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Abstract

A methodology for the development of linguistically interpretable fuzzy models from data is presented.
The implementation of the model is conducted through the training of a neuro-fuzzy network, i.e., a neural
net architecture capable of representing a fuzzy system. In the /rst phase, the structure of the model is
obtained by means of subtractive clustering, which allows the extraction of a set of relevant rules based
on a set of representative input–output data samples. In the second phase, the parameters of the model are
tuned via the training of a neural network through backpropagation. In order to attain interpretability goals,
the method proposed imposes some constraints on the tuning of the parameters and performs membership
function merging. In this way, it will be easy to assign linguistic labels to each of the membership functions
obtained, after training. Therefore, the model obtained for the system under analysis will be described by a
set of linguistic rules, easily interpretable.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Extracting knowledge from data is a very interesting and important task in information science
and technology. Application /elds are not only complex industrial production and medical systems
but also electronic commerce and leisure activities.

Several studies have already been conducted in terms of the development of modeling and control
algorithms for industrial systems based on the so-called intelligent techniques, as a means of inte-
grating “intelligence” into production systems. Fundamentally, such developments aim to overcome
some of the limitations and di:culties associated with classical methodologies.
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In this context, more precisely in system modeling, it is sometimes necessary that the resulting
models have some transparency, i.e., that their information be interpretable, so as to permit a deeper
understanding of the system under study. It is in this issue that fuzzy modeling /nds its maximum
potential. In fact, fuzzy models have some properties that make them particularly interesting, namely,
possibility of linguistic interpretation [29] and universal approximation [4], being the former hardly
attained via multi-layer perceptrons (MLPs). However, they have an important limitation, which
results from the di:culty to quantify the fuzzy linguistic terms. Therefore, neuro-fuzzy nets appear as
an attempt to combine the advantages of fuzzy systems in terms of transparency with the advantages
of neural networks regarding learning capabilities.

Transparency is a measure of the human linguistic interpretability of the rules issued from the
training of the neuro-fuzzy system. In many engineering applications it is a very important property,
since it allows the transformation of data (information) into (human) knowledge. This problem
has recently been faced for classi/cation problems by Shanahan [25], Fuessel and Isermann [9],
Binaghi [2], Sanchez [23], Ishibuchi [12]; in the prediction of process behavior by Maier [18]; in
decision making and data mining by Gorzalczany and Piasta [10,15]; in theoretical developments
on fuzzy systems by Klement [14]; in intelligent control and robotics by Stoica [26]; in function
approximation, by Nauck and Kruse [19]. Jin [13] addresses interpretability by using similarity
measures to check the similarity of each rule; the structure and parameters of the fuzzy rules are
optimized and interpretability is improved by /ne-tuning the fuzzy rules with regularization. Espinosa
and Vandewalle [8] propose a methodology to extract rules from data within the framework of
linguistic integrity, to guarantee their interpretability in the linguistic context; their approach allows
for the inclusion of prior knowledge in the rule base. Abonyi [1] develops neuro-fuzzy systems
for Takagi–Sugeno type, maintaining the readability and interpretability of the fuzzy model during
and after learning; they use an on-line gradient-descent-based learning algorithm, in an internal
model control structure. Roubos and Setnes [22] propose fuzzy clustering with rule simpli/cation by
constrained genetic optimization with low-human intervention. For a more detailed review see [11].

The methodology presented in this work is carried out in two main stages: in the /rst one, structure
learning is performed, i.e., a set of fuzzy rules is obtained; in the second one, the parameters of the
model are tuned, i.e., the parameters of the membership functions of the fuzzy system.

The generality of strategies developed by several authors, based on the referred scheme, aim
fundamentally at obtaining models with high prediction accuracy. Clearly, if this is the main goal,
it is questionable whether fuzzy modeling is the most adequate technique, as pointed out in [19].
However, in case model transparency is a fundamental goal, the strategy referred gives no guarantees
regarding that objective. In fact, since parameter tuning is carried out under no constraints, highly
complex fuzzy databases may come up.

Therefore, this paper explores the potential of neuro-fuzzy networks in helping in the construction
of real transparent models. Thus, linguistic models, i.e., models whose consequents are fuzzy sets, are
used instead of Takagi–Sugeno models [28], where the consequents implement, typically, /rst-order
linear functions, di:cult to interpret linguistically. Additionally, parameter learning is constrained
and similar membership functions are merged, in order to ease the attribution of linguistic labels to
the /nal functions.

The paper is organized as follows. In Section 2, the main issues of fuzzy identi/cation are intro-
duced. In Section 3, subtractive clustering, used for structure learning is presented. The unconstrained
parameter learning strategy is described in Section 4. In Section 5, the strategies for implementa-
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tion of interpretable models are presented. The methodologies are applied, in Section 6, to the
Box–Jenkins gas furnace and to the Mackey–Glass chaotic time series, two well-known benchmark
problems in system modeling and identi/cation. Finally, some conclusions are drawn in Section 7.

2. Fuzzy modeling and identi�cation

Dynamical system identi/cation deals with the implementation of models using experimental data.
Thus, when a model is developed based on the theory of system identi/cation, its parameters are
tuned according to some criteria, aiming to obtain a /nal representation, adequate for the modeling
purposes. In this sense, fuzzy identi/cation is presented as a particular case of system identi/cation,
in which the model is classi/ed as a fuzzy system.

