, and otherwise its weight is
1. In particular, the edge going to the vertex 0 has weight 0.

We now can classify the (directed) paths and Hamiltonian cycles in
G(λ, f).
Definition 2.7. A trail in G(λ, f) is a path with all the edges of the
same weight. A path in G(λ, f) is said to be of Type n (n is a positive
integer) if it contains a trail of length n but it contains no trail of
length greater than n. Then, a Hamiltonian cycle H of a connected
component in G(λ, f) is said to be of Type n if H \ {0} is a path of
Type n.

In Definition 2.7, we exclude the edge going to the vertex 0, because
it can be viewed from both Y 2 = f(X) and λY 2 = f(X).
For any polynomial f ∈ Fq[X ], denote by V(f) the value set of f ,

that is,

V(f) = {f(a) : a ∈ Fq}.
We now want to find a large class of connected graphs G(λ, f) which
do not have Hamiltonian cycles of Type 1.

Theorem 2.8. Let f ∈ Fq[X ] be a permutation polynomial. Suppose
that the graph G(λ, f) is connected,

|{(f−1(a2))2 : a ∈ Fq}| 6=
q − 1

2

and

|{(f−1(λa2))2 : a ∈ Fq}| 6=
q − 1

2
Then, the graph G(λ, f) has no Hamiltonian cycle of Type 1.
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Proof. Since f ∈ Fq[X ] is a permutation polynomial, there is a per-
mutation polynomial g ∈ Fq[X ] such that both f(g(X)) and g(f(X))
induce the identity map from Fq to itself. By assumption,

(2.1) |V(g(X2)2)| 6= q − 1

2
, |V(g(λX2)2)| 6= q − 1

2
.

Since the graph G(λ, f) is connected, by Theorem 2.4 it has a Hamil-
tonian cycle. Let H be an arbitrary Hamiltonian cycle of G(λ, f). We
prove the desired result by contradiction. Suppose that H is of Type
1. Then, along the cycle H , we obtain a path P of Type 1 containing
q vertices and from the vertex 0 to the vertex g(0). So, there are no
two consecutive edges in P having the same weight.
Clearly, |V(g(X2)2)| ≤ (q + 1)/2 and |V(g(λX2)2)| ≤ (q + 1)/2. If

either |V(g(X2)2)| = (q+1)/2 or |V(g(λX2)2)| = (q+1)/2, then in view
of V(g(X2))∩V(g(λX2)) = {g(0)} and V(g(X2))∪V(g(λX2)) = Fq, we
must have g(0) = 0. This contradicts the fact g(0) 6= 0. So, noticing
(2.1) we must have

(2.2) |V(g(X2)2)| ≤ q − 3

2
, |V(g(λX2)2)| ≤ q − 3

2
.

Note that by reversing the directions of all the edges in the graph
G(λ, f), we can see that this exactly gives the equational graph, say
G ′(λ, g), generated by the equation

(Y − g(X2))(Y − g(λX2)) = 0.

Then, the path P in G(λ, f) corresponds to a path, say P ′, in G ′(λ, g).
So, P ′ is from the vertex g(0) to the vertex 0, and also P ′ has q vertices.
Now, let x = g(0), and let (x, y) be the first edge in the path P ′.

Clearly, there are two cases depending on whether y = g(x2) or y =
g(λx2).
We first consider the case that y = g(x2). Define the polynomial

h(X) = g(λg(X2)2). Then, the path P ′ is of the form in Figure 5,
where x = g(0). So, from Figure 5, in this case the number of vertices
in P ′ is at most

2|V(h)|+ 2 ≤ q − 1,

where the inequality follows from |V(h)| = |V(g(X2)2)| and (2.2). This
contradicts the fact that P ′ has q vertices.

• • • • •✲ ✲ ✲ ✲ ✲ · · · · · ·
x g(x2) h(x) g(h(x)2) h(h(x))

Figure 5. The first case of P ′
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Similarly, for the other case that y = g(λx2), we define the polyno-
mial u(X) = g(g(λX2)2). Then, the path P ′ is of the form in Figure
6, where x = g(0). Thus, from Figure 6, in this case the number of
vertices in P ′ is at most

2|V(u)|+ 2 ≤ q − 1,

where the inequality follows from |V(u)| = |V(g(λX2)2)| and (2.2).
This contradicts the fact that P ′ has q vertices.

• • • • •✲ ✲ ✲ ✲ ✲ · · · · · ·
x g(λx2) u(x) g(λu(x)2) u(u(x))

Figure 6. The second case of P ′

Therefore, there is no such Hamiltonian cycle of Type 1. �

When the polynomial f is of degree one, we can achieve more.

Theorem 2.9. Let f ∈ Fq[X ] be a polynomial of degree one with non-
zero constant term. Then, any path of Type 1 in the graph G(λ, f)
contains at most ⌊3

4
q + 17

4
⌋ vertices.

Proof. From Proposition 4.1 below, we can assume that f(X) = X +
a, a ∈ F∗

q. Let P be any path of Type 1 in the graph G(λ, f). Let N
be the number of vertices in P .
Following the arguments and the notation in the proof of Theo-

rem 2.8, in the case here we have g(X) = X − a,

h(X) = g(λg(X2)2) = λ(X2 − a)2 − a,

and
u(X) = g(g(λX2)2) = (λX2 − a)2 − a.

Then, either N ≤ 2|V(h)|+ 2 or N ≤ 2|V(u)|+ 2.
Note that V(h) = V((X2 − a)2) = V(X4 − 2aX2). Then, noticing

a ∈ F∗

q and using [2, Theorem 10], we obtain

|V(h)| ≤ q − 1

2 gcd(4, q − 1)
+

q + 1

2 gcd(4, q + 1)
+ 1

=
3

8
q − 1

2 gcd(4, q − 1)
+

1

2 gcd(4, q + 1)
+ 1

≤ 3

8
q +

9

8
.

(2.3)

Similarly, we obtain

|V(u)| ≤ 3

8
q +

9

8
.
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Finally, collecting the above estimates we have

N ≤ 3

4
q +

17

4
.

This completes the proof. �

We remark that the result in Theorem 2.9 does not always hold if f
has zero constant term. For example, the graph G(2, X) over F19 has
a path of Type 1 having 18 vertices.

Corollary 2.10. Assume q > 17. Let f ∈ Fq[X ] be a polynomial of
degree one. Suppose that the graph G(λ, f) is connected. Then, the
graph G(λ, f) has no Hamiltonian cycle of Type 1.

Proof. Since G(λ, f) is connected, we know that f has non-zero con-
stant term (otherwise the vertex 0 itself forms a connected component).
By Theorem 2.9, if 3

4
q + 17

4
< q, then the graph G(λ, f) has no Hamil-

tonian cycle of Type 1. Since q > 17, this automatically holds. �

In fact, we can obtain similar results for more permutation polyno-
mials over Fq.

