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Abstract

Let Γ(n, k) be the Grassmann graph formed by the k-dimensional subspaces of a vector space of
dimension n over a field F and, for t ∈ N \ {0}, let ∆t(n, k) be the subgraph of Γ(n, k) formed
by the set of linear [n, k]-codes having minimum dual distance at least t + 1. We show that if
|F| ≥

(

n

t

)

then ∆t(n, k) is connected and it is isometrically embedded in Γ(n, k).
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1. Introduction

Let V := V (n,F) be a n-dimensional vector space over a field F and for k = 1, . . . , n−1, denote
by Γ(n, k) the k-Grassmann graph of V , that is the graph whose vertices are the k-subspaces of
V and where two vertices X,Y are connected by an edge if and only if dim(X ∩ Y ) = k − 1.
See [1] for more detail.

It is interesting to see what properties extend from the graph Γ(n, k) to some of its subgraphs.
Suppose that B = (e1, . . . , en) is a given basis of V ; henceforth we will write the coordinates

of the vectors in V with respect to B. Given two vectors x =
∑n

i=1 αiei and y =
∑n

i=1 βiei, the
Hamming distance (with respect to the basis B) between x and y is d(x, y) := |{i : xi 6= yi}|. In
this setting, a [n, k]-linear code C is just a k-dimensional vector subspace of V. Usually it is also
assumed that V is defined over a finite field Fq. However, for the purposes of the present paper
we shall use the language of coding theory even when the field F is not finite. If BC is an ordered
basis of C, a generator matrix for C is the k × n matrix whose rows are the coordinates of the
elements of BC with respect to B. Given a [n, k]-linear code C, its dual code is the [n, n−k]-linear
code C⊥ given by

C⊥ := {v ∈ V : ∀c ∈ C, v · c = 0}

where by · we mean the standard symmetric bilinear form on V given by

(v1, . . . , vn) · (c1, . . . , cn) = v1c1 + · · ·+ vncn.

Since the · is non-degenerate, C⊥⊥ = C. We say that C has dual minimum distance t+1 if and
only if the minimum Hamming distance of the dual C⊥ of C is t+ 1.
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The condition for a [n, k]-linear code C having dual minimum distance at least t + 1 can
be easily read on any generator matrix of it. Indeed (see, e.g., Proposition 2.7), C has dual
minimum distance at least t + 1 if and only if any t-columns of any generator matrix of C are
linearly independent.

For t ∈ N \ {0}, let Ct(n, k) be the set of all [n, k]-linear codes with dual minimum distance
at least t+1 and denote by ∆t(n, k) the subgraph of Γ(n, k) induced by the elements of Ct(n, k),
i.e. the vertex set of ∆t(n, k) is formed by the elements in Ct(n, k) and two vertices X and Y
are adjacent in ∆t(n, k) if and only if dim(X ∩Y ) = k− 1. We shall call ∆t(n, k) the Grassmann
graph of the linear Ct(n, k) codes.

Note that for t = 1, C1(n, k) is the class of the non-degenerate [n, k]-linear codes and for
t = 2, C2(n, k) is the class of the projective [n, k]-linear codes.

In general, we say that a subgraph is isometrically embedded in a larger graph if there exists
a distance-preserving map among them (see also Definition 2.3); see also [5].

In [2] Kwiatkowski and Pankov studied the graph ∆1(n, k) and more recently in [3] Kwi-
atkowski, Pankov and Pasini, considered the graph ∆2(n, k) in the case F is a finite field of order
q.

In [2, Corollary 2], the authors show that ∆1(n, k) is connected and isometrically embedded in
Γ(n, k) if and only if n < (q+1)2+k−2. In [3, Theorem 1] it is shown that a sufficient condition
for the graph ∆2(n, k) to be isometrically embedded in Γ(n, k) is q ≥

(

n

2

)

. In [3] it is also shown
that the graph of simplex codes is not always isometrically embedded in the Grassmann graph.

In this paper we extend some results of [2] and [3] to the graphs ∆t(n, k) for arbitrary t ≤ k
and arbitrary fields F.

More in detail, our main result is the following

Theorem 1. Let t, k, n be integers such that 1 ≤ t ≤ k ≤ n < ∞. Suppose that F is a field
with |F| ≥

(

n

t

)

. Then the graph ∆t(n, k) is connected and isometrically embedded into the k-
Grassmann graph Γ(n, k). Furthermore, the diameter of ∆t(n, k) and Γ(n, k) are the same.

Remark 1.1. The hypotheses in Theorem 1 are sufficient for the graph ∆t(n, k) to be connected
and to be isometrically embedded into Γ(n, k) but in general they are not necessary; see also [3,
Corollary 2]. We leave to a future work to determine if the graph ∆t(n, k) might be connected
also under some weaker assumptions on q or t and see if there are cases where the embedding
is not isometric. We leave also to a future work to generalize these results to vector spaces
with Hamming distance over a possibly non-commutative division ring as well as to the infinite
dimensional cases both for n and for k.

