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Abstract

In this paper we introduce the notion of λ-constacyclic codes over finite rings R for arbitary ele-

ment λ of R. We study the non-invertible-element constacyclic codes (NIE-constacyclic codes) over

finite principal ideal rings (PIRs). We determine the algebraic structures of all NIE-constacyclic

codes over finite chain rings, give the unique form of the sets of the defining polynomials and obtain

their minimum Hamming distances. A general form of the duals of NIE-constacyclic codes over

finite chain rings is also provided. In particular, we give a necessary and sufficient condition for

the dual of an NIE-constacyclic code to be an NIE-constacyclic code. Using the Chinese Remain-

der Theorem, we study the NIE-constacyclic codes over finite PIRs. Furthermore, we construct

some optimal NIE-constacyclic codes over finite PIRs in the sense that they achieve the maximum

possible minimum Hamming distances for some given lengths and cardinalities.

Keywords: finite commutative PIR; finite commutative chain ring; constacyclic code; minimum

Hamming distance.
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1 Introduction

Codes over finite rings have intrigued a lot of researchers thanks to the discovery that some

important families of binary non-linear codes are in fact images under a Gray map of linear codes

over Z4 (see, for example, [2,14,18]). In particular, the class of constacyclic codes, which contains

the well-known class of cyclic and negacyclic codes is interesting for both theoretical and practical

aspects. In the past few decades, scholars have been interested in λ-constacyclic codes over finite

rings where λ is invertible. A constacyclic code is called a simple-root code if the characteristic of

the finite ring is relatively prime to the length of this code; otherwise it is called a repeated-root

code. Dinh and López-Permouth [7] studied the simple-root cyclic codes and negacyclic codes and

their duals over a finite chain ring. As the decomposition of polynomials over finite rings is not

unique, the structure of repeated-root constacyclic codes over finite rings is more complex. Since

2003, some special classes of repeated-root constacyclic codes over certain finite chain rings have

been studied by a lot of authors (see, for example, [1, 3–6, 8–10,12, 13, 15, 16, 21]).

∗E-Mail addresses: hwliu@mail.ccnu.edu.cn (H. Liu), jinggeliu@mails.ccnu.edu.cn (J. Liu).
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All previous studies on λ-constacyclic codes only considered the case when λ is invertible. In

this paper, we define the notion of λ-constacyclic codes where λ is non-invertible. When λ is non-

invertible, we can determine the algebraic structures of all λ-constacyclic codes over finite chain

rings and give a characterization the dual codes of such λ-constacyclic codes. But the minimum

Hamming distances of such codes are not good, actually all nonzero λ-constacyclic codes have

minimum Hamming distance one. However, when we focus on λ-constacyclic codes over finite

PIRs, where λ is non-invertible, there exist some optimal codes in the sense that they achieve the

maximum possible minimum Hamming distances for some given lengths and cardinalities.

Based on this motivation, we generalize the concept of λ-constacyclic codes over finite rings to

the case where λ is arbitrary. When λ is non-invertible, then we call such λ-constacyclic codes

as NIE-constacyclic codes. We study the NIE-constacyclic codes over finite PIRs. Firstly, we

determine the algebraic structures of all NIE-constacyclic codes over finite chain rings, obtain the

minimum Hamming distance, and give a general form of the duals of such codes. In particular, we

provide a necessary and sufficient condition for the dual of an NIE-constacyclic code to be an NIE-

constacyclic code. Moreover, by the Chinese Remainder Theorem, the algebraic structures and the

minimum Hamming distances of NIE-constacyclic codes over finite PIRs can be easily obtained. It

is worth mentioning that we find some optimal codes in the family of NIE-constacyclic codes over

finite PIRs.

This paper is organized as follows. Some necessary background materials are given in Section 2.

In Section 3, we determine the algebraic structures of all NIE-constacyclic codes over finite chain

rings, give the unique form of the sets of the defining polynomials, obtain the minimum Hamming

distance and provide a general form of the duals of such codes. A necessary and sufficient condition

for the dual of an NIE-constacyclic code to be an NIE-constacyclic code is also presented in Section

3. We obtain the algebraic structures and the minimum Hamming distances of NIE-constacyclic

codes over finite PIRs and construct some optimal NIE-constacyclic codes over finite PIRs in

Section 4.

2 Preliminaries

2.1 Finite Chain Rings and Finite PIRs

Let R and R′ be two finite commutative Frobenius rings, n be a positive integer and ρ : R → R′

be a surjective homomorphism. Then ρ : R → R′ can also denote the following three extended

maps

ρ : Rn → R′n,

ρ : R[x] → R′[x],

ρ : R[x]/〈xn − λ〉 → R′[x]/〈xn − ρ(λ)〉

in the usual way. It is easy to see that ρ : Rn → R′n, ρ : R[x] → R′[x] and ρ : R[x]/〈xn − λ〉 →

R′[x]/〈xn − ρ(λ)〉 are surjective.

Let R be a finite Frobenius ring with identity. A finite ring with identity is called a local ring

if it has a unique maximal ideal M and a chain ring if its ideals are linearly ordered by inclusion.

Then the following proposition holds.

Proposition 2.1. ( [7]) For a finite ring R with identity, the following statements are equivalent:
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(1) R is a local ring and the (unique) maximal ideal M of R is principal, i.e., M = γR for some

γ ∈ R.

(2) R is a local PIR.

(3) R is a chain ring and all its ideals are given by

{0} = γeR $ γe−1R $ · · · $ γR $ γ0R = R,

where e is the nilpotency index of γ. Moreover, R/γR is a finite field (called the residue

field of R) and |γlR| = |R/γR|e−l for 0 ≤ l ≤ e. (Throughout this paper, |A| denotes the

cardinality of the set A.)

Note that when we take γ = 0, then the nilpotency index of γ is e = 1. The finite chain ring

with the maximal ideal {0} is a finite field.

Let R be a finite chain ring with the maximal ideal γR and let

¯ : R −→ R/γR,

a 7−→ a+ γR

be the canonical projection of R onto its residue field.

In the following of this paper, we use the notation R to denote the finite commutative chain

ring with the maximal ideal γR, where e is the nilpotency index of γ. Then R/γR is isomorphic

to a finite field Fq for some prime power q = pm, where p is a prime.

Proposition 2.2. ( [17], [19])

(1) The characteristic of R is pl, where 1 ≤ l ≤ e. Moreover, we have |R| = qe.

(2) There exists an element ζ ∈ R having the multiplicative order q − 1. Moreover, the cyclic

subgroup generated by ζ is the only subgroup of the unit group of R, which is isomorphic to

Fq\{0}. TR := {0, 1, ζ, ζ2, . . . , ζq−2} is a complete set of coset representatives modulo γR

which is called the Teichmüuller set of R.

(3) Any element a ∈ R can be uniquely expressed as

a = a0 + a1γ + a2γ
2 + · · ·+ ae−1γ

e−1, (2.1)

where a0, a1, . . . , ae−1 ∈ TR. Moreover, a is a unit of R if and only if a0 6= 0.

For any integer 1 ≤ j ≤ e, we define the map µj by

µj : R −→ R/γjR,

a 7−→ a+ γjR.

Then µj is a surjective homomorphism from R to R/γjR. For any a ∈ R and any integer 1 ≤ j ≤ e,

let a〈j〉 denote a+ γjR and Rj denote µj(R). It is obvious that µ1 is the canonical projection ¯ of

R, R1 = R = R/γR ∼= Fq and µe is the identity map of R, Re = R.

Theorem 2.1. For any integer 1 ≤ j ≤ e, Rj = R/γjR is a finite chain ring with the maximal

ideal generated by γ〈j〉 and j is the nilpotency index of γ〈j〉. Moreover, we have the following.
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(1) Rj/γ〈j〉Rj
∼= Fq and |Rj | = qj.

