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GRAPHS OF VECTORIAL PLATEAUED FUNCTIONS
AS DIFFERENCE SETS

AYCA CESMELIOGLU AND OKTAY OLMEZ

ABSTRACT. A function F : F,n — Fpm, is a vectorial s-plateaued
function if for each component function Fy(u) = Tr,(aF(x)),b €
Fym and p1 € Fpn, the Walsh transform value |Fy(u)]| is either 0 or

p“= . In this paper, we explore the relation between (vectorial)
s-plateaued functions and partial geometric difference sets. More-
over, we establish the link between three-valued cross-correlation
of p-ary sequences and vectorial s-plateaued functions. Using this
link, we provide a partition of Fsn into partial geometric differ-
ence sets. Conversely, using a partition of Fs» into partial geo-
metric difference sets, we constructed ternary plateaued functions
f :F3n — F3. We also give a characterization of p-ary plateaued
functions in terms of special matrices which enables us to give the
link between such functions and second-order derivatives using a
different approach.

Keywords: partial geometric designs, partial geometric difference
sets, plateaued functions, three-valued cross-corelation function.

1. INTRODUCTION

A (block) design is a pair (P, B) consisting of a finite set P of points
and a finite collection B of nonempty subsets of P called blocks. De-
signs serve as a fundamental tool to investigate combinatorial objects.
Also designs have attracted many researchers from different fields for
solutions of applications problems including binary sequences with 2-
level autocorrelation, optical orthogonal codes, low density parity check
codes, synchronization, radar, coded aperture imaging, and optical im-
age alignment, distributed storage systems and cryptographic functions
with high nonlinearity[15, 16, 17, 19, 27].

One of the main construction method of designs is called difference
set method. This method served as a powerful tool to construct sym-
metric designs, error correcting codes, graphs and cryptographic func-
tions [1, 2, 3, 4, 5, 18, 20, 29, 31]. This paper will focus on the links
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between designs and a family of a function known as plateaued func-
tions from cryptography. Especially we will investigate the connections
between partial geometric difference sets and graph of plateaued func-
tions.

A function from the field [F,» to I, is called a p-ary function. If p = 2
then the function is simply called as Boolean. p-ary functions with var-
ious characteristics have been an active research subject in cryptogra-
phy. Bent functions and plateaued functions are two well-known fami-
lies which has prominent properties in this field [6, 7, 8, 9, 10, 11, 22, 23].
These two families of functions can be characterized by their Walsh
spectrum. A function f from Fy. to I, is called an s-plateaued func-

tion if the Walsh transform |f(u)| € {0,p"2"} for each u € Fpn. A
O-plateaued function f is called as bent and its Walsh transform sat-
isfies | f(u)| = p2 for each y € Fpn. Plateaued functions and bent
functions play a significant role in cryptography, coding theory and
sequences for communications [9, 10, 11].

Boolean bent functions were introduced by Rothaus in [32]. These
functions have optimal nonlinearity and can only exist when n is even.
In [17], it is shown that the existence of Boolean bent functions is equiv-
alent to the existence of a family of difference sets known as Hadamard
difference sets. Boolean plateaued functions are introduced by Zheng
and Zhang as a generalization of bent functions in [35]. Boolean
plateaued functions have attracted the attention of researchers since
these functions provide some suitable candidates that can be used in
cryptosystems. A difference set characterization of these functions was
recently provided by the second author. In [27], it is shown that the
existence of Boolean plateaued functions is equivalent to the existence
of partial geometric difference sets.

In arbitrary characteristic, the graph of f : Fyn — Fpm, Gy =
{(z, f(x)) : © € Fyn}, plays an important role for the relation to dif-
ference sets, [30, 34]. For instance, the graph of a p-ary bent function
can be recognized as a relative difference set. In general, a characteri-
zation of plateaued functions in terms of difference sets is not known.
A partial result in this direction is provided in [13] for partially bent
functions which is a subfamily of plateaued functions.

There are recent result concerning explicit characterization of plateaued
functions in odd characteristics through their second order derivatives
in [12, 24, 25].
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In this paper, we first investigate the link between the graph of a
plateaued function and partial geometric difference set. We also pro-
vide several characterization of plateaued functions in terms of asso-
ciated difference set properties. By using these characterization we
provide a family of vectorial plateaued functions which has an interest-
ing connection to three-valued cross correlation functions.

The organization of the paper is as follows. In Section 2, we pro-
vide preliminary results concerning partial geometric difference sets.
In Section 3, we mainly provide the links between vectorial plateaued
functions and partial geometric difference sets. We also provide a con-
struction as a result of our characterizations. In Section 4, we focus on
p—ary plateaued function. We provide several characteristics which are
obtained from Butson-Hadamard-like matrices. This section also pro-
vides results concerning partially bent functions and partial geometric
designs.

2. PRELIMINARIES

Let G be a group of order v and let S C G be a k-subset. For each
g € G, we define

6(g9) = {(s,t) € S x S: g=st}.
Next we define the difference sets of our interest.