The paper is structured as follows. In Section 2 we recall some basic definitions and prelimin-
ary results which shall be used in order to prove Theorem 1. Section 3 contains the proof of our
main results; in particular, in Subsection 3.1 we shall prove that the graph ∆t(n, k) is connected
and isometrically embedded in Γ(n, k) for q ≥

(

n

t

)

, while in Subsection 3.2 we shall show that
the sets Ct(n, k), when not empty, always contain codes which are at maximum distance in the
Grassmann graph Γ(n, k).

2. Preliminaries

As mentioned in the Introduction, F is a field and V := V (n,F) denotes a n-dimensional
vector space over F. Let B = (e1, . . . , en) be a given ordered basis of V with respect to which
all the vectors will be written in coordinates. For k and t integers such that 1 ≤ t ≤ k ≤ n− 1,
Ct(n, k) is the class of [n, k]-linear codes having dual minimum distance at least t + 1. More
explicitly,

Ct(n, k) := {C ⊆ V : dimC = k, d⊥(C) ≥ t+ 1}

2



where d⊥(C) := dmin(C
⊥) is the minimum distance of the dual code C⊥ which means that the

weight wt(v) of any codeword v = (v1, . . . , vn) ∈ C⊥ is at least t+ 1, i.e.

wt(v) := |{i : vi 6= 0}| ≥ t+ 1.

Clearly, if Ct(n, k) 6= ∅, then necessarily t ≤ k ≤ n.
If t = k and F = Fq, the elements of Ck(n, k) are exactly the maximum distance separable

[n, k]-codes (see e.g. [4]), that is codes whose minimum distance dmin attains the Singleton bound
dmin = n− k + 1; see Corollary 2.8.

Remark 2.1. The condition t ≤ k ≤ n is necessary but in general not sufficient to ensure that
Ct(n, k) is not empty. Indeed, if F = Fq, even for arbitrary values of q, it is not straightforward
to determine if Ct(n, k) 6= ∅ or characterize the elements of Ct(n, k). For instance the celebrated
MDS conjecture implies Ck(n, k) = ∅ for n > q + 2. On the other hand, if n < q + 1, then by
Lemma 3.1, Ct(n, k) 6= ∅ for all t ≤ k ≤ n.

In order to avoid trivial cases, we shall henceforth suppose that the parameters n, k, t and q
if F := Fq, have been chosen so that Ct(n, k) 6= ∅; in Lemma 3.1 it shall be shown that under the
assumptions of Theorem 1 this is always true.

We recall from the Introduction that ∆t(n, k) is the subgraph of Γ(n, k) induced by the
elements of Ct(n, k).

Definition 2.2. Let X ∈ ∆t(n, k). We define the connected component ∆X
t (n, k) of X in

∆t(n, k) as the subgraph of ∆t(n, k) whose vertices are all Y ∈ ∆t(n, k) such that there is a path
in ∆t(n, k) joining X and Y . The graph ∆t(n, k) is connected if ∆X

t (n, k) = ∆t(n, k) for some
(and, consequently for all) X ∈ ∆t(n, k).

For any X,Y ∈ Ct(n, k) write d(X,Y ) for the distance between X and Y in the Grassmann
graph Γ(n, k) and dt(X,Y ) for the distance betweenX and Y in ∆t(n, k). If ∆

X
t (n, k) 6= ∆Y

t (n, k),
that is X and Y are in different connected components of ∆t(n, k) we put dt(X,Y ) = ∞. We
recall that the diameter of a graph is the maximum of the distances among two of its vertices.

Since every edge of ∆t(n, k) is an edge of Γ(n, k), it is straightforward to see that dt(X,Y ) ≥
d(X,Y ) for all X,Y ∈ ∆t(n, k).

Definition 2.3. We say that ∆t(n, k) is isometrically embedded in Γ(n, k) if for any X,Y ∈
∆t(n, k) we have dt(X,Y ) = d(X,Y ) = k − dim(X ∩ Y ).

Note that if ∆t(n, k) is isometrically embedded in Γ(n, k), then ∆t(n, k) is also connected.

2.1. Some basic results

Definition 2.4. Let (i1, . . . , it) ∈ N
t be a t-uple of integers such that 1 ≤ i1 < i2 < · · · < it ≤ n.

We denote by Ci1...it := ∩t
j:=1(xij = 0) the (n − t)-dimensional subspace of V obtained as the

intersection of the coordinate hyperplanes of V of equations xij = 0. We shall call Ci1...it the
(i1, . . . , it)-coordinate subspace of V.

The monomial group M(V ) of V consists of all linear transformations of V which map the
set of subspaces {〈e1〉, . . . , 〈en〉} in itself. It is straightforward to see that M(V ) ∼= F

∗ ≀Sn where
≀ denotes the wreath product and Sn is the symmetric group of order n; see [4, Chapter 8,§5] for
more details.

Definition 2.5. Two [n, k]-linear codes X and Y are equivalent if there exists a monomial
transformation ρ ∈ M(V ) such that X = ρ(Y ).

3



SupposeX is a [n, k]-linear code with generator matrix GX . If A ∈ GL(k,F) then G′
X = AGX

is also a generator matrix for X .
It follows that two [n, k]-linear codes X and Y with generator matrices respectively GX and

GY are equivalent if there exists A ∈ GL(k,F), a permutation matrix P ∈ GL(n,F) and a
diagonal matrix D ∈ GL(n,F) such that

GX = AGY (PD).