Theorem 2.11. Let f ∈ Fq[X ] be a permutation polynomial of the
form Xw(X2)+a, w ∈ Fq[X ], a ∈ F∗

q. Then, the results in Theorem 2.9
and Corollary 2.10 still hold for the graph G(λ, f).

Proof. Since f = Xw(X2) + a ∈ Fq[X ] is a permutation polynomial
over Fq, there is a permutation polynomial g ∈ Fq[X ] such that both
f(g(X)) and g(f(X)) induce the identity map from Fq to itself.
As in the proof of Theorem 2.9, it suffices to prove

|V(g(X2)2)| ≤ 3

8
q +

9

8
, |V(g(λX2)2)| ≤ 3

8
q +

9

8
.

Denote n = (q + 1)/2. Note that there are exactly n squares in Fq

(including 0). Let a1, . . . , an ∈ Fq be all the elements such that ai + a
is a square for each 1 ≤ i ≤ n. Then, let b1, . . . , bn ∈ Fq be such that
biw(b

2

i ) = ai for each 1 ≤ i ≤ n (here one should note that Xw(X2) is
also a permutation polynomial over Fq).
Note that if we have y = g(x2) for some x, y ∈ Fq, then x

2 = f(y) =
yw(y2) + a, and so yw(y2) = ai for some 1 ≤ i ≤ n, and thus y = bi.
So, we have

V(g(X2)) = {b1, . . . , bn},
which implies

V(g(X2)2) = {b2
1
, . . . , b2n}.
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Since {a1, . . . , an} = V(X2 − a) by construction, as in (2.3) we obtain

|{a2
1
, . . . , a2n}| = |V((X2 − a)2)| ≤ 3

8
q +

9

8
.

Clearly for any 1 ≤ i, j ≤ n, i 6= j, we have that ai = −aj if and only if
bi = −bj (because Xw(X2) is a permutation polynomial). Hence, we
have

|{b2
1
, . . . , b2n}| = |{a2

1
, . . . , a2n}|,

which implies

|V(g(X2)2)| ≤ 3

8
q +

9

8
.

Similarly, we obtain

|V(g(λX2)2)| ≤ 3

8
q +

9

8
.

This in fact completes the proof. �

Note that when 3 ∤ q−1, X3+a ∈ Fq[X ] is a permutation polynomial,
so we immediately obtain the following result from Theorem 2.11.

Corollary 2.12. Assume that q > 17 and 3 ∤ q− 1. Let f = X3 + a ∈
Fq[X ]. Suppose that the graph G(λ, f) is connected. Then, the graph
G(λ, f) has no Hamiltonian cycle of Type 1.

In Sections 4 and 6, we will make computations about Hamiltonian
cycles of Type 2 and Type 3 for the graphs G(λ,X+a) and G(λ,X3+a)
respectively. The computations suggest that these graphs can have
many types of Hamiltonian cycles.

2.4. Binary sequences derived from Hamiltonian cycles. Trav-
eling through a cycle in G(λ, f), we can get a binary sequence by record-
ing the weights of the edges (see Definition 2.6) in the cycle. Especially,
we can get a balancing sequence along any Hamiltonian cyle of a con-
nected component. The word “balancing” means that the difference
between the number of 0’s and the number of 1’s in the sequence is at
most 1.

Theorem 2.13. For each graph G(λ, f) with permutation polynomial
f , along any Hamiltonian cycle of any connected component, we can
get a balancing binary sequence.

Proof. LetH be a Hamiltonian cycle of a connected component C in the
graph G(λ, f). The existence of H has been confirmed by Theorem 2.4.
We can assume that C has a vertex not equal to 0. As mentioned the
above, we can get a binary sequence by going through the cycle H and
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recording the weights of the edges in H . So, it remains to prove that
this sequence is balancing.
Let y be any non-zero vertex in C. Then, −y is also in C. In fact, by

Proposition 2.1 they form a rectangle in C having two possible choices
with weights; see Figure 7. Notice that the cycle H travels every vertex
in C, automatically including the vertices x,±y, z in Figure 7. Then, it
is easy to see that the cycle H goes through the edge from x to y with
weight 0 (respectively, 1) if and only if it goes through the edge from
z to −y with weight 1 (respectively, 0); also, the cycle H goes through
the edge from x to −y with weight 0 (respectively, 1) if and only if it
goes through the edge from z to y with weight 1 (respectively, 0).

• •✲

• •❄

✻

✛

x −y

y z

0

0 1

1

• •✲

• •❄

✻

✛

x −y

y z

1

1 0

0

Figure 7. The rectangle related to ±y

Hence, if the vertex 0 is not in C, then we have the same numbers
of 0’s and 1’s in the sequence. Otherwise, if 0 is a vertex in C, then by
Definition 2.6 the weight of the edge from f−1(0) to 0 is 0, and thus
there is exactly one more 0 than 1’s in the sequence. This completes
the proof. �

3. Algorithms

In this section, we describe briefly the algorithms we use for counting
connected components and searching Hamiltonian cycles in a graph
G(λ, f). We then use them to make computations for the cases when
f = X + a and f = X3 + a in Sections 4 and 6 respectively.

3.1. Counting connected components. In order to count connected
components in a graph G(λ, f), we first build the edge table, that is,
the table containing all the edges (x, y) such that (x, y) satisfies either
y2 = f(x) or y2 = λf(x).
Once the edge table is constructed, we perform the standard depth-

first search to find the number of connected components in G(λ, f).
Note that, as soon as the edge table is built, this is the same code for
any polynomial, but here we focus on both linear and cubic cases.
The linear case when f = X + a is straightforward. For the cubic

case when f = X3 + a, to speed up the process, we precompute the
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values of x3 for all x ∈ Fq as well as the values of square roots in Fq.
Therefore for each a, we only need to perform q additions to construct
the edge table.

3.2. Searching Hamiltonian cycles. To enumerate all the Hamil-
tonian cycles, we use the backtracking algorithm. At the same time it
also depends on the Types. For example, to search Hamiltonian cycles
of Type 2, we use this algorithm by disregarding any path that contains
a trail of length greater than 2. This can be done much faster since
their proportion decreases significantly as q increases.

4. Linear case

Since for any a 6= 0, b ∈ Fq the polynomial aX + b is a permutation
polynomial, all the results in Section 2 automatically hold for the graph
G(λ, aX+ b). Here, we want to investigate these graphs in more detail.
Recall that q is odd, and λ is a non-square element in Fq.

4.1. Isomorphism classes. It is easy to find some isomorphism classes
of the graphs G(λ, aX + b) over Fq.

Proposition 4.1. For any a 6= 0, b ∈ Fq, the graph G(λ, aX + b) is
isomorphic to the graph G(λ,X + a−2b).