Definition 1. Let v, k be positive integers with v > k > 2. Let G
be a group of order v. A k-subset S of GG is called a partial geometric
difference set (PGDS) in G with parameters (v, k; o, 3) if there exist
constants « and 3 such that, for each z € G,

1y Joa ifxeg s,
S ={ § aEg
yes
There are two subclasses of PGDS namely difference sets and semireg-

ular relative difference sets which have deep connections with coding
theory, and cryptography [1, 18, 20]:

e A (v, k,\)-difference set (DS) in a finite group G of order v is
a k-subset D with the property that d(g) = A for all nonzero
elements of G.

o A (m,u,k,\)-relative difference set (RDS) in a finite group G
of order m relative to a (forbidden) subgroup U is a k-subset R
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with the property that

k g=1c
g) =< A geG\U
0 otherwise

The RDS is called semireqular if m = k = uA.

Clearly a (v, k, A\)-DSis a (v, k; kA, n+kX)-PGDS and an (m, u, k, \)
semiregular RDS is a (mu, k; A(k — 1), k(A + 1) — X\)-PGDS [26].

Group characters are powerful objects to investigate various types
of difference sets. A character x of an abelian group G is a homo-
morphism from G to the multiplicative group of the complex num-
bers. The character yo defined by xo(g) = 1 for all g € G is called
the principal character; all other characters are called nonprincipal.
We define the character sum of a subset S of an abelian group G as

X(5) = 2 ses X(8)-

Theorem 1 (Theorem 2.12 [26]). A k-subset S of an abelian group G
is a partial geometric difference set in G with parameters (v, k;a, [3)

if and only if |x(S)| = /B —«a or x(S) = 0 for every non-principal
character x of G.

For instance, let f be a p-ary bent function from the field Fy. to
F,. The set Gy = {(z, f(z)) : © € Fyn} is called graph of f. Any
non-principal character x of the additive group of F,» x [F, satisfies
IX(Gy)|? = p™ or 0. This observation yields that G is a (p"*!, p", p*" 1 —
p L p? Tt — p 4 p)-PGDS in H = Fpu x T,

Walsh transform provides interesting connections between p-ary func-
tions and difference sets. For a prime p, we define a primitive complex

p-th root of unity ¢, = e . Let f be a function from the field Fp»

to F, and let F(z) = ¢} (*) " The Walsh transform of f is defined as
follows:

~

flu) =Y Oy e Fy

CBE]Fpn

where

n—

1
Tr,(z) = Zzpl.
i=0

The convolution of F' and G is defined by
(F*G)(a)= Y F(x)G(z —a).

l‘EFpn
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We will also take advantage of the convolution theorem of Fourier anal-
ysis. The Fourier transform of a convolution of two functions is

— A~ A~
FxG=F.-d.
3. RESULTS ON VECTORIAL FUNCTIONS

Let F' be a vectorial function from Fy. to Fym. For every b € F ..,
the component function Fy of F' from F,» to F, is defined as Fy(x) =
Tr,(bF(x)). A vectorial function is called vectorial plateaued if all its
nonzero component functions are plateaued. If the nonzero component
functions of a vectorial plateaued function are s-plateaued for the same
0 < s < n then F' is called as s-plateaued following the terminology in
24].

The set Gp = {(z, F(z)) : * € Fyn} is called the graph of F'. Next
we will characterize vectorial functions by their graphs.

Theorem 2. Let ' : Fpn — Fpm be a vectorial function. Then the
graph of F is a (p"t™, p"; «, B) partial geometric difference set in H =
Fon x Fym satisfying 8 — o = 0 if and only if |Fy(a)| € {0,/0} for all
non zero b € Fym and a € Fyn. In particular, a = p*"~™ — p"™5=™ and

ﬁ — pn+s + p2n—m _ pn+s—m.

Proof. A non-principal character of Fy» x[F,m can be written as x (a5 (7, y) =

Tro(a@)+Trum (b
rlen) ) for a nonzero (a,b) € Fyn x Fym. For any nonzero

D
b € Fpn, the Walsh transform of Fj is
ﬁb(a) _ Z C}:Trn(am)+Trm(bF(:E)) — Z X(—a) (2, Fy(x))

xGFpn wE]Fpn
=X (=a,b) (GF)

for any a € F,m. Therefore |Fy(a)| € {0,v/8}] for all non zero b € Fym
if and only if Gp = {(z,F(z)) : © € Fpn} is a (p"™, p"; «, §) partial
geometric difference set satisfying § — a = 6. Using the well-known
Parseval identiy, one immediately sees that § = p"™ and |{a € Fpn :
F\b(a) # 0} = p"~° for some 0 < s < n. The parameters of a partial
geometric difference set satisfies the relation in [26] and hence we have

3n n+s, n

"= (8 —a)p"+av=p""p" + av.