(2) ζ〈j〉 ∈ Rj has the multiplicative order q−1. The cyclic subgroup generated by ζ〈j〉 is isomorphic

to Fq\{0}. TRj
= {0, 1, ζ〈j〉, ζ

2
〈j〉, . . . , ζ

q−2
〈j〉 } is a complete set of coset representatives modulo

γ〈j〉Rj.

(3) For any a, b ∈ TRj
, a− b is 0 or invertible. Any element b ∈ Rj can be uniquely expressed as

b = b0 + b1γ〈j〉 + b2γ
2
〈j〉 + · · ·+ bj−1γ

j−1
〈j〉 , (2.2)

where b0, b1, . . . , bj−1 ∈ TRj
.

Proof. It is obvious that γj〈j〉 = 0. If γk〈j〉 = 0 for some nonnegative integer k, then γk ∈ γjR,

which means that k ≥ j. As a result, j is the nilpotency index of γ〈j〉.

It is easy to see that ker(µj) = γjR. Let S = { U | U is an ideal of R and U ⊇ γjR } and

T = { V | V is an ideal of R/γjR }. By the Ideal Correspondence Theorem, the map induced

by µj is a bijective map betweens S and T . Note that S = { γkR | 0 ≤ k ≤ j }. Then we have

T = µj(S) = { γk〈j〉Rj | 0 ≤ k ≤ j }. So {0} = γj〈j〉Rj $ γj−1
〈j〉 Rj $ · · · $ γ〈j〉Rj $ γ0〈j〉Rj = Rj

are all ideals of Rj , which means that Rj = R/γjR is a finite chain ring with the maximal ideal

generated by γ〈j〉.

(1). Let φj be the following map

φj : Rj = R/γjR −→ R1 = R/γR,

a+ γjR 7−→ a+ γR,

for any a ∈ R. It is clear that φj is a well-defined surjective homomorphism and ker(φj) = γ〈j〉Rj .

Then Rj/γ〈j〉Rj
∼= R/γR ∼= Fq and |Rj | = qj by Proposition 2.2.

(2). Note that ζq−1
〈j〉 = (µj (ζ))

q−1
= µj

(
ζq−1

)
= µj (1) = 1〈j〉. If ζk〈j〉 = 1〈j〉 for some

1 ≤ k < q − 1, then ζk − 1 ∈ γjR ⊆ γR. Thus ζk + γR and 1 + γR are the same coset of R

modulo γR, which is a contradiction. Hence, ζ〈j〉 ∈ Rj has multiplicative order q−1 and the cyclic

subgroup generated by ζ〈j〉 is isomorphic to Fq\{0}. By Proposition 2.2, {0, 1, ζ〈j〉, ζ
2
〈j〉, . . . , ζ

q−2
〈j〉 }

is a complete set of coset representatives modulo γ〈j〉Rj .

(3). It follows from Proposition 2.2.

Remark 2.1. For any integer 1 ≤ j ≤ e, we have proved that

φj : Rj = R/γjR −→ R1 = R/γR,

a+ γjR 7−→ a+ γR, ∀ a ∈ R

is a well-defined surjective homomorphism and ker(φj) = γ〈j〉Rj. Then Rj/γ〈j〉Rj
∼= R/γR ∼= Fq.

Thus
Φj : Rj = Rj/γ〈j〉Rj −→ R = R/γR,

a〈j〉 = a〈j〉 + γ〈j〉Rj 7−→ a = a+ γR, ∀ a ∈ R

is an isomorphism from the residue field of Rj onto the residue field of R.
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2.2 Codes over Finite Rings

Let R be a finite Frobenius ring with identity and n be a positive integer. We call a nonempty

subset C of Rn a code of length n over R and the ring R is referred to as the alphabet of C. If C

is an R-submodule of Rn, then C is said to be linear. The dual of C is defined as

C⊥ = {v ∈ Rn| 〈c,v〉 = 0, ∀ c ∈ C},

where 〈c,v〉 denotes the usual inner product of c and v.

For any codeword c = (c0, c1, . . . , cn−1), define supp(c) to be the set {i | ci 6= 0, 0 ≤ i ≤ n− 1}.

The Hamming weight of c is the cardinality of the set supp(c) and is denoted by wt(c). The

Hamming distance of two codewords a,b is the number of places where they differ, and is denoted

by d(a,b). The minimum Hamming distance of a linear code C, denoted by d(C), is the minimum

Hamming weight of nonzero codewords of C. If C is a zero code, we let d(C) = n+ 1.

For an element λ of R, the λ -constacyclic (λ -twisted) shift τλ on Rn is the shift

τλ(x0, x1, · · · , xn−1) = (λxn−1, x0, x1, · · · , xn−2).

Let τ0λ(x) = x for any x ∈ Rn.

Definition 2.1. Let λ be any element of R. A linear code C is said to be a λ -constacyclic code

if τλ(C) ⊆ C. When λ is non-invertible, then we call such λ-constacyclic codes as non-invertible-

element constacyclic codes (NIE-constacyclic codes).

Remark 2.2. The 1-constacyclic codes are the cyclic codes and the (−1)-constacyclic codes are

just the negacyclic codes. When λ is a unit of R, then τλ is a bijective R-linear map and a linear

code C is λ -constacyclic if and only if τλ(C) = C. When λ is non-invertible in R, τλ is an

R-linear map which is neither injective nor surjective.

Let f(x) be a polynomial overR and let deg f(x) denote the degree of f(x). Under the standard

R-module isomorphism

Rn −→ R[x]/ 〈xn − λ〉 ,

( c0, c1, · · · , cn−1 ) 7−→ c0 + c1x+ · · ·+ cn−1x
n−1 + 〈xn − λ〉 ,

each codeword c = ( c0, c1, · · · , cn−1 ) can be identified with its polynomial representation

c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R [x] , deg c(x) 6 n− 1,

and each λ-constacyclic code C of length n over R can also be viewed as an ideal of the quotient

ring R[x]/ 〈xn − λ〉 . In the light of this, the study of λ-constacyclic codes of length n over R is

equivalent to the study of ideals of the quotient ring R[x]/ 〈xn − λ〉 .

In the following of this section, let the notations be as in Subsection 2.1 and n be a positive

integer. Recall that R is a finite commutative chain ring with the maximal ideal γR and e is the

nilpotency index of γ.

Definition 2.2. Let C be a code of length n over the finite chain ring R. For 0 ≤ i ≤ e− 1, define

Tori(C) = {v | γiv ∈ C, v ∈ Rn}.

T ori(C) is called the ith torsion code of C. Tor0(C) = C is usually called the residue code and

sometimes is denoted by Res(C).

5



Clearly, Tori(C) is a code of length n over the finite field R ∼= Fq. It is easy to see that

Tor0(C) ⊆ Tor1(C) ⊆ · · · ⊆ Tore−1(C).

Proposition 2.3. ( [20]) For a linear code C over R, we have |C| =
∏k−1

i=0 |Tori(C)|.

Lemma 2.1. Let C be a linear code over R, then for all j > i, we have Tori(C) = Φj

(
Tori

(
µj(C)

))
.

Proof. Let v ∈ Tori
(
µj(C)

)
, then there exists w ∈ Rn such that γi〈j〉w〈j〉 ∈ µj(C) and w〈j〉 =

v. Since γi〈j〉w〈j〉 = (γiw)〈j〉 ∈ µj(C), there exists z ∈ Rn such that γiw + γjz ∈ C. Thus

γi(w+ γj−iz) ∈ C, which leads w ∈ Tori(C). By Remark 2.1, Φj(v) = Φj(w〈j〉) = w ∈ Tori(C).

Thus, Φj

(
Tori

(
µj(C)

))
⊆ Tori(C).

Conversely, suppose that ν ∈ Tori(C), then there exists ω ∈ Rn such that γiω ∈ C and

ω = ν. Then µj(γ
i
ω) = γi〈j〉ω〈j〉 ∈ µj(C), which implies that ω〈j〉 ∈ Tori

(
µj(C)

)
. By Remark

2.1, Φ−1
j (ν) = Φ−1

j (ω) = ω〈j〉 ∈ Tori
(
µj(C)

)
. This means that Φ−1

j

(
Tori(C)

)
⊆ Tori

(
µj(C)

)
. It

follows that Tori(C) ⊆ Φj

(
Tori

(
µj(C)

))
.