Thus, without loss of generality, let us assume a single-input single-output (SISO) model, with
one input, u, and one output, y, from where N data samples are collected (1):

ZN = {[u(1); y(1)]; [u(2); y(2)]; : : : ; [u(N ); y(N )]}: (1)

Using data collected from the system, the goal is to obtain a fuzzy model, represented by a set
of rules of type Ri (2):

Ri: If y(t − 1) is A1i and y(t − 2) is A2i and : : :

and u(t − d) is B1i and u(t − d− 1) is B2i and : : :

then ŷ(t) is C1i ; (2)

where d represents the system delay time and Aji, Bji, and Cji denote the linguistic terms associated
to each input and output. Those terms are de/ned by their respective membership functions �Aji ,
�Bji , �Cji . The former structure is called an FARX structure (Fuzzy Auto Regressive with eXogenous
inputs), as a generalization of the well-known ARX structure. Thus, the selection of a set of rules
of type (2), as well as the de/nition of the fuzzy sets Aji, Bji, and Cji, are project issues speci/c to
fuzzy systems.

3. Structure learning

In order to obtain a set of g fuzzy conditional rules capable of representing the system under
study, clustering algorithms are particularly suited, since they permit a scatter partitioning of the
input–output data space, which results in /nding only the relevant rules. Comparing to gridbased
partitioning methods, clustering algorithms have the advantage of avoiding the explosion of the rule
base, a problem known as the “curse of dimensionality.” Some researchers use grid-based partitioning
methods, combined with network pruning. However, based on previous work [20], it is our opinion
that the results are not as good as the ones obtained from clustering techniques, for the following
reasons: rule-base explosion is avoided in clustering; in grid-partitioning methods with network
pruning, the wrong nodes may be deleted if the network is not optimized; however, optimization of
a large dimension network is very time consuming; /nally, the network must be reoptimized after
the deletion of nodes.



20 R.P. Paiva, A. Dourado / Fuzzy Sets and Systems 147 (2004) 17–38

In this paper, Chiu’s subtractive clustering is applied [5]. This scheme possesses some interesting
advantages, especially in a neuro-fuzzy identi/cation context. In fact, subtractive clustering is an
e:cient algorithm, which does not require optimization, being for this reason a good choice for
the initialization of neuro-fuzzy networks. Fuzzy c-means and other optimization-based clustering
techniques would lead to excessive computer work because they perform an unnecessary optimiza-
tion phase prior to network training. Also, progressive clustering and compatible cluster merging
algorithms are computationally expensive and need metrics for validation of individual clusters [7].
Therefore, despite their potential, they are too complex for a simple initialization of a fuzzy neural
network.

Chiu’s algorithm belongs to the class of potential function methods, being, more precisely, a
variation of the mountain method (see [7]). In this class of algorithms, a set of points are de/ned as
possible group centers, each of them being interpreted as an energy source. In subtractive clustering
the center candidates are the data samples themselves, which overcomes the main limitation of
the mountain method. In fact, there, the candidates are de/ned in a grid, leading to “curse of
dimensionality” problems.

So, let ZN (1) be a set of N data samples, z1, z2; : : : ; zN , de/ned in an m + n space, where m
denotes the number of inputs and n the number of outputs. In order to make the range of values in
each dimension identical, the data samples are normalized, so that they are limited by a hypercube.

As it was referred, it is admitted that each of the samples de/nes a possible cluster center.
Therefore, the potential associated to zi is (3):

Pi(zi; ZN ) =
N∑

j=1

e−�‖zi−zj‖2
; � =

4
r2
a
; i = 1; 2; : : : ; N; (3)

where ra¿0 is the radii parameter, a constant which de/nes the neighborhood radius of each point.
Thus, points zj located out of the radius of zi will have a smaller inQuence in its potential. On the
other hand, the eRect of points close to zi will grow with the proximity. In this way, points with a
dense neighborhood will have higher associated potentials.

After computing the potential for each point, the one with the highest potential is selected as the
/rst cluster center. Next, the potential of all the remaining points is reduced. De/ning z∗

1 as the /rst
group center and denoting its potential as P∗

1 , the potential of the remaining points is reduced as in
(4):

Pi ← Pi − P∗
1 e

−�‖zi−z∗
1 ‖2

; � =
4
r2
b
; (4)

where the constant rb¿0 de/nes the neighborhood radius with sensitive reductions in its
potential.

In this way, points close to the selected center will have their potentials reduced in a more
signi/cant manner, and so the probability of being selected as centers diminishes. This procedure
has the advantage of avoiding the concentration of identical clusters in denser zones. Therefore, rb
is selected in order to be slightly higher than ra, so as to avoid closely spaced clusters. Typically,
rb = 1:5ra.

After performing the reduction of potential for all of the candidates, the one with the highest
potential is selected as the second cluster. Then, the potential of the remaining points is again
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reduced. Generically, after determining the rth group, the potential is reduced as follows (5):

Pi ← Pi − P∗
r e

−�‖zi−z∗
r ‖2

: (5)

The procedure of center selection and potential reduction is repeated until the following stopping
criterion is reached:

Algorithm 1. Stopping criterion for subtractive clustering.