Equivalence between linear codes is an equivalence relation and the equivalence class of a
code X corresponds to the orbit of X under the action of M(V ) on the k-dimensional subspaces
of V .

Also, it can be readily seen that two codes are equivalent if and only if any two of their
generator matrices belong to the same orbit under the action of the group PGL(k,F) : (F∗ ≀ Sn),
where PGL(k,F) acts on the right of the generator matrix.

With mostly harmless abuse of notation, in the remainder of this paper we shall not distin-
guish between the action of M(V ) on the codes (regarded as subspaces of V ) and that on the
columns of their generator matrices.

Since equivalent codes have the same parameters (in particular they have the same minimum
dual distance), we have that Ct(n, k) consists of unions of orbits under the action of M(V ).

For j = 1, . . . , n, let xj : V → Fq be the jth-coordinate linear functional of V which acts on
the vectors ei, 1 ≤ i ≤ n, of B as xj(ei) = δij , where by δij we mean the Kronecker δ function.

Observe that, for any v ∈ V and j with 1 ≤ j ≤ n, we have that xj(v) is exactly the j-th
component of v with respect to the basis B. So, if X is a [n, k]-linear code and BX = (b1, . . . , bk)
is a given basis of X with respect to which the generator matrix GX is written, then for any i, j
with 1 ≤ i ≤ k and 1 ≤ j ≤ n, then xj(bi) is exactly the (i, j)- entry in the matrix GX . So,
the j-th column of GX represents the restriction xj |BX

of the functional xj to the basis BX . By
linearity, we can say that the j-th column of GX represents the restriction xj |X of the functional
xj to X . This has the following important consequence.

Lemma 2.6. Let X ⊆ V be a [n, k]-linear code and GX be a generator matrix of X. A set of
coordinate functionals restricted to X is linearly independent if and only if the columns of GX

representing them are linearly independent.

If F := Fq, we shall also use the notation

[m]q :=
qm − 1

q − 1

for the number of 1-dimensional subspaces of an m-dimensional vector space.
The equivalence between (1) and (2) in the following proposition is well known; however, since

many results of the present work rely on it, we present a complete proof for the convenience of
the reader.

Proposition 2.7. Let X be a [n, k]-linear code and denote by GX a generator matrix of X. The
following are equivalent.

(1) X has minimum dual distance at least t+ 1.

(2) Any t columns of GX are linearly independent.

(3) For any 1 ≤ i1 < i2 < · · · < it ≤ n we have dim(X ∩ Ci1...it) = k − t where Ci1...it :=
∩t
j:=1(xij = 0) is the (n− t)-dimensional (i1, . . . , it)-coordinate subspace of V.
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Proof. The matrix GX is a parity check matrix for the dual code X⊥. Write the columns of GX

as G1, . . . , Gn and let y = (y1, . . . , yn) ∈ X⊥. Then

GXy
t = G1y1 + · · ·+Gnyn = 0. (1)

Assume (1). Then, for any y ∈ X⊥, y 6= 0, we have wt(y) ≥ t + 1. Suppose by contradiction
that there is a set of t-columns of GX which are linearly dependent. To simplify the exposition,
assume without much loss of generality that this set comprises the first t-columns. Then,

G1y1 +G2y2 + · · ·+Gtyt = 0

with at least one entry yi different from 0; so the vector (y1, . . . , yt, 0, . . . , 0) 6= 0 is in X⊥ with
wt(y) ≤ t < t+ 1. This contradicts (1).

Conversely, assume (2) and take y ∈ X⊥ with wt(y) = d. Then GXy
T = 0. If d = 0, that is

y = 0, then there is nothing to prove. If d 6= 0, suppose, again without much loss of generality,
that exactly the first d entries y1, . . . , yd of y are non-zero. Then

G1y1 + · · ·+Gdyd = 0.

In particular, the first d columns of GX must be linearly dependent; by (2) we necessarily have
d > t since any set of t columns of GX is independent; this implies (1).

We now prove the equivalence between (2) and (3). Suppose that (3) holds. Then, dim(X ∩
Ci1...it) = k− t which means that the restrictions xi1 |X , . . . , xit |X of the t coordinate functionals
xi1 , . . . , xit of V to X are linearly independent. Then (2) follows from Lemma 2.6.

Conversely, assume (2) holds and suppose by contradiction that (3) is false, that is that
there exists a set of indexes i1, . . . , it such that dim(X ∩ Ci1...it) ≥ k − t + 1. Then, for some
j ∈ {1, . . . , t}, we have

X ∩ Ci1...ij−1ij+1...it ⊆ X ∩ Cij .

In terms of coordinate functionals this means

xij |X ∈ 〈xi1 |X , . . . , x
ij−1 |X , x

ij+1 |X , . . . , x
it |X〉.

So xij |X is a linear combination of the remaining coordinate functionals. In particular, by
Lemma 2.6, this means that the column Gij of any generator matrix GX of X is a linear
combination of the columns Gi1 , . . . , Gij−1

, Gij+1
, . . . , Git . This contradicts (2).