As a result, Tori(C) = Φj

(
Tori

(
µj(C)

))
.

3 Constacyclic Codes over Finite Chain Rings

Throughout this section, let the notions be as in Section 2 and n be a positive integer. Let λ

be non-invertible in R, S := R[x]/〈xn −λ〉 and Sj := Rj [x]/〈x
n −µj(λ)〉 for 1 ≤ j ≤ e. Then each

µj(λ)-constacyclic code of length n over Rj is an ideal of the quotient ring Sj for 1 ≤ j ≤ e. Let

S := R[x]/〈xn〉. Note that S = S1 and Se = S.

In this section, we determine the algebraic structures of all NIE-constacyclic codes of length n

over the finite chain ring R.

3.1 Units in S

Let a be an element of S = R[x]/〈xn − λ〉, then a can be uniquely expressed as

a = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1, (3.1)

where ai ∈ R for 0 ≤ i ≤ n− 1.

It is easy to see that the nilpotency index of x ∈ S is N := ne′, where e′ is the nilpotency index

of λ.

Theorem 3.1. Let a = a0 + a1x + a2x
2 + · · · + an−1x

n−1 ∈ S, where ai ∈ R for 0 ≤ i ≤ n − 1.

Then a is a unit of S if and only if a0 is a unit of R. Moreover, if a is a unit of S, then

a−1 = a−1
0

(
1 +

∑N−1
i=1 Ai

)
, where A = −a−1

0 (a− a0).

Proof. Suppose that a is a unit of S, then there exists b = b0 + b1x + b2x
2 + · · · + bn−1x

n−1 ∈ S

6



such that ab = 1. For convenience, let ai = bi = 0 for i ≥ n. Thus

ab =
2n−1∑

k=0

(
k∑

i=0

aibk−i

)
xk

=
n−1∑

k=0

(
k∑

i=0

aibk−i

)
xk +

2n−1∑

k=n

(
k∑

i=0

aibk−i

)
xn+(k−n)

=

n−1∑

k=0

(
k∑

i=0

aibk−i

)
xk + λ

n−1∑

k=0

(
k+n∑

i=0

aibk+n−i

)
xk

=

n−1∑

k=0

[(
k∑

i=0

aibk−i

)
+ λ

(
k+n∑

i=0

aibk+n−i

)]
xk = 1.

So a0b0 +λ (
∑n

i=0 aibn−i) = 1 in R. Since λ is nilpotent in R, a0b0 = 1−λ (
∑n

i=0 aibn−i) is a unit

of R, which yields that a0 is a unit of R.

Conversely, suppose that a0 is a unit of R and let

A = −a−1
0 (a− a0) = x

[
−a−1

0 (a1 + a2x+ · · ·+ an−1x
n−2)

]
.

Then A− 1 = −a−1
0 a and AN = 0. Thus

−1 = AN − 1 = (A− 1)

(
1 +

N−1∑

i=1

Ai

)
= −a−1

0

(
1 +

N−1∑

i=1

Ai

)
a

in S. So we have a−1
0

(
1 +

∑N−1
i=1 Ai

)
a = 1. This gives that a is a unit of S and a−1 =

a−1
0

(
1 +

∑N−1
i=1 Ai

)
.

Theorem 3.2. Let a ∈ S. Then a is non-invertible in S if and only if a ∈ 〈γ, x〉. 〈γ, x〉 is the

unique maximal ideal of S and S/〈γ, x〉 ∼= Fq. Moreover, 〈γ, x〉 is a principal ideal of S if and only

if one of the following holds:

(i) e = 1,

(ii) n = 1,

(iii) e > 1, n > 1 and λ ∈ γR\γ2R.

Proof. Suppose that a is non-invertible in S and write a = a0 + a1x + a2x
2 + · · · + an−1x

n−1,

where ai ∈ R for 0 ≤ i ≤ n − 1. Then by Theorem 3.1, we have a0 ∈ R is non-invertible.

This means that a0 ∈ γR. Thus a ∈ 〈γ, x〉. Conversely, suppose that a ∈ 〈γ, x〉, then a =

γb + xc for some b, c ∈ S. Thus ae+N = 0, implying that a is non-invertible in S. So we have

〈γ, x〉 = {non-invertible elements in S}. As a result, 〈γ, x〉 is the unique maximal ideal of S and

S/〈γ, x〉 ∼= Fq.

If e = 1, then γ = 0 and R ∼= Fq. Thus 〈γ, x〉 = 〈x〉 is a principal ideal.

If n = 1, then x = λ ∈ 〈γ〉. Hence 〈γ, x〉 = 〈γ〉 is a principal ideal.

If e > 1, n > 1 and λ ∈ γR\γ2R, then λ = γu for some unit u ∈ R. Hence, γ = u−1λ =

u−1xn ∈ 〈x〉. This means that 〈γ, x〉 = 〈x〉 is a principal ideal.

7



If e > 1, n > 1 and λ ∈ γ2R and suppose that 〈γ, x〉 is a principal ideal, then 〈γ, x〉 = 〈a〉 for

some a ∈ 〈γ, x〉. So a can be written as a = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1, where a0 ∈ γR and

ai ∈ R for 1 ≤ i ≤ n− 1. Since γ ∈ 〈a〉, there exists b = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1 ∈ S such

that ab = γ. For convenience, let ai = bi = 0 for i ≥ n. Note that

ab =

n−1∑

k=0

[(
k∑

i=0

aibk−i

)
+ λ

(
k+n∑

i=0

aibk+n−i

)]
xk = γ

and we have

a0b0 + λ

(
n∑

i=0

aibn−i

)
= γ.

If a0 ∈ γ2R, by λ ∈ γ2R, then γ = a0b0 + λ (
∑n

i=0 aibn−i) ∈ γ2R, which is a contradiction.

Thus a0 /∈ γ2R, which yields that a0 = γu0 for some unit u0 of R. Since x ∈ 〈a〉, there exists

c = c0 + c1x + c2x
2 + · · · + cn−1x

n−1 ∈ S such that ac = x. For convenience, let ai = ci = 0 for

i ≥ n. Note that

ac =

n−1∑

k=0

[(
k∑

i=0

aick−i

)
+ λ

(
k+n∑

i=0

aick+n−i

)]
xk = x

and we have

a0c0 + λ

(
n∑

i=0

aicn−i

)
= 0, a0c1 + a1c0 + λ

(
n+1∑

i=0

aicn+1−i

)
= 1.

From a0c0 + λ (
∑n

i=0 aicn−i) = 0, we get a0c0 = −λ (
∑n

i=0 aicn−i) ∈ γ2R. By a0 = γu0, where u0

is a unit of R, c0 ∈ γR. From a0c1 + a1c0 + λ
(∑n+1

i=0 aicn+1−i

)
= 1, we get a0c1 = 1 − a1c0 −

λ
(∑n+1

i=0 aicn+1−i

)
. Since λ, c0 ∈ γR, a0c1 is invertible in S, a contradiction. As a result, 〈γ, x〉

is a non-principal ideal.

Corollary 3.1. (1) If e = 1, then S ∼= Fq[x]/〈x
n〉 is a finite chain ring with the maximal ideal

〈x〉 whose nilpotency index is n and

{0} = 〈xn〉 $ 〈xn−1〉 $ · · · $ 〈x〉 $ 〈x0〉 = S

are all ideals of S. For 0 ≤ i ≤ n, |〈xi〉| = qn−i.

(2) If n = 1, then S ∼= R is a finite chain ring with the maximal ideal 〈γ〉 whose nilpotency index

is e and

{0} = 〈γe〉 $ 〈γe−1〉 $ · · · $ 〈γ〉 $ 〈γ0〉 = S

are all ideals of S. For 0 ≤ i ≤ e, |〈γi〉| = qe−i.

