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EXTENDING TWO FAMILIES OF MAXIMUM RANK DISTANCE

CODES

ALESSANDRO NERI, PAOLO SANTONASTASO, AND FERDINANDO ZULLO

Abstract. In this paper we provide a large family of rank-metric codes, which contains
properly the codes recently found by Longobardi and Zanella (2021) and by Longobardi,
Marino, Trombetti and Zhou (2021). These codes are Fq2t -linear of dimension 2 in the
space of linearized polynomials over Fq2t , where t is any integer greater than 2, and we prove
that they are maximum rank distance codes. For t ≥ 5, we determine their equivalence
classes and these codes turn out to be inequivalent to any other construction known so
far, and hence they are really new.

1. Introduction

Codes endowed with the rank-metric have gained a lot of interest in the last decade due
to their numerous applications. In particular, the turning point was the groundbreaking
work of Silva, Kötter and Kschischang [44], in which they proposed rank metric codes as
tools for dealing with linear random network coding. However, the origin of rank-metric
codes is due to Delsarte’s seminal paper [11] in 1978, where they were first defined for a
pure combinatorial interest. Few years later, Gabidulin rediscovered them independently
[13]. The first applications were due to Roth in [40] for crisscross deletion correction,
and to Gabidulin, Paramonov and Tretjakov in [14] for a cryptosystem based on rank-
metric codes. From a mathematical point of view, rank-metric codes have been shown to
possess connections with many subjects, such as semifield theory [41], linear sets in finite
geometry [38], tensorial algebra [4], skew algebras [1, 12], matroid theory [16] and many
more. All these connections testify the rich structure that rank-metric code possess.

Formally, rank-metric codes are sets of n×m matrices over a finite field Fq, endowed with
the rank metric. This is the metric defined by the rank distance, where the rank distance
between two matrices is the rank of their difference. There is also another representation of
rank-metric codes, which allows to endow them with stronger algebraic properties. When
n = m, one may indeed identify the space F

n×n
q , with the ring of σ-polynomials with
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coefficients in Fqn , where σ is a generator of Gal(Fqn/Fq). This allows also to introduce a
notion of Fqn-linearity of a rank-metric code.

Among rank-metric codes, of particular interest is the family of maximum rank distance
(MRD) codes. These are codes that have optimal parameters: for the given size and
minimum rank distance, they have the maximum cardinality. The first construction of a
family of MRD codes was due already to Delsarte [11] and independently to Gabidulin
[13]. The codes of this family are now known as Gabidulin codes and for many years were
essentially the only known constructions, until Sheekey came up with a broader family of
MRD codes, named twisted Gabidulin codes. The flexibility of the parameters of these
families is one of the main reasons that made Gabidulin and twisted Gabidulin codes very
appealing. Another large family of MRD codes was later given by Trombetti and Zhou
in [45]. Except from that, almost all the other known MRD construction have all very
specific restriction on some of the parameters: for instance, the MRD codes [3,6,7,10,28,47]
exist only for n ∈ {6, 7, 8}.

Very recently, two classes of 2-dimensional Fqn-linear MRD codes have been introduced
for any even n. One was given in [24] and the second in [23]. The arguments used there
for showing that these codes are MRD exploited the correspondence of MRD codes with
scattered linear sets [38] and in particular with scattered polynomials.

In this paper we provide a wider family of 2-dimensional Fqn-linear MRD codes properly
containing the two families introduced in [23, 24]; see Theorem 3.8. In order to show that
they are MRD, we first give in Theorem 3.2 a more general argument which allows to
extend any construction of MRD codes based on σ-polynomials to any other generator θ of
Gal(Fqn/Fq) under certain hypotheses. We then focus on the study of the equivalence of
these codes. We first prove that the codes in this wider family are all inequivalent to all the
other Fqn-linear MRD codes known so far; see Proposition 4.2 and Theorem 4.3. Afterwards,
we concentrate on the equivalence problem within this new family: in Theorem 4.6 and in
Corollary 4.9, we characterize for which parameters two of these codes are equivalent. This
also allows to derive results on the number of equivalence classes of codes in the new family:
in Theorem 4.10 we provide the exact but implicit number of these equivalence classes,
while in Theorem 4.12 we give an explicit lower bound.

The paper is structured as follows. Section 2 collects all the basic ingredients we need
throughout the paper. In Section 3 we introduce the new family of codes, showing that
they are MRD. Section 4 is dedicated to the study of the equivalence classes of the new
codes. Finally, we recap our findings and list some open problems in Section 5.

2. Preliminaries

In this section we give a recap on the important notions and results needed for the paper.
We start introducing rank-metric codes and their representation as linearized polynomi-
als. We then recall the notion of maximum rank distance (MRD) codes and explain the
two most prominent infinite families of MRD codes known up to now. Finally, we give a
short description of the invariants studied in [35], which will be used for determining code
inequivalence. For the interested reader, we refer to the survey on rank-metric codes writ-
ten by Sheekey [42], which provides an exhaustive study on rank-metric codes in various
frameworks.
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We start fixing the following notation. Let p be a prime and r a positive integer. We fix
q = pr and denote by Fq the finite field with q elements. Moreover, we fix a positive integer
t, let n = 2t, and consider the extension field Fqn of degree n over Fq. It is well-known that
this extension is Galois and that the Galois group Gal(Fqn/Fq) is cyclic. For the rest of the
paper we will use σ and θ to denote generators of Gal(Fqn/Fq). Recall that for a Galois
extension of the form Fqn/Fq, the norm of an element α ∈ Fqn is defined as

Nqn/q(α) :=
∏

ρ∈Gal(Fqn/Fq)

ρ(α).

2.1. Rank-metric codes and linearized polynomials. Rank-metric codes were intro-
duced by Delsarte [11] in 1978 and they have been intensively investigated in recent years
because of their applications in crisscross error correction [40], cryptography [14] and net-
work coding [44]. Formally, on the set of matrices F

n×m
q we can define the rank-metric,

as
d(A,B) = rk (A−B), for A,B ∈ F

n×m
q .

A rank-metric code is a subset C of Fn×mq endowed with the rank metric. The minimum
rank distance of C is defined as

d := d(C) = min{d(A,B) : A,B ∈ C, A 6= B}.

Moreover, if C is an Fq-linear subspace of Fn×mq , we will also say that the code is Fq-linear,
and in this case the minimum rank distance is also equal to

d(C) = min{rk(A) : A ∈ C, A 6= 0}.

Delsarte showed in [11] that the parameters of a rank-metric code must satisfy a Singleton-
like bound, that reads as

| C | ≤ qmax{m,n}(min{m,n}−d+1).

When equality holds, we call C a maximum rank distance (MRD for short) code. It was
shown that MRD codes exist for any choice of q, n,m, d; see [11,13].

In this paper we will focus on the case of square matrices, that is when n = m.1 In this
case there is an alternative way to see the Fq-algebra of n × n matrices as the algebra of
σ-polynomials. Formally, let σ be a generator of Gal(Fqn/Fq). A σ-polynomial is an element
of the form

f(x) :=

n−1∑

i=0

fix
σi , fi ∈ Fqn .

The set of σ-polynomials forms a ring with the usual addition and the composition, given
by

(fix
σi) ◦ (gjx

σj ) = fiσ
i(gj)x

σi+j

,

on σ-monomials, and then extended by distributivity. We denote this ring by Ln,σ. It is
well-known that

(1) (Ln,σ,+, ◦) ∼= (EndFq(Fqn),+, ◦),

1We remark that for the study of MRD codes, considering the case of square matrices is not a real
restriction. Indeed if we have m < n, then any MRD code in F

n×n
q can be used to obtain MRD codes in

F
n×m
q by simply removing from each matrix the last n−m columns.
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where the σ-polynomial f(x) is identified with the endomorphism of Fqn

α 7−→
n−1∑

i=0

fiσ
i(α).

However, a different choice of the generator σ only gives a different representation of an
element, but the ring Ln,σ does not depend on this choice. Hence, Ln,σ is the same for any
choice of σ, and one can just consider Ln,q := Ln,θ, where θ is the q-Frobenius isomorphism
of Fqn , mapping each α ∈ Fqn to αq. Thus, one can speak of σ-polynomials just in Ln,q.
Notice that Ln,q is isomorphic to the algebra of q-linearized polynomials modulo the two-
sided ideal generated by xq

n
− x; see [46].

We remark that the isomorphism given in (1) holds in a more general setting and not
only over finite fields. For instance, one can define σ-polynomials over any field L with
σ ∈ Aut(L), and obtain (Ln,σ,+, ◦) ∼= (EndK(L),+, ◦), where K = L

σ and n = [L : K]; see
e.g. [17]. More generally, there is a similar isomorphism also for any Galois extension of
fields or of rings [5, Theorem 1.3], which have been exploited for the development of a more
general theory of rank-metric codes [1, 2, 12,19].