Proof. Let ψ be the bijection map from Fq to itself defined by ψ(x) =
a−1x. Automatically, ψ is a bijection between the vertices of G(λ, aX+
b) and the vertices of G(λ,X + a−2b). To prove the isomorphism, it
suffices to show that there is an edge from x to y in G(λ, aX+ b) if and
only if there is an edge from ψ(x) to ψ(y) in G(λ,X + a−2b). This can
be done by direct computation. �

Proposition 4.2. For any a ∈ Fq, the graph G(λ,X+a) is isomorphic
to the graph G(λ−1, X + λa).

Proof. Note that the isomorphism is induced by the bijection map ψ
from Fq to itself defined by ψ(x) = λx. �

From Propositions 4.1 and 4.2, we know that to investigate the linear
case it suffices to consider the graphs G(λ,X + a) when λ runs over
half of the non-square elements of Fq and a runs over Fq.
We remark that by reversing the directions of the edges in the graph

G(λ,X + a), we exactly obtain the equational graph generated by the
equation (Y − X2 + a)(Y − λX2 + a) = 0. Note that the equational
graph generated by the equation Y − X2 + a = 0 in fact has been
studied extensively; see [9, 11, 14].
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4.2. Fixed vertices. In a graph, we say a vertex is a fixed vertex if
there is an edge from the vertex to itself. For any a ∈ Fq, it is easy to
see that the graph G(λ,X + a) has a fixed vertex if and only if either
a+ 1

4
is a square or λa+ 1

4
is a square. So, one graph G(λ,X + a) can

have zero, one, two, three or four fixed vertices.
We first recall some classical results for character sums with poly-

nomial arguments, which are special cases of [10, Theorems 5.41 and
5.48].

Theorem 4.3. Let χ be the multiplicative quadratic character of Fq,
and let f ∈ Fq[X ] be a polynomial of positive degree that is not, up
to a multiplicative constant, a square of any polynomial. Let d be the
number of distinct roots of f in its splitting field over Fq. Under these
conditions, the following inequality holds:

∣

∣

∣

∣

∣

∣

∑

x∈Fq

χ(f(x))

∣

∣

∣

∣

∣

∣

≤ (d− 1)q1/2.

Moreover, if f = aX2 + bX + c with a 6= 0 and b2 − 4ac 6= 0, then
∑

x∈Fq

χ(f(x)) = −χ(a).

We now want to count how many graphs G(λ,X + a) have a fixed
vertex.

Proposition 4.4. Define the set

Sλ = {a ∈ Fq : G(λ,X + a) has a fixed vertex}.
Then, we have

|Sλ| =
1

4

(

3q + 1 + χ(λ− 1)− χ(1− λ)
)

,

where χ is the multiplicative quadratic character of Fq. In particular,
we have |Sλ| = 1

4
(3q + 1) if −1 is a square in Fq, and otherwise |Sλ| =

1

4
(3q − 1) or 1

4
(3q + 3).

Proof. We first define the set

Tλ = {a ∈ Fq : G(λ,X + a) has no fixed vertex}.
Since Sλ = Fq \ Tλ, it is equivalent to show that

|Tλ| =
1

4

(

q − 1− χ(λ− 1) + χ(1− λ)
)

.
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Note that by convention, χ(0) = 0. For any a ∈ Fq, we have that
a ∈ Tλ if and only if both a+ 1

4
and λa + 1

4
are not squares, that is,

χ(a+
1

4
) = χ(λa+

1

4
) = −1.

So, we obtain

|Tλ| =
1

4

∑

a∈Fq

(

1− χ(a +
1

4
)
)(

1− χ(λa+
1

4
)
)

− 1

4
(1− χ(1− λ))− 1

4
(1 + χ(λ− 1)),

where the last two terms come from the two cases when a + 1

4
= 0 or

λa+ 1

4
= 0. Then, expanding the brackets we further have

|Tλ| =
q

4
− 1

2
− 1

4
χ(λ− 1) +

1

4
χ(1− λ) +

1

4

∑

a∈Fq

χ
(

(a+
1

4
)(λa+

1

4
)
)

,

where we use the fact
∑

a∈Fq
χ(a) = 0. Using Theorem 4.3 and noticing

that λ is a non-square element, we have
∑

a∈Fq

χ
(

(a+
1

4
)(λa+

1

4
)
)

=
∑

a∈Fq

χ
(

λa2 +
1

4
(λ+ 1)a+

1

16

)

= −χ(λ) = 1.

Hence, we obtain

|Tλ| =
1

4

(

q − 1− χ(λ− 1) + χ(1− λ)
)

.

This completes the proof. �

4.3. Small connected components. Here we want to determine small
connected components of the graphs G(λ,X + a). This implies some
kinds of unconnected graphs. The later computations suggest that they
almost cover all the unconnected graphs in the linear case.

Proposition 4.5. For any a ∈ F∗

q, the graph G(λ,X + a) has a con-
nected component with two vertices if and only if λ 6= −1 and a =
2(λ+ 1)/(λ− 1)2. In particular, if λ 6= −1 and a = 2(λ+ 1)/(λ− 1)2,
then the vertices 2/(1 − λ), 2/(λ − 1) form a connected component in
G(λ,X + a).

Proof. First, suppose that the graph G(λ,X +a) has a connected com-
ponent, say C, with two vertices. By construction and using Proposi-
tion 2.1, both vertices in C have a loop, and they form a cycle. More-
over, if one vertex is x ∈ Fq, then the other must be −x ∈ Fq. Note
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that x 6= 0. Since the vertices x and −x form a cycle, without loss of
generality we can assume that

(4.1) x2 = x+ a, λx2 = −x+ a.

If λ = −1, we have a = 0, which contradicts with a ∈ F∗

q . So, we must
have λ 6= −1. From (4.1), we deduce that

x =
2

1− λ
, a =

2(λ+ 1)

(λ− 1)2
.

Conversely, if λ 6= −1 and a = 2(λ + 1)/(λ − 1)2, then the vertex
x = 2/(1 − λ) satisfies (4.1), and thus the vertices x and −x form a
connected component in the graph G(λ,X + a). �

We remark that if −1 is a non-square element in Fq, then the graph
G(λ,X) has a connected component with two vertices if and only if
λ = −1 (in fact these two vertices are 1,−1).

Proposition 4.6. For any a ∈ Fq, the graph G(λ,X + a) has a con-
nected component with three vertices if and only if either λ = 2, a =
1, or λ = 1/2, a = 2. In particular, if 2 is a non-square element
in Fq, then the vertices 0, 1 and −1 form a connected component in
G(2, X + 1), and the vertices 0, 2 and −2 form a connected component
in G(1/2, X + 2).