(3) If e > 1, n > 1 and λ ∈ γR\γ2R, then S is a finite chain ring with the maximal ideal 〈x〉

whose nilpotency index is ne and

{0} = 〈xne〉 $ 〈xne−1〉 $ · · · $ 〈x〉 $ 〈x0〉 = S

are all ideals of S. For 0 ≤ i ≤ ne, |〈xi〉| = qne−i.

(4) If e > 1, n > 1 and λ ∈ γ2R, then S is a finite local ring with the maximal ideal 〈γ, x〉 but

not a chain ring.
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3.2 Ideals of S

Now we aim to determine the algebraic structures of all λ-constacyclic codes of length n over R

and find a unique representation of ideals in S := R[x]/〈xn − λ〉.

Let C be a λ-constacyclic code of length n over R, i.e., C is an ideal of S. Then for 0 ≤ i ≤ e−1,

Tori(C) is an ideal of S = R[x]/〈xn〉 ∼= Fq[x]/〈x
n〉, which means that Tori(C) is a 0-constacyclic

code of length n over the finite field R ∼= Fq. By Corollary 3.1, Tori(C) = 〈xTi 〉 for some 0 ≤ Ti ≤ n,

we say Ti is the ith-torsional degree of C.

Then we can obtain the following result by Definition 2.2, Proposition 2.3 and Corollary 3.1.

Theorem 3.3. Let C be an ideal of S and Tori(C) = 〈xTi〉 for some 0 ≤ Ti ≤ n. Then

(1) |Tori(C)| = qn−Ti .

(2) If g(x) ∈ S and γi (xti + γg(x)) ∈ C, then ti ≥ Ti.

(3) n ≥ T0 ≥ T1 ≥ · · · ≥ Te−1 ≥ 0.

(4) |C| = qen−(T0+T1+···+Te−1).

Let TR[x] be the set of polynomials in R[x] with coefficients belonging to TR. Let a(x) =∑n−1
i=0 aix

i ∈ S, where ai ∈ R for 0 ≤ i ≤ n − 1. By Proposition 2.2, for any 0 ≤ i ≤ n − 1,

ai ∈ R can be uniquely expressed as ai = a0,i + γa1,i + γ2a2,i + · · · + γe−1ae−1,i =
∑e−1

j=0 γ
jaj,i,

where aj,i ∈ TR. Thus, a(x) =
∑e−1

j=0 γ
j
(∑n−1

i=0 aj,ix
i
)
. For any 0 ≤ j ≤ e − 1, if

∑n−1
i=0 aj,ix

i = 0,

then let hj(x) = 0 and tj = n − 1, we have
∑n−1

i=0 aj,ix
i = xtjhj(x). If

∑n−1
i=0 aj,ix

i 6= 0, then let

0 ≤ tj ≤ n− 1 be the smallest integer such that aj,tj 6= 0 and hj(x) =
∑n−1−tj

i=0 aj,i+tjx
i. Clearly,

hj(x) ∈ TR[x] is a unit of S and
∑n−1

i=0 aj,ix
i = xtj

∑n−1−tj
i=0 aj,i+tjx

i = xtjhj(x). Thus for any

0 ≤ j ≤ e − 1, there exists 0 ≤ tj ≤ n− 1 such that
∑n−1

i=0 aj,ix
i = xtjhj(x), where hj(x) ∈ TR[x]

is 0 or a unit of S. As a result, any polynomial a(x) ∈ S can be expressed as

a(x) =

e−1∑

j=0

γjxtjhj(x), (3.2)

where 0 ≤ tj ≤ n− 1 and hj(x) ∈ TR[x] is either zero or a unit of S.

It is easy to get the following lemma.

Lemma 3.1. (1) For any 1 ≤ j ≤ e, µj is a bijective map from TR[x] to TRj
[x].

(2) For any r(x) ∈ TR[x], r(x) = 0 in S if and only if µj

(
r(x)

)
= 0 in Sj.

(3) For r(x) ∈ TR[x] of degree ≤ n− 1, suppose r(x) 6= 0 in S and we can write r(x) = xn1r1(x),

µj

(
r(x)

)
= xn2r2(x) where 0 ≤ n1, n2 ≤ n− 1, r1(x) ∈ TR[x] is a unit of S, r2(x) ∈ TRj

[x]

is a unit of Sj. Then n1 = n2 and deg
(
r1(x)

)
= deg

(
r2(x)

)
.

Theorem 3.4. Let C be an ideal of S and Tori(C) = 〈xTi 〉 for some 0 ≤ Ti ≤ n. Then C has the

form

C = 〈f0(x), f1(x), . . . , fe−1(x)〉, (3.3)

such that

(i) when Tori(C) = 0, fi(x) = 0.
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(ii) when Tori(C) 6= 0,

fi(x) = γixTi + γi+1xti+1,ihi+1,i(x) + γi+2xti+2,ihi+2,i(x) + · · ·+ γe−1xte−1,ihe−1,i(x), (3.4)

where hj,i(x) ∈ TR[x] is either zero or a unit of S and tj,i + deg(hj,i) < Tj.

Moreover, the e-tuple
(
f0(x), f1(x), . . . , fe−1(x)

)
is unique.

Proof. We first prove that C has the form (3.3) satisfying (i) and (ii) by induction on the nilpotency

index e.

When e = 1, by Corollary 3.1, S ∼= Fq[x]/〈x
n〉 and C = 〈xT0 〉 for some 0 ≤ T0 ≤ n. Thus

Tor0(C) = C = 〈xT0〉. Let

f0(x) =

{
0, C = 0,

xT0 , C 6= 0.

Then C = 〈f0(x)〉, and f0(x) satisfies (i) and (ii). So the statement is true for e = 1.

Now suppose that any ideal of Se−1 has the form given in (3.3). Let C be an ideal of S and

Tori(C) = 〈xTi 〉 for some 0 ≤ Ti ≤ n. Then µe−1(C) is an ideal of Se−1 and hence, by the

induction hypothesis, µe−1(C) has the form 〈f ′
0(x), f

′
1(x), . . . , f

′
e−2(x)〉. By Lemma 2.1, for any

0 ≤ i ≤ e − 2, we have Tori(C) = Φe−1

(
Tori

(
µe−1(C)

))
. Thus Tori

(
µe−1(C)

)
= 〈xTi〉. By the

induction hypothesis, for any 0 ≤ i ≤ e− 2, we have

• when Tori
(
µe−1(C)

)
= 0, f ′

i(x) = 0.

• when Tori
(
µe−1(C)

)
6= 0,

f ′
i(x) = γi〈e−1〉x

Ti +γi+1
〈e−1〉x

t′i+1,ih′i+1,i(x)+γ
i+2
〈e−1〉x

t′i+2,ih′i+2,i(x)+ · · ·+γe−2
〈e−1〉x

t′e−2,ih′e−2,i(x),

where h′j,i(x) ∈ TRe−1
[x] is either zero or a unit of Se−1 and t′j,i + deg(h′j,i) < Tj.

If Tore−1(C) = 0, then C = 0. Let fi = 0 for all 0 ≤ i ≤ e− 1. Then

C = 〈f0(x), f1(x), . . . , fe−1(x)〉

and it satisfies (i) and (ii).

If Tore−1(C) 6= 0, then let fe−1(x) = γe−1xTe−1 . It is obvious that fe−1(x) ∈ C. For any

0 ≤ i ≤ e− 2, if Tori(C) = 0, then let fi(x) = 0. If Tori(C) 6= 0, there exists Fi(x) ∈ C such that

µe−1

(
Fi(x)

)
= f ′

i(x). According to (3.2), we write

Fi(x) =
e−2∑

j=0

γjxtj,ihj,i(x) + γe−1He−1,i(x),

where 0 ≤ tj,i ≤ n and hj,i ∈ TR[x] is either zero or a unit of S and He−1,i(x) ∈ TR[x]. Thus we

have

µe−1

(
Fi(x)

)
=

e−2∑

j=0

γj〈e−1〉x
tj,iµe−1

(
hj,i(x)

)
= γi〈e−1〉x

Ti +

e−2∑

j=i+1

γj〈e−1〉x
t′j,ih′j,i(x).