If P∗
k¿�upP∗

1
Accept z∗k as the next cluster center and continue

Otherwise,
If P∗

k¡�downP∗
1

Reject z∗k and /nish the algorithm.
Otherwise

Let dmin be the shortest distance between z∗
k and all the centers already found

If dmin=ra + P∗
k =P

∗
1¿1

Accept z∗k as the next cluster center and continue
Otherwise

Reject z∗k and assign it the potential 0.0.
Select the point with higher potential as the new z∗k .
Repeat the test.

End If
End If

End If

In Algorithm 1, �up speci/es a threshold above which the point is selected as a center with no
doubts and �down speci/es the threshold below which the point is de/nitely rejected. The third case
is where the point is characterized by a good tradeoR between having a su:ciently high potential
and being distant enough from the clusters determined before. Typically, �up = 0:5 and �down = 0:15.

As it can be understood from the description of the algorithm, the number of clusters to obtain
is not pre-speci/ed. However, it is important to note that the radii parameter is directly related to
the number of clusters found. Thus, a small radius will lead to a high number of rules, which,
if excessive, may result in over/tting. On the other hand, a higher radius will lead to a smaller
number of clusters, which may originate under/tting, and so, models with reduced representation
accuracy. Therefore, in practice it is necessary to test several values for radii and select the most
adequate according to the results obtained. However, despite the fact that some radii values should be
tested, this parameter gives an initial hint on the number of clusters necessary [20]. This constitutes
an important advantage over optimization based and other classes of clustering algorithms, when
little information is known regarding the best number of clusters. Another advantage of subtractive
clustering is that the algorithm is noise robust, since outliers do not signi/cantly inQuence the choice
of centers, due to their low potentials.

After applying subtractive clustering, each of the obtained clusters will constitute a prototype for
a particular behavior of the system under analysis. So, each cluster can be used to de/ne a fuzzy
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rule capable of describing the behavior of the system in some region of the input–output space.
Typically, g fuzzy conditional rules of type (6) are obtained:

Rule r :

IF (X1 is LX 1(r)) AND (X2 is LX 2(r)) AND : : : AND (Xm is LXm(r));

THEN (Y1 is LY1(r)) AND (Y2 is LY2(r)) AND : : : AND (Yn is LYn(r)); (6)

where each of the linguistic terms in the antecedent, LXj(r), has an associated membership function
de/ned as follows (7):

�LXj(r) (xj) = e−�(xj−x∗
rj)

2
; r = 1; 2; : : : ; g; j = 1; 2; : : : ; m: (7)

Here, xj denotes a numeric value related to the jth input dimension and x∗
rj refers to the jth coordinate

in the m-dimensional vector x∗
r . Eq. (7) results from the computation of the potential associated to

each point in the data space. Clearly, expression (6) is a consequence of using linguistic models,
i.e., models in which the consequents are fuzzy sets. Such consequents result naturally from the
application of subtractive clustering and are obtained as follows (8):

�LYo(r) (yo) = e−�(yo−y∗
ro)

2
; o = 1; 2; : : : ; n; (8)

where yo denotes a numeric value regarding the oth output dimension and y∗
ro stands for the jth

coordinate in the n-dimensional vector y∗
r .

The de/nition of an initial structure for Takagi–Sugeno models, in which the terms in the con-
sequents are typically zero and /rst-order linear functions, is performed similarly. However, since
the consequents are not fuzzy sets, the initialization procedure just described applies only to the
antecedents. In fact, their values can be easily obtained by means of linear optimization techniques,
based on the linear characteristics of the consequents.

Comparing (7), (8) and the general equation for Gaussian functions, it turns out that the mem-
bership functions considered belong to the referred type. Thus, regarding the standard deviation of
each function, expression (9) is obtained:

(rj =
ra√
8
: (9)

Finally, after the parameterization of the Gaussian membership functions, the data used, previously
normalized, are restored to their initial values. In the same way, the function parameters are adjusted
to the domains de/ned for each dimension.

4. Parameter learning

4.1. Neuro-fuzzy architecture

After the de/nition of a structure for the fuzzy model, the model parameters, i.e., the centers and
standard deviations of the Gaussian membership functions, must be tuned. In the present work, such
task is performed by the training of a fuzzy neural network, based on [16] (Fig. 1).
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Basically, the previous network architecture is composed of /ve layers: an input layer, a fuzzi-
/cation layer, a rule layer, a union layer and an output or defuzzi/cation layer, in sequential
order.

In order to make the next expressions more readable, the notation used is presented beforehand:

• m: number of network inputs,
• n: number of network outputs,
• g: number of fuzzy rules (groups),
• a(p2)

i : activation of the neuron i in layer 2, regarding the training pattern p (i denotes an input
term: “input”),
• a(p3)

r : activation of the neuron r in layer 3, regarding pattern p (r denotes “rule”),
• a(p4)

s : activation of the neuron s in layer 4, regarding pattern p (s denotes “S-norm”),
• a(p5)

o = ŷ(p)
o : activation of the neuron o in layer 5, i.e., output, regarding pattern p (o denotes

“output”),
• y(p)

o : desired activation for neuron o in layer 5, i.e., for the network output, regarding pattern p;
this is an output sample.

In this structure, the input layer simply receives data from the external environment and passes
them to the next layer.

In the second layer, the fuzzi9cation layer, each of the cells corresponds to a membership function
associated to each of the inputs. De/ning conventional Gaussian functions, the output of each neuron
in this layer is given by (10):

a(p2)
i = e−

(
x(p)
j −cij

)2
=2(2

ij ; (10)

where cij and (ij represent, respectively, the center and the standard deviation of the ith membership
function corresponding to the jth input. Such parameters are the weights of the links connecting layer
one and layer two (LXj(r) in Fig. 1). In the same expression, x(p)

j denotes the pth pattern associated
to input j. Alternatively, it is possible to de/ne two-sided Gaussian functions, which are characterized
by their possibility of being asymmetric and containing a plateau, as a generalization of conventional
functions (Fig. 2). Therefore, the hypothesis of obtaining better results can be formulated, due to
the increased Qexibility of the generalized functions.

In case two-sided Gaussians are used, the activation of each of the neurons in this layer is given
by (11):

a(p2)
i =




e−(x(p)
j −cijL)2=2(2

ijL ; x(p)
j ¡ cijL;

1; cijL 6 x(p)
j 6 cijR;

e−(x(p)
j −cijR)2=2(2

ijR ; x(p)
j ¿ cijR:

(11)

Here, cijL and (ijL represent, respectively, the center and the standard deviation of the left component
of the ith membership function associated to the jth input. For the right component, the index R is
used. Such parameters form the weights of the links connecting layer one and layer two (LXj(r) in
Fig. 1). In the same expression, x(p)

j denotes the pth pattern associated to input j.
As for the neurons in the rule layer, their function consists of performing the antecedent con-

junction of each rule, by means of some T-norm. Normally, algebraic operators, e.g., product, lead
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to better results than truncation operators, e.g., minimum. Namely, they originate smoother output
surfaces and permit the direct application of gradient descent without the arti/ces needed for trunca-
tion operators, described below. However, it was concluded by experimental testing that truncation
operators lead to better results when some constraints on interpretability are imposed [20]. So, the
minimum operator is selected for fuzzy conjunction (12):

a(p3)
r =

nar
T − norm

i=1
(a(p2)

i ) =
nar
min
i=1

(a(p2)
i ): (12)

In (12), nar stands for the number of inputs in the antecedent of rule r.
The fourth layer, called the union layer, is responsible for integrating the rules with the same

consequents, via some S-norm. Once again, truncation operators are preferred, namely the maximum
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operator (13). There, nrs stands for the number of rules that have neuron s as consequent.

a(p4)
s =

nrs
S − norm

r=1
(a(p3)

r ) =
nrsmax
r=1

(a(p3)
r ): (13)

As for the output layer, or defuzzi9cation layer (d, in Fig. 1), the weights of the links from layer
four to layer /ve (LYo(r) in the same /gure) de/ne the parameters of the membership functions
associated to the output linguistic terms. Thus, based on these membership functions and on the
activation of each rule, its neurons should implement a defuzzi/cation method suited for fuzzy
consequents, as the one presented in [16] (14):

ŷ(p)
o = a(p5)

o =
∑|T (Yo)|

s=1 cos(osa
(p4)
s∑|T (Yo)|

s=1 (osa
(p4)
s

: (14)

In (14), cos and (os represent the center and the standard deviation of the sth membership function
associated to output o. In case two-sided Gaussians are used, Eq. (15) results, as de/ned in [21]:

ŷ(p)
o = a(p5)

o =

∑|T (Yo)|
s=1

1
2 (cosL(osL + cosR(osR)a

(p4)
s∑|T (Yo)|

s=1
1
2 ((osL + (osR)a

(p4)
s

: (15)

In the previous expressions, |T (Yo)| stands for the number of membership functions associated
to each linguistic output variable Yo. The main idea of the proposed defuzzi/cation method is to
weight the activation of each rule, not only by the centers, right and left, but also by their standard
deviations. Clearly, expression (15) is equivalent to Eq. (14) in case one deals with standard Gaussian
functions.

4.2. Training methodology

Based on the function performed by each neuron, the network is trained in batch mode through
backpropagation. The training of the fuzzy neural network starts by de/ning a criterion for error
minimization. An SSE is used. In this way, the total network error E (16), is de/ned as the sum of
squared errors, E(p) (17), computed for each training pattern p, as follows:

E =
N∑

p=1

E(p); (16)

E(p) =
1
2

no∑
o=1

(
y(p)
o − ŷ(p)

o

)2; (17)

where, ŷ(p)
o stands for the pth output pattern regarding the oth output variable, y(p)

o represents the
corresponding real output sample and no denotes the number of network outputs.

In this way, every pattern is subjected to a forward pass, where signals Qow from the input layer
to the output layer, allowing the calculation of the error for that speci/c pattern.

Next, starting form the output layer, a backward pass takes place, in which the network parameters
are adjusted towards error minimization. The minimization procedure is conducted iteratively via the
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gradient descent method, as follows (18):

Sw = −/ @E(p)

@w
; (18)

where w denotes, generically, any adjustable network parameter, or weight, and / represents the
network learning rate. Typically, the error derivative relative to the weight is calculated by the chain
rule as follows (19):

@E(p)

@w
=

@E(p)

@a(p)

@a(p)

@w
: (19)

In the previous expression, a(p) stands for the activation of any neuron in the network. In the
output layer, a(p) is equivalent to some network output, ŷ(p)

o .
As for the delta signals that need to be backpropagated, their values for output neurons are

computed as in (20). For a neuron in layer Li, its delta value is computed via the chain rule, based
on the delta signal of the following layer, Li+1 (21). In (21), nLi+1 denotes the number of neurons
in layer Li+1:

1(p) = −@E(p)

@a(p) : (20)

1(pLi) = − @E(p)

@a(pLi)
=

nLi+1∑
h=1

(
− @E(p)

@a(pLi+1)
h

@a(pLi+1)
h

@a(pLi)

)
=

nLi+1∑
h=1

(
1(pLi+1)
h

@a(pLi+1)
h

@a(pLi)

)
: (21)

Regarding the /ve-layered network architecture presented (Fig. 1), the network training equations
were generalized from [16], in order to allow for the integration of two-sided Gaussian functions,
as well as the use of truncation operators for conjunction and disjunction.

In this way, in regular Gaussians the centers associated to the output layer are tuned via Eqs.
(22) and (23):

1(p5)
o = y(p)

o − ŷ(p)
o ; (22)

@E(p)
o

@cos
= −1(p5)

o
(osa

(p4)
s∑|T (Yo)|

k=1 (oka
(p4)
k

: (23)

In case two-sided Gaussians are used, Eq. (23) is replaced by (24):

@E(p)
o

@cosL
= −1(p5)

o
(osLa

(p4)
s∑|T (Yo)|

k=1 ((okL + (okR)a
(p4)
k

: (24)

The previous equation corresponds to the left-hand side of the Gaussian function (which will be
used throughout this paper). As for the right-hand sided one, the expressions are exactly the same,
except for the subscript L, which is substituted by R.
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Regarding the standard deviations, their tuning is performed as in (25) for regular Gaussians and
(26) for two-sided Gaussians:

@E(p)
o

@(os
= −1(p5)

o
cosa

(p4)
s

∑|T (Yo)|
k=1 (oka

(p4)
k − a(p4)

s
∑|T (Yo)|

k=1 cok(oka
(p4)
k[∑|T (Yo)|

k=1 (oka
(p4)
k

]2 ; (25)

@E(p)
o

@(osL

= −1(p5)
o

cosLa
(p4)
s

∑|T (Yo)|
k=1 ((okL + (okR)a

(p4)
k − a(p4)

s
∑|T (Yo)|

k=1 (cokL(okL + cokR(okR)a
(p4)
k[∑|T (Yo)|

k=1 ((okL + (okR)a
(p4)
k

]2 : (26)

In the fourth layer there are no parameters to adjust. However, the delta signals must be calculated,
in order to backpropagate them to the inner layers. Those signals are computed based on the same
signals for the following layer, as stated before, resulting in (27) and (28) for regular and two-sided
Gaussians, respectively:

1(p4)
s =

no∑
o=1

1(p5)
o

cos(os
∑|T (Yo)|

k=1 (oka
(p4)
k − (os

∑|T (Yo)|
k=1 cok(oka

(p4)
k[∑|T (Yo)|

k=1 (oka
(p4)
k

]2 ; (27)

1(p4)
s =

no∑
o=1

1(p5)
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k

]2



: (28)

As for the third layer, once again there are no parameters to adjust. So, the only task to perform
is to calculate the delta signals. Generically, it turns out (29):

1(p3)
r =

nor∑
s=1

1(p4)
s

@a(p4)
s

@a(p3)
r

; (29)

where nor stands for the number of consequents de/ned for rule r.
In the original version [16], the disjunction is performed by means of the bounded-sum. However,

as stated before, truncation operators are preferable in case interpretability is an objective. Therefore,
the maximum operator is used. However, some care must be taken while calculating the derivative. In
this case, it is necessary to save the index associated to the neuron that originated the maximum.
Thus, the derivative regarding that element (the “winner”) will be 1, being 0 for the “losers” (30):

@a(p4)
s

@a(p3)
r

=
{

1; a(p4)
s = a(p3)

r ;
0; a(p4)

s 	= a(p3)
r :

(30)
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In the second layer, there are again parameters to adjust. Their tuning is conducted based on
Eqs. (31) and (32), for the centers, and (33) and (34), for the widths:

@E(p)
o

@cij
=

(
nri∑
r=1

1(p3)
r

@a(p3)
r

@a(p2)
i

)
@a(p2)

i

@cij
; (31)

@a(2)
i

@cij
=

xj − cij
(2
ij

e−(xj−cij)2=2(2
ij ; (32)

@E(p)
o

@(ij
=

(
nri∑
r=1

1(p3)
r

@a(p3)
r

@a(p2)
i

)
@a(p2)

i

@(ij
; (33)

@a(2)
i

@(ij
=

(xj − cij)2

(3
ij

e−(xj−cij)2=2(2
ij ; (34)

where nri represents the number of rules that have neuron i as antecedent and j stands for the input
variable associated to the ith membership function.

In this case, the centers and the standard deviations are tuned in exactly the same manner, both for
regular and two-sided Gaussians. The only diRerence is that two-sided Gaussians have two centers
and two standard deviations to adapt.

As in the original version [16], the T-norm is implemented via the minimum operator (35):

@a(p3)
r

@a(p2)
i

=
{

1; a(p3)
r = a(p2)

i ;
0; a(p3)

r 	= a(p2)
i :

(35)

In the previous equation, the same arti/ce used in (30) was performed, since those operators are
not continuous.

Tuning the parameters without any constraints can lead to inconsistent membership functions. In
fact, it makes no sense to have neither negative standard deviations nor two-sided Gaussian functions
with right and left centers exchanged. Therefore, after adjusting the parameters, the integrity of
the membership functions must be veri/ed and guaranteed. Thus, in case the centers in two-sided
Gaussians get exchanged, it was decided to assign to both of them their mean value. As for the
standard deviations, in case they become negative, they are given a “small” value, which is quanti/ed
as 1% of the domain amplitude. Formally, it results (36):

cL ¿ cR ⇒




cnew
L =

cL + cR

2
;

cnew
R =

cL + cR

2
;

(36)

( ¡ 0⇒ ( =
Xmax − Xmin

100
;

where the domain interval is [Xmin, Xmax]. However, it is important to note that, with the imposed
constraints, the true gradient is not followed any longer. Instead, an approximation is.
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5. Interpretability

The philosophy of fuzzy systems relies on the possibility of linguistic interpretation that char-
acterizes them. Nevertheless, this issue is often ignored, being given prevalent relevance to the
factors related to approximation capabilities. However, as Nauck and Kruse refer [19], in case inter-
pretability is not a major concern, it is important to consider other methods, which might be more
adequate.

Thus, as for the neuro-fuzzy identi/cation strategy described in the previous sections, some ques-
tions are addressed regarding the model transparency after learning. In fact, the unconstrained pa-
rameter adjustment may lead to a highly complex set of membership functions, for which it will
be di:cult to assign linguistic labels. Therefore, it is important to impose adequate constraints in
parameter tuning, so that interpretability is attained. In the same way, two-sided Gaussian functions
are appealing due to their increased Qexibility, which permits the control of function overlapping,
improving function distinguishability.

Therefore, three main criteria for model interpretability are de/ned. The /rst one, and most im-
portant, is related to the last aspect referred, i.e., function distinguishability. The others result from
human cognitive issues, according to which the number of rules and the number of membership func-
tions associated to each variable should not be excessive. In the present case, the modeler monitors
these issues, in order to obtain a satisfactory tradeoR between model accuracy and interpretability.

5.1. Similar membership function merging

The /rst step in order to attain model interpretability consists of /nding and merging similar
membership functions.

Structure learning by means of clustering techniques leads to a set of initial membership functions
with a high similarity degree. Thus, the model will lack transparency and the number of parameters
to adjust will be excessive, which leads to a higher computational cost. Thus, it seems useful to
merge functions with a high enough similarity degree.

In order to perform function merging, directed to the simpli/cation of the rule base, it was
concluded in [24] that S1 (37) is a very adequate similarity measure. There, the similarity between
two fuzzy sets A and B is given by the result of the division of the area of their intersection by the
area of their union:

S1(A; B) =
‖A ∩ B‖
‖A ∪ B‖ ; (37)

where the fuzzy intersection and union are performed, respectively, by the minimum and maximum
operators.

After detecting the most similar pair of membership functions, those functions are merged if their
similarity degree is above some threshold. The new function results from averaging the parameters
of the original functions, i.e., the centers and the standard deviations, as depicted in Fig. 3. The
original functions are represented in dashed lines and the resulting function in solid line.

The procedure of membership function merging, one pair for iteration, continues until no more
pairs satisfy the merging threshold. The function created after merging is a merging candidate in the
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Fig. 3. Membership function merging.

following iterations. Therefore, it is important that these functions, obtained via merging, are given a
stronger weight in the merging process. In this way, two fuzzy sets A and B are merged as follows
[24] (38):

Cp =
nAAp + nBBP

nA + nB
: (38)

In the previous equation, the parameters for the new fuzzy set, C, are computed based on the
weighted mean of the parameters in the original functions. In (38), Cp denotes the vector of pa-
rameters de/ning fuzzy set C, i.e., its right and left centers and standard deviations, and nA and
nB represent the number of pairs of functions merged before A and B were created, respectively.
In case A is the original function, nA = 1; if A is a result of the merging of two original functions,
nA = 2; and so on.

As a result of function merging, the rule base must be updated. In fact, the rules related to
the merged fuzzy sets will then contain the new obtained function. Therefore, the premises and
conclusions in the original rules are updated so as to include the new terms. Consequently, the rule
base may be simpli/ed, in case redundant rules appear.

5.2. Constrained parameter learning

After rule base simpli/cation via function merging takes place, it is important to guarantee that
interpretability is maintained throughout parameter optimization. Thus, it was decided to monitor the
optimization procedure, so that function distinguishability is attained.

Therefore, it is assumed that the overlapping degree between two functions is excessive in case
the supreme of the support of the function in the left side, i.e., its right “zero,” goes beyond the
right zero of the function in the right side. The same reasoning applies to the left component of the
functions. Formally, it turns out (39):

ckR + 3(kR 6 ciR + 3(iR ;

ckL − 3(kL 6 cjL − 3(jL; (39)

where k refers to some membership function and i and j stand for its right and left neighbor
functions, respectively. In case function overlapping does not satisfy the constraints presented in
(39), the standard deviations of function k are altered in order to force those conditions. Therefore,
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the right and left components are changed as in (40) and (41), respectively:

(new
kR =

ciR + 3(iR − ckR
3

; (40)

(new
kL =

cjL − 3(jL − ckL
−3

: (41)

Besides monitoring function overlapping, it was concluded that the distance between functions
should also be checked. This procedure aims to avoid inclusions, i.e., functions total or almost
totally included in other functions. Furthermore, the fact that the de/ned functions are separated
enough also improves model interpretability. Thus, constraint (42) for the minimal distance between
functions was de/ned:

ciL − ckR 6 �(Xmax − Xmin);

ckL − cjR 6 �(Xmax − Xmin); (42)

where �∈ [0; 1] denotes the percentage of the domain [Xmin; Xmax] used for calculating the mini-
mum allowed distance. In case this condition does not apply, the function centers are changed as
follows (43):

cnew
kR =

ckR + ciL
2

− �(Xmax − Xmin)
2

;

cnew
iL =

ckR + ciL
2

+
�(Xmax − Xmin)

2
: (43)

In this situation, the new centers will be based on the average of the right and left centers of
the two functions compared, from which their values are altered in order to guarantee the distance
required.

A good tradeoR between model interpretability and accuracy requires that the constraints on pa-
rameter adjustment are somewhat relaxed. In fact, it was concluded experimentally that imposing
strong constraints on the parameters leads to models that are very poor in terms of accuracy. Namely,
the maximum allowable overlapping was tried out with some other criteria, e.g., comparing the left
and right “zeros” of the function under consideration to the centers of its left and right neighbors.
However, though the results obtained for interpretability were satisfactory, the model accuracy was
in general very poor.

Therefore, the constraints were somewhat relaxed, resulting in the equations presented above. In
general, these constraints allow a satisfactory model accuracy. However, as a consequence of the
relaxed constraints, interpretability may not be good enough. This limitation can be easily overcome
by periodically merging similar membership functions, i.e., every x epochs.

A question that can arise naturally is why not to simply merge similar functions periodically.
This hypothesis was also experimented but the results obtained were not satisfactory regarding inter-
pretability. In fact, some situations occur where functions show no similarity but overlap in complex
ways. For instance, function merging cannot solve inclusions (functions inside other functions) or
functions completely passing through other functions, etc. Instead, the constraints imposed guarantee
that the function overlapping is simple enough to be handled by merging.
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6. Simulation results

6.1. The Box–Jenkins gas furnace

The gas furnace [3] is a classic benchmark in system modeling and identi/cation. The data set
is composed of 296 input–output pairs. The system input is the gas Qowrate (to be burned) to the
furnace and the system output is the carbon dioxide concentration in the exhaustion gases. The
objective is to predict the output using past values of both the input and the output. In total, 10
input variables are used: {y(t− 1), y(t− 2), y(t− 3), y(t− 4), u(t− 1), u(t− 2), u(t− 3), u(t− 4),
u(t − 5), u(t − 6)}. As a consequence of the regression indicated, the /nal number of input–output
pairs reduces to 290.

Several authors have worked out this example, with diRerent number of past values of output and
input data. Using Chiu’s method for relevant input selection [6] with the regularity criteria proposed
by Sugeno and Yasukawa [27], it was concluded that the most relevant variables to be included in
the regression equation are y(t − 1) and u(t − 4) [20]. Thus, the two referred variables are the only
ones used to predict y(t).

Based on the exposed, the gas furnace was modeled using subtractive clustering with ra = 0:5,
resulting in three rules. The network, containing two inputs and one output, was trained with a
merging threshold of 0.65 and x= 200.

After 3000 epochs, the root mean square (RMS) error reached a value of 0.390. As for the number
of membership functions for y(t − 1), u(t − 4) and y(t), 2, 2 and 3 resulted, respectively, leading
to 28 adjustable parameters. Fig. 4 presents the approximation results obtained.

As for the membership functions, their shapes are depicted in Fig. 5. As can be seen, it is not
too di:cult to label each of the membership functions. In the same /gure, the labels S, M , and B
denote, respectively, the linguistic terms “small,” “medium” and “big.” The fundamental dynamics
of the gas furnace are interpreted according to Table 1. The fuzzy system obtained is simple and
transparent in the sense that the human judgment can give a clear meaning to the rules.

In Fig. 6, the membership functions obtained for the case of free training (with no interpretability
constraints), using the same proposed methodology, are shown. It can be seen that, though they are
not very complex (probably because they are only a few), a strong overlapping occurs especially
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Fig. 4. Box–Jenkins gas furnace: training for interpretability.
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Fig. 5. Gas furnace: membership functions obtained with constrained training.

Table 1
Gas furnace: linguistic description

Rule u(t − 4) y(t − 1) ⇒ y(t)

1 S S M
2 S B B
3 B S S
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Fig. 6. Gas furnace: membership functions obtained with unconstrained training.

in u(t − 4), where it is more di:cult to label the membership functions. As for the RMS error, a
value of 0.384 was obtained, which is only slightly below the one for constrained training.

This benchmark is characterized by its simplicity regarding interpretability goals. In fact, the RMS
errors for constrained and free training are very similar. This is a direct consequence of the reduced
number of rules and inputs used. Therefore, a more thorough study is presented below.

6.2. The Mackey–Glass chaotic time series

One of the most commonly used benchmarks in system identi/cation consists of the prediction of
the Mackey–Glass chaotic time series [17] described by Eq. (44).

ẋ(t) =
0:2x(t − 4)

1 + x10(t − 4)
− 0:1x(t): (44)

This time series does not show a clear periodic behavior and it is also very sensitive to the initial
conditions. The problem consists of predicting future values of the series.

The application of the technique described previously is carried out based on identi/cation data
from the “IEEE Neural Network Council, Standards Committee, Working Group on Data
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Fig. 7. Chaotic time series: identi/cation data.

Modelling Benchmarks,” which are also used in the analysis of several other methodologies. So, in
order to obtain a numeric solution for the problem, the fourth-order Runge–Kutta method was ap-
plied. For integration, it was assumed x(t) = 0, t¡0, and a time interval of 0.1. The initial condition
x(0) = 1:2 and the parameter 4= 17 were also de/ned. In this case, [x(t − 18), x(t − 12), x(t − 6),
x(t)] are used to predict x(t +6). Based on the described parameterization, data were collected from
the interval t ∈ [0; 2000]. Then, 1000 input–output pairs were selected for training, from the inter-
val t ∈ [118; 1117]. The remaining data were used for validation. The data collected are depicted in
Fig. 7.

Using the samples obtained, the chaotic time series was modeled, according to the procedures
described in the previous sections. So, parameter ra was assigned a value of 0.5, resulting in nine
fuzzy rules. As happened with the gas furnace, the network, containing four inputs and one output,
was trained with a merging threshold of 0.65 and x= 200. After 800 epochs the RMS error was
0.0228 for the training data and 0.0239 for the test data. As for the number of membership functions
for the variables x(t − 18), x(t − 12), x(t − 6), x(t) and x(t + 6), 5, 4, 5, 4 and 5 were obtained,
respectively, leading to 92 adjustable parameters.

In Fig. 8, the approximation results for the test data are depicted, which, by visual inspection,
seem to capture the main dynamics of the system.

As for the membership functions, these are presented in Fig. 9. As can be seen, it is not di:cult to
assign linguistic terms to each of the membership functions. In the same /gure, the labels VS, S, M ,
B and VB denote, respectively, the linguistic terms “very small,” “small,” “medium,” “big” and “very
big.” Thus, the fundamental dynamics of the chaotic time series are interpreted according to Table 2.

Comparing to NEXPROX [19] (Table 3), the results obtained show improvements: the number
of rules is smaller, respecting the human cognitive needs, and the RMS error is also smaller. This
results in both better accuracy and interpretability.

In Fig. 10, the membership functions obtained for the case of free training, using the same proposed
methodology, are shown. It can be seen that they are impossible to interpret linguistically. As for the
RMS error, 0.0076 was obtained for the unconstrained training. This value is much smaller than the
one obtained for constrained training, as expected. In fact, it can be stated that interpretability and
accuracy are conQicting requirements. As long as interpretability constraints grow more demanding,
accuracy diminishes and vice versa.



R.P. Paiva, A. Dourado / Fuzzy Sets and Systems 147 (2004) 17–38 35

Test

500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Real Output   Model Output 

Fig. 8. Chaotic series: output prediction.
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7. Conclusions

In this paper, a neuro-fuzzy methodology for the implementation of real interpretable fuzzy models
is described. By the application of subtractive clustering, an initial structure for the fuzzy model is
obtained, which is then used for the initialization of a fuzzy neural network. However, adjusting
membership function parameters without any constraints usually leads to a complex overlapping be-
tween functions, which limits interpretability. Therefore, a learning scheme to allow the development
of interpretable fuzzy models is proposed. The methodology presented is based on the merging of
similar membership functions and on the constrained tuning of model parameters. This strategy aims
to improve function distinguishability in terms of distance and overlapping. The approach described
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Table 2
Chaotic series: linguistic description

Rule x(t − 18) x(t − 12) x(t − 6) x(t) ⇒ x(t + 6)

1 M VB B VB B
2 B VB M S S
3 S M M VB VB
4 M M VS VB B
5 S B S VS M
6 S VB VB B M
7 S VS S B B
8 VS VS M B B
9 VB VB VB B VS

Table 3
Chaotic series: comparison with other techniques

Method No. of rules No. of param. RMSE

Paiva and Dourado 9 92 0.0239
NEFPROX (A) 129 105 0.0332
NEFPROX (G) 26 38 0.0671
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Fig. 10. Chaotic series: membership functions after free training. Compare with Fig. 9.

is applied to the prediction of the Mackey–Glass chaotic time series and to the Box–Jenkins gas
furnace, resulting in a satisfactory tradeoR between model accuracy and interpretability. In more
complex models, e.g., industrial processes, the constraints imposed for interpretability may lead to
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inaccurate models. Thus, as a summary, it can be said that interpretability bounds accuracy and vice
versa.
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