Proof. It is easy to check that if λ = 2 and a = 1 (by the assumption
on λ, 2 is a non-square element in Fq), the vertices 0, 1 and −1 form
a connected component in G(2, X + 1). Moreover, if λ = 1/2 and
a = 2 (2 is a non-square element in Fq), the vertices 0, 2 and −2 form
a connected component in G(1/2, X + 2). This shows the sufficiency.
It remains to show the necessity.
Now, suppose that the graph G(λ,X+a) has a connected component,

say C, with three vertices. Note that by construction if x ∈ Fq is a
vertex in C, then so is −x. So, the vertex 0 must be in C.
Since there is an edge from −a to 0, by construction we have that

the three vertices of C are 0, a and −a (so a 6= 0), and there are edges
from 0 to a and −a. Moreover, there is an edge from a to −a. These
give either (noticing a 6= 0)

a2 = a, λa2 = a + a,

or

λa2 = a, a2 = a + a.

Hence, we deduce that either λ = 2, a = 1, or λ = 1/2, a = 2. �
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We remark that by Proposition 4.2, the graph G(2, X +1) is isomor-
phic to the graph G(1/2, X+2). By Proposition 4.6 we also know that
if 2 is a square element in Fq, then connected components with three
vertices can not occur in the graphs G(λ,X + a) over Fq (note that λ
is set to be a non-square element in Fq throughout the paper).
However, there are few connected components having four vertices.

Proposition 4.7. For any a ∈ F∗

q, the graph G(λ,X + a) has no con-
nected component with four vertices.

Proof. By contradiction, we assume that the graph G(λ,X + a) has a
connected component, say C, having four vertices. By Proposition 2.1,
it is easy to see that C has only two possible cases; see Figure 8.

• •✲✛

• •❄

✻ ✻

❄
✛ ✲

x −y

y −x

• •

• •❄ ❄
✛

❅
❅

❅
❅❅■

✲�
�
�
��✒

✞☎
❄

✞☎
❄x y

−x −y

Figure 8. Two cases of a component with four vertices

We now consider the first case that there is no fixed vertex. Without
loss of generality, we can assume that

y2 = x+ a, λy2 = −x+ a.

Moreover, either

x2 = y + a, λx2 = −y + a,

or

x2 = −y + a, λx2 = y + a.

Then, noticing x 6= ±y, we obtain λ = −1, a = 0, x3 = 1 and x 6= 1.
This contradicts with a 6= 0. So, the first case cannot happen.
For the second case in Figure 8, noticing x 6= ±y, we only need to

consider the following four subcases:

(1) x2 = x+a, y2 = −x+a, λy2 = y+a, λx2 = −y+a;
(2) x2 = x+a, λy2 = −x+a, y2 = y+a, λx2 = −y+a;
(3) λx2 = x+a, y2 = −x+a, λy2 = y+a, x2 = −y+a;
(4) λx2 = x+a, λy2 = −x+a, y2 = y+a, x2 = −y+a.

By direct calculations, from Cases (2) and (3) we obtain λ = 1, which
contradicts with the assumption that λ is non-square; and Case (1)
gives λ2 = −1, a = 0, x = 1, y = −λ; Case (4) gives λ2 = −1, a =
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0, x = −λ, y = 1. Hence, the second case also cannot happen (due to
λ non-square and a 6= 0).
Therefore, there is no connected component with four vertices in the

graph G(λ,X + a) with a ∈ F∗

q . �

When proving Proposition 4.7, we in fact have obtained the following
result about the graph G(λ,X).

Proposition 4.8. If −1 is a non-square element in Fq, then the graph
G(λ,X) has a connected component with four vertices if and only if
3 | q − 1 and λ = −1 (in fact these four vertices are x,−x, 1/x,−1/x,
where x3 = 1 and x 6= 1, corresponding to the first case in Figure 8).
Otherwise, if −1 is a square in Fq, then the graph G(λ,X) has a con-
nected component with four vertices if and only if 4 | q−1 and λ2 = −1
(in fact these four vertices are 1,−1, λ,−λ, corresponding to the second
case in Figure 8).

We remark that connected components with five vertices exist. For
example, in the graph G(3, X + 2) over F7 the vertices 0, 2, 3, 4, 5 form
a connected component, and the graph G(10, X + 12) over F17 has a
connected component with 5 vertices (that is, 0, 4, 5, 12, 13). Moreover,
the graph G(5, X + 8) over F17 has a connected component with 6
vertices (that is, 1, 3, 7, 10, 14, 16), and the graph G(3, X+13) over F31

has a connected component with 6 vertices (that is, 3, 4, 14, 17, 27, 28).

4.4. Computations concerning connectedness. Recall that p is
an odd prime. Here, we want to make some computations for the
graphs G(λ,X + a) over Fp concerning its connectedness. From [11,
Section 2], the numerical results suggest that almost all the functional
graphs generated by polynomials f(X) = X2 + a (a runs over F∗

p) are
weakly unconnected. However, our computations suggest that almost
all the graphs G(λ,X + a) are connected (in fact, strongly connected
by Proposition 2.2).
By Proposition 4.2 we do not need to consider all the non-square

elements λ. We first identify the elements of Fp as the set {0, 1, . . . , p−
1}, and then define Np to be the subset of non-square elements in Fp

such that for any non-square element λ, only the smaller one of λ and
λ−1 is contained in Np. Clearly, for the size of Np, we have

(4.2) |Np| =
{

(p− 1)/4 if p ≡ 1 (mod 4),
(p+ 1)/4 if p ≡ 3 (mod 4),

where we use the fact that −1 is non-square modulo p if and only
if p ≡ 3 (mod 4). So, here we make computations for the graphs
G(λ,X + a) when λ runs over Np and a runs over F∗

p. By Propositions
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4.1 and 4.2, this indeed includes all the linear cases over Fp except the
case G(λ,X).
Let C1(p) (respectively, U1(p)) be the number of connected (respec-

tively, unconnected) graphs among all the graphs G(λ,X + a) when λ
runs over Np and a runs over F

∗

p, and let R1(p) be the ratio of connected
graphs, that is

R1(p) =
C1(p)

C1(p) + U1(p)
.

In Table 1 we record the first five decimal digits of the ratio R1(p), and
we will do the same for all the other ratios and the average numbers.
Further, let M1(p) be the maximum number of connected components
of an unconnected graph counted in U1(p).
Define

(4.3) L(p) =















(p− 1)/4 if p ≡ 1 (mod 8),
(p+ 1)/4 if p ≡ 3 (mod 8),
(p+ 3)/4 if p ≡ 5 (mod 8),
(p− 3)/4 if p ≡ 7 (mod 8).