Thanks to the isomorphism in (1), we immediately get that (Ln,σ,+, ◦) is also isomorphic
to the Fq-algebra F

n×n
q , since Fqn is an n-dimensional Fq-vector space. Thus, rank-metric

codes can equivalently be represented as subsets of Ln,q. Here, we will speak of kernel
and rank of a σ-polynomial meaning by this the kernel and rank of the corresponding
endomorphism. This naturally defines the rank-metric directly on Ln,q.

There is a very special σ-polynomial that is central for many aspects of Galois theory
and duality theories. This is the case of the trace map, defined as

Trqn/q(x) :=

n−1∑

i=0

xσ
i

.

The trace maps induces a nondegenerate symmetric Fq-bilinear form 〈·, ·〉 on Fqn , given by

〈α, β〉 = Trqn/q(αβ).

The adjoint of a σ-polynomial f(x) = f0x+f1x
σ+ . . .+fn−1x

σn−1
with respect to the trace

bilinear form is

f⊤(x) =

n−1∑

i=0

σn−i(fi)x
σn−i

,

that is the σ-polynomial satisfying

Trqn/q(f(α)β) = Trqn/q(αf
⊤(β)), for every α, β ∈ Fqn .

In this framework, the adjoint code C⊤ of a rank-metric code C ⊆ Ln,q is

C⊤ = {f⊤(x) ∈ Ln,q : f(x) ∈ C}.

Two rank-metric codes C1, C2 ⊆ Ln,q are said to be equivalent if there exist two invertible
σ-polynomials f1(x), f2(x) ∈ Ln,q and a field automorphism ρ ∈ Aut(Fqn) such that

C1 = f1 ◦ C
ρ
2 ◦f2 = {f1 ◦ g

ρ ◦ f2 : g ∈ C2},
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where gρ(x) :=
∑n−1

i=0 ρ(ai)x
σi if g(x) =

∑n−1
i=0 aix

σi .
In addition, a useful tool for studying equivalence of codes is represented by the idealizers.
They have been introduced in [22] and used to study equivalence and automorphisms of
Gabidulin codes. Formally, the left and right idealizers of a rank-metric code C ⊆ Ln,q are
defined as

L(C) := {ϕ(x) ∈ Ln,q : ϕ ◦ f ∈ C for all f ∈ C},

R(C) := {ϕ(x) ∈ Ln,q : f ◦ ϕ ∈ C for all f ∈ C}.

Such structures have been also investigated in [26] under the name of middle and right
nuclei.

We conclude this section recalling a useful characterization result established in [30] (see
also [9]) for determining the rank of a σ-polynomial. There, it was shown that it is sufficient
to caluclate the rank of a possibly smaller matrix build up with the coefficient of the σ-
polynomial.

Theorem 2.1. [30, Theorem 6] Let f(x) =
∑k

i=0 aix
σi be an element of Ln,σ with σ-degree

k. Then

rk(f) = n− k + rk(CfC
σ
f · . . . · Cσ

n−1

f − Ik),

where

Cf =










0 0 · · · 0 −a0/ak
1 0 · · · 0 −a1/ak
0 1 · · · 0 −a2/ak
...

...
. . .

...
...

0 0 · · · 1 −ak−1/ak










,

Cσ
i

f is the matrix obtained from Cf by applying σi to each of its entries and Ik is the
identity matrix of order k.

2.2. Gabidulin and twisted Gabidulin codes. In this subsection, we survey on the
known constructions of Fqn-linear MRD codes, represented as subspaces of Ln,q.

First, we need to specify what is meant by Fqn-linearity. The isomorphism described
in (1) gives a natural intepretation of this notion as Fqn-subspaces of Ln,q. However, this
definition is not taking into account equivalence of codes, that is, one may have a rank-
metric code C ⊆ Ln,q which is not an Fqn-subspace, but it is equivalent to an Fqn-subspace
of Ln,q. With this in mind, one can extend the notion of Fqn-linearity to codes which are
equivalent to an Fqn-subspace of Ln,q. Sheekey characterized these codes in terms of their
idealizers; see [42, Definition 12]. Formally, we will say that a rank-metric code C ⊆ Ln,q is
Fqn-linear if L(C) contains a subring isomorphic to

Fn := {αx : α ∈ Fqn} ≃ Fqn .

In [11], Delsarte gave the first construction for Fqn-linear MRD codes, and few years later,
Gabidulin in [13] presented the same class of MRD codes by using linearized polynomials.
These codes were then generalized to σ-polynomials for any generator σ of Gal(Fqn/Fq) by
Kshevetskiy and Gabidulin in [20], and they are now known as Gabidulin codes. Formally,
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for a given generator σ of Gal(Fqn/Fq) and a positive integer k ≤ n, the k-dimensional
σ-Gabidulin code is

Gk,σ = 〈x, xσ , . . . , xσ
k−1

〉Fqn
.

It is easy to see that Gk,σ is an Fqn-linear MRD code and L(Gk,σ) = R(Gk,σ) ≃ Fqn ;
see [22,27].

Five years ago, Sheekey generalized the family of σ-Gabidulin codes to what are now
known as twisted Gabidulin codes. Formally, the k-dimensional σ-twisted Gabidulin code
Hk,σ(η, h) is

Hk,σ(η, h) = {a0x+ a1x
σ + . . .+ ak−1x

σk−1
+ σh(a0)ηx

σk : ai ∈ Fqn},

where h ∈ {0, . . . , n − 1} and η ∈ Fqn is such that Nqn/q(η) 6= (−1)nk. In the same paper
Sheekey showed that Hk,σ(η, h) is an Fq-linear MRD code. Lunardon, Trombetti and Zhou
in [27] determined the automorphism group of σ-twisted Gabidulin codes and studied their
equivalence. Moreover, they also determined their left and right idealizers: if η 6= 0, then

L(Hk,σ(η, h)) ≃ Fqgcd(n,h) and R(Hk,σ(η, h)) ≃ Fqgcd(n,k−h) .

As a consequence, Hk,σ(η, h) is Fqn-linear if and only if h = 0.
Further examples of Fqn-linear MRD codes can be found in [3,6,7,10,28,47] which exist

only for n ∈ {6, 7, 8} and in [23,24] which exist for every n even.

2.3. Equivalence of rank-metric codes. In this section we recall some known results
on the equivalence of rank-metric codes, which will be crucial for showing that the family
of codes we are going to introduce is really new. For this purpose, we will use a technique
based on applying suitable automorphisms of the Galois group Gal(Fqn/Fq) to the code and
checking the space that their images span. This technique was initiated by Overbeck in [36]
as a structural attack on code-based cryptosystems based on Gabidulin codes. The same
idea was elaborated in [18] for a different purpose: there, Gabidulin codes were partially
characterized in terms of the span of the code with its image under a single automorphism,
under the additional assumption to have an MRD code. This characterization was later
completed in [33], where the assumption of the code being MRD was dropped. The same
strategy was used for the first time to derive code inequivalence results in [39]. This was
later generalized to two automorphisms in [15], in order to characterize twisted Gabidulin
codes and study their invariants; see also [49, Section 5.5]. Finally, the general technique
for code inequivalence was developed in [34,35] and was used to give a full characterization
of punctured Gabidulin codes and provide a lower bound on their equivalence classes; see
also [32, Chapter 7].

We first recall a crucial result from [35]. In the following, for any rank-metric code
C ⊆ Ln,q and any automorphism σ ∈ Gal(Fqn/Fq), we denote by σ(C) the rank-metric code

σ(C) := {xσ ◦ f(x) : f(x) ∈ C} ⊆ Ln,q.

Proposition 2.2 ( [35, Lemma 3.1], [34, Lemma 2]). Let C1, C2 ⊆ Ln,q be two Fqn-linear
rank-metric codes and let σ1, . . . , σr ∈ Gal(Fqn/Fq). If C1 and C2 are equivalent, then
σ1(C1) + . . .+ σr(C1) and σ1(C2) + . . . + σr(C2) are also equivalent. In particular,

dimFqn
(σ1(C1) + . . . + σr(C1)) = dimFqn

(σ1(C2) + . . .+ σr(C2)).
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Always in [35], the following particular case has been considered. Let C be an Fqn-linear
rank-metric code. For a fixed σ generator of Gal(Fqn/Fq), and for a non-negative integer i,
let

sσi (C) := dimFqn
(C+σ(C) + . . . + σi(C)).

Then, the sequence {sσi (C)}i∈N is invariant under code equivalence. This provides a use-
ful criterion to determine when two codes are not equivalent. Of particular interest, the
sequences {sσi (C)}i∈N when C is a Gabidulin or a twisted Gabidulin code were completely
determined and are given by

(2) sσi (Gk,σ) = k + i, for every i ≤ n− k,

(3) sσi (Hk,σ(η, 0)) =

{

k if i = 0

k + i+ 1 if 1 ≤ i ≤ n− k − 1

We will also make use of the following notation. Let f(x) =
∑n−1

i=0 aix
σi ∈ Ln,q, the

σ-support of f is defined as follows suppσ(f) = {i : ai 6= 0}. Clearly, if f(x), g(x) ∈ Ln,q
such that suppσ(f) 6= suppσ(g), then the f(x) and g(x) are Fqn-linearly independent. This
definition can be extended to set of linearized polynomials as done in [27]: let C be a rank-
metric code in Ln,q, then the universal σ-support Sσ(C) of C is defined as the subset of
Z/nZ = {0, . . . , n− 1}

Sσ(C) =
⋃

f∈C

suppσ(f).