The following is an immediate consequence of Proposition 2.6.

Corollary 2.8. The set C1(n, k) consists of all [n, k]-linear non-degenerate codes; C2(n, k) con-
sists of all [n, k]-linear projective codes; the set Ck(n, k), if F = Fq, consists of all [n, k]-linear
MDS codes.

Proof. Only the statement about Ck(n, k) needs to be proved as the descriptions of C1(n, k) and
C2(n, k) follow directly from Proposition 2.7. Suppose C ∈ Ck(n, k), i.e. C is a [n, k]-code having
dual minimum distance at least k + 1. Then, by definition of Ck(n, k), C⊥ is a [n, n − k]-code
with minimum distance at least k + 1 = n − (n − k) + 1 and, as such it is a MDS-code. Since
the duals of MDS codes are MDS codes, C = C⊥⊥ is also MDS.

Conversely, suppose C to be a [n, k]-linear MDS code; then C⊥ is also MDS and has minimum
distance k + 1. It follows that C ∈ Ck(n, k).
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3. Proof of Theorem 1

We proceed by steps. First, we show that Ct(n, k) is not empty for all t and k with 1 ≤ t ≤
k ≤ n under the hypothesis that F is a field with |F|+ 1 ≥ n. Then, in Section 3.1 we provide a
condition for the graph ∆t(n, k) to be connected and isometrically embedded in Γ(n, k) and in
Section 3.2 we show that any class Ct(n, k) contains elements which are at maximum distance in
Γ(n, k).

Lemma 3.1. If F is a field with |F|+1 ≥ n then Ct(n, k) 6= ∅ for all t and k with 1 ≤ t ≤ k ≤ n.

Proof. Note that for all t we have Ct(n, k) ⊆ Ct−1(n, k). So, in order to get the lemma we just
need to show that Ck(n, k) 6= ∅ under our assumptions. It is well known that if n ≤ q + 1 for
F := Fq a finite field or order q, there exist [n, k]–linear MDS codes. Since the dual of an MDS
code is MDS, it is immediate to see that any k-columns of the generator matrix of a [n, k]–MDS
code C are independent. It follows that C ∈ Ck(n, k) 6= ∅.

Suppose now that F is an arbitrary infinite field. There exist at least n distinct elements
a1, a2, . . . , an ∈ F. Consider the matrix

G :=















1 1 . . . 1
a1 a2 . . . an
a21 a22 . . . a2n
...

...
...

ak−1
1 ak−1

2 . . . ak−1
n















.

Any k × k minor Mi1...ik of G, comprising the columns i1, . . . , ik is a Vandermonde matrix with
determinant

det(Mi1...ik) =
∏

1≤r<s≤k

(ais − air ) 6= 0.

In particular, the code C with generator matrix G belongs to Ck(n, k) which is consequently
non-empty.

3.1. The connectedness of the graph

The following are two elementary lemmas of linear algebra.

Lemma 3.2. Let X ∈ Ct(n, k) and let H be a hyperplane of X. If y 6∈ X then

dim(〈H, y〉 ∩ C) ≤ k − t+ 1

for every (n− t)-dimensional coordinate subspace C of V.

Proof. Suppose by contradiction

dim(〈H, y〉 ∩ C) ≥ k − t+ 2.

Since H ⊆ X we also have dim(〈X, y〉 ∩ C) ≥ k − t+ 2.
Any vector in 〈H, y〉 can be written in the form x+αy where x ∈ H and α ∈ F. In particular,

there are k − t+ 2 linearly independent vectors vi in 〈X, y〉 ∩ C of the form

vi = xi + αiy

where xi ∈ H and αi ∈ F. By Gaussian elimination (we remove y), we have at least k − t + 1
vectors in X which are linearly independent and contained in C; so dim(X ∩ C) ≥ k − t + 1,
which is a contradiction because X ∈ Ct(n, k) (see Proposition 2.7).
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Lemma 3.3. Let S be a vector space of dimension s, H1 6= H2 be two distinct hyperplanes of S
with fixed bases B1 and B2. Then, there exists a basis B of S contained in B1 ∪B2.

Proof. Since H1 6= H2, there exists at least one element b ∈ B2 \H1. Consider B = B1 ∪ {b}.
This is a linearly independent set consisting of s distinct elements, B ⊆ S and dim(S) = s. It
follows that B is a basis of S with B ⊆ B1 ∪B2.

Recall that by d(X,Y ) we mean the distance in Γ(n, k) while dt(X,Y ) denotes the distance
in ∆t(n, k).

The following definitions are used in the proof of Lemma 3.9.

Definition 3.4. Put
(

{1,...,n}
t

)

:= {(i1, . . . , it) ∈ N
t : 1 ≤ i1 < i2 < · · · < it ≤ n} and define as

colors the elements of it. Endow
(

{1,...,n}
t

)

with the natural lexicographic order on the t-uples.
Take X,Y ∈ Ct(n, k) with X 6= Y and let H be a hyperplane of X such that X ∩ Y ⊆ H .