It is well-known that 2 is a non-square element modulo p if and only
if p ≡ 3, 5 (mod 8). In view of the construction of Np, we always have
1/2 (mod p) 6∈ Np. So, the number of the unconnected graphs counted
in U1(p) and described as in Propositions 4.5 and 4.6 is equal to L(p)
when p > 5 (using also (4.2)). Hence, we have

(4.4) U1(p) ≥ L(p), p > 5.

Notice that when q = 5, the graphs in Propositions 4.5 and 4.6 coincide.
From Table 1, we can see that almost all the graphs G(λ,X + a) are

connected, and U1(p) is quite close to L(p). Moreover, the data suggest
that each unconnected graph G(λ,X + a) with a 6= 0 has exactly two
connected components, and its small connected component usually has
exactly two vertices.

Conjecture 4.9. Almost all the graphs G(λ,X + a) over Fp are con-
nected when p goes to infinity.

We in fact make computations for all primes p ≤ 3041 and find that
U1(p) = L(p) for any 31 < p ≤ 3041, and for any 5 ≤ p ≤ 3041 each
unconnected graph G(λ,X + a) with a 6= 0 over Fp has exactly two
connected components. Hence, we make the following conjectures.

Conjecture 4.10. For any prime p > 31, U1(p) = L(p).

Conjecture 4.11. For any prime p ≥ 5, each unconnected graph
G(λ,X + a) with a 6= 0 over Fp has exactly two connected components.
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p C1(p) U1(p) L(p) M1(p) R1(p)
31 232 8 7 2 0.96666
107 2835 27 27 2 0.99056
523 68251 131 131 2 0.99808
1009 253764 252 252 2 0.99900
1511 570403 377 377 2 0.99933
2029 1027688 508 508 2 0.99950
2521 1586970 630 630 2 0.99960
3037 2303564 760 760 2 0.99967
4049 4095564 1012 1012 2 0.99975
5003 6256251 1251 1251 2 0.99980

Table 1. Counting connected graphs in linear case

Conjecture 4.10 suggests that when p > 31, if a graph G(λ,X + a)
over Fp with a 6= 0 does not belong to the cases described in Proposi-
tions 4.5 and 4.6, then it is a connected graph.

4.5. Hamiltonian cycles. For each graph G(λ,X + a), Theorem 2.4
has confirmed that all its connected components have a Hamiltonian
cycle. Here, we only make computations on Hamiltonian cycles of
G(λ,X+a) over Fp when it is a connected graph. Due to the complexity,
we only can test small primes p.
Let H11(p) (respectively, H12(p)) be the minimal (respectively, max-

imal) number of Hamiltonian cycles in a connected graph of the form
G(λ,X + a) (λ runs over Np and a runs over F∗

p). Then, let H1(p) be
the average number of Hamiltonian cycles in these connected graphs.
By Corollary 2.10, a connected graph G(λ,X + a) over Fp has no

Hamiltonian cycle of Type 1 when p > 17. Let R12(p) (respectively,
R13(p)) be the ratio of such connected graphs having Hamiltonian cy-
cles of Type 2 (respectively, Type 3) over all the connected graphs
(when λ runs over Np and a runs over F∗

p). Let A12(p) (respectively,
A13(p)) be the average number of Hamiltonian cycles of Type 2 (re-
spectively, Type 3) over all such connected graphs having Hamiltonian
cycles of Type 2 (respectively, Type 3).
From Table 2, we can see that there are many Hamiltonian cycles in

a connected graph G(λ,X + a) over Fp, whose amount grows rapidly
with respect to p.
Tables 3 and 4 suggest that although many connected graphs have

Hamiltonian cycles of Types 2 and 3, these two types of Hamiltonian
cycles occupy a small proportion when p is large. This means that each
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p H11(p) H12(p) H1(p)
17 1 72 18.31034
19 4 148 34.03529
23 5 423 93.70078
29 34 2840 666.13829
31 30 5410 1206.08620
37 448 45546 7906.61783
41 1223 175428 28473.26666
43 2222 255558 53999.07760
47 6576 1273729 195723.05914
53 63363 6795031 1297781.68277

Table 2. Counting Hamiltonian cycles in linear case

connected graph G(λ,X + a) over Fp is likely to have many types of
Hamiltonian cycles.

p A12(p) A12(p)/H1(p) R12(p)
17 2.40909 0.13156 0.75862
19 3.30158 0.09700 0.74117
23 3.79452 0.04049 0.57480
29 8.30434 0.01246 0.61170
31 8.25954 0.00684 0.56465
37 17.72580 0.00224 0.59235
41 39.12643 0.00137 0.44615
43 32.31088 0.00059 0.42793
47 60.58173 0.00030 0.38447
53 107.67010 0.00008 0.43957

Table 3. Hamiltonian cycles of Type 2 in linear case

5. Quadratic case

For the quadratic case we only establish some general properties
without making computations. These suggest that this case might be
not attractive. The main reason is that quadratic polynomials are not
permutation polynomials.
Recall that q is odd, and λ is a non-square element in Fq.

Proposition 5.1. For any a 6= 0, b ∈ Fq, the graph G(λ,X2 + aX + b)
is isomorphic to the graph G(λ,X2 +X + a−2b).
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p A13(p) A13(p)/H1(p) R13(p)
17 7.42857 0.40570 0.96551
19 11.38095 0.33438 0.98823
23 25.72580 0.27455 0.97637
29 125.45161 0.18832 0.98936
31 190.37117 0.15784 0.98706
37 754.65594 0.09544 0.99044
41 2036.97927 0.07154 0.98974
43 3296.68456 0.06105 0.99113
47 7935.52918 0.04054 0.95009
53 35505.00762 0.02735 0.99093

Table 4. Hamiltonian cycles of Type 3 in linear case

Proof. Note that the isomorphism is induced by the bijection map ψ
from Fq to itself defined by ψ(x) = a−1x. �

Proposition 5.2. For any a 6= 0, b 6= 0, if b/a is a square element in
Fq, then the graph G(λ,X2+a) is isomorphic to the graph G(λ,X2+b).

Proof. Write b/a = c2, c ∈ Fq. Note that the isomorphism is induced
by the bijection map ψ from Fq to itself defined by ψ(x) = cx. �

From Proposition 5.2, we know that for a fixed λ, there are at most
two graphs up to isomorphism among the graphs G(λ,X2 + a) when a
runs over F∗

q.

We remark that in the graph G(λ,X2 +X + a), if −a+ 1/4 is not a
square element, then the in-degree of the vertex 0 is zero. Similarly, in
the graph G(λ,X2 + a), if −a is not a square element in Fq, then the
in-degree of the vertex 0 is zero. In fact, there could be many vertices
with zero in-degree.