One may immediately notice that if suppσ(f) is not contained in Sσ(C), then f(x) /∈ C.

3. A new family of MRD codes

Let us consider the following situation. Let σ be a generator of Gal(Fqn/Fq) and let s
be an integer coprime to n and take the extension field of degree ns over Fq. Let σ be an
element of Gal(Fqns/Fq) that is an extension of σ, that is, σ|Fqn

= σ. We remark that an
extension of σ always exists over finite fields. Now, observe that 〈σs〉 = Gal(Fqns/Fqs), as
shown in the following remark.

Remark 3.1. Suppose that σ : x ∈ Fqn 7→ xq
i

∈ Fqn , with gcd(i, n) = 1. Let σ : x ∈

Fqns 7→ xq
j
∈ Fqns ∈ Gal(Fqns/Fq) be an extension of σ. Since σ|Fqn

= σ, then j = i+ ℓn,

for a non negative integer ℓ. Now, σs : x ∈ Fqns 7→ xq
s(i+ℓn)

∈ Fqns , and since gcd(i, n) = 1,
we get that gcd(j, n) = gcd(i+ ℓn, n) = 1 and hence 〈σs〉 = Gal(Fqns/Fqs).

Define the maps Ψσ,s and Φσ,s as

Ψσ,s : Ln,σ −→ Ln,σs
∑

i fix
σi 7−→

∑

i fix
σsi
,

Φσ,s : Ln,σ −→ Ln,σs
∑

i fix
σi 7−→

∑

i fix
σsi .

Observe that the map Φσ,s is a bijection, while the map Ψσ,s is only injective.
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Theorem 3.2. Let s be an integer coprime to n and take the extension field of degree ns
over Fq and let σ be a generator of Gal(Fqn/Fq). Let f(x) ∈ Ln,σ. Then rk(Ψσ,s(f)) =
rk(Φσ,s(f)).

Proof. Denote by k the σ-degree of f(x). Then

rk(Φσ,s(f)) = n− k + rkFqn
(CΦσ,s(f)C

σs

Φσ,s(f)
· . . . · Cσ

s(n−1)

Φσ,s(f)
− Ik)

and
rk(Ψσ,s(f)) = n− k + rkFqns (CΨσ,s(f)C

σs

Ψσ,s(f)
· . . . · Cσ

s(n−1)

Ψσ,s(f)
− Ik).

Since CΦσ,s(f) = CΨσ,s(f) ∈ F
k×k
qn and σ ∈ Gal(Fqns/Fq) such that σ|Fqn

= σ, it follows that

CΦσ,s(f)C
σs

Φσ,s(f)
· . . . · Cσ

s(n−1)

Φσ,s(f)
= CΨσ,s(f)C

σs

Ψσ,s(f)
· . . . · Cσ

s(n−1)

Ψσ,s(f)
,

and hence rk(Ψσ,s(f)) = rk(Φσ,s(f)). �

As a natural consequence one can get the following result on rank-metric codes.

Corollary 3.3. Let s be an integer coprime to n. Let C be an Fp-linear rank-metric code
of Ln,σ and let σ ∈ Gal(Fqns/Fq) be an extension of σ. Suppose that Ψσ,s(C) ⊆ Ln,σs has
minimum distance d. Then Φσ,s(C) ⊆ Ln,σs has minimum distance d.

In the spirit of [27, Theorem 3.2], Corollary 3.3 can be specialized to MRD codes as
follows.

Corollary 3.4. Let s be an integer coprime to n. Let C be an Fp-linear MRD code of Ln,σ
with minimum distance d and let σ ∈ Gal(Fqns/Fq) be an extension of σ. Assume that
Ψσ,s(C) ⊆ Ln,σs has minimum distance at least d. Then Φσ,s(C) ⊆ Ln,σs is an MRD code.

Remark 3.5. The assumption on Ψσ,s(C) ⊆ Ln,σs in Corollary 3.4 is satisfied by all the
known examples of MRD codes, that is the minimum distance of C ⊆ Ln,σ coincides with
the minimum distance of Ψσ,s(C), for any s. So, one could use Corollary 3.4 and the fact
that θ-Gabidulin codes and θ-twisted Gabidulin codes are MRD when θ is the q-Frobenius
automorphism, to prove that σ-Gabidulin and σ-twisted Gabidulin codes are MRD, for
every generator σ of Gal(Fqn/Fq). This is indeed the technique used in [20] for σ-Gabidulin
codes and in [27] for σ-twisted Gabidulin codes.

Recently, in [23] and in [24] two families of MRD codes that exist for infinitely many
values of n were presented. We recall them via the following two theorems.

Theorem 3.6 ( [24, Theorem 2.4]). Let n = 2t, t ≥ 3, q be an odd prime power and let
σ be a generator of Gal(Fqn/Fq). If t is even, or t is odd and q ≡ 1 (mod 4), then the
rank-metric code

C = 〈x, ψ(x)〉Fqn
,

with ψ(x) = xσ + xσ
t−1

− xσ
t+1

+ xσ
2t−1

, is an MRD code.

Theorem 3.7 ( [23, Theorem 3.1]). Let n = 2t, t ≥ 3, let q be an odd prime power and let
θ : x ∈ Fqn 7−→ xq ∈ Fqn . For each h ∈ Fqn \ Fqt such that Nqn/qt(h) = −1, the rank-metric
code

Ch,t = 〈x, ψh,t(x)〉Fqn
,
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where
ψh,t(x) = xθ + xθ

t−1
+ hθ(h)xθ

t+1
+ hθ−1(h−1)xθ

2t−1
∈ Ln,q,

is an MRD code.

In the following result we extend the above constructions, by using Corollary 3.4.

Theorem 3.8. Let n = 2t, t ≥ 3, q be an odd prime power and let σ be a generator of
Gal(Fqn/Fq). For any h ∈ Fqn such that Nqn/qt(h) = −1, the rank-metric code

Ch,t,σ = 〈x, ψh,t,σ(x)〉Fqn
,

with
ψh,t,σ(x) = xσ + xσ

t−1
+ hσ(h)xσ

t+1
+ hσ−1(h−1)xσ

2t−1
,

is an MRD code.

Proof. First assume that h /∈ Fqt . Let σ : x ∈ Fqn 7→ xq
s
∈ Fqn , with gcd(s, n) = 1, and

consider Ψθ,s(Ch,t,θ) ⊆ Ln,σ, where θ : x ∈ Fqn 7→ xq ∈ Fqn and σ : x ∈ Fqns 7→ xq
s
∈ Fqns .

We now show that Ψθ,s(Ch,t,θ) is an MRD code. First note that h /∈ Fqst . Indeed if h ∈ Fqst ,
then h ∈ Fq2t∩Fqst = Fqt , a contradiction. Moreover, since σ is a generator of Gal(Fqns/Fqs)

then σt(h)h = Nqn/qt(h) = −1. By applying Theorem 3.7, ψθ,s(Ch,t,θ) is a rank-metric code
of Ln,σ having minimum distance n−1. Corollary 3.4 implies that Φθ,s(Ch,t,θ) = Ch,t,σ is an
MRD code contained in Ln,σ. If h is in Fqt, then Nqn/qt(h) = h2 = −1 and hence h ∈ Fq2 .
So, if h ∈ Fq then

ψh,t,σ(x) = xσ + xσ
t−1

− xσ
t+1

+ xσ
2t−1

,

and if h ∈ Fq2 \ Fq (and hence t is even) then

ψh,t,σ(x) = xσ + xσ
t−1

+ xσ
t+1

− xσ
2t−1

= xθ + xθ
t−1

− xθ
t+1

+ xθ
2t−1

,

where θ = σt−1, so that the rank-metric code Ch,t,σ is MRD because of Theorem 3.6. �

When choosing σ as x ∈ Fqn 7→ xq ∈ Fqn , the MRD codes Ch,t,σ coincide with the MRD
codes in Theorem 3.7. Whereas, if h is in Fqt in Theorem 3.8, then the MRD code Ch,t,σ
coincide with those in Theorem 3.6, as already pointed out in Theorem 3.8.

Remark 3.9. Let V be a 2-dimensional vector space over Fqn and let Λ = PG(V,Fqn). Let
U be an Fq-subspace of V of dimension k, then the set of points

LU = {〈u〉Fqn
: u ∈ U \ {0}} ⊆ Λ

is said to be an Fq-linear set of rank k. The Fq-linear set LU is called scattered if |LU | =
qk−1
q−1 .

