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Abstract

Although fuzzy control was initially introduced as a model-free control design method
based on the knowledge of a human operator, current research is almost exclusively devoted
to model-based fuzzy control methods that can guarantee stability and robustness of the
closed-loop system. State-of-the-art techniques for identifying fuzzy models and designing
model-based controllers are reviewed in this article. Attention is also paid to the role of
fuzzy systems in higher levels of the control hierarchy, such as expert control, supervision
and diagnostic systems. Open issues are highlighted and an attempt is made to give some
directions for future research.
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1 Introduction

Feedback control is a powerful tool to handle uncertainty in dynamic systems,
through reducing their sensitivity to external disturbances and parameter changes,
and to modify their dynamic behavior (e.g., stabilize an unstable plant or speed up
a slow system). However, as feedback can potentially destabilize open-loop stable
systems, stability analysis is a major issue in control design. To guarantee stability,
one needs a mathematical model of the plant.
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In contract to conventional control, fuzzy control was initially introduced as a
model-free control design method based on a representation of the knowledge
and the reasoning process of a human operator [65,37]. Fuzzy logic can capture
the continuous nature of human decision processes and as such is a definite im-
provement over methods based on binary logic (which are widely used in industrial
controllers). Hence, it is not surprising that practical applications of fuzzy control
started to appear very quickly after the method had been introduced in publications.
A drawback of knowledge-based, model-free fuzzy control is that it does not allow
for any kind of stability or robustness analysis, unless a model of the process is
available. However, if that is the case, one can of course use the model for design,
as in standard control. The possibility to analyze stability, performance and robust-
ness gave rise to the recent interest in model-based fuzzy control design and in
identification for obtaining fuzzy models from process data. It has been recognized
that fuzzy systems are universal function approximators and hence can be used to
model a wide class of processes.

The present situation in the area of fuzzy systems and control is characterized by a
certain mismatch between the main motivation of readability (using understand-
able rules, computing with words) and the use of mathematically involved and
rather non-transparent techniques to ensure robust performance, in direct analogy
with mainstream (nonlinear) control. From a research point of view, in the low-
level control loop the knowledge-based approach seems to have been superseded
by the model-based one. The knowledge-based approach mainly remains an option
in higher control levels (supervision, diagnosis).

This paper outlines the state of the art of fuzzy techniques (from the control point
of view), and puts forward some perspectives regarding the future role of fuzzy
systems. Fuzzy plant models and the procedures to obtain them are discussed in
Section 2. Model-based fuzzy controllers are discussed in Section 3 and adaptation
in Section 4. The knowledge-based approach in control engineering is addressed in
Section 5 while Section 6 concludes the paper.

2 Fuzzy modeling and identification

Initially, fuzzy modeling was introduced as an approach to building models based
on expert knowledge in a linguistic form [65,36]. Later on, the focus gradually
shifted toward methods for constructing fuzzy systems from data and applying
them in areas like data mining, pattern recognition and systems identification [24].
In such applications, fuzzy approaches serve as an alternative or complement to
other inductive methods, including neural networks, machine learning or statistical
inference techniques. The most prominent feature that distinguishes fuzzy systems
from black-box methods is their transparency and interpretability. Fuzzy models
are suited for explaining solutions to users, especially to those who do not have a



strong mathematical background. The linguistic interpretability and transparency
of fuzzy models constructed from data therefore became important research items
in the literature [45,46,15,43,29].

2.1 Preliminaries

In system identification, a fuzzy system typically approximates a nonlinear dy-
namic regression modei(k + 1) = f(x(k)), where the regression vectafk)
contains a collection of previous process inputand outputgy. Both Mamdani

and TS models are used, but in the context of dynamic systems the TS model is
more common:

If z(k)is F; then y(k+1) = 0] w(k), i=1,2,...,r (1)

where the antecedent and consequent variabdsdw are usually selected from

the regression vectot. The model has two sets of parameters, the consequent pa-
rameter®) and parameters defining the membership functions for the fuzzy'sets

The TS model can approximate nonlinear processes with both smooth and abrupt
nonlinearities (through the form of the membership functions), specific choice of
the antecedent and consequent variables (e.g., Wiener and Hammerstein systems),
and for modeling processes where the dynamic structure varies with some known
variables (switching systems, failure modes, etc.).

2.2 The identification problem and its solutions

The two basic steps in system identification streicture identificatiomndparam-

eter estimationThe choice of the model’s structure (variables, number of member-
ship functions, etc.) is very important, as it determines the flexibility of the model

in the approximation of (unknown) systems. A model with a rich structure can
approximate more complicated functions, but, at the same time, will have worse
generalization properties. The parameter estimation problem can be formulated as
the minimization of a nonlinear least-square criterion:

n r 2
{ag,...,,,0q,...,0,} = arg min Z (yk - Zhi(zk, ai)Oika> (2)

k=1 i=1

for the available set of data pairs{xy, yx), k = 1,2,...,n. The free parameters

are the consequent and antecedent parameters ve&iasda;, respectively, and
hi(z) denotes the degree of fulfillment of th#h rule (there are rules in the rule
base). The commonly used optimization techniques can be divided into two main
categories:



(1) Methods based on global nonlinear optimization of all the parameters, such
as genetic algorithms, neuro-fuzzy learning techniques (backpropagation and
variants thereof), product-space fuzzy clustering, etc.