It follows that 1) for 0 ≤ j ≤ i− 1, hj,i(x) = 0; 2) ti,i = Ti and hi,i(x) = 1; 3) for i+1 ≤ j ≤ e− 2,

tj,i = t′j,i and µe−1

(
hj,i(x)

)
= h′j,i(x). Hence

Fi(x) = γixTi +
e−2∑

j=i+1

γjxtj,ihj,i(x) + γe−1He−1,i(x)
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and tj,i + deg(hj,i) = t′j,i + deg(h′j,i) < Tj . Let

He−1,i(x) =

n−1∑

k=0

zkx
k, H̃e−1,i(x) =

n−1∑

k=Te−1

zkx
k−Te−1 ,

where zk ∈ TR. Then

He−1,i(x)− H̃e−1,i(x)x
Te−1 =

Te−1−1∑

k=0

zkx
k

can be written as xte−1,ihe−1,i(x), where he−1,i ∈ TR[x] is either zero or a unit of S and te−1,i +

deg(he−1,i) < Te−1. Let

fi(x) = γixTi +

e−2∑

j=i+1

γjxtj,ihj,i(x) + γe−1xte−1,ihe−1,i(x).

We can get that

fi(x) = Fi(x) − H̃e−1,i(x)fe−1(x) ∈ C

and fi(x) satisfies (i) and (ii). As a result, f0(x), f1(x), . . . , fe−1(x) ∈ C and satisfy (i) and (ii).

We claim that C = 〈f0(x), f1(x), . . . , fe−1(x)〉. First of all, since f0(x), f1(x), . . . , fe−1(x) ∈ C,

we have 〈f0(x), f1(x), . . . , fe−1(x)〉 ⊆ C. Conversely, suppose c(x) ∈ C, then µe−1

(
c(x)

)
∈ µe−1(C)

and hence

µe−1

(
c(x)

)
=

e−2∑

i=0

a′i(x)f
′
i(x),

where a′i(x) ∈ Se−1. Let ai(x) ∈ Se such that µe−1

(
ai(x)

)
= a′i(x) for 0 ≤ i ≤ e− 2. Thus

µe−1

(
c(x)

)
= µe−1

( e−2∑

i=0

ai(x)fi(x)
)
,

which means that

c(x) =

e−2∑

i=0

ai(x)fi(x) + γe−1xtae−1(x),

for some 0 ≤ t ≤ n − 1 and ae−1(x) ∈ TR[x] which is either zero or a unit of S. It follows that

γe−1xtae−1(x) ∈ C. If ae−1(x) = 0, then c(x) =
∑e−2

i=0 ai(x)fi(x) ∈ 〈f0(x), f1(x), . . . , fe−1(x)〉. If

ae−1(x) ∈ TR[x] is a unit of S, then γe−1xt ∈ C and hence xt ∈ Tore−1(C) = 〈xTe−1 〉. This implies

that t ≥ Te−1 and so we have

c(x) =

e−2∑

i=0

ai(x)fi(x) + xt−Te−1ae−1(x)fe−1(x) ∈ 〈f0(x), f1(x), . . . , fe−1(x)〉.

As a result, C ⊆ 〈f0(x), f1(x), . . . , fe−1(x)〉. Thus, we have shown that C = 〈f0(x), f1(x), . . . , fe−1(x)〉

as claimed.

To prove the uniqueness, we suppose that C = 〈g0(x), g1(x), . . . , ge−1(x)〉 such that

(i) when Tori(C) = 0, gi(x) = 0.

(ii) when Tori(C) 6= 0,

gi(x) = γixTi + γi+1xsi+1,iwi+1,i(x) + γi+2xsi+2,iwi+2,i(x) + · · ·+ γe−1xse−1,iwe−1,i(x),

where wj,i(x) ∈ TR[x] is either zero or a unit of S and sj,i + deg(wj,i) < Tj .
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If C = 0, then gi(x) = 0 for all 0 ≤ i ≤ e− 1. Thus

(f0(x), f1(x), . . . , fe−1(x)) = (g0(x), g1(x), . . . , ge−1(x)) = (0, 0, . . . , 0).

If C 6= 0, then Tore−1(C) 6= 0 and it is clear that ge−1 = fe−1 = γe−1xTe−1 . Consider

ge−2 − fe−2 = γe−1
(
xse−1,e−2we−1,e−2(x) − xte−1,e−2he−1,e−2(x)

)
∈ C

which can be written as γe−1xkh(x), where 0 ≤ k ≤ n − 1 and h(x) ∈ TR[x] is either zero or a

unit of S. If h(x) is a unit of S, then γe−1xk ∈ C and k ≤ Te−1 − 1 < Te−1. γ
e−1xk ∈ C implies

xk ∈ Tore−1(C) = 〈xTe−1 〉, which means k ≥ Te−1, a contradiction. Therefore, h(x) = 0 and so

ge−2 = fe−2. Proceeding inductively, we have that gi = fi for all 0 ≤ i ≤ e− 1. Thus

(
f0(x), f1(x), . . . , fe−1(x)

)
=
(
g0(x), g1(x), . . . , ge−1(x)

)
,

which means the expression is unique.

Definition 3.1. Let C be an ideal of S. We define the unique e-tuple obtained from Theorem 3.4

to be the representation of C. In that case, we also say that C = 〈〈f0(x), f1(x), . . . , fe−1(x)〉〉.

Example 3.1. If e > 1, n > 1 and λ ∈ γR\γ2R, it is shown that in Corollary 3.1,

{0} = 〈xne〉 $ 〈xne−1〉 $ · · · $ 〈x〉 $ 〈x0〉 = S

are all ideals of S. Let C be a nonzero ideal of S, then there exists 0 ≤ j ≤ ne − 1 such that

C = 〈xj〉. There also exist 0 ≤ k ≤ e − 1 and 0 ≤ w ≤ n − 1 such that j = kn + w and so

C = 〈xkn+w〉 = 〈γkxw〉. Note that for i > k, γi = (γkxw)x(i−k)n−wu for some unit u of R. It is

easy to see that

Tori(C) =





0, i < k,

〈xw〉, i = k,

Fn
q , i > k,

and

Ti =





n, i < k,

w, i = k,

0, i > k.

By Theorem 3.4, C = 〈xj〉 = 〈〈0, . . . , 0, γkxw, γk+1, . . . , γe−1〉〉.

According to the proof of the uniqueness in Theorem 3.4, we can easily obtain the following.

Corollary 3.2. Let C = 〈〈f0(x), f1(x), . . . , fe−1(x)〉〉 be an ideal of S. Assume that Tori(C) 6= 0.

Then fi(x) is the unique polynomial in C which has the form (3.4).

In the following, we obtain the minimum Hamming distances of all nonzero NIE–constacyclic

codes over finite chain rings.

Theorem 3.5. Let C be a nonzero λ-constacyclic code of length n over R. Then d(C) = 1.

Proof. Suppose λ = 0, let c = (c0, c1, . . . , cn−1) be a nonzero codeword of C. Let t = min{i | ci 6=

0, 0 ≤ i ≤ n− 1}. Then τn−t−1
λ (c) = (0, . . . , 0, ct) ∈ C. So we have d(C) = 1.
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Suppose λ 6= 0 is non-invertible. Then λ = γku, where 1 ≤ k ≤ e − 1 and u is a unit of R.

Let c = (c0, c1, . . . , cn−1) be a nonzero codeword of C and write each ci as ci = γkiui, where

1 ≤ ki ≤ e− 1 and ui is zero or a unit of R.