We refer to [21] and [37] for comprehensive references on linear sets. Let LU be an Fq-linear
set of rank n in Λ. Since PΓL(1, qn) is 3-transitive on PG(1, qn), we can suppose that (up
to PΓL(1, qn)-equivalence) LU does not contain the point 〈(0, 1)〉Fqn

, so that there exists

f(x) ∈ Ln,q such that LU is PΓL(1, qn)-equivalent to

Lf = {〈(x, f(x))〉Fqn
: x ∈ F

∗
qn}.

Sheekey in [41] called a σ-polynomial f(x) scattered if Lf turns out to be a scattered Fq-
linear set. In [41], it was shown a correspondence between scattered linear sets of PG(1, qn)
and Fqn-linear MRD codes in Ln,q, which has been later generalized in [8, 25,38,43,48]. In
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particular, the linear set Lf is scattered if and only if Cf = 〈x, f(x)〉Fqn
is an MRD code.

So, under the assumption of Theorem 3.8, we have proved that the ψh,t,σ(x) is a scattered
polynomial. In [23,24], the results are stated using the terminology of linear sets.

In the next section we study in details the equivalence issue of the codes in Theorem 3.8
with themselves and with the other known Fqn-linear MRD codes, proving that the family
of Ch,t,σ’s contains new MRD codes.

4. Study of the equivalence of the new family

This section is dedicated to the equivalence of the new family of codes Ch,t,σ. We first
discuss their novelty, showing that they are not equivalent to any family of Fqn-linear MRD
codes known. Later, we study their equivalence classes, characterizing exactly when two
codes of the form Ch,t,σ and Ck,t,θ are equivalent. From these results we can deduce the exact
number of equivalence classes of such codes. However, since this formula is a bit involved,
we also provide a more effective lower bound.

We fix here the following notation that will be kept for the whole section. From now on,
we consider σ to be a generator of Gal(Fqn/Fq) and h ∈ Fqn to be such that σt(h)h = −1.
Furthermore, we fix n = 2t, for some positive integer t ≥ 5. Notice that this assumption on
t is taken in order to ease the computations, even though the codes Ch,t,σ are MRD also for
t = 3, 4. When t = 3 the inequivalence with the other known Fqn-linear MRD codes such
as Gabidulin codes, twisted Gabidulin codes and those in [6, 7, 10, 28, 47] has been proved
in [3, Section 4]. However when t ∈ {3, 4} the computations of this section become more
complicated, since some of the arguments that we are going to use do not work. We warn
the reader that for these two cases some of the results presented might not be true.

We first start with an auxiliary result which will be widely used in this section.

Lemma 4.1. Let h ∈ Fqn be such that Nqn/qt(h) = σt(h)h = −1. Then σ2(h)h 6= 1.

Proof. Since q is odd, then necessarily h 6= ±1. Assume now by contradiction that σ2(h)h =
1, or equivalently σ2(h) = h−1, and σt(h)h = −1. Then

h = σn(h) = σ2 ◦ . . . ◦ σ2
︸ ︷︷ ︸

t times

(h) =

{

h if t is even,

h−1 if t is odd,

which implies that t is even. Moreover, we have σ4(h) = h and let t ≡ t′ (mod 4) with
t′ ∈ {0, 2}, hence

−1 = σt(h)h = (σt
′

◦ (σ4 ◦ . . . ◦ σ4))(h)h = σt
′

(h)h =

{

σ2(h)h if t ≡ 2 (mod 4),

h2 if t ≡ 0 (mod 4).

Since q is odd, 1 6= −1 and we get a contradiction if t ≡ 2 (mod 4). If instead t ≡ 0
(mod 4), we have h2 = −1, and therefore h ∈ Fq2 , which in turn implies σ2(h) = h. Thus,

we have simultaneously h2 = 1 and h2 = −1, which yields a contradiction. �

4.1. Inequivalence with Gabidulin and twisted Gabidulin codes. Here we compare
the construction of the family Ch,t,σ with the two most prominent family of Fqn-linear MRD
codes, namely Gabidulin and twisted Gabidulin codes.
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Proposition 4.2. Let G2,θ be a 2-dimensional Gabidulin code. Then G2,θ is not equivalent
to Ch,t,σ, for any h such that σt(h)h = −1 and any generators σ, θ of Gal(Fqn/Fq).

Proof. Since both σ and θ generate Gal(Fqn/Fq), then we can write θ = σs for some s
coprime with n. Moreover, G2,θ is equivalent to G2,θ−1 , hence, without loss of generality we
can suppose 0 < s < t. Suppose that G2,σs and Ch,t,σ are equivalent, then by Proposition 2.2

and (2) we must have sσ
s

1 (Ch,t,σ) = 3, that is dimFqn
(D) = 3, where D := Ch,t,σ + σs(Ch,t,σ).

We have

D = 〈x, xσ
s

, ψh,t,σ(x), x
σs ◦ ψh,t,σ(x)〉Fqn

.

Notice that the first three generators are clearly linearly indpendent, since the first two
have disjoint σ-supports and the σ-support of ψh,t,σ(x) is not contained in {0, s}. Thus, we
must have xσ

s

◦ ψh,t,σ(x) ∈ 〈x, xσ
s

, ψh,t,σ(x)〉Fqn
, that implies

suppσ(x
σs ◦ ψh,t,σ(x)) = {s+ 1, t+ s− 1, t+ s+ 1, s − 1} ⊆ {0, 1, s, t − 1, t+ 1, 2t− 1}.

However, due to the restriction on s being coprime with 2t, this can never happen. �

Theorem 4.3. LetHη,θ := H2,θ(η, 0) be a 2-dimensional Fqn-linear twisted Gabidulin code,
and let t ≥ 5. Then Hη,θ is not equivalent to Ch,t,σ, for any admissible choice of h, η and
any generators σ, θ of Gal(Fqn/Fq).

Proof. Since both σ and θ generate Gal(Fqn/Fq), then we can write θ = σs for some s
coprime with n. Moreover, Hη,θ is equivalent to Hη′,θ−1 , hence, without loss of generality
we can suppose 0 < s < t. So, from now on, we are assuming

(4) 1 ≤ s ≤ t− 1, gcd(s, 2t) = 1

Suppose that Hη,σs and Ch,t,σ are equivalent, then by Proposition 2.2 and (3) we must have

sσ
s

1 (Ch,t,σ) = 4 and sσ
s

2 (Ch,t,σ) = 5. The first assertion has to be true. In fact, if sσ
s

1 (Ch,t,σ) =
2, then Ch,t,σ has rank one elements and cannot be MRD. Moreover, if sσ

s

1 (Ch,t,σ) = 3, since
Ch,t,σ is MRD, then it must be a Gabidulin code (see e.g. [18, Theorem 4.8]). However, by

Proposition 4.2, this is not possible. Hence, we deduce that sσ
s

1 (Ch,t,σ) = 4. Assume now

that sσ
s

2 (Ch,t,σ) = 5, and define

D := Ch,t,σ + σs(Ch,t,σ).

We first show that xσ
2s
/∈ D. Assume on the contrary that xσ

2s
∈ D. This implies that

2s ∈ Sσ(D) = {0, 1, s−1, s, s+1, t−1, t+1, t+s−1, t+s+1,−1}. Recalling our assumptions
(4) on s, it is easy to observe that we can only have

2s ∈ {s+ 1, t− 1, t+ 1, t+ s− 1}.

Case I: 2s = s+ 1. If this happens then s = 1. This translates in

xσ
2
∈ 〈x, xσ , xσ

t−1
+ hσ(h)xσ

t+1
+ hσ−1(h−1)xσ

2t−1
, xσ

2
+ xσ

t

+ σ(h)σ2(h)xσ
t+2

〉Fqn
= D.

It is easy to see that this is not possible. Indeed, the only generator of D whose σ-support

contains 2 is f(x) = xσ
2
+ xσ

t
+ σ(h)σ2(h)xσ

t+2
, and its σ-support is disjoint from the

σ-supports of the other generators.
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Case II: 2s = t− 1. Then

xσ
2s

∈ 〈x, xσ
s

, xσ + xσ
2s
+ hσ−1(h−1)xσ

2s+1
, xσ

s+1
+ xσ

s−2
+ σs(h)σs−1(h−1)xσ

s−1
〉Fqn

= D.

The only generator of D whose σ-support contains 2s is f(x) = xσ+xσ
2s
+hσ−1(h−1)xσ

2s+1
,

and its σ-support is disjoint from the σ-supports of the other generators, due to the condi-
tions (4) that imply s ≥ 3.

Case III and IV: Analogously one can exclude these two cases.

At this point, since we are assuming sσ
s

2 (Ch,t,σ) = 5, we must have

g(x) := xσ
2s+1

+ xσ
2s+t−1

+ σ2s(h)σ2s+1(h)xσ
2s+t+1

+ σ2s(h)σ2s−1(h−1)xσ
2s−1

∈ D′,

where D′ := D + 〈xσ
2s
〉Fqn

. This is equivalent to say suppσ(g) ⊆ Sσ(D
′), i.e.