Proposition 5.3. For each graph G(λ,X2 +X + a) over Fq with a 6=
1/4, there are at least ⌊1

4

(

q− 3
√
q
)

− 1⌋ vertices having zero in-degree.

Proof. Denote by Z(λ, a) the number of vertices having zero in-degree
in the graph G(λ,X2 +X + a). Let χ be the multiplicative quadratic
character of Fq. By convention, χ(0) = 0. If a vertex y ∈ Fq has zero
in-degree, then both y2 − a + 1/4 and λy2 − a + 1/4 are non-square
elements in Fq, that is,

χ(y2 − a+ 1/4) = χ(λy2 − a + 1/4) = −1.
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So, we have

Z(λ, a) ≥
∑

y∈Fq

1− χ(y2 − a + 1/4)

2
· 1− χ(λy2 − a+ 1/4)

2
− 1,

where the term “−1” comes from one of the two cases when either
y2 − a + 1/4 = 0 or λy2 − a + 1/4 = 0 (since a 6= 1/4 and λ is a
non-square element in Fq, these two cases can not both happen).
Then, using Theorem 4.3 and noticing a 6= 1/4, we deduce that

Z(λ, a) ≥
∑

y∈Fq

1− χ(y2 − a+ 1/4)

2
· 1− χ(λy2 − a + 1/4)

2
− 1

=
1

4

(

q −
∑

y∈Fq

χ(y2 − a+ 1/4)−
∑

y∈Fq

χ(λy2 − a+ 1/4)

+
∑

y∈Fq

χ((y2 − a+ 1/4)(λy2 − a+ 1/4))
)

− 1

≥ 1

4

(

q + χ(1) + χ(λ)− 3
√
q
)

− 1

=
1

4

(

q − 3
√
q
)

− 1.

This in fact completes the proof. �

Similarly, we obtain:

Proposition 5.4. For each graph G(λ,X2 + a) over Fq with a 6= 0,
there are at least ⌊1

4

(

q − 3
√
q
)

− 1⌋ vertices having zero in-degree.

When q ≥ 23, we have 1

4

(

q−3
√
q
)

−1 ≥ 1. Propositions 5.3 and 5.4
imply that strongly connected graphs are rare in the quadratic case.
We also can say something about Hamiltionian cycles.

Proposition 5.5. For each graph G(λ,X2 +X + a), if a 6= 1/4, then
its connected component containing the vertex 0 does not have a Hamil-
tonian cycle.

Proof. Notice that in the graph G(λ,X2 +X + a), if a 6= 1/4, then the
vertex 0 either has zero in-degree or has in-degree 2. If the vertex 0 has
zero in-degree, then the component automatically has no Hamiltonian
cycle. If the vertex 0 has in-degree 2, let x1 and x2 be the two prede-
cessors of 0. Note that the vertex 0 is the only successor of x1 and x2.
So, there is no cycle going through both x1 and x2. This completes the
proof. �

Similarly, we have:
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Proposition 5.6. For each graph G(λ,X2 + a), if a 6= 0, then its con-
nected component containing the vertex 0 does not have a Hamiltonian
cycle.

We remark that in Proposition 5.5, if a = 1/4, then the graph
G(λ,X2 + X + 1/4) is in fact generated by the equation (Y − X −
1/2)(Y +X + 1/2) = 0.

6. Cubic case

For each polynomial X3 + aX + b over Fq, if 4a
3 + 27b2 6= 0, then

the equation Y 2 = X3 + aX + b defines an elliptic curve over Fq. In
this section, we consider the graphs G(λ,X3 + aX + b) over Fq.
Recall that q is odd, and λ is a non-square element in Fq.

6.1. Basic properties. As before, we can easily find some isomor-
phism classes among the graphs G(λ,X3 + aX + b) when λ runs over
the non-square elements and a, b run over Fq.

Proposition 6.1. For any a, b ∈ Fq, the graph G(λ,X3 + aX + b) is
isomorphic to the graph G(λ−1, X3 + λ−2aX + λ−3b).

Proof. Note that the isomorphism is induced by the bijection map ψ
from Fq to itself defined by ψ(x) = λ−1x. �

When the characteristic of Fq (that is, p) is greater than 3, it is
not hard to show that a polynomial X3 + aX + b is a permutation
polynomial over Fq if and only if 3 ∤ q − 1 and a = 0; see [12, Theorem
2.2].
So, in the sequel, we only consider the graph G(λ,X3+a). Note that

if 3 ∤ q − 1, then each polynomial X3 + a is a permutation polynomial
over Fq, and thus all the results in Section 2 automatically hold for the
graph G(λ,X3 + a).
We know that each vertex in the graph G(λ,X3+a) has positive out-

degree. However, this is not always true for the in-degree. If 3 ∤ q − 1,
by Proposition 2.1 each vertex in the graph G(λ,X3 + a) has positive
in-degree. However, when 3 | q − 1, there are many vertices having
zero in-degree, and more precisely we can get a similar result as in
Proposition 5.4 by using a different approach and in a stronger form.

Proposition 6.2. If 3 | q − 1, then for each graph G(λ,X3 + a) over
Fq, there are at least N vertices having zero in-degree, where

N =

{

(q − 1)/3 if −a is a cubic element in Fq,
(q − 7)/3 otherwise.
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In particular, there exists at least one vertex in G(λ,X3 + a) having
zero in-degree.

Proof. Let Q = {x3 : x ∈ Fq}. Since 3 | q − 1, we have

|Q| = q − 1

3
+ 1.

Let R = Fq \Q, and let S be the set of equivalence classes of Fq modulo
±1. Clearly, we have

(6.1) |R| = q −
(

q − 1

3
+ 1

)

=
2(q − 1)

3
, |S| = q + 1

2
.

Define the map ϕ from R to S by ϕ(x) = {±y} if either y2 = x+ a
or λy2 = x+ a. If x1, x2 ∈ R with x1 6= x2 such that ϕ(x1) = ϕ(x2) =
{±y0} for some y0 ∈ Fq, then either y2

0
= x1 + a, λy2

0
= x2 + a, or

λy2
0
= x1 + a, y2

0
= x2 + a. This implies that there is no x3 ∈ R with

x3 6= x1 and x3 6= x2 such that ϕ(x3) = {±y0}. By the definition of ϕ,
both y2

0
− a and λy2

0
− a are not in Q, and thus the vertices ±y0 have

zero in-degree in the graph G(λ,X3 + a).
Now, define the set

T = {x ∈ R : ∃ x′ ∈ R, x′ 6= x, ϕ(x′) = ϕ(x)}.
By the above discussion, we know that |T | is even, and the number of
vertices having zero in-degree is at least |T |. So, it suffices to get a
lower bound for |T |.
Considering the size of ϕ(R) and noticing |ϕ(T )| = |T |/2, we have

(6.2) |ϕ(R)| = |R| − |T |/2 ≤ |S|,
which, together with (6.1), implies that

|T | ≥ q − 7

3
.