(1) If |{ki | ui 6= 0, 0 ≤ i ≤ n − 1}| = 1, let l = min{ki | ui 6= 0, 0 ≤ i ≤ n − 1}. Then

c = γl(u0, u1, . . . , un−1) and γe−l−1c = γe−1(u0, u1, . . . , un−1) ∈ C is a nonzero codeword. Let

t = min{i | ui 6= 0, 0 ≤ i ≤ n − 1}. Thus τn−t−1
λ (γe−l−1c) = (0, . . . , 0, γe−1ut) ∈ C and

wt
(
τn−t−1
λ (γe−l−1c)

)
= 1. This implies d(C) = 1.

(2) If |{ki | ui 6= 0, 0 ≤ i ≤ n − 1}| ≥ 2, let l′ = min{ki | ui 6= 0, 0 ≤ i ≤ n − 1} and

t = min{i | ki = l′, 0 ≤ i ≤ n− 1}. Then γe−l′−1c = γe−1(u′0, u
′
1, . . . , u

′
n−1) ∈ C, where

u′i =





0, ui = 0,

0, ui 6= 0 and ki 6= l′,

ui, ui 6= 0 and ki = l′.

So τn−t−1
λ (γe−l′−1c) = (0, . . . , 0, γe−1ut) ∈ C. Note that γe−1ut 6= 0 and we have

wt
(
τn−t−1
λ (γe−l′−1c)

)
= 1.

Hence, d(C) = 1.

3.3 The Dual Codes

LetR be a finite Frobenius ring with identity, λ̂ be an element inR. For any a = (a0, a1, · · · , an−1) ∈

Rn, define P(a) :=
∑n−1

i=0 aix
i ∈ R[x].

For a λ̂-constacyclic code C of length n over R, define A(C) to be {a ∈ Rn | P(c)P(a) =

0 in R[x]/〈xn − λ̂〉, for any c ∈ C}. It is obvious that A(C) is also a λ̂-constacyclic code of length

n over R.

For any integer k, let Pk =




1

. .
.

1

1




k×k

. Let π be given by

π : Rn −→ Rn,

c = (c0, c1, . . . , cn−2, cn−1) 7−→ cPn = (cn−1, cn−2, . . . , c1, c0).

It is easy to see that π is a permutation of coordinates and π2 is the identity map on Rn.

We have the following.

Theorem 3.6. Let C be a λ̂-constacyclic code of length n over R. Then C⊥ = π
(
A(C)

)
.

Proof. We claim that for a ∈ Rn, a ∈ C⊥ if and only if π(a) ∈ A(C), i.e., P(c)P(π(a)) = 0 in

R[x]/〈xn − λ̂〉 for any c ∈ C. Thus C⊥ = π−1
(
A(C)

)
= π

(
A(C)

)
.

Now we prove the above claim. We write a = (a0, a1, · · · , an−1), c = (c0, c1, · · · , cn−1). Let

aj = a′n−1−j and then P(π(a)) =
∑n−1

i=0 a
′
ix

i. Let a′i = ci = 0 for all i ≥ n.

Suppose that a ∈ C⊥, then 〈τk
λ̂
(c), a〉 = 0 for any c ∈ C and 0 ≤ k ≤ n − 1. Note

that τk
λ̂
(c) = (λ̂cn−k, · · · , λ̂cn−1, c0, · · · , cn−k−1). Then we have 〈τk

λ̂
(c), a〉 =

∑n−k−1
i=0 ciak+i +
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λ̂
∑n−1

i=n−k ciak+i−n = 0. Hence,

P(c)P(π(a)) =

n−1∑

k=0

(
k∑

i=0

cia
′
k−i

)
xk +

2n−2∑

k=n

(
k∑

i=0

cia
′
k−i

)
xn+(k−n)

=

n−1∑

k=0

(
k∑

i=0

cia
′
k−i

)
xk + λ̂

2n−2∑

k=n

(
n−1∑

i=k−n+1

cia
′
k−i

)
xk−n

=

n−1∑

k=0

(
k∑

i=0

cia
′
k−i

)
xk + λ̂

n−2∑

k=0

(
n−1∑

i=k+1

cia
′
k+n−i

)
xk

=
n−2∑

k=0

(
k∑

i=0

cia
′
k−i + λ̂

n−1∑

i=k+1

cia
′
k+n−i

)
xk +

(
n−1∑

i=0

cia
′
n−1−i

)
xn−1

=

n−2∑

k=0

(
k∑

i=0

cian−1−k+i + λ̂

n−1∑

i=k+1

ciai−k−1

)
xk +

(
n−1∑

i=0

ciai

)
xn−1

=

n−2∑

k=0

〈τn−1−k

λ̂
(c), a〉xk + 〈c, a〉xn−1

=0.

Conversely, suppose P(c)P(π(a)) = 0 in R[x]/〈xn − λ̂〉 for any c ∈ C. Since P(c)P(π(a)) =∑n−2
k=0 〈τ

n−1−k

λ̂
(c), a〉xk + 〈c, a〉xn−1 = 0, 〈c, a〉 = 0. This yields that a ∈ C⊥. We have proved the

claim. The result then follows.

Recall that R is a finite commutative chain ring and λ is a non-invertible element in R.

For a λ-constacyclic code C of length n over R, A(C) is also a λ-constacyclic code C of length

n over R. In the light of this, C and A(C) will also be viewed as ideals of R[x]/〈xn − λ〉.

Remark 3.1. Let C = 〈〈f0(x), f1(x), . . . , fe−1(x)〉〉 ⊆ R[x]/〈xn − λ〉 be a λ-constacyclic code of

length n over R. Since A(C) is also a λ-constacyclic code of length n over R, we can assume that

A(C) has the form A(C) = 〈〈g0(x), g1(x), . . . , ge−1(x)〉〉 ⊆ R[x]/〈xn−λ〉. In general, it is not easy

to determine all gi(x)s. But in some special cases like “ e ≤ 2” or “ e > 2 and fi(x) = 0 for all

0 ≤ i ≤ e− 3”, A(C) can be easily obtained.

Theorem 3.7. Let C 6= Rn be a λ-constacyclic code of length n over R. Then d(C⊥) = 1.

Proof. Since C⊥ = π
(
A(C)

)
, d(C⊥) = d

(
A(C)

)
. It is easy to see that if C 6= Rn, then A(C) 6= 0.

Since A(C) is a λ-constacyclic code of length n over R, we have d
(
A(C)

)
= 1 by Theorem 3.5.

Thus d(C⊥) = 1.

If λ̂ is a unit of R, it is known that the dual code of a λ̂-constacyclic code is a λ̂−1-constacyclic

code. When λ̂ is non-invertible in R, the following examples show that the dual code of a λ̂-

constacyclic code may not be a constacyclic code.

Example 3.2. Let e = 1, then R ∼= Fq. It is shown in Corollary 3.1 that

{0} = 〈xn〉 $ 〈xn−1〉 $ · · · $ 〈x〉 $ 〈x0〉 = S
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are all ideals of S. Let C be a proper ideal of S, i.e., C 6= {0} and C 6= S, then there exists

1 ≤ i ≤ n− 1 such that C = 〈xi〉. Then

G1 =
(
O(n−i)×i I(n−i)×(n−i)

)

is a generator matrix of C, where Ok×t denotes the k × t zero matrix and It×t denotes the t × t

identity matrix.

It is easy to see that

H1 =
(
Ii×i Oi×(n−i)

)

is a generator matrix of C⊥.

For any λ̂ ∈ R, note that a = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) ∈ C⊥ and τ
λ̂
(a) = (0, . . . , 0︸ ︷︷ ︸

i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

) /∈ C⊥.

It follows that C⊥ is not a λ̂-constacyclic code for any λ̂ ∈ R.