Then we see that a = p?*~™ — p"*+5=™ and B = p"+s 4 p?=™m — pits—m,
]

Remark 1. Theorem 2 implies that a vectorial function F': Fpn — Fpm
is s-plateaued if and only if its graph is a partial geometric difference set
with the parameters (p"t™, p"; p? =" — prts—m pnts 4 p2n—m _ prds—m)
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Note that Theorem 2 is also valid for m = 1, i.e. the case of p-ary
functions. Since for an s-plateaued p-ary function f : Fpn — F,, the
function bf(r) is s-plateaued for each b € F7, we can consider f as a
vectorial s-plateaued function. The case s = 0 is the case of vecto-
rial bent functions and if we additionally have m = n, these vectorial
functions are known as planar functions [14].

Next we will investigate links between vectorial s—plateaued func-
tions and partial geometric difference sets.

Proposition 3. Let F : Fyn — Fym be a vectorial function. Then F is
s-plateaued if and only if

S s € Byesy = Flsba—a) - F)+ Pl = { § 4210

aE]Fpn
Proof.

I((z,y)) = {((s1,t1), (52,t2)) € Gp X Gp: x =81 — So,y =11 —ta = F(s1) — F(s2)}]
=[|{s2 €Fpn:y=F(sa+x)— F(s2)}|

So the criteria for PGDS is given by

if y # F(x),
> dla-ay-Fa)={ § {17
bt g ify=F(x)

and hence

S s €Fp:y=F(s+a—a)—F(s)+F(a)}| :{ g ﬁgi?g;

aE]Fpn

O

The above result can be associated with the derivative of an s—plateaued
function. The derivative of a vectorial function is defined by

D,F(z) = F(x 4+ a) — F(x).
To see the connection let us first replace y in the expression
y=F(s+x—a)—F(s)+ F(a)
by F(x) — ¢ for ¢ € Fn. Hence we have
c=F(s)—F(a)— F(s+x—a)+ F(z) = Ds_oF(a) — Ds_,F(x).
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This observation yields

> Hs€Fp:y=F(s+z—a)—F(s)+ F(a)}]

aGFpn

=" [{s €Fp: Dy_yF(a) — Dy_oF(z) = c}|

aern

— Z {t € Fpn: DiF(a) — DiF(x) = c}

aG]Fpn
=|{(t,a) € Fpn X Fyn: DyF(a) — D F(z) = c}|
=Np(c, x)
where Np(c,x) represents the number of pairs (¢,a) € Fyn x Fyn such
that
DyF(a) — DiF(z) =c¢
as in Section 2 of [24]. Thus we will have the following result concerning

the derivative and PGDS parameters.

Theorem 4. Let F' be a function from Fyn to Fym. Then the set Gp
is a PGDS with parameters (p"™™, p™; «, B) if and only if

a, c¢c#0
B, ¢=0

for all x € Fyn and some constants o and 3.

Np(c,x) = {

Remark 2. Using Theorem 4, Proposition 3 and Theorem 2, we are
able to prove Theorem 8i. in [24] with a different approach using the
properties of partial geometric difference sets. This gives an interest-
ing relation between the parameters of a PGDS and the second order
derivatives of (vectorial) plateaued functions.

3.1. A family of vectorial s—plateaued functions. In this section,
we will discuss the link between vectorial s-plateaued functions F'(x) =
z? from Fyn to Fyn and the cross-correlation function between two p-
ary m-sequences that differ by a decimation d. An m-sequence and
its decimation is defined by u(t) = o' and v(t) = u(dt) where o is a
primitive element of the finite field. The cross-correlation between the
sequences u and v is defined by

pt—2

9(7_) _ Z C;L(t—i-’r)—v(t)‘
t=0
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It can be ShOWIl that
E T'rp (az+zd

Z‘G]Fpn
where a = —o7. Therefore for I (x) = Tr(z?), we have
0(r) = —1 + Fi(—a). (1)

Theorem 5. Let F(x) = z? be a vectorial function from Fyn to Fyn
with ged(d, p™—1) = 1. If the cross-correlation of the p-ary m-sequences

n+s

that differ by decimation d takes three values, namely —1,—1 + p 2
and —1 —p S , then F' is a vectorial s-plateaued function.

Proof. For each b € Fy,., we denote by Fy(x) the function Fy(x) =
Tr(bF(x)) = Tr(bz?). The walsh transform

_ Z Cgrn(bxd) -0

IGIFpn

since x?

Fb(llf)

is a permutation. For each a € F}., the Walsh transform of

Fyla)= ) ¢

:EGIFpn

. Z Trn c T —7(:3:)

z€F,n

- Z ngrn(yd—uy)

ye]Fpn
= Fi(p)

where b = ¢ and 1 = a/c. Note that any b € F}. can be written as
b = ¢ for some ¢ € .. Then using Equation (1), we immediately

obtain the result that F(z) is vectorial s-plateaued.
U

Lemma 6. Let p be an odd prime and n,k be positive integers with
ged(n, k) = s. Ifn/s is odd then ged (p* — 1,d) =1 ford = (p**+1)/2
and d = p** — pF + 1.