The coloration induced by H is the map

ψH : Y/(H ∩ Y ) →

(

{1, . . . , n}

t

)

∪ {∞}

sending any vector [p] ∈ Y/(H ∩ Y ) to the smallest (in the lexicographic order) color (i1, . . . , it)
such that

dim(〈H, p〉 ∩Ci1...it)) = k − t+ 1

where Ci1...it is the (i1, . . . , it)-coordinate subspace as defined in Definition 2.4. If no such color
exists we put ψH([p]) = ∞.

The function ψH is well defined. Indeed, if b ∈ [a] = a + (H ∩ Y ), then b = a + h for some
h ∈ H ∩ Y and 〈H, b〉 = 〈H, a+ h〉 = 〈H, a〉; so ψH([a]) = ψH([b]).

Henceforth we shall silently denote each element [p] of Y/(X∩Y ) by means of its representative
element p.

Definition 3.5. Under the same assumptions as in Definition 3.4, we say that a set T ⊆
Y/(H ∩ Y ) is monochromatic if ∀r, s ∈ T , ψH(r) = ψH(s) 6= ∞, i.e. all of its elements have the
same color.

Definition 3.6. Under the same assumptions as in Definition 3.4, we say that a subspace S of
Y/(H ∩ Y ) with dim(S) = s is colorable if there exists at least one monochromatic basis of S. If
S is colorable, we define the color ψH(S) of S as the minimum color of a basis of S.

In symbols, let

F(S) := {f = (p1, . . . , ps) : f is a basis of S and ψH(p1) = · · · = ψH(ps) 6= ∞}

be the set of monochromatic bases of S. If f ∈ F(S), denote by ψH(f) the color of any element
in f. Hence

Lemma 3.7. The subspace S is colorable if and only if F(S) 6= ∅.

If S is colorable, the color of S is

ψH(S) := min{ψH(f) : f ∈ F(S)}.

In other words, S has color c if there are s independent vectors in S all with the same color c
and any other set of s independent vectors in S either is not monochromatic or has color c′ ≥ c.

Note that a colorable subspace S with color c is not, in general, a monochromatic set.
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Lemma 3.8. Let X,Y ∈ Ct(n, k) with dim(X ∩Y ) = k− d ≥ k− t. If F is a field with |F| ≥
(

n

t

)

then there exists a code Z ∈ Ct(n, k) such that dim(X ∩Z) = k− 1 and dim(Z ∩ Y ) = k− d+ 1.

Proof. We prove that for every hyperplane H of X containing X∩Y , there exists z ∈ Y \(X∩Y )
such that Z := 〈H, z〉 ∈ Ct(n, k).

By way of contradiction suppose the contrary. Hence there exists a hyperplane H of X with
X ∩ Y ⊆ H such that for every z ∈ Y \ (X ∩ Y ), we have 〈H, z〉 6∈ Ct(n, k).

Equivalently, by Proposition 2.7, we suppose that there exists a hyperplane H of X with
X ∩ Y ⊆ H such that for every z ∈ Y \ (X ∩ Y ) there exist indexes i1 < i2 < · · · < it such that
dim(〈H, z〉 ∩ Ci1...it) ≥ k − t+ 1. By Lemma 3.2, we have dim(〈H, z〉 ∩Ci1...it) = k − t+ 1.

Under these assumptions, we will prove the following claim which leads to a contradiction.

Claim 1. There exist indexes i1, . . . , it and linearly independent vectors p1, . . . , pd ∈ Y \ (X∩Y )
such that [p1], . . . , [pd] are linearly independent in Y/(X ∩ Y ),

dimRi = k − t+ 1 and dim(R1 + · · ·+Rd) ≥ k − t+ d

where we put Hi := 〈H, pi〉 and Ri = Hi ∩ Ci1...it .

Note that for every i, Ri ⊆ 〈H,Y 〉. From Claim 1, we have

dim(Y +R1 + · · ·+Rd) ≤ dim(H + Y ) = k + d− 1 (2)

and

dim(Y ∩ (R1 + · · ·+Rd)) = dim(Y ) + dim(R1 + · · ·+Rd)− dim(R1 + · · ·+Rd + Y ) ≥

≥ k + (k − t+ d)− (k + d− 1) ≥ k − t+ 1. (3)

Since Ri ⊆ Ci1...it for any i, it follows

dim(Ci1...it ∩ Y ) ≥ dim(Y ∩ (R1 + · · ·+Rt)) ≥ k − t+ 1, (4)

which is a contradiction because dim(Ci1...it ∩Y ) = k−t, since Y ∈ Ct(n, k) (see Proposition 2.7).
So, in order to get the thesis, we need to prove Claim 1.
Let S be a subspace of Y/(H ∩ Y ) with dim(S) = s. We show by induction on s that S is

colorable. First, by our hypotheses, for any p ∈ S we have ϕH(p) 6= ∞.
Suppose dim(S) = 2. The projective space PG(S) is then a projective line of PG(Y/H ∩ Y ))

so there are |F| + 1 points in PG(S). By hypothesis we have |F| ≥
(

n
t

)

possible colors (see
Definition 3.4). Hence there are at least 2 linearly independent vectors p1 and p2 in S such that
ψH(p1) = ψH(p2). Hence, F(S) 6= ∅. By Lemma 3.7, S is colorable.