Moreover, if −a ∈ Q (that is, −a is a cubic element in Fq), then
there is no x ∈ R such that ϕ(x) = {0}. So, the inequality in (6.2)
becomes

|ϕ(R)| = |R| − |T |/2 ≤ |S| − 1,

which gives

|T | ≥ q − 1

3
.

This completes the proof for the choice of N .
For the final claim, by the choice of N , we only need to consider the

case q = 7. By direction computation, if q = 7, indeed there exists at
least one vertex in each graph G(λ,X3 + a) having zero in-degree. �

As in Proposition 5.6, we have:
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Proposition 6.3. If 3 | q − 1, then for each graph G(λ,X3 + a) with
a 6= 0, its connected component containing the vertex 0 does not have
a Hamiltonian cycle.

6.2. Small connected components. As in Section 4.3, we determine
small connected components for the graphs G(λ,X3 + a) over Fq when
3 ∤ q − 1.

Proposition 6.4. Assume 3 ∤ q − 1. For any a ∈ F∗

q, the graph

G(λ,X3 + a) has a connected component with two vertices if and only
if λ 6= −1 and a = (λ + 1)(λ − 1)2/8. In particular, if λ 6= −1 and
a = (λ + 1)(λ − 1)2/8, then the vertices (1 − λ)/2, (λ − 1)/2 form a
connected component in G(λ,X3 + a).

Proof. As before, if the graph G(λ,X3+a) has a connected component
with two vertices, then these two vertices are ±x for some x ∈ F∗

q; and
so without loss of generality, we can assume

x2 = x3 + a, λx2 = −x3 + a,

which gives

λ 6= −1, a = (λ+ 1)(λ− 1)2/8, x = (1− λ)/2.

The rest is straightforward. �

We remark that if −1 is a non-square element in Fq, then the graph
G(λ,X3) has a connected component with two vertices if and only if
λ = −1 (in fact these two vertices are 1,−1).

Proposition 6.5. Assume 3 ∤ q − 1. For any a ∈ Fq, the graph
G(λ,X3+ a) has a connected component with three vertices if and only
if either λ = 2, a = 1, or λ = 1/2, a = 1/8. In particular, if 2 is a non-
square element in Fq, then the vertices 0, 1 and −1 form a connected
component in G(2, X3 + 1), and the vertices 0, 1/2 and −1/2 form a
connected component in G(1/2, X3 + 1/8).

Proof. We only prove the necessity. As before, if the graph G(λ,X3 +
a) has a connected component with three vertices, then these three
vertices are 0,±b, where b3 = a. So, there must be an edge from 0
to b and an edge from b to −b (by Proposition 2.1). This gives either
(noticing b 6= 0)

b2 = a, λb2 = b3 + a,

or
λb2 = a, b2 = b3 + a.

Hence, we obtain either λ = 2, a = 1, b = 1, or λ = 1/2, a = 1/8, b =
1/2. �
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We remark that by Proposition 6.1, the graph G(2, X3 + 1) is iso-
morphic to the graph G(1/2, X3 + 1/8). By Proposition 6.5 we also
know that if 2 is a square in Fq, then connected components with three
vertices can not occur in the graphs G(λ,X3 + a) over Fq (note that λ
is set to be a non-square element in Fq throughout the paper).

Proposition 6.6. Assume 3 ∤ q − 1. For any a ∈ F∗

q, the graph

G(λ,X3 + a) has no connected component with four vertices.

Proof. As before, if the graph G(λ,X3+a) has a connected component
with four vertices, then there are only two possible cases as in Figure 8.
For the first case when there is no fixed vertex in Figure 8, we con-

sider either

y2 = x3 + a, λy2 = −x3 + a, x2 = y3 + a, λx2 = −y3 + a,

or

y2 = x3 + a, λy2 = −x3 + a, x2 = −y3 + a, λx2 = y3 + a.

Then, noticing x 6= ±y, we obtain λ = −1, a = 0, x5 = 1 and x 6= 1,
y = 1/x. This contradicts with a 6= 0. So, the first case cannot happen.
For the second case in Figure 8, noticing (x/y)3 6= ±1 (due to x 6= ±y

and 3 ∤ q − 1), we only need to consider the following four subcases:

(1) x2 = x3 + a, y2 = −x3 + a, λy2 = y3 + a, λx2 = −y3 + a;
(2) x2 = x3 + a, λy2 = −x3 + a, y2 = y3 + a, λx2 = −y3 + a;
(3) λx2 = x3 + a, y2 = −x3 + a, λy2 = y3 + a, x2 = −y3 + a;
(4) λx2 = x3 + a, λy2 = −x3 + a, y2 = y3 + a, x2 = −y3 + a.

By direct calculations, from Cases (2) and (3) we obtain λ = 1, which
contradicts with the assumption that λ is non-square; and Case (1)
gives λ2 = −1, a = 0, x = 1, y = λ; Case (4) gives λ2 = −1, a =
0, x = λ, y = 1. Hence, the second case also cannot happen (due to λ
non-square and a 6= 0).
Therefore, there is no connected component with four vertices in the

graph G(λ,X3 + a) with a ∈ F∗

q. �

From the above proof, we directly obtain:

Proposition 6.7. Assume 3 ∤ q − 1. If −1 is a non-square element
in Fq, then the graph G(λ,X3) has a connected component with four
vertices if and only if 5 | q−1 and λ = −1 (in fact these four vertices are
of the form x,−x, 1/x,−1/x, where x5 = 1 and x 6= 1, corresponding
to the first case in Figure 8). Otherwise, if −1 is a square in Fq, then
the graph G(λ,X3) has a connected component with four vertices if and
only if 4 | q−1 and λ2 = −1 (in fact these four vertices are 1,−1, λ,−λ,
corresponding to the second case in Figure 8).
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6.3. Computations concerning connectedness. Recall that p is an
odd prime. Here, we want to make some computations for the graphs
G(λ,X3+a) over Fp concerning its connectedness when 3 ∤ p−1. From
Proposition 6.1, we only need to consider the non-square elements λ
in Np, where Np has been defined in (4.2). Our computations suggest
that almost all the graphs G(λ,X3+a) (λ runs over Np and a runs over
F∗

p) are connected when 3 ∤ p− 1.
Let C3(p) (respectively, U3(p)) be the number of connected (respec-

tively, unconnected) graphs among all the graphs G(λ,X3+ a) when λ
runs over Np and a runs over F

∗

p, and let R3(p) be the ratio of connected
graphs, that is

R3(p) =
C3(p)

C3(p) + U3(p)
.