Remark 3. There are only finitely many known functions with a three-
valued cross-correlation. Trachtenberg proved the following in his thesis
[33]. Let n be an odd integer and k be an integer such that gcd(n, k) =

—pHandd p?* —p* +1 the

n+s

s. Then for each of the decimations d

cross-correlation function 6,4(7) takes the values —1,—1 +p2
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This result is generalized later by Helleseth in Theorem 4.9 in [21].
He showed that if ged(n,k) = s and n/s is odd then for the same
decimations, 04(7) has the values —1,—1 + p"3". Our result implies
that the corresponding vectorial functions are s—plateaued.

Pott et. al. provided a classification of weakly regular bent functions
via partial difference sets, [34]. In this classification authors showed
that a function from F} to F3 when n is even satisfying f(—z) = f(z)
and f(0) = 0 is weakly regular if and only if a D; = {x : f(z) = 1} and
Dy = {z : f(x) = 2} are partial difference sets. Later in [28], the author
provided a similar classification for weakly regular bent functions from
F% to F3 when n is odd via partial geometric difference sets. Next we
will also show that our vectorial functions have a similar classification
in the case of p =3 and d = 32ng+1
Theorem 7. . Let n > 3 be an integer and d = &;1 with ged (n, k) =
s and n/s is odd. Fori=0,1,2 the sets D; = {x : F(z) = Tr,(z%) =
i} are (3m,3771 323 — 3n=2 3n-l 4 323 3n=2) partial geometric
difference sets in the additive group of Fsn.

Proof. For each a € F},., Suppose that x,(D1) = x,+y,(3 with 24,9, €
R. Actually, when we are calculating x, (D), we are summing powers of
(3 as many times as the number of elements in D; for which Tr,(az) =
0,1 or 2. In other words, if we set

Dy, ={x €Dy :Tr(z)=1},i=0,1,2
we have
Xa(D1) = |D1o|+|D11|¢+|D1 2

and hence

(3 = (|D1ol—=|D12))+ (| D1l —|D12])¢s

To = |D1o| = [D12ls Yo = [D1a| — [Di 2|
are both in Z. Also note that for any = € Fsn,
Fy(~2) = Tr((~2)!) = Tr(-a") = —Fi(z)

and that gives us
T € Dy < 2z € D,.

As a consequence, X.(D2) = Xo(D1) = 24 + ya(3. Since D;’s form a

partition of the additive group of Fsn
Xa(Do) + Xa(D1) + Xa(D2) = 0,

and we obtain
Xa(DO> = Ya — 25(70,
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Consider the Walsh transform values E(a), 27\1(—

Trn( ax—l—:p
=2 G

z€F3n
= Xa(Do) + C3Xa(D1) + (3 xa(D2)
= Yo — 220 + C3(Za + Yal3) + G5 (Ta + Yal3)
= Ya — 2xa + C3<xa + ya) + Cg(xa + ya) = _3xa

a) of Fy(x) = Try(x?).

and

Z Trn( am—l—:vd)

2€Fan
= X—a(Do) + Csx—a(D1) + (X —a(D2)
= Xa(Do) + C3Xa(D1) + CGxa(D2)
= Xa(Do) + Gaxa(D2) + G Xa(D1)
= Yo — 274 + G3(Ta + YaC3) + G5 (Ta + Yals)
= 3(Ya — Za)-

Since Fi(a), Fy(—a) € {0, £3(+9)/2},

(xaa ya) S {(07 0)7 (07 C)? (07 _C>7 (C, C), (07 0)7 (Cv 20)7 (_Cv _C)v (—C, _20>7 (_C7 0)}

where C' = 3("+52)/2_ Tn the following table values of x4 (Do), Xa(D1), Xa(D2), Wr(a), Wg(—

corresponding to each possible (z,,y,) tuple is given.

0.0 0.0 0.0 [C.O 0] €20 [(=C-0)[(=C,—20) [ (=C.0)
WDy 0 [ ¢ | =¢ [ = | =0 0 c 0 5C
Xa(D1) | 0 C¢ | —C& | -C3 | C [C¢G—C4 CG CE-Ci | —C
Xa(D2) | O G | —CG | —C¢ C [CG—C¢ C(3 Ciz—-CG | —C
Fi(a 0 0 0 -3C -3C -3C 3C 3C 3C
Fi(—a)| 0 | =3¢ | 3¢ | -0 | -3C 3C 0 “3C 3C

The tuples (C,2C) and (—C, —2C') are impossible since

Xa(D1)] = v/ 22

— TaYa + ya

V302 =

\/3n+s 1

which contradicts the fact that |y,(D;)| € Z since n + s — 1 is odd.

Therefore the sets Dq, Dy are PGDS.