Suppose now dim(S) > 2. Put s := dim(S). By induction, all subspaces S′ of S with dimension
dim(S′) = dim(S)−1 are colorable, that is they all admit a monochromatic basis. For any (s−2)-
subspace S′′ of S there are |F|+1 distinct (s−1)-dimensional subspaces S′ of S with S′′ ≤ S′ ≤ S.
Also PG(S/S′′) is a projective line. Since |F|+1 >

(

n

t

)

, there are at least two of such subspaces,
say S1 and S2 with S1 6= S2 (hence 〈S1, S2〉 = S) which have the same color ψH(S1) = ψH(S2).

Let B1 and B2 be bases of respectively S1 and S2 with ψH(B1) = ψH(B2) (=ψH(S1)). By
Lemma 3.3, there is a basis B of S contained in B1∪B2. So S admits at least one monochromatic
basis and F(S) 6= ∅. By Lemma 3.7, S is colorable.

Hence, it is always possible to determine a monochromatic set of d independent vectors
{p1, p2, . . . , pd} of Y such that [p1], . . . , [pd] are independent in Y/(X ∩ Y ). So, we have (recall
that Hi = 〈H, pi〉)

dim(H1 ∩ Ci1...it) = dim(H2 ∩Ci1...it) = · · · = dim(Hd ∩ Ci1...it) = k − t+ 1. (5)
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Since H ⊆ X and X ∈ Ct(n, k), we have dim(H ∩ Ci1...it) ≤ k − t. Recalling that by definition
Ri := Hi∩Ci1...it = 〈H, pi〉∩Ci1 ...it , we have, by (5), that dim(Ri) = dim(H∩Ci1 ...it)+1 = k−t+1
and dim(H ∩ Ci1...it) = k − t.

In particular, (note that pi 6∈ H), it is always possible to find for 1 ≤ i ≤ d an element hi ∈ H
and a non-null element αi ∈ Fq such that the point αipi + hi ∈ Ri is such that

αipi + hi ∈ Ci1...it ;

up to a scalar multiple we can assume αi = 1 for all i.
We now show that dim(R1+R2+ · · ·+Rd) ≥ k− t+d. Suppose the contrary. Then, without

loss of generality, we can assume Rd ⊆ R1 +R2 + · · ·+Rd−1. In particular

pd + hd ∈ R1 + · · ·+Rd−1,

whence
pd = β1p1 + · · ·+ βd−1pd−1 + h

with h ∈ H a suitable element and βi ∈ F for 1 ≤ i ≤ d− 1. So, given that p1, . . . , pd ∈ Y ,

pd − (β1p1 + · · ·+ βd−1pd−1) = h ∈ H ∩ Y = X ∩ Y,

that is
[pd] + [p1] + · · ·+ [pd−1] = [0]

in Y/(X ∩ Y ). This contradicts the first part (already proved) of Claim 1, since [p1], . . . , [pd] are
linearly independent vectors of Y/(X ∩ Y ). It follows dim(R1 + R2 + · · ·+Rd) ≥ k − t+ d. So
Claim 1 holds. This completes the proof of the theorem.

Note that if F := Fq is a finite field, then Lemma 3.8 gives the following

Corollary 3.9. Let X,Y ∈ Ct(n, k) with dim(X∩Y ) = k−d ≥ k−t. If F := Fq and q ≥
(

n
t

)

then
there exist [d]q distinct codes Z ∈ Ct(n, k) such that dim(X∩Z) = k−1 and dim(Z∩Y ) = k−d+1.

Proof. For any hyperplane H of X containing X ∩ Y it is possible to apply the argument in the
proof of Lemma 3.8. Thus there are at least [d]q distinct codes Z with the required property.

We point out that for d = 2, Corollary 3.9 states the same as [3, Lemma 1]. The following
extends [3, Lemma 2] to the case d ≥ 2 as well as to when F is infinite.

Lemma 3.10. Suppose F is a field with |F| ≥
(

n
t

)

. Then for any X ∈ Ct(n, k) and for every
U ⊂ X with dim(U) < k − t there exists X ′ ∈ Ct(n, k − 1) satisfying U ⊂ X ′ ⊂ X.

Proof. A hyperplane H of X is an element of Ct(n, k − 1) if and only if H does not contain
X ∩ Ci1...it for any i1 < · · · < it. Indeed, if Ci1...it ∩ X ⊆ H for some i1 < · · · < it, then
dim(H ∩Ci1...it) ≥ dim(X ∩Ci1...it) = k− t > k− t−1 and H 6∈ Ct(n, k−1). Conversely, suppose
that for any i1 < · · · < it, Ci1...it∩X 6⊆ H ; then dim(H∩X∩Ci1...it) = dim(H∩Ci1...it) = k−1−t
for any choice of the indexes; so H ∈ Ct(n, k − 1).

By Definition of Ci1...it (see Definition 2.4), there exist at most
(

n
t

)

distinct spaces Ci1...it .
Now we distinguish two cases.