(5) {2s−1, 2s+1, 2s+t−1, 2s+t+1} ⊆ {0, 1,−1, t−1, t+1, s, s−1, s+1, s+t−1, s+t+1, 2s}

and in particular 2s + 1 ∈ Sσ(D). One can observe that, due to the conditions (4), we can
only have

2s+ 1 ∈ {−1, t− 1, t+ s− 1}.

Case I: 2s+ 1 = −1. This means s = t− 1 and (5) becomes

{−3,−1, t− 3, t− 1} ⊆ {0, 1,−1, t − 2, t− 1, t, t + 1,−2}.

However, since t ≥ 5, this is not possible.

Case II: 2s + 1 = t− 1. In this case (5) can be written as

{−3,−1, 2s − 1, 2s + 1} ⊆ {0, 1,−1, s, s − 1, s+ 1, 2s, 2s + 1, 2s + 3, 3s + 1, 3s + 3}

Since t ≥ 5 and 2s+1 = t−1, and because of (4), we have s ≥ 3 and t ≥ 8. With this range
of parameters it is immediate to see that −3 /∈ Sσ(D

′), so also this case is not possible.

Case III: 2s+ 1 = t+ s− 1. This means s = t− 1 and (5) becomes

{−5,−3, t− 5, t− 3} ⊆ {0, 1,−1, t − 3, t− 2, t− 1, t+ 1,−4,−3, }.

Since we are assuming t ≥ 5, it is easy to see that −5 and t− 5 do no belong to Sσ(D
′).

This finally shows that sσ
s

2 (Ch,t,σ) = 6, and thus Ch,t,σ and Hη,σs cannot be equivalent due
to Proposition 2.2. �

Remark 4.4. Note that neither the equivalence of a code Ch,t,σ with any other twisted
Gabidulin code H2,θ(η, h) is possible. Indeed, as discussed in Section 2.2, if h 6= 0 then the

left idealizer of H2,θ(η, h) is isomorphic to a finite field of cardinality qgcd(h,n). Therefore,
H2,θ(η, h) is not an Fqn-linear code, while Ch,t,σ is Fqn-linear and has left idealizer isomorphic
to Fqn ; by [26, Proposition 4.1] these codes cannot be equivalent.
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4.2. Equivalence among themselves. In this section we investigate the equivalence issue
for codes within the family introduced in Theorem 3.8. We start with the following remark.

Remark 4.5. Let ρ ∈ Aut(Fqn). One can easily check that Nqn/qt(ρ(h)) = ρ(Nqn/qt(h)) =
ρ(−1) = −1 and (Ch,t,σ)

ρ = Cρ(h),t,σ. Hence we can immediately derive that Ch,t,σ and
Cρ(h),t,σ are equivalent.

Theorem 4.6. Let t ≥ 5 and consider Ch,t,σ and Ck,t,σs . Then the following hold:

I. If s = 1, then Ch,t,σ and Ck,t,σs are equivalent if and only if there exists ρ ∈ Aut(Fqn)
such that

ρ(h) =

{
±k, if t 6≡ 2 (mod 4),

lk, where lq
2+1 = 1, if t ≡ 2 (mod 4).

II. If s = −1, Ch,t,σ and Ck,t,σs are equivalent if and only if there exists ρ ∈ Aut(Fqn)

ρ(h) =

{
±k−1, if t 6≡ 2 (mod 4),

lk−1, where lq
2+1 = 1, if t ≡ 2 (mod 4).

III. If s = t − 1, with t even, then Ch,t,σ and Ck,t,σs are equivalent if and only if there
exists ρ ∈ Aut(Fqn) such that

ρ(h) =

{
±k, if t 6≡ 2 (mod 4),

lk, where lq
2+1 = 1, if t ≡ 2 (mod 4).

IV. If s = t + 1, with t even, then Ch,t,σ and Ck,t,σs are equivalent if and only if there
exists ρ ∈ Aut(Fqn) such that

ρ(h) =

{
±k−1, if t 6≡ 2 (mod 4),

lk−1, where lq
2+1 = 1, if t ≡ 2 (mod 4).

Proof. Case I: s = 1. Suppose that Ch,t,σ and Ck,t,σ are equivalent, so there exists an
isometry ϕ such that ϕ(Ch,t,σ) = Ck,t,σ. So, ϕ(p(x)) = f1 ◦ p(x)

ρ ◦ f2(x), for f1(x) and f2(x)
two invertible σ-polynomials in Ln,q and ρ ∈ Aut(Fqn). By [43, Proposition 3.8], it follows

that we may assume f1(x) = xσ
i

for some i ∈ {0, . . . , n − 1}. We may also assume ρ to be
the identity map and i = 0, since by Remark 4.5 the code Ch,t,σ is equivalent to Cσi(ρ(h)),t,σ .
Since ϕ(x) ∈ Ck,t,σ then ϕ(x) = ax+ bψk,t,σ(x), which implies that f2(x) = ax+ bψk,t,σ(x).
Also, since ϕ(ψh,t,σ(x)) ∈ Ck,t,σ then ϕ(ψh,t,σ(x)) = cx+ dψk,t,σ(x). In particular, one gets

(6) cx+ dψk,t,σ(x) = ψh,t,σ(ax) + ψk,t,σ(bψh,t,σ(x)).

Arguing as in [23, Case 1 and Case 2, Proof of Theorem 4.2] one gets that h = lk, with

l = ±1 if t 6≡ 2 (mod 4) and l ∈ Fq4 such that lq
2+1 = 1 if t ≡ 2 (mod 4). Conversely,

assume that h = lk, with l = ±1 if t 6≡ 2 (mod 4) and l ∈ Fq4 such that lq
2+1 = 1 if t ≡ 2

(mod 4). If t 6≡ 2 (mod 4) then the two codes Ch,t,σ and Ck,t,σ coincide, and hence they are
equivalent. Now, suppose that t ≡ 2 (mod 4). Choose a ∈ Fq4 such that

σ3(a)σ(a−1) = lσ(l),
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and d = σ(a). As in [23, Case 1, Proof of Theorem 4.2], one can show that

(7)







d = σ(a) = σt−1(a),

dhσ(h) = σt+1(a)kσ(k),

dhσ−1(h−1) = σ−1(a)kσ−1(k−1),

so that

dψh,t,σ(x) = ψk,t,σ(ax).

Consider τ(x) = ax, then

Ck,t,σ ◦τ = 〈ax, dψh,t,σ(x)〉Fqn
= Ch,t,σ,

and the two codes Ck,t,σ and Ch,t,σ are equivalent.

Case II: s = −1. Our aim is first to prove that Ck,t,σ−1 is equivalent to Ck−1,t,σ, and then
we use the case s = 1. So, now we need find b, c ∈ F

∗
qn such that

(8) cx = ψk,t,σ−1(bψk−1,t,σ(x)),

which is enough to prove that Ck,t,σ−1 is equivalent to Ck−1,t,σ. Indeed, suppose we have
found such b and c, then the map ψk,t,σ−1(x) is invertible, otherwise we would get a contra-
diction to (8), and ψk,t,σ−1(Ck−1,t,σ) = 〈ψk,t,σ−1(x), cx〉Fqn

= Ck,t,σ−1 . Equation (8) can be
written as follows:

cx =(σ(k)kσt+1(b) + σ(k−1)σ2(k)σ(b))xσ
2

+ (σt−1(b)− σ−1(k−2)kσt−2(k)σ−1(b))xσ
t−2

+ (σ(k)kσt+1(b) + σ−1(k−1)kσ−1(b) + σ(k−1)k−1σ(b)− σt−1(k−1)k−1σt−1(b))xσ
t

+ (σ−1(k−1)kσ−1(b)− σt−1(k−1)σ−2(k)σt−1(b))xσ
2t−2

+ (σ(b) + σt−1(b) + σ(k2)k2σt+1(b) + σ−1(k−2)k2σ−1(b))x

+ (σ(b) + σ2(k)kσ2(k−1)σt+1(b))xσ
t+2
.

Now, we choose

b =
1

k−1σ−1(k−1)− k−1σ(k)
.

and we show that the following conditions hold:

(9)







σ(k)kσt+1(b) + σ(k−1)σ2(k)σ(b) = 0,

σt−1(b) + σ−1(k−2)kσ−2(k−1)σ−1(b) = 0,

σ(k)kσt+1(b) + σ−1(k−1)kσ−1(b) + σ(k−1)k−1σ(b) + σ−1(k)k−1σt−1(b) = 0,

c = σ(b) + σt−1(b) + σ2(k)k2σt+1(b) + σ−1(k−2)k2σ−1(b) 6= 0.

The first two equations give the same condition, which corresponds to

(10) σt+1(b) = −k−1σ(k−2)σ2(k)σ(b).