Next we will show that the tuples (C,0) and (—C,0) are also impos-

sible.

a)
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First note that 27\1(0) = 0 since the function Tr(z%) is balanced. For
a non-zero element a the following holds

E(a)ﬁ\l(_a) =Xa(Do)Xa(Do) + (pXa(Do)Xa(D2) + C;(Xa(DO)Xa(DI))
+ GXa(Do)Xa(D1) + ¢ Xa(D1)Xa(D2) + (Xa(D1)Xa(D1))
+ ¢ (Xa(Do)Xa(D2)) + (Xa(D2)Xa(D2) + {pXa(D1)Xa(D2)
= (Xa(D0)Xa(Do) + Xa(Do)Xa(D1) + Xa(D1)Xa(D1)) (2 = & — )
= 3 (Xa(Do)Xa(Do) + Xa(Do)Xa(D1) + Xa(D1)xXa(D1))
= 3 (Xa(Do)Xa(Do) = Xa(D1)xXa(D2))

We need the following auxiliary lemma.

Lemma 8. Let S be a k—subset of an abelian group G of order v.
Then

v—1

ZXi(SS_I) - ixi(ke + Z agg) = vk.

=0 geG—e

Proof. In the group ring ZG the product SS™! =k -e + deG—e ag - g
where a, € Z. Then

v—1 v—1
D557 =3 xilke+ D ag9)
i=0 =0

geG—e
v—1 v—1
=2 ke + 3 a3 xilo)
i=0 geG—e i=0
= vk

This holds since for any ¢ € G — e we have Zf;ol xi(g) = 0 and

Z;:ol xi(e) = v.
O

Using the previous lemma for S = Dy, Dy separately, we obtain

Z ﬁ;(a)ﬁ(—a) =3 Z (Xa(Do)Xa(Do) = Xa(D1)xXa(D2))

a€lF3n a€lF3n
=3 Y xa(DoDy') =3 > xa(DiD )
aEIFg,n GGFSTL

=3.3".3"1—3.3".3"!
=0
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On the other hand, using the values from the table, we can also write

> Fila)Fi(—a) = 9(A; + Ay)C?

(IG]FSTL

where Ay = [{a € Fi. 1 (24,9.) = (C,0)},As = [{a € F%. @ (x4, va) =
(—C,0)}|. This implies that for any a € Fi., (z4,y.) # (C,0), (—=C,0)
and hence Dy is also a PGDS. ]

Remark 4. By Theorem 5 we have PGDS with parameters (v = p*", k =
proa=pt—p* B = pt4+p" —p°). If p = 3 then by Theorem 7 we also
have PGDS with parameters (v = 3",k =3""1, a =323 -3"2 3 =
3n~l 4 3273 — 3772), Here we also note that not all decimation will
lead such a partition of the finite field F3.. For instance, let D; = {z :
F(z) = Tr,(x?) =i} for d = 32 — 3 + 1. Then computational results
imply that none of the D;’s is a partial geometric difference set in Fss.
In general, it is a challenging task to characterize all functions which
can be used to obtain a partition of a group into partial geometric
difference sets.

If there is such a partition we can define a set of complex vectors

2o = (Xa(Do); Xa(D1), Xa(D2))
for any a € Fsn. Let
e=(1,(,G3).
Then norm of the complex inner product of any vector z, and e is either
0 or C' for some integer C.

n+s—1

Theorem 9. Let Dy, Dy and Dy be a partition of Fsn and A =3 2
be an integer. Suppose for i = 0,1,2 each D; is a partial geometric
difference set such that x.(D;) € {0,%\ +A(3,£AZ} for each non-
principal character x,. If one of the cases holds
o [Do| = |D| = [Ds],
o |Di| = |D;| =31 =35 and |Dy| = 3" +2.3"5 7,
nts—2 nts—2

o |D;|=1|D;|=3"1+3"2 and|Dy=3"1-23"2 .
and | < zq,e > |? is either 0 or 3)\* then

0, T € DO
f(l') = 1, T € Dl
2, T € 1)2

15 an s-plateaued function.
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Proof. The Walsh transform

= > d“ = Dol + G|D:| + G| D).

z€Fyn

With the conditions given in the theorem, we obtain

R 0 if [ Do| = |D1| = [ Dy,
f0)=43%"  if|Di =|D;| =3"" -

n+s

—3"8" if |Dy| = |Dy| = 3" 1+3

n+s 2 n+s 2

Dy =371 +2.3
Dy = 371 — 2.3%5

n+s 2 n+s 2

For each a € F3,, the Walsh transform of f(z) is

f(a) _ Z g?) —Trn(ax)

z€F,n
_ Z CT'rn —ax) + <3 Z Trn(—ax) + Cg Z CT'rn —azx)
x€Dg reDq z€Do

= X-a(Do) + GX-a(D1) + GGx—a(Ds).

Then with the assumptions of the theorem and after some easy calcu-
lations one can show that |f(a)|? € {0,3A?}. O

4. RESULTS ON P-ARY FUNCTIONS

In this section we will develop some tools to characterize p—ary
s—plateaued functions. Our results are mimicking the results of [27].