Example 3.3. Let e > 1, n > 0 and λ ∈ γR\γ2R. By Example 3.1, any proper ideal of S has the

form C = 〈〈0, . . . , 0, γkxw, γk+1, . . . , γe−1〉〉 for some 0 ≤ k ≤ e − 1 and 0 ≤ w ≤ n− 1 and w, k

are not all zero. Then a generator matrix of C is

G2 =

(
O(n−w)×w γkI(n−w)×(n−w)

γk+1Iw×w Ow×(n−w)

)
.

It is easy to see that

H2 =

(
γe−(k+1)Iw×w Ow×(n−w)

O(n−w)×w γe−kI(n−w)×(n−w)

)

is a generator matrix of C⊥.

If w = 0, then C⊥ = 〈γe−k〉 is a λ̂-constacyclic code for any λ̂ ∈ R. If w 6= 0, for any λ̂ ∈ R,

note that b = (0, . . . , 0︸ ︷︷ ︸
w−1

, γe−(k+1), 0, . . . , 0︸ ︷︷ ︸
n−w

) ∈ C⊥ and τ
λ̂
(b) = (0, . . . , 0︸ ︷︷ ︸

w

, γe−(k+1), 0, . . . , 0︸ ︷︷ ︸
n−w−1

) /∈ C⊥. It

follows that C⊥ is not a λ̂-constacyclic code for any λ̂ ∈ R.

Next, we will give a necessary and sufficient condition for the dual of a λ-constacyclic code to

be a constacyclic code. Firstly, we need the following lemma.

Lemma 3.2. Let C be a λ-constacyclic code of length n over R and Tori(C) = 〈xTi〉, where

0 ≤ Ti ≤ n, for i = 0, 1, . . . , e− 1. Then Tori
(
A(C)

)
= 〈xn−Te−1−i 〉 for i = 0, 1, . . . , e− 1.

Proof. For any i = 0, 1, . . . , e − 1, let Tori
(
A(C)

)
= 〈xWi 〉, for some 0 ≤ Wi ≤ n. Then there

exists f(x) ∈ S such that γixWi + γi+1f(x) ∈ A(C). Since Tore−1−i(C) = 〈xTe−1−i 〉, there exists

g(x) ∈ S such that γe−1−ixTe−1−i + γe−ig(x) ∈ C. Thus

(
γixWi + γi+1f(x)

)(
γe−1−ixTe−1−i + γe−ig(x)

)
= γe−1xWi+Te−1−i = 0,

which means that Wi + Te−1−i ≥ n, i.e., Wi ≥ n− Te−1−i.

Note that

|A(C)| =
∣∣C⊥

∣∣ = |R|n

|C|
=

pmen

pm
∑e−1

i=0
(n−Ti)

= pm
∑e−1

i=0
Ti
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and

|A(C)| =
e−1∏

i=0

∣∣Tori
(
A(C)

)∣∣ = pm
∑e−1

i=0
(n−Wi).

It follows that
∑e−1

i=0 Ti =
∑e−1

i=0 (n−Wi), i.e.,
∑e−1

i=0 Wi =
∑e−1

i=0 (n− Ti). By Wi ≥ n− Te−1−i, we

have Wi = n− Te−1−i, i.e., Tori
(
A(C)

)
= 〈xn−Te−1−i〉.

Recall for any integer k, Pk =




1

. .
.

1

1




k×k

. For any i× j matrix A, let A◦ := PiAPj .

Theorem 3.8. Let the notions be as in Theorem 3.4. Let C be a λ-constacyclic code of length n

over R. Then

(1) C⊥ is permutation equivalent to a λ-constacyclic code.

(2) C⊥ is a λ̂-constacyclic code for some λ̂ ∈ R if and only if C = γiRn for some 0 ≤ i ≤ e.

Moreover, if C = γiRn for some 0 ≤ i ≤ e, then C⊥ = γe−iRn and C, C⊥ are λ̂-constacyclic

codes for any λ̂ ∈ R.

Proof. (1) Since A(C) is a λ-constacyclic code of length n over R and C⊥ = π
(
A(C)

)
, C⊥ is

permutation equivalent to a λ-constacyclic code.

(2) When C = Rn, then C⊥ = 0 is a constacyclic code.

Next, let C 6= Rn. From Lemma 3.2, Tori
(
A(C)

)
= 〈xn−Te−1−i 〉 for i = 0, 1, . . . , e − 1. Let

Wi = n − Te−1−i for i = 0, 1, . . . , e − 1. Since C 6= Rn, A(C) 6= 0. Let 0 ≤ i1 ≤ e − 1 be the

smallest integer i such that Wi 6= n and let 0 ≤ i1 < i2 · · · < ik ≤ e− 1, where 1 ≤ k ≤ e such that

n > Wi1 =Wi1+1 = · · · =Wi2−1 > Wi2 =Wi2+1 = · · · =Wi3−1 > · · · > Wik−1
=Wik−1+1 = · · · =

Wik−1 > Wik =Wik+1 = · · · =We−1 ≥ 0.

Since A(C) is a λ-constacyclic code of length n over R, A(C) has the form

A(C) = 〈g0(x), g1(x), . . . , ge−1(x)〉 ⊆ R[x]/〈xn − λ〉,

such that

(i) for 0 ≤ i < i1, gi(x) = 0.

(ii) for i1 ≤ i ≤ e− 1, gi(x) = γixWi +
∑e−1

j=i+1 γ
jxwj,ihj,i(x), where hj,i(x) ∈ TR[x] is either zero

or a unit of S and wj,i + deg(hj,i) < Wj .

Then




γi1+1A1,1 γi1+1A1,2 γi1+1A1,3 · · · γi1+1A1,k γi1In−Wi1

γi2+1A2,1 γi2+1A2,2 γi2+1A2,3 · · · γi2IWi1
−Wi2

...
...

... . .
.

γik−1+1Ak−1,1 γik−1+1Ak−1,2 γik−1IWik−2
−Wik−1

γik+1Ak,1 γikIWik−1
−Wik
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is a generator matrix of A(C), where Ia is the a× a identity matrix for any a. By the proof of (1),

we have C⊥ = π
(
A(C)

)
, then




γi1In−Wi1
γi1+1A◦

1,k · · · γi1+1A◦
1,3 γi1+1A◦

1,2 γi1+1A◦
1,1

γi2IWi1
−Wi2

· · · γi2+1A◦
2,3 γi2+1A◦

2,2 γi2+1A◦
2,1

. . .
...

...
...

γik−1IWik−2
−Wik−1

γik−1+1A◦
k−1,2 γik−1+1A◦

k−1,1

γikIWik−1
−Wik

γik+1A◦
k,1




is a generator matrix of C⊥.

Assume that C⊥ is a λ̂-constacyclic codes for some λ̂ ∈ R. Suppose that k > 1, then there

exists

a = (0, . . . , 0, γi1︸ ︷︷ ︸
n−Wi1

, an−Wi1
, an−Wi1

+1, . . . , an−1) ∈ C⊥.

Note that

τ
λ̂
(a) = (λ̂an−1, 0, . . . , 0︸ ︷︷ ︸

n−Wi1

, γi1 , an−Wi1
, . . . , an−2) /∈ C⊥,

which is a contradiction. Hence k = 1. Suppose that Wi1 6= 0, then
(
γi1In−Wi1

γi1+1A◦
1,1

)
is a

generator matrix of C⊥, where A◦
1,1 is an Wi1 × n matrix. So there exists

b = (0, . . . , 0, γi1︸ ︷︷ ︸
n−Wi1

, bn−Wi1
, bn−Wi1

+1, . . . , bn−1) ∈ C⊥.

But

τ
λ̂
(b) = (λ̂bn−1, 0, . . . , 0︸ ︷︷ ︸

n−Wi1

, γi1 , bn−Wi1
, . . . , bn−2) /∈ C⊥,

which is a contradiction. Thus Wi1 = 0. As a result, γi1In is a generator matrix of C⊥, which

yields that C⊥ = γi1Rn, C = γe−i1Rn and 1 ≤ e− i1 ≤ e.