By applying σt−2 to (10), we have

(11) σ−1(b) = σ−2(k)σ−1(k)k−1σt−1(b).
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By replacing (10) and (11) in the third equation of (9) and after some manipulations, we
obtain

(12) (σ(k−1)k−1 − σ(k−1)σ2(k))σ(b) + (σ−1(k)k−1 − σ−2(k)σ−1(k))σt−1(b) = 0.

Applying σ2 to (12), we derive

(σ2(k−1)σ3(k−1)− σ3(k−1)σ4(k))σ3(b) + (σ(k)σ2(k−1)− kσ(k))σt+1(b) = 0,(13)

and using (10), we obtain

(σ2(k−1)σ3(k−1)− σ4(k−1)σ3(k))σ3(b)− (−σ(k−1)σ2(k) + k−1σ(k−1))σ(b) = 0,

which is satisfied because of the choice of b.
Now we show that c cannot be zero. By contradiction, let us assume that

σ(b) + σt−1(b) + σt+1(b) + σ−1(k−2)k2σ−1(b) = 0.

Since b satisfies (10) and (11), we get

(14) σ3(b)(1− σ2(k)σ4(k)) = −σt+1(b)(1− σ2(k)k) = 0,

and by (13)

(σ3(k−1)σ4(k)− σ3(k−1)σ2(k−1))σ3(b) = (−σ2(k)k + 1)σ2(k−1)σ(k)σt+1(b)

Now, substituting the above equation in (14) we obtain

σ2(k−1)σ(k)σ3(b)(1 − σ2(k)σ4(k)) = −(−1 + σ4(k)σ2(k))σ3(k−1)σ2(k−1)σ3(b),

that is

σ3(b)(−1 + σ4(k)σ2(k))(σ2(k−1)σ(k) − σ3(k−1)σ2(k−1)) = 0.

However, this yields to a contradiction, since σ2(k)k 6= 1 because of Lemma 4.1.
At this point, we use the fact that we are dealing with an equivalence relation. Thus, Ch,t,σ
is equivalent to Ck,t,σ−1 if and only if Ch,t,σ is equivalent to Ck−1,t,σ. The assertion follows

by Case I, by substituting k with k−1.

Case III: s = t− 1. The first step is to prove that Ck,t,σt−1 is equivalent to Ck,t,σ, and then
we use the case s = 1. We divide the discussion in two cases. Assume that t ≡ 2 (mod 4).
We prove the existence of a, d ∈ F

∗
qn such that

dψk,t,σt−1(x) = ψk,t,σ(ax),

that is

(15)







d = σ(a) = σt−1(a),

dkσ(k) = −kσ(k)σt+1(a),

dkσ−1(k−1) = −kσ−1(k−1)σ−1(a).

A solution to (15) is given by a ∈ Fq4 such that aq
2−1 = −1 and d = σ(a). As for Case I

we have that denoting τ(x) = ax, then

Ck,t,σ ◦τ = 〈ax, dψk,t,σt−1(x)〉Fqn
= Ck,t,σt−1 ,
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and the two codes Ck,t,σt−1 and Ch,t,σ are equivalent. The assertion then follows by the Case
I. Suppose that t ≡ 0 (mod 4). We find b, c ∈ F

∗
qn such that

(16) cx = ψk,t,σt−1(bψk,t,σ(x)),

which is enough to prove that Ck,t,σt−1 is equivalent to Ck,t,σ. Equation (16) reads as

cx+ dψk,t,σt−1(x) = ψk,t,σ(ax)

+ (σ(b) − σ2(k−1)kσt+1(b))xσ
2

+ (σt−1(k)σt−2(k−1)σt−1(b)− kσ−1(k−1)σ−1(b))xσ
t−2

+ (σ(b) + σt−1(b)− k2σ(k)σt+1(b)− k2σ−1(b))xσ
t

+ (σt−1(b) + σt−2(k)kσ−1(b))xσ
2t−2

− (−σ(k)σ2(k)σ(b) + kσ(k)σt+1(b))xσ
t+2

+ (−σ(b)k−1σ(k) + k−1σt−1(k)σt−1(b) + kσ(k)σt+1(b) + kσ−1(k−1)σ−1(b))x.

By choosing

b =
σ−1(ω)

σ−1(h−1)− σ(h)
,

with ω ∈ Fq4 such that ωq
2−1 = −1 and

c = −σ(b)k−1σ(k)− k−1σ−1(k−1)σt−1(b) + kσ(k)σt+1(b) + kσ−1(k−1)σ−1(b) 6= 0

Equation (16) is satisfied, and so Ck,t,σt−1 and Ck,t,σ are equivalent. The assertion follows
by Case I.

Case IV: s = t+ 1. Let us prove that Ck,t,σt+1 is equivalent to Ck−1,t,σ, and then we use
again the case s = 1. We divide the discussion in two cases. First assume that t ≡ 0
(mod 4). We prove the existence of a, d ∈ F

∗
qn such that

dψk,t,σt+1(x) = ψk,t,σ(ax),

that is

(17)







−dk−1σ(k) = σ(a)

dk−1σt−1(k) = σt−1(a)

d = σ(k)kσt+1(a)

d = σ−1(k−1)σ−1(a).

A solution to (17) is given by a = lk, with l ∈ Fq4 such that lq
2+1 = −1, and d = −kσ(l).

As for Case I we have that denoting τ(x) = ax, then

Ck,t,σ ◦τ = 〈ax, dψk,t,σt+1(x)〉Fqn
= Ck,t,σt−1 ,

and the two codes Ck,t,σt+1 and Ch,t,σ are equivalent. The assertion then follows by the Case
I. Finally, assume t ≡ 2 (mod 4). We find b, c ∈ F

∗
qn such that

(18) cx = ψk,t,σt+1(bψk−1,t,σ(x)),
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that is

cx = (σ(k)kσt+1(b)− σ(k−1)σ2(k)σ(b))xσ
2

+ (σt−1(b) + σ−1(k−2)kσt−2(k)σ−1(b))xσ
t−2

+ (σ(k)kσt+1(b) + σ−1(k−1)kσ−1(b)− σ(k−1)k−1σ(b) + σt−1(k−1)k−1σt−1(b))xσ
t

+ (σ−1(k−1)kσ−1(b) + σt−1(k−1)σ−2(k)σt−1(b))xσ
2t−2

+ (σ(b) + σt−1(b)− σ2(k)k2σt+1(b)− σ−1(k−2)k2σ−1(b))x

+ (σ(b)− kσ2(k)σ2(k−1)σt+1(b))xσ
t+2
.

Arguing as in Case II, we can choose

b =
σ−1(ω)

hσ(h−1)− hσ−1(h)
,

with ω ∈ Fq4 such that ωq
2−1 = −1, and

c = σ(b) + σt−1(b)− σ2(k)k2σt+1(b)− σ−1(k−2)k2σ−1(b) 6= 0.

With this choice of b and c, (18) is satisfied, so that the two codes Ck,t,σ and Ck−1,t,σt+1 are
equivalent. The assertion follows again by Case I. �

Theorem 4.6 characterizes all the cases in which two codes Ch,t,σ and Ck,t,θ are equivalent,
when we restrict to have θ = σs, for s ∈ {1, t− 1, t+ 1, 2t − 1}.

We now analyze the cases in which θ = σs with s /∈ {1, t− 1, t+ 1, 2t− 1}, showing that
two codes of the form Ch,t,σ and Ck,t,θ are never equivalent. The following computations will
be crucial for the study of these remaining cases. These computations aim to describe the
codes obtained from Ch,t,σ together with some automorphism applied to it. The first thing

to observe is that D
(j)
h,t,σ := Ch,t,σ + σj(Ch,t,σ) can have dimension 2, 3 or 4, and when j is

coprime with n = 2t, then the only possibility is that dimFqn
(D) = 4; cf. Proposition 4.2.

However, an interesting object comes when we choose j = t. Indeed, one can easily check
that

(19) D
(t)
h,t,σ = 〈x, xσ

t

, xσ + hσ(h)xσ
t+1
, xσ

t−1
+ hσ−1(h−1)xσ

2t−1
〉Fqn

.

This object has a nice and compact description and it will be crucial for determining the
inequivalence of codes of Ch,t,σ and Ch,t,θ. In order to derive these results, we need to apply

another automorphism to D
(t)
h,t,σ.