Lemma 10. Let f be a function from Fyn to F, and M = (m,,) be a

p" X p" matriz where my, , = Cg(ﬁy)

if and only iof

. Then, f is an s-plateaued function

MM*M = p"M (2)

where M* is the adjoint of the matrixz M.
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Proof. Suppose f is an plateaued function with |f(z)| € {0, p(+)/2}
for all x € Fyn. Then,

(MM*M)ay = > [ D maemzg | me,

2€F,n c€lfpn

=> | Y. Fa+oF(z+o) | Fz+y)

2€F,n c€lfpyn

= Z F(z+c¢) Z F(w)F(w+y —c)

= S (FxF)e—y)Fla+0)
= Z (F+F)(u—12—y)F(u)

= ((FxF)xF)(z+y).
Let A= (F*F)*F. Then, the Fourier transform of A is A=F.F-F.
Now by Fourier inversion

Aw+y) == 3 B@F@E) R o)
BEF n

~

1
=it — Z F(@)(})Tr((wy)ﬁ)

ﬂE]Fpn
=p"F(z +y).

Hence the equation holds. o

Suppose M M*M = p"**M. This implies ((FxF)*F)(x) = p" T F(x)
for all z € F,». Apply the Fourier transform on both of the sides. Then,

F(a)(F(x) - Fx) = p™*) =0

for all z € Fyn. Hence, |F(z)] € {0, p™)/2} for all = € F .
O

Remark 5. An n x n complex matrix M is called a Butson-Hadamard
matrix if

MM* =nl,.
It is easy to see that a ¢ x ¢" Butson-Hadamard matrix M also satisfies

MM*M = g™ M.
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Our result implies that M can be associated with 0—plateaued func-
tion. This indicates the well-known connection between Butson-Hadamard
matrices and bent functions.

As a corollary of Lemma 10, we can characterize s-plateaued func-
tions with their first and second derivatives. First and second derivative
of a p—ary function is defined by

Dof(z) = f(x+a) = f(x)
and
DoDyf(x) = f(z +a+b) + f(x) — flz+a) = f(z +b)
respectively.

Corollary 11 (Theorem 3, [24]). f is an s-plateaved function from Fyn

to F,, if and only if the expression Cp Do) does not depend

a,bEFPn
on u € Fyn. This constant expression equals to p"**.

Proof. Since the equation
MM*M = p"**M
holds,
M*MM* — pn+sM*

holds too. Fix two non-zero elements x and y of Fy» and let u = x +y.

Z Z My Mz | May = Z Z ¢ faracfGre | (i)

2€F,n \ c€Fyn 2€F,n \ c€Fpn

— Z <];f(ﬂc+6)+f(Z+6)*f(Z+y)
¢,2€F pn

— pn+s<;f(w+y)

Now let z =a+ 2z and ¢ = b+ y. Then

pn+s _ Z Cp—f(z+y+b)+f(a+b+:p+y)—f(a+o:+y)+f(:p+y)
a,b€Fn
holds. Thus,

P = Z C;?anf(U)'

a,bEFpn

U

Corollary 12. Let Aj(a) = ZIGFM é)“f(w). f is an s-plateaved func-
tion from Fpn to F, if and only if Zaern As(a)As(a) = p2ts
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Proof. We have
MM*MM* = p™ s MM*.
Let
N = MM"*.
Then

(Wa= 3 (fe-tiero

IEFpn

= Ay(a)

and

(Moo= 3 fiero-1

IEFpn

Therefore

l

Now we will use our characterization to provide a simple construction
of s-plateaued functions. If A is an m X n matrix and B is an s X t
matrix, then the Kronecker product A® B is the ms x nt block matrix:

CL11B cee alnB
A®B= : : :

CLmlB cee amnB
Proposition 13. Let f : Fpn — F, and g : Fpm — F,, be si-plateaved

and sa-plateaued functions respectively. Let M and N be the matrices

whose entries determined by m,, = e gnd Nap = It Lot
P=M® N be the Kronecker product of M and N. Then

PP*P — pn+m+s1+52P
holds.
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Proof. Let P =M @ N. Then
PP*P=(M®N)(M"® N*)(M & N)
=(MM*"M)® (NN*N)
(pn+S1M) ® (persz N)
prmtsitse (V@ N)
n+msi+se p

=P
=P

O
Corollary 14. Let f : Fpn — F, and g : Fym — F,, be two s -plateaued

and sq-plateaved functions respectively. Then there exists an (s + S2)-
plateaved function from Fpnim to ).

Proof. Let M and N be matrices associated with f and ¢ such that
Mgy = Q{(Hy) and ng,p, = C;,’(“*”). Let P = M ® N. We need to
show that there exist a function h such that the entries of P can be
associated with h.

We will index the rows and columns of P by the elements of Fpynim.
First note that there is a subgroup H of the additive group of Fynm
which is isomorphic to the additive group of F,m. Let us fix a transver-
sal T'= {71,72, ..., Ypn } of this subgroup in Fn+m. Now order the rows
and columns of P by v1 + H, 2 + H, ..., vp» + H in the block form.
Here we have isomorphisms namely

¢1:H_>Fpm,
and
¢2 : {71+H772+H7---;7p”+H}%]Fpn

If 2,y € Fyntm then x = v; + v and y = 7; + v for unique elements
u,v € H. Now let us examine the xy-th entry of P.