On the other hand, if C = γiRn for some 0 ≤ i ≤ e, then C⊥ = γe−iRn. It is obvious that

C, C⊥ are λ̂-constacyclic codes for any λ̂ ∈ R.

4 Constacyclic Codes over Finite PIRs

In this section, R is always a finite PIR with identity. Then R is isomorphic to a product of

finite chain rings, which means that there exists a ring isomorphism

ψ : R −→ R(1) ×R(2) × · · · ×R(s)

r 7−→ (r(1), r(2), . . . , r(s)),

where R(t) is a finite commutative chain ring with identity and r(t) ∈ R(t) for 1 ≤ t ≤ s. Let

ψ(t) : R −→ R(t)

r 7−→ r(t),
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for each 1 ≤ t ≤ s and ψ(r) = (r(1), r(2), . . . , r(s)) =
(
ψ(1)(r), ψ(2)(r), . . . , ψ(s)(r)

)
. It is clear that

ψ(t) is a surjective homomorphism. As we mentioned in Section 1, ψ(t) : R → R(t) can be extended

to the following maps

ψ(t) : Rn → R(t)n,

ψ(t) : R[x] → R(t)[x],

ψ(t) :
R[x]

〈xn − λ〉
→

R(t)[x]

〈xn − ψ(t)(λ)〉

in the usual way.

Let λ ∈ R be a non-invertible element and ψ(λ) =
(
ψ(1)(λ), ψ(2)(λ), . . . , ψ(s)(λ)

)
. Ψ denotes

the following map

Ψ :
R[x]

〈xn − λ〉
−→

R(1)[x]

〈xn − ψ(1)(λ)〉
×

R(2)[x]

〈xn − ψ(2)(λ)〉
× · · · ×

R(s)[x]

〈xn − ψ(s)(λ)〉
,

f(x) 7−→
(
ψ(1) (f(x)) , ψ(2) (f(x)) , . . . , ψ(s) (f(x))

)
.

(4.1)

It is easy to see that Ψ is a surjective isomorphism.

Let C(t) be an ideal of
R(t)[x]

〈xn − ψ(t)(λ)〉
for each 1 ≤ t ≤ s. Then the Chinese product is defined

by CRT(C(1), C(2), · · · , C(s)) = { Ψ−1(f (1), f (2), · · · , f (s)) | f (t) ∈ C(t), t = 1, 2, . . . , s }.

From (4.1), C is a λ-constacyclic code of length n over R if and only if for any 1 ≤ t ≤ s,

ψ(t)(C) is a ψ(t)(λ)-constacyclic code of length n over R(t). Thus, the following theorem can be

easily obtained.

Theorem 4.1. C is an ideal of
R[x]

〈xn − λ〉
if and only if ψ(t)(C) is an ideal of

R(t)[x]

〈xn − ψ(t)(λ)〉
for

each 1 ≤ t ≤ s.

If C(t) is an ideal of
R(t)[x]

〈xn − ψ(t)(λ)〉
for each 1 ≤ t ≤ s, then CRT(C(1), C(2), · · · , C(s)) is an

ideal of
R[x]

〈xn − λ〉
.

According to the reference [11], we can obtain the minimum Hamming distances of the NIE-

constacyclic codes over finite PIRs as follows.

Theorem 4.2. ( [11]) Let C be a nonzero λ-constacyclic code of length n over R. Then d(C) =

min{ d
(
ψ(t)(C)

)
| 1 ≤ t ≤ s}.

Combining Theorem 3.5 with Theorem 4.2, we can easily obtain the following.

Corollary 4.1. Let C be a λ-constacyclic code of length n over R. Assume that there exists

1 ≤ j ≤ s such that ψ(j)(λ) is a non-invertible element of R(j) and ψ(j)(C) 6= 0. Then d(C) = 1.

Remark 4.1. Let R = ψ−1(R0 ×R0 × · · · ×R0

︸ ︷︷ ︸
s

), where R0 is a finite chain ring, then |R| = |R0|s.

Let C0 be an MDS λ0-constacyclic code of length n over R0, i.e., d(C0) = n+1− log|R0| |C
0|. Let

C = CRT(C0 × C0 × · · ·C0

︸ ︷︷ ︸
s−1

×0), λ = ψ−1(λ0, λ0, . . . , λ0︸ ︷︷ ︸
s−1

, 0) ∈ R, then C is a λ-constacyclic code

of length n over R and |C| = |C0|s−1. By Theorem 4.2, we have d(C) = d(C0). On the other hand,
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n+ 1− log|R| |C| = n+ 1− log|R0|s |C
0|s−1| = n+ 1−

s− 1

s
log|R0| |C

0| = d(C0) +
1

s
log|R0| |C

0|.

According to the Singleton Bound, for a linear code C′ of length n and cardinality |C| over R, the

minimum Hamming distance of C′ satisfies d(C′) ≤ d(C0) +
1

s
log|R0| |C

0|. So if log|R0| |C
0| < s,

then C has the maximal minimum Hamming distance among the linear codes of length n and

cardinality |C| over R.

Example 4.1. Let Fq be the finite field of order q and R = ψ−1(Fq × Fq × · · · × Fq︸ ︷︷ ︸
s

), where s ≥ 2.

Then |R| = qs. Let α be a primitive element of Fq and 0 < k < min{s, q} be an integer. Let C0

be the cyclic code of length q − 1 over Fq generated by
∏q−1−k

i=0 (x − αi). It means that C0 is the

[q − 1, k, q − k] Reed-Solomon code over Fq, which is an MDS code.

Let C = CRT(C0, · · · , C0︸ ︷︷ ︸
s−1

, 0) and λ = ψ−1(1, . . . , 1︸ ︷︷ ︸
s−1

, 0) ∈ R. Then C is a λ-constacyclic code

of length q − 1 over R, |C| = |C0|
s−1 = qk(s−1) and d(C) = d(C0) = q − k. Let C′ be a

linear code of length q − 1 and cardinality qk(s−1) over R, then by the Singleton Bound, we have

d(C′) ≤ q − 1 − log|R| q
k(s−1) + 1 = q − k +

k

s
. Since 0 <

k

s
< 1, d(C′) ≤ q − k. Thus C is

an optimal code over R in the sense that it achieves the maximum possible minimum Hamming

distance for length q − 1 and cardinality qk(s−1).

Example 4.2. Let R0 be the Galois ring of characteristic pt and cardinality ptm and R =

ψ−1(R0 ×R0 × · · · ×R0

︸ ︷︷ ︸
s

), where s ≥ 2. Then |R| = ptms. Let n|(pm − 1) and α be an ele-

ment of order n in R0. Let 0 < k < min{s, n} and C0 be the cyclic code of length n over R0

generated by
∏n−k−1

i=0 (x − αi). It is clear that C0 is an MDS cyclic code which has minimum

Hamming distance n− k + 1 and cardinality ptmk.

Let C = CRT(C0, · · · , C0︸ ︷︷ ︸
s−1

, 0) and λ = ψ−1(1, . . . , 1︸ ︷︷ ︸
s−1

, 0) ∈ R. Then C is a λ-constacyclic code

of length n over R, |C| = |C0|
s−1 = ptmk(s−1) and d(C) = d(C0) = n − k + 1. Let C′ be a

linear code of length n and cardinality ptmk(s−1) over R, then by the Singleton Bound, we can get

d(C′) ≤ n − log|R| p
tmk(s−1) + 1 = n − k + 1 +

k

s
. Since 0 <

k

s
< 1, we have d(C′) ≤ n − k + 1.

Thus C is an optimal code over R in the sense that it achieves the maximum possible minimum

Hamming distance for length n and cardinality ptmk(s−1).
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[20] Norton, G. H.; Sălăgean, A. On the structure of linear and cyclic codes over a finite chain

ring. Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506.

[21] Sobhani, R.; Esmaeili, M. Cyclic and negacyclic codes over the Galois ringGR(p2,m). Discrete

Appl. Math. 157 (2009), no. 13, 2892-2903.

20