Proposition 4.7. The following hold:

sσ
s

1 (D
(t)
h,t,σ) = 6, for s ∈ {1,−1, t − 1, t+ 1},

sσ
s

1 (D
(t)
h,t,σ) ≥ 7, for s 6∈ {1,−1, t − 1, t+ 1},
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Proof. In order to lighten the notation, let us write D := D
(t)
h,t,σ. With straightforward

computations we derive

D + σ(D) = 〈x, xσ , xσ
t

, xσ
t+1
, xσ

2
+ σ(h)σ2(h)xσ

t+2
, xσ

t−1
+ hσ−1(h−1)xσ

2t−1
〉Fqn

,

D + σt−1(D) = 〈x, xσ
t−1
, xσ

t

, xσ
2t−1

, xσ + hσ(h)xσ
t+1
, xσ

2t−2
+ σ−1(h−1)σ−2(h)xσ

t−2
〉Fqn

,

D + σt+1(D) = 〈x, xσ , xσ
t

, xσ
t+1
, xσ

t+2
+ σ(h−1)σ2(h−1)xσ

2
, xσ

t−1
+ hσ−1(h−1)xσ

2t−1
〉Fqn

,

D + σ2t−1(D) = 〈x, xσ
t−1
, xσ

t

, xσ
2t−1

, xσ + hσ(h)xσ
t+1
, xσ

t−2
+ σ−1(h)σ−2(h−1)xσ

2t−2
〉Fqn

.

In all the four cases, the generators of the code have disjoint σ-supports, showing that the
dimension is 6.

Let us assume now that s /∈ {1.t− 1, t+ 1, 2t− 1}. Then

D + σs(D) = 〈x, xσ
t

, xσ
s

, xσ
s+t

, f1(x), f2(x), f3(x), f4(x)〉Fqn
,

where

f1(x) = xσ + hσ(h)xσ
t+1
, f2(x) = xσ

t−1
+ hσ−1(h−1)xσ

2t−1
,

f3(x) = xσ
s+1

+ σs(h)σs+1(h)xσ
t+s+1

, f4(x) = xσ
s+t+1

+ σs(h)σs−1(h−1)xσ
s−1
.

First, observe that the σ-supports of the first six polynomials are pairwise distinct, thus they

are Fqn-linearly independent and V := 〈x, xσ
t
, xσ

s
, xσ

s+t
, f1(x), f2(x)〉Fqn

is a 6-dimensional
Fqn-subspace. Moreover, the union of their σ-supports is

P = {0, s, t, s + t, 1, t+ 1, t− 1, 2t− 1}.

Now, assume by contradiction that f3(x), f4(x) ∈ V. This implies that suppσ(f3(x)) =
{s+1, t+ s+1} ⊆ P. Due to the assumptions on s, the only case for which this is possible
is s ∈ {t−2, 2t−2}. In both cases, it is immediate to see that suppσ(f4(x)) = {t−3, 2t−3}
is not contained in P = {0, t− 2, t, 2t− 2, 1, t+1, t− 1, 2t− 1}, yielding a contradiction. �

Remark 4.8. From the computations of D
(t)
h,t,σ + σj(D

(t)
h,t,σ), for j ∈ {1, t− 1, t+ 1, 2t− 1}

in the proof of Proposition 4.7, we can immediately observe that

D
(t)
h,t,σ + σ(D

(t)
h,t,σ) = D

(t)
h,t,σ + σt+1(D

(t)
h,t,σ)

D
(t)
h,t,σ + σt−1(D

(t)
h,t,σ) = D

(t)
h,t,σ + σ2t−1(D

(t)
h,t,σ).

This also suggests to consider another space that is highly nongeneric, which is

T :=D
(t)
h,t,σ + σ(D

(t)
h,t,σ) + σt−1(D

(t)
h,t,σ) + σt+1(D

(t)
h,t,σ) + σ2t−1(D

(t)
h,t,σ)

=D
(t)
h,t,σ + σ(D

(t)
h,t,σ) + σt−1(D

(t)
h,t,σ).

A straightforward computation shows that

T = 〈x, xσ , xσ
t−1
, xσ

t

, xσ
t+1
, xσ

2t−1
, xσ

2
+σ(h)σ2(h)xσ

t+2
, xσ

t−2
+σ−1(h)σ−2(h−1)xσ

2t−2
〉Fqn

.

Since all the generators have disjoint σ-supports, then dimFqn
(T ) = 8. Moreover, we can

express this code as

T = Ch,t,σ + σ(Ch,t,σ) + σt−1(Ch,t,σ) + σt(Ch,t,σ) + σt+1(Ch,t,σ) + σ2t−1(Ch,t,σ).

Corollary 4.9. If s /∈ {1,−1, t − 1, t+ 1}, then Ch,t,σ and Ck,t,σs are not equivalent.
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Proof. Assume by contradiction that Ch,t,σ and Ck,t,σs are equivalent. Hence, by Proposition

2.2 also Ch,t,σ+σ
st(Ch,t,σ) and Ck,t,σs+σ

st(Ck,t,σs) = D
(t)
k,t,σs are equivalent. Moreover, observe

that σst = σt, which means that Ch,t,σ + σst(Ch,t,σ) = D
(t)
h,t,σ. Using again Proposition 2.2,

we also derive that sσ
s

1 (D
(t)
h,t,σ) = sσ

s

1 (D
(t)
h,t,σs), but this contradicts Proposition 4.7. �

As a byproduct of all the results obtained in this section, we can also determine the exact
number and a lower bound on the number of equivalence classes of the codes Ch,t,σ.

Theorem 4.10. The number of equivalence classes of the codes Ch,t,σ is

ϕ(t)

4rtjt

2rt−1∑

i=0

deg(gcd(xp
rt+1 + 1, xjt(p

i−1) − 1)),

where

jt =

{

2 if t 6≡ 2 (mod 4),

p2r + 1 if t ≡ 2 (mod 4),

and ϕ is the Euler’s totient function.

Proof. We start by determining the number of orbits of Ah,t under the action of Aut(Fqn),
where

Ah,t :=

{

{h,−h} if t 6≡ 2 (mod 4)

{lh : lq
2+1 = 1} if t ≡ 2 (mod 4).

First, observe that we can reduce ourselves to study this action. For each ρ ∈ Aut(Fqn),
either we have ρ(Ah,t) = Ah,t or ρ(Ah,t) ∩Ah,t = ∅. This is because in both cases Ah,t is of
the form Kh, where K is the multiplicative subgroup of F∗

qn given by

K =

{

{±1} if t 6≡ 2 (mod 4),

{l : lq
2+1 = 1} if t ≡ 2 (mod 4).

Therefore, we have that ρ(K) is a subgroup of F∗
qn with the same order. Since F∗

qn is cyclic,
then ρ(K) = K and thus ρ(Kh) = Kρ(h). Hence, we can just consider whether ρ(h) ∈ Ah,t
or not. In particular, G := Aut(Fqn) acts on the set

X := {Ah,t : σt(h)h = −1},

and denote by |X/G| the number of orbits of the action of G on X. This can be computed
by means of Burnside’s lemma, which reads as

(20) |X/G| =
1

|G|

∑

g∈G

|Xg|,

where Xg = {x ∈ X : g(x) = x}.
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Let x := Ah,t and let θ denote the p-Frobenius automorphism of Fqn , that is θ(α) = αp

for every α ∈ Fqn . Then, each ρ can be written as θi for some i ∈ Z/2rtZ. In particular,

Xθi =
{
Ah,t : θrt(h) = −h−1, θi(h) ∈ Ah,t

}

=
⋃

κ∈K

{
Ah,t : θrt(h) = −h−1, θi(h) = κh

}

=
⋃

κ∈K

{

Ah,t : hp
rt+1 + 1 = 0, hp

i

− κh = 0
}

=
{

Ah,t : hp
rt+1 + 1 = 0,

∏

κ∈K

(hp
i−1 − κ) = 0

}

=
{

Ah,t : hp
rt+1 + 1 = 0, hjt(p

i−1) − 1 = 0
}

.

Since we have to consider only one representative for each set Ah,t, we deduce

(21) |Xθi | =
1

jt
deg(gcd(xp

rt+1 + 1, xjt(p
i−1) − 1)).

Thus, combining this with the fact that

ϕ(2t) =

{

2ϕ(t) if t is even

ϕ(t) if t is odd

we can conclude that the number of inequivalent codes of the form Ch,t,σ in Ln,q is

ϕ(t)

4rtjt

2rt−1∑

i=0

deg(gcd(xp
rt+1 + 1, xjt(p

i−1) − 1)).

�

Remark 4.11. In some cases we can state the number of inequivalent classes of Theorem
4.10 in a more direct way. Assume that either p ≡ 1 (mod 4) or rt is even. Then we have

{

prt + 1 ≡ 2 (mod 4),

jt(p
i − 1) ≡ 0 (mod 4),

and by [29, Remark 4.1] we obtain that

|Xθi | = gcd(prt + 1, jt(p
i − 1)).

This is for instance the case for t ≡ 2 (mod 4), that is t = 2t′ with t′ odd, in which

jt = p2r + 1. It is easy to see that p2r + 1 divides p2rt
′

+ 1, and we have

|Xθi | = (p2r + 1) gcd(p2r(t
′−1) − p2r(t

′−2) + . . .+ 1, pi − 1).

So, the number of inequevalent classes of the codes Ch,t,σ is

ϕ(t)

4rt

2rt−1∑

i=0

gcd(p2r(t
′−1) − p2r(t

′−2) + . . .+ 1, pi − 1).
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Unfortunately, the result of Theorem 4.10 is quite implicit. However, we can give the
following more explicit lower bound.