P, = Cg(¢>2('yz~+H)+¢2(w+H)) . Cg(¢1(U)+¢>1(v)) - Cg(ﬂy)

where h is the desired (s; + s2)-plateaued function from Fpn+m to F,.
Moreover if y = 0 then v; = v = 0. Thus

h(z) = f(d2(vi + H)) + g(¢r(u)).
0

4.1. Partially bent functions. This section is devoted to investigate
a family of s—plateaued functions known as partially bent functions.
A p—ary function is called partially bent if the derivative D, f is either
balanced or constant for any a € F,.. Here we will provide some
characterization via their associated designs.
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Let f be an s-plateaued function and for a € Fj» define the set
T,={z+a, f(z)+ fla):x € Fpn}.
Fix an element a of IF,», then the graph of f can be also written as
Gy ={(&,f(a)) :a €Fp} = {(z +a, flx+a) i € Fyn}.

Lemma 15. Let f be an s-plateaued function with f(0) = 0. If f has
a linear structure A then T, = Gy for all a € A.

Corollary 16. Let f be an s-plateaued function with f(0) = 0 and
linear structure A of dimension m. Then the incidence matriz A of
the design associated with the partial geometric difference set Gy can
be written as a Kronecker product of 1 x p™ all-ones matrixz 7 and an
incidence matriz N of a partial geometric design.

Proof. Let j be the 1 x p™ all-ones matrix. Let D be the block design
associated with Gy where the point set is F,» x F, and the blocks are
the translates of the graph of f. Suppose B is a block in D. Note that
B = (u,v) + Gy for some (u,v) € Fyn x F,,. Then for each a € A we
have
B+ (a f(a)) =B
since
(u,v)+Gr={(z+u+a, f(r+a)+v):zeFpm}

Thus each block is repeated p™ many times. Therefore, A = j @ N
for some incidence matrix N. Now we are going to show that N is an
incidence matrix of a partial geometric design. Since A is an incidence
matrix of a partial geometric design,

AAtA — (6 - @)j ® N + OéJanpn
=@ (8= )N+ aj @ Jynxpn—m
=J® (B = a)N + adyuypn-m.

We also have

AA'A = jj'f @ NN'N
=p"j® NN'N
=j®p™NN'N.

By comparing the left hand sides we can conclude that the equation
(8- 0)
pm
holds. 0

[0
NNtN — N+ ]Q_W(]anpn_m
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Let f be an s-plateaued function from [Fj» to F,. Then the set Dy is a
PGDS with parameters (p"*!, p; p?n=1 —prts=l p2n=l_ pnds—l 4 pnos)
If f is a partially bent function then there is an integer s > 0 such
that f is s-plateaued and the linear space of f has dimension s. Our
observation yields the following result.

Corollary 17. If f is partially bent function then f can be associated
with a partial geometric design with parameters

v = pn—&-l, h= pn—Q—l—s, k= pn’ r= pn—s, o= p2n—1—s_pn—1,ﬁ — pn+p2n—1—s

REFERENCES

[1] E. F. Assmus and J. D. Key. Designs and their Codes. Cambridge University
Press, No. 103. (1992).

[2] A. Bernasconi, B. Codenotti, and J. M. Vanderkam. A characterization of bent
functions in terms of strongly regular graphs. IEEE Transactions on Computers,
Sep 1(9): pp. 984-5 (2001).

[3] T. Beth, D. Jungnickel, and H. Lenz. Design Theory, Cambridge University
Press, second edition, (1999).

[4] A. E. Brouwer, O. Olmez and S. Y. Song. Directed strongly regular graphs from
lé—designs. European Journal of Combinatorics, 33(6): pp. 1174 -1177 (2012).

[5] M. Buratti, Y. Wei, D. Wu, P. Fan, and M. Cheng: Relative difference fam-
ilies with variable block sizes and their related OOCs. IEEE Transactions on
Information Theory, 57: pp. 7489-7497 (2011).

[6] C. Carlet and E. Prouff. On plateaued functions and their constructions. In Fast
Software Encryption, Springer: pp. 54-73 (2003).

[7] A. Canteaut, C. Carlet, P. Charpin, C. Fontaine. On cryptographic properties
of the cosets of r(1,m). IEEE Transactions on Information Theory 47(4), pp.
1494-1513 (2001).

[8] C. Carlet. Partially-bent functions. Designs, Codes and Cryptography 3(2), pp.
135-145 (1993).

[9] C. Carlet. Boolean functions for cryptography and error correcting
codes.Boolean models and methods in mathematics, computer science, and en-
gineering 2, pp. 257-397 (2010).