Further, let M3(p) be the maximum number of connected components
of an unconnected graph counted in U3(p).
As the linear case, by Proposition 6.4, Proposition 6.5 and (4.2), we

have
U3(p) ≥ L(p), p > 5, 3 ∤ p− 1,

where L(p) has been defined in (4.3).
From Table 5, we can see that almost all the graphs G(λ,X3+a) are

connected, and U3(p) is quite close to L(p). Moreover, the data suggest
that each unconnected graph G(λ,X3 + a) with a 6= 0 has exactly two
connected components, and its small connected component usually has
exactly two vertices.

Conjecture 6.8. Almost all the graphs G(λ,X3 + a) over Fp are con-
nected when p satisfying 3 ∤ p− 1 goes to infinity.

Our computations for all primes p ≤ 3041 satisfying 3 ∤ p− 1 shows
that U3(p) = L(p) for any such prime p ∈ [31, 3041], and for any
5 ≤ p ≤ 3041 each unconnected graph G(λ,X3+ a) with a 6= 0 over Fp

has exactly two connected components. Hence, we make the following
conjectures.

Conjecture 6.9. For any prime p > 31 satisfying 3 ∤ p − 1, U3(p) =
L(p).

Conjecture 6.10. For any prime p ≥ 5 satisfying 3 ∤ p − 1, each
unconnected graph G(λ,X3 + a) with a 6= 0 over Fp has exactly two
connected components.

Conjecture 6.9 suggests that when p > 31 satisfying 3 ∤ p − 1, if a
graph G(λ,X3 + a) over Fp with a 6= 0 does not belong to the cases
described in Propositions 6.4 and 6.5, then it is a connected graph.
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p C3(p) U3(p) L(p) M3(p) R3(p)
41 188 8 8 2 0.95918
107 2835 27 27 2 0.99056
521 67470 130 130 2 0.99807
1013 255782 254 254 2 0.99900
1511 570403 377 377 2 0.99933
2027 1026675 507 507 2 0.99950
2531 1600857 633 633 2 0.99960
3041 2309640 760 760 2 0.99967

Table 5. Counting connected graphs in cubic case

6.4. Hamiltonian cycles. In light of Propositions 2.1 and 6.2, here
we only consider the case when 3 ∤ p−1. Theorem 2.4 has confirmed the
existence of Hamiltonian cycles in connected components of the graph
G(λ,X3+a) over Fp when 3 ∤ p−1. Here, we make some computations
on counting Hamiltonian cycles of connected graphs.
Let H31(p) (respectively, H32(p)) be the minimal (respectively, max-

imal) number of Hamiltonian cycles in a connected graph of the form
G(λ,X3 + a) over Fp (λ runs over Np and a runs over F∗

p). Then, let
H3(p) be the average number of Hamiltonian cycles in these connected
graphs.
By Corollary 2.12, a connected graph G(λ,X3 + a) over Fp has no

Hamiltonian cycle of Type 1 when p > 17. Let R32(p) (respectively,
R33(p)) be the ratio of such connected graphs having Hamiltonian cy-
cles of Type 2 (respectively, Type 3) over all the connected graphs
(when λ runs over Np and a runs over F∗

p). Let A32(p) (respectively,
A33(p)) be the average number of Hamiltonian cycles of Type 2 (re-
spectively, Type 3) over all such connected graphs having Hamiltonian
cycles of Type 2 (respectively, Type 3).
From Table 6, we can see that there are many Hamiltonian cycles in

a connected graph G(λ,X3 + a) over Fp, whose amount grows rapidly
with respect to p.
Tables 7 and 8 suggest that although many connected graphs have

Hamiltonian cycles of Types 2 and 3, these two types of Hamiltonian
cycles occupy a small proportion when p is large. This means that each
connected graph G(λ,X3 + a) over Fp is likely to have many types of
Hamiltonian cycles.
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p H31(p) H32(p) H3(p)
11 1 11 4.18518
17 1 64 19.20689
23 3 330 91.65079
29 24 2574 585.11702
41 602 127573 26075.50256
47 4444 923740 187351.93160
53 35169 6920444 1262002.85498

Table 6. Counting Hamiltonian cycles in cubic case

p A32(p) A32(p)/H3(p) R32(p)
11 1.41666 0.33849 0.88888
17 2.65853 0.13841 0.70689
23 4.32394 0.04717 0.56349
29 7.24647 0.01238 0.75531
41 27.42268 0.00105 0.49743
47 58.89082 0.00031 0.42329
53 105.13149 0.00008 0.49395

Table 7. Hamiltonian cycles of Type 2 in cubic case

p A33(p) A33(p)/H3(p) R33(p)
11 2.50000 0.59734 0.81481
17 7.69642 0.40071 0.96551
23 31.16260 0.34001 0.97619
29 119.66486 0.20451 0.98404
41 1878.58549 0.07204 0.98974
47 7503.64606 0.04005 0.98706
53 37585.84218 0.02978 0.99546

Table 8. Hamiltonian cycles of Type 3 in cubic case

7. Comments

Assume that f is a permutation polynomial over Fq. In Theorem 2.13
we have shown that in the graph G(λ, f), along any Hamiltonian cycle
of any connected component, we can get a balancing binary sequence.
Our computations in Sections 4.4 and 6.3 suggest that the graph G(λ, f)
is usually connected. That is, using this way we can frequently obtain
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a balancing binary periodic sequence of period q. Note that the bal-
ance property is one of the three randomness postulates about a binary
sequence suggested by Golomb; see [6, Chapter 5]. The other two pos-
tulates are called the run property and the correlation property. If the
types of graphs studied in this paper frequently yield a balancing se-
quence which also has good run property and correlation property, then
this gives a good way to construct pseudorandom number generators.
In addition, based on our computations the graph G(λ, f) is likely

to be connected. It will be interesting and also challenging to confirm
this theorectically, such as proving G(λ, f) is connected for an infinite
family of permutation polynomials.
When Y 2 = X3 + aX + b defines an elliptic curve over Fq, it is also

interesting to investigate the relation between properties of the graph
G(λ,X3+aX+b) and the arithmetic of the corresponding elliptic curve.
In fact, the graphs studied in this paper are arised from quadratic

twists (see (1.1)). One can generalize them to higher twists. For ex-
ample, if k | q − 1 and µ is not a k-th power in Fq, one can study the
graph generated by the equation

(Y k − f(X))(µY k − f(X)) · · · (µk−1Y k − f(X)) = 0.

More generally, for any k polynomials f0, f1, . . . , fk−1 ∈ Fq[X ] and
any positive integer n, one can study the graph generated by the equa-
tion

(Y n − f0(X))(Y n − f1(X)) · · · (Y n − fk−1(X)) = 0.

Moreover, in this graph an edge (x, y) has weight i if yn = fi(x).
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