Theorem 4.12. The number of equivalence classes of the codes Ch,t,σ is at least






⌊
ϕ(t)(qt + 1)

4rt(q2 + 1)

⌋

if t ≡ 2 (mod 4),

⌊
ϕ(t)(qt + 1)

8rt

⌋

if t 6≡ 2 (mod 4),

where ϕ is the Euler’s totient function.

Proof. The number of pairs (h, σ) ∈ Fqn ×Gal(Fqn/Fq) such that the codes Ch,t,σ are proved
to be MRD is (qt+1)ϕ(2t). Moreover, combining Theorem 4.6 with Corollary 4.9, we know
that each equivalence class has N elements, where

N ≤







16rt if t ≡ 0 (mod 4),

8rt if t ≡ 1, 3 (mod 4),

8rt(q2 + 1) if t ≡ 2 (mod 4).

This follows from the fact that in Theorem 4.6 the exponent s can be equal to t−1 and t+1
if and only if t is even – otherwise σs is not a generator of Gal(Fqn/Fq). Thus, combining
this with the fact that

ϕ(2t) =

{

2ϕ(t) if t is even

ϕ(t) if t is odd

we obtain a lower bound on the number of equivalence classes of the codes Ch,t,σ:

ϕ(2t)(qt + 1)

N
≥







ϕ(t)(qt + 1)

4rt(q2 + 1)
if t ≡ 2 (mod 4),

ϕ(t)(qt + 1)

8rt
if t 6≡ 2 (mod 4).

�

4.3. Right idealizer and adjoint. In this section we complete the study on the new
family of codes, by analyzing their right idealizer and their adjoint.

Proposition 4.13. Let t ≥ 5. The right idealizer of Ch,t,σ is

R(Ch,t,σ) =

{{
ax : a ∈ Fq2

}
if t is even,

{
ax+ bψh,t,σ(x) : a ∈ Fq, b =

δ
σ(h)−σ−1(h−1)

, δq + δ = 0
}

if t is odd.

In particular, R(Ch,t,σ) ≃ Fq2 .

Proof. Let f(x) be an element in R(Ch,t,σ). Hence, f(x) ∈ R(Ch,t,σ), so that there exists
a, b ∈ Fq2t such that

f(x) = ax+ bψh,t,σ(x).

Moreover, ψh,t,σ(f(x)) = ψh,t,σ(ax)+ψh,t,σ(bψh,t,σ(x)) ∈ Ch,t,σ, that is there exist c, d ∈ Fq2t

such that
ψh,t,σ(ax) + ψh,t,σ(bψh,t,σ(x)) = cx+ dψh,t,σ(x).
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So that, one can argue as in the second part of the proof of [23, Theorem 4.2], obtaining
that b = 0 if t is even and

b =
δ

σ(h)− σ−1(h−1)
,

otherwise. In the first case, we have again System (7) with h = k, which implies a ∈ Fq2 .
In the latter case, System (7) with h = k implies a ∈ Fq. It is easy to check that these
maps are in R(Ch,t,σ). Since R(Ch,t,σ) is a finite field (see [26, Corollary 5.6]), and we have
|R(Ch,t,σ)| = q2, then R(Ch,t,σ) ≃ Fq2 . �

Remark 4.14. As a consequence of Proposition 4.13, we may deduce an alternative proof
of Proposition 4.2. Indeed, the right idealizer of a Gabidulin code is isomorphic to Fqn

(see [22,31]) and it is well-known that equivalent codes have isomorphic idealizers; see [26,
Proposition 4.1]. However, the same approach does not work for showing that the codes
Ch,t,σ are not equivalent to 2-dimensional twisted Gabidulin codes, since in this case the
right idealizers are isomorphic.

Proposition 4.15. If t ≥ 5, then the code C⊤
h,t,σ is equivalent to Ch,t,σ.

Proof. Note that

C⊤
h,t,σ = 〈x, ψ⊤

h,t,σ(x)〉Fqn
,

which turns out to be equivalent to C′ = 〈x, g(x)〉Fqn
, with

g(x) = hψ⊤
h,t,σ(h

−1x) = xσ − xσ
t−1

− hσ(h)xσ
t+1

+ hσ−1(h−1)xσ
2t−1

.

As already done in Theorem 4.6, it is enough to find b, c ∈ F
∗
qn such that

(22) cx = ψh,t,σ(bg(x)).

Choosing

b =
σ−1(h)

σ(h)σ−1(h)− 1
,

and

c = σ(b)h−1σ(h)− σt−1(b)h−1σ−1(h−1)− σt+1(b)hσ(h) + σ−1(b)hσ−1(h−1),

and performing similar calculations as in the proof of [23, Theorem 4.6], (22) turns out to
be verified and so C⊤

h,t,σ and Ch,t,σ are equivalent. �

5. Conclusions and open problems

In this paper we have provided a large family of rank-metric codes, which contains prop-
erly the codes found in [24] and in [23]. These codes are Fqn-linear of dimension 2 in the
space Ln,q, where n = 2t and t is any integer greater than 2, and we proved that they are
MRD. We have also studied exhaustively the equivalence of such codes for t ≥ 5, char-
acterizing their equivalence classes. These codes turn out to be inequivalent to any other
construction known so far, and hence they are really new.

However, there are still some open problems which are related to the results obtained in
this paper.
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• When t = 3 and σ : x ∈ Fq6 7−→ xq ∈ Fq6 , the problem of code equivalence of Ch,3,σ
with the other known Fq6-linear MRD codes in L6,q was investigated in [3]. It is
easy to see that in this case Ch,3,σ−1 = Ch−1,3,σ, so that the results in [3] complete
the study of the equivalence between Ch,3,σ and the other known Fq6-linear MRD
codes in L6,q. However, it would be interesting to get the number of inequivalent
MRD codes of the form Ch,3,σ.

• The equivalence study for the case t = 4 is open. As already mentioned before,
more complicated calculations should be performed to analyze the equivalence of
the code Ch,4,σ with the other known Fq8-linear MRD codes in L8,q and with the
other codes of shape Ck,4,σ′ .

• In [3, Section 3] (see also [47]), it was also proved that the Fq-linear set defined by
ψh,3,σ(x)

Lψh,3,σ
= {〈(x, ψh,3,σ(x))〉F

q6
: x ∈ F

∗
q6}

is not PΓL(2, q6)-equivalent to any known scattered Fq-linear set in PG(1, q6), except
for the case h ∈ Fq and q is a power of 5. Whereas, in [23, Section 5] the authors
proved that the polynomials ψh,t,σ(x), with σ : x ∈ Fqn 7→ xq ∈ Fqn , define a large
class of scattered Fq-linear sets, so that there must be new examples of scattered
linear sets defined by polynomials of the form ψh,t,σ(x). We think that could be of
interest to generalize the above results of [23] by replacing σ by any generator of
Gal(Fqn/Fq) and also to investigate such equivalence issue also to the case t = 4,
which is the first open case.

• We have already mentioned in Section 2.1 that the same skew algebra Ln,σ over a
field L can be used to represent the algebra K

n×n, where L/K is a cyclic Galois
extension of degree n with Galois group of order n generated by σ. Here, it is
possible to define the same code CL

h,t,σ, by picking an element h ∈ L such that

σt(h)h = −1. By using the arguments provided in [12, Section 2], one can show
that the code CL

h,t,σ is MRD2 whenever L/K is an unramified extension of non-

Archimedean local fields. Indeed, if Fqn/Fq is the corresponding extension of the

residue fields, whenever we take an element aψh,t,σ(x)+bx ∈ CL

h,t,σ for some a, b ∈ OL

where one of them has valuation 0, the reduction modulo the maximal ideal of OL

gives a nonzero element of the MRD code relative to the extension Fqn/Fq. Since
the rank of the map reduced modulo the maximal ideal cannot increase, then also
the minimum distance of Ch,t,σ is at most the minimum distance of CL

h,t,σ, showing

that CL

h,t,σ must be MRD. It seems reasonable to think that the assumption on L/K
to be an unramified extension of non-Archimedean local fields can be removed, and
it would be interesting to prove that CL

h,t,σ is always MRD. This could also provide
an alternative proof of the fact that the codes Ch,t,σ is MRD not relying on the
scatteredness of the σ-polynomial ψh,t,σ(x).

2In the case of infinite fields, the definition of an MRD code is slightly different: a rank-metric code
C ∈ K

n×n that is E-linear, for some subfield E of K of finite index, is MRD if dimE(C) = n[K : E](n−d(C)+1).
Note that this definition coincides with the definition of Fpi -linear MRD codes in F

n×n
q , where Fpi is a subfield

of Fq.
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[7] B. Csajbók, G. Marino, O. Polverino, and Y. Zhou. MRD codes with maximum idealizers. Discrete
Mathematics, 343(9):111985, 2020.
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