[10] C. Carlet. Boolean and vectorial plateaued functions and APN functions. IEEE
Transactions on Information Theory 61(11), pp. 6272-6289 (2015).

[11] C. Carlet and S. Mesnager. Four decades of research on bent functions. Designs,
Codes and Cryptography 78(1), 5-50 (2016).

[12] C. Carlet, S. Mesnager, F. Ozbudak, A. Smak. Explicit characterizations for
plateauedness of p—ary (vectorial) functions. In: Second International Confer-
ence on Codes, Cryptology and Information Security (C2SI-2017), In Honor of
Claude Carlet. pp. 328-345 (2017).

[13] A. Cesmelioglu, W. Meidl, A. Topuzoglu. Partially bent functions and their
properties. In: Larcher, G., Pillichshammer, F., Winterhof, A., Xing, C. (eds.)
Applications of Algebra and Number Theory, pp. 22-40. Cambridge University
Press, Cambridge (2014).

[14] R.S. Coulter, R.W. Matthews. Bent polynomials over finite fields. Bulletin of
the Australian Mathematical Society 56(3), pp. 429-437 (1997).



GRAPHS OF VECTORIAL PLATEAUED FUNCTIONS AS DIFFERENCE SET20

[15] F. R. K. Chung, J. A. Salehi, and V. K. Wei. Optical orthogonal codes: design,
analysis, and applications. IEEE Transactions on Information Theory, 35: pp.
595-604 (1989).

[16] Ph. Delsarte. Weights of linear codes and strongly regular normed spaces.
Discrete Mathematics, 3(1): pp. 47-64 (1972).

[17] J. F. Dillon. Elementary Hadamard difference sets. PhD thesis, University of
Maryland, (1974).

[18] T. W. Cusick, C. Ding and A. Renvall. Stream Ciphers and Number
Theory. North-Holland Mathematical Library, The Netherlands: North-
Holland/Elsevier, Amsterdam, vol. 55. (1998).

[19] C. Ding. Linear codes from some 2-designs. IEEE Transactions on Information
Theory, 61(6): pp. 3265-3275 (2015).

[20] C. Ding. Codes from difference sets. World Scientific Publishing Company,
(2015).

[21] T. Helleseth. Some results about the cross-correlation function between two
maximal linear sequences, Discrete Mathematics 16, pp. 209-232 (1976).

[22] S. Mesnager. Characterizations of plateaued and bent functions in character-
istic p. In: International Conference on Sequences and Their Applications. pp.
72-82 (2014).

[23] S. Mesnager. Bent functions: Fundamentals and Results. Switzerland,
Springer, pp. 1-544 (2016).

24] S. Mesnager, F. Ozbudak, A. Smak. Results on characterizations of plateaued
functions in arbitrary characteristic. Cryptography and information security in
the Balkans, BalkanCryptSec 2015, Koper, Slovenia, Revised Selected Papers.
In: Pasalic E., Knudsen L.R. (eds.) LNCS 9540, pp. 17-30. Springer, Berlin
(2016)

[25] S. Mesnager, F. Ozbudak, A. Smak. On the p-ary (cubic) bent and plateaued
(vectorial) functions. Des. Codes Cryptogr., vol 86 (8), pp 1865-1892 (2018).
[26] O. Olmez. Symmetric 1%—designs and 1%—difference sets. J. Combin. Designs.

vol. 22, No. 6, pp. 252-269, (2014).

[27] O. Olmez. Plateaued functions and one-and-half difference sets. Designs, Codes
and Cryptography, Sep 1 vol. 76, No. 3, pp. 537-49, (2015).

[28] O. Olmez. A link between combinatorial designs and three-weight linear codes.
Designs, Codes and Cryptography, 86(4), pp. 817-833 (2018).

[29] A. Pott. Finite Geometry and Character Theory, Springer, 1995.

[30] A. Pott. Nonlinear functions in abelian groups and realtive difference sets.
Discrete Applied Mathematics, 138 (1-2), pp.177-193 (2004).

[31] A. Pott, Y. Tan, T. Feng, and S. Ling. Association schemes arising from bent
functions. Designs, Codes and Cryptography, 59(1), pp. 319-331 (2011).

[32] O.S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A,
20(3), pp. 300-305 (1976).

[33] H. M. Trachtenberg. On the cross-correlation functions of maximal linear se-
quences. Ph. D Dissertation, University of Southern California, Los Angeles,
CA (1970).

[34] Y. Tan, A. Pott, and T. Feng. Strongly regular graphs associated with ternary
bent functions. Journal of Combinatorial Theory, Series A, 117(6), pp. 668-682
(2010).



GRAPHS OF VECTORIAL PLATEAUED FUNCTIONS AS DIFFERENCE SET21

[35] Y. Zheng, X. M. Zhang. Plateaued functions. In: ICICS. vol. 99, pp. 284-300
(1999).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ANKARA UNIVER-
SITY, TANDOGAN, ANKARA, 06100, TURKEY.
E-mail address, O. Olmez: oolmez@ankara.edu.tr