• If F := Fq is a finite field, each of the spaces Ci1...it is contained in [t]q distinct hyperplanes
of X . So the number of hyperplanes containing at least one X ∩ Ci1...it is at most

(

n

t

)

[t]q.
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On the other hand U is contained in [m]q distinct hyperplanes where m = dim(X/U).
Since m > t we have

[m]q ≥ [t+1]q = qt + qt−1 + · · ·+ q+1 ≥

(

n

t

)

qt−1 +

(

n

t

)

qt−2 + · · ·+

(

n

t

)

+1 >

(

n

t

)

[t]q.

This shows that there is at least one hyperplane X ′ of X containing U and none of the
Ci1...it .

• Suppose F is an infinite field and denote by X∗ the dual space of X . Then, for every U ⊆ X
with dimU < k − t the set of hyperplanes X ′ of X containing U determine a subspace U
of PG(X∗) of vector dimension at least k − (k − t − 1) = t + 1. Since each of the spaces
X ∩ Ci1...it has dimension k − t (because X ∈ Ct(n, k)), the set Hi1...it of hyperplanes
containing Ci1...it is a subspace of PG(X∗) of vector dimension t. In particular, the set of
all hyperplanes of X containing at least one Ci1...it is the union of

(

n

t

)

subspaces of PG(X∗)
each of vector dimension t.

Since the field F is infinite, it is impossible for a projective space of vector dimension at
least t+ 1 to be the union of a finite number of projective spaces of dimension t.

It follows that there is at least one element

X ′ ∈ U \
⋃

(i1...it)∈

({i1,...,in}
t )

Hi1...it .

This leads to the same conclusion as in the case in which F is finite.

We are now ready to prove the following theorem, which extends [3, Theorem 1] to arbitrary
t.

Theorem 3.11. Suppose F is a field with |F| ≥
(

n

t

)

. Then ∆t(n, k) is connected and isometrically
embedded into Γ(n, k).

Proof. Take X,Y ∈ Ct(n, k) with X 6= Y . Put dim(X ∩ Y ) := k − d. If k − d ≥ k − t, then
the thesis follows from Lemma 3.8. Suppose now k − d < k − t. By Lemma 3.10 there exists
X ′ ⊆ X with X ∩ Y ⊆ X ′ and X ′ ∈ Ct(n, k − 1). Let Y ′ a (k − d) + 1- dimensional subspace of
Y containing X ∩ Y . Put T = 〈X ′, Y ′〉. Then dim(T ) = k; also

dim(T ∩Ci1...it) ≤ dim(X ′ ∩Ci1...it) + 1 = k − 1− t+ 1 = k − t

for all 1 ≤ i1 < i2 < · · · < it ≤ n. In particular T ∈ Ct(n, k) and dim(X ∩ T ) = k − 1,
dim(Y ∩T ) = k−d+1. By recursively applying this argument we get that ∆t(n, k) is connected.

By construction, the length dt(X,Y ) of the path joining X and Y in ∆t(n, k) is at most
k − dim(X ∩ Y ) := d(X,Y ), i.e. dt(X,Y ) ≤ d(X,Y ). Since dt(X,Y ) ≥ d(X,Y ) in general, we
get the thesis.

Remark 3.12. As a consequence of Theorem 3.11,

diam(∆t(n, k)) ≤ diam(Γ(n, k))

when |F| ≥
(

n

t

)

. In the following section we shall show that these two diameters are actually the
same.
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3.2. Codes at maximum distance

In this section we do not assume any hypothesis on the parameters, apart that they have been
chosen so that there exists at least one [n, k]-linear code with dual minimum distance at least t,
i.e. Ct(n, k) 6= ∅. Hence, the graph ∆t(n, k) is not assumed to be connected. This observation
justifies the following.

Definition 3.13. We say that two codes in X,Y ∈ Ct(n, k) are opposite in ∆t(n, k) if they
belong to the same connected component ∆X

t (n, k) = ∆Y
t (n, k) of ∆t(n, k) and dt(X,Y ) =

diam(∆X
t (n, k)).

Definition 3.14. We say that two k-dimensional subspaces X,Y ⊆ V are opposite in Γ(n, k) if
dim(X ∩ Y ) = max{2k − n, 0}.

Observe that if 2k ≤ n, being opposite in Γ(n, k) means dim(X + Y ) = 2k (equivalently,
X ∩ Y = {0}), while if 2k > n, it means dim(X + Y ) = n.

Lemma 3.15. Suppose t ≤ k ≤ n, Ct(n, k) 6= ∅ and |F| > max{k, n−k}+1. Then, for any code
C ∈ Ct(n, k) there exists a code D ∈ Ct(n, k) which is equivalent and opposite to C in Γ(n, k).

Proof. Suppose 2k ≤ n and let C ∈ Ct(n, k) with G as generator matrix. By elementary row
operations on G, which leave C invariant, and column operations by means of ρ ∈ M(V ) (see
Definition 2.5), we can obtain a generator matrix

G′ :=
(

I A B
)

for an equivalent code ρ(C) =: C′ ∈ Ct(n, k). Here I is the k × k identity matrix, A is a k × k
matrix of rank t (since any t columns of a generator matrix of a code in Ct(n, k) are linearly
independent) and B is a k × (n− 2k). Take λ ∈ F \ {0} and consider the matrix

G′′
λ :=

(

λA I B
)

.