(2) Methods that exploit of the fact that (2) is nonlineaiin(due to inherently
nonlinear parameterization of the membership functions), while it is linear
in 8;. Typically, the linear estimation problem is solved as a local problem
within one iteration of the antecedent parameter optimization problem or after
the antecedent parameters were determined in some other way (e.g., using
prior knowledge).

As virtually all nonlinear regression methods can be adopted for fuzzy modeling,
the spectrum of available techniques is enormous.

2.3 Remarks and open issues

The construction of a fuzzy model involves a tradeoff between the accuracy and
transparency of the model. Much research has therefore been devoted to methods
for reducing complexity of fuzzy systems, e.g., by using similarity measures [45] or
orthogonal transformations [62]. This issue still cannot be considered satisfactorily
solved, as, especially in applications, fuzzy models are often used as purely black-
box methods.

Fuzzy identification for control. Surprisingly little attention has been devoted to
the identification of fuzzy models for fuzzy control design. There are quite some
discrepancies between the assumptions made on fuzzy models for control design
(mostly in a continuous-time state-space framework) and the possibilities of current
identification techniques, which are developed primarily for discrete-time input-
output models. The ‘identification for control’ paradigm that is currently being in-
vestigated in the control community should also be adopted in the fuzzy control
community. The issues of effective experiment design, model class, modeling er-
ror, target control specifications, etc., have not been sufficiently addressed in the
fuzzy modeling and identification literature. Very few publications are concerned
with dynamic properties of fuzzy models [31].

Application examples and benchmarksThe performance of fuzzy identification
techniques is typically assessed by using relatively simple simulation examples.
It can be argued that many of these examples are not suitable as benchmarks or
demonstrators of nonlinear (fuzzy) modeling methods. Results obtained for simple
illustrative examples often do not carry over to more complex problems. In addi-
tion, standard regression methods will often solve the simple problems as well.

Relation to other techniques.The quality of newly proposed fuzzy identification
methods should be evident from a comparison with state-of-the-art regression or
classification techniques. Critical analysis of the results should be made and linear



models must be regarded as a lower bound on the acceptable performance. Fuzzy
models certainly have the potential to outperform other techniques, but this must be
clearly shown by comparisons with non-fuzzy approaches. Only in this way, fuzzy
techniques can gain higher credibility outside the fuzzy community.

3 Stable and robust model-based fuzzy control

An available fuzzy or neuro-fuzzy model can be used in the design of a controller in
two ways. First, any (nonlinear) model-based technique such as feedback lineari-
sation (see later eq. (11)), predictive and inverse-model-based techniques can be
applied to the fuzzy model [3]. Second, the controller itself can be a fuzzy system
whose structure matches the structure of the fuzzy plant model. This idea, for TS
fuzzy systems callegarallel distributed compensatidb3], has proven very fruit-

ful. By far the largest number of results have been published for the stabilization of
Takagi—Sugeno models in continuous and discrete time. In this paper we therefore
focus on this class of methods.

3.1 Preliminaries

Consider the continuous Takagi—Sugeno (CTS) model in the state-space form:

(z (1)) (Asz () + Biu (1))
3)
(z (1)) Cizx (t)
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whereh; (z (t)) > 0 are the degrees of fulfillment of the rules (in an interpreta-
tion similar to (1), but in the state-space form), satisfying the convex sum property

", hi(z(t)) = 1. The parallel distributed compensation (PDC) law for system
(3), is given by:

u(t) == hi(z(t)) Fx (t) (4)

In the discrete-time TS (DTS) model|t) is replaced byt (¢ + 1).

The so-called sector nonlinearity approach [53] provides a systematic method to
exactly represent affine nonlinear systems
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in terms of (3) if the state is assumed to lie on a compact set. However, the number
of rulesr grows exponentially with the number of nonlinearities being involved in
(5) [52]. Note also that the TS representation of (5) is not unique.

3.2 The control design problem and its solutions

The goal is to design a robust control law for model (5) using its equivalent rep-
resentation (3). The main interest is in finding a context where linear design tools
can be applied. Then, the result will only depend on the linear médels3;, C;),

which are supposed to be observable and controllable. Consider the above scalar
functionsh; (-), and symmetric matrices;; = T}} Many control design problems

can be stated as finding the least conservative conditions ensuring:

S5 (2. () by (2 (1) Ty < 0 6)

i=1j=1

The basic result considers the following quadratic Lyapunov function:

V (x) = 2" (t)Px(t) with P=PT >0 7)

whose derivative along the trajectories of the CTS (3) in the closed loop with the
PDC law (4) result in (6) with:

Ty = (A4 — B;F))" P+ P(A; — B;F}) (8)

The main approach is based on the use of Linear Matrix Inequality (LMI) tech-
niques [6], where conditions valid for aty verifying the convex sum property are
used. The fact that the actual scalar functibp&) are not introduced in the LMI
conditions will give only sufficient results.

In the pioneering works (see [53] and the references therein), the basic problem is
solved without taking into account additional aspects like performances and robust-
ness specifications and the use of state observers. The extension to output feedback
with a state observer is quite straightforward when the premise varialeg3)

are measurable, in which case the separation principle holds [28]. In [53] and [2]
dynamic output-feedback control is considered.

It should be stressed that contrary to claims often made in the literature, fuzzy
controllers are not ‘inherently robust’, unless an uncertainty description is explic-
itly associated with the fuzzy model and taken into account in the design proce-
dure. Norm-bounded uncertainties were introduced in [66,58,51,13]. Pole place-
ment constraints for the individual linear models can be used to impose perfor-
mance requirements [30,27].



Following the first works on nonlinear models in the form of (3), several extensions
were explored. Some of them are direct extension of previous results, for example
TS time-delay models with or without uncertainties [53,63]. Others try to extend to
this representation standard results from the linear framework, for example control
laws based on a descriptor form of CTS models or optimal fuzzy control design
[53].

The methods remain conservative and the challenge is to find some new ways
to reduce this conservatism. One possibility is to modify the Lyapunov function.
Alternatives for the classical quadratic Lyapunov function (7) were proposed; a
piecewise quadratic Lyapunov function [7,19,32], and a fuzzy Lyapunov function
[4,54] for CTS models and a non-quadratic function for DTS models [22]. Another
approach is to use some matrix properties: specific transformations, elimination
lemma [59] and/or relaxation of the basic inequality (6), see for example [52,35].

3.3 Remarks and open issues

Two main issues can be mentioned. The first one concerns the preliminaries stated
implicitly when addressing TS models stabilization. The first preliminary is the
controllability and observability. If the nonlinear system (5) is controllable and ob-
servable (at least locally), how can we ensure that these properties are preserved
in its TS representation (3)? These issues are rather complex in TS models. For
instance, one can have a TS model with all linear submodels controllable and still
obtain a locally uncontrollable nonlinear model. Vice versa, a controllable non-
linear model may be represented by a TS model with some uncontrollable linear
models. The second concern is related to the lack of the separation principle in
the general case. If dynamic output feedback is needed, the control law cannot be
designed apart from the observer. Then we need to understand and to quantify the
connection between the control law and the observer for the general case and/or for
a more general class of TS models (with uncertainties, delays, etc.). The last con-
cern is the tractability of the LMI problem. Many LMI variables are needed in the
currently available least conservative results. Hence, in this context, although LMI
algorithms have polynomial complexity with respect to the system order and the
number of models, the polynomial exponents are large, so only low-order systems
can be handled by the available solvers.

The second issue concerns future perspectives. It seems now that the classical ap-
proach using the quadratic Lyapunov function has been very well and deeply ex-
plored. Nevertheless, as the results only use sufficient conditions, the main problem
is what can be done if the conditions are too restrictive? What happens when there
is no solution to the constrained problem under consideration? This question is di-
rectly related to the definition of the kind of ‘best’ TS representation (3) of the
nonlinear model (5) — ‘best’ in the sense of feasible LMI problem. Apart from in-



troducing additional conditions, another way is to find new Lyapunov functions
able to cope with the degrees of fulfillment. This includes the works already done
with piecewise Lyapunov function [7,19,32] or with non quadratic ones [22]. A
further possibility would be to leave the Lyapunov direct approach and introduce
alternative methods, maybe a linguistic approach to stability analysis.

4 Adaptive fuzzy control
4.1 Preliminaries

Recently, there has been an increased interest in adaptive fuzzy control (AFC) for
input-affine nonlinear systems in the controllable canonical form:

2" = f(x) + g(x)u 9)
y=ux (10)

wherex = [x,:fc, G ’ is the state vector. The control goal is to track a
desired trajectory,, while keeping all the signals in the closed-loop bounded. If
the functionsf (x) andg(x) are known, the ideal feedback linearizing control law
can be applied:

u=——(=f(x)+y +k"e) (11)

wheree is the vector containing the tracking errer= y,, — y and itsn — 1
derivatives andk is a feedback gain vector which can be chosen such that the roots
of the polynomiali(s) = s™ + k;s" ! + ... + k, are in the open left half of the
complex plane.

4.2 Indirect and direct adaptive fuzzy control

The basic idea aihdirect AFCis to approximate the unknown functiorisx) and
g(x) in the control law (11), by using two linearly parameterized singleton fuzzy
systems [60,61]:

(12)



wheref; and @, are the consequent parameters to be adaptge) andh,(x)

are the normalized degrees of fulfillment of the (fixed) fuzzy rule antecedents. The
consequent parameters are adapted on-line by means of stable adaptive laws derived
through Lyapunov synthesis. These methods, here stated for SISO systems, have
also been extended to square MIMO systems [56].

In direct AFC the control law is represented by a single fuzzy system whose pa-
rameters are adjusted to meet the required control objective [34,10,11,41,49]. In
this case, however, the assumptions made(an can be very restrictive. For