Since G′′
λ is obtained from G′ by applying transformations induced by the monomial group

M(V ), the code C′′
λ having G′′

λ as generator matrix, is equivalent to C′. In particular C′′
λ ∈

Ct(n, k).
We want to show that it is always possible to choose λ so that C′′

λ and C′ are in direct sum
as subspaces of V , that is the matrix

(

I A B
λA I B

)

has rank 2k. By elementary row operations, subtracting from the second block λA
(

I A B
)

,
we see that the rank of the matrix above is the same as the rank of

(

I A B
0 I − λA2 (I − λA)B

)

.

In particular, this rank is definitely 2k if det(I − λA2) 6= 0.
On the other hand det(I − λA2) = 0 if and only if λ−1 is an eigenvalue of A2. Since A2 is a

k × k matrix, of rank at most t, the number of its non-null eigenvalues is at most t ≤ k < |F∗|.
So, there is at least one λ ∈ F

∗ such that λ−1 is not a non-null eigenvalue of A2. For such a λ,
the matrix G′′

λ represents a code C′′
λ ∈ Ct(n, k) such that dim(C′ ∩ C′′

λ) = 0, that is C′ and C′′
λ

are opposite in Γ(n, k).
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Suppose now that 2k > n. Let C ∈ Ct(n, k) be a code with generator matrix G. Using
elementary row operations on G and a monomial transformation ρ ∈ M(V ), we can obtain a
code C′ := ρ(C) equivalent to C whose generator matrix G′ is in systematic form, i.e.

G′ =

(

In−k 0 A1

0 I2k−n A2

)

,

where A1 and A2 are suitable matrices of dimensions respectively (n−k)×(n−k) and (2k−n)×

(n−k). For λ ∈ F\{0}, let now G′′
λ =

(

λA1 0 In−k

λA2 I2k−n 0

)

and C′′
λ be the code with generator

matrix G′′
λ. The matrix G′′

λ is obtained by permuting and multiplying some of the columns of
the matrix G by a non-zero scalar λ; as such the code C′′

λ generated by G′′
λ is equivalent to C

and C′; thus, C′′
λ ∈ Ct(n, k) for all λ 6= 0.

Since 2k > n, the codes C′ and C′′
λ are opposite if and only if dim(C′ + C′′

λ) = n, that is to

say the rank of the matrix Ḡλ =

(

G′

G′′
λ

)

is maximum and equal to n.

Explicitly, the structure of the matrix Ḡλ is

Ḡλ =









In−k 0 A1

0 I2k−n A2

λA1 0 In−k

λA2 I2k−n 0









.

By using column operations we see that

rank









In−k 0 A1

0 I2k−n A2

λA1 0 In−k

λA2 I2k−n 0









≥ rank





In−k 0 A1

0 I2k−n A2

λA1 0 In−k



 =

rank





In−k 0 A1

0 I2k−n 0
λA1 0 In−k



 = rank





In−k 0 0
0 I2k−n 0
λA1 0 In−k − λA2

1



 .

So, if λ−1 is not an eigenvalue of A2
1, we have that rank (Ḡλ) = n. As the matrix A2

1 has
dimension (n − k) × (n − k), we have that A2

1 has at most n − k eigenvalues; as |F∗| > n − k
there are some values of λ 6= 0 such that this rank is maximum; for these values of λ we get that
C′, C′′

λ ∈ Ct(n, k) are opposite.
Observe now that for any two codes X,Y ∈ Ct(n, k) and any η ∈ M(V ), we have d(X,Y ) =

d(η(X), η(Y )) in Γ(n, k). Since C′ = ρ(C) for ρ ∈ M(V ), put D = ρ−1(C′′
λ), where C

′′
λ is the

code constructed above. Then,

d(C,D) = d(ρ−1(C′), ρ−1(C′′
λ)) = d(C′, C′′

λ).

It follows that C and D are codes in Ct(n, k) which are equivalent and opposite in Γ(n, k).

Corollary 3.16. Suppose Ct(n, k) 6= ∅ and ∆t(n, k) to be isometrically embedded into Γ(n, k).
If |F| > max{k, n− k}+ 1, then

diam(∆t(n, k)) = diam(Γ(n, k)).
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Proof. By Lemma 3.15, there are at least two codesX,Y ∈ Ct(n, k) with d(X,Y ) = diam(Γ(n, k)).
Since ∆t(n, k) is isometrically embedded in Γ(n, k) we also have dt(X,Y ) = diam(Γ(n, k)). On
the other hand, for any X,Y ∈ Ct(n, k),

dt(X,Y ) = d(X,Y ) ≤ diam(Γ(n, k)).

It follows that diam(∆t(n, k)) = diam(Γ(n, k)).

Note that for q ≥
(

n
t

)

, the assumptions of Corollary 3.16 hold.
Theorem 1 follows from Lemma 3.1, Theorem 3.11 and Corollary 3.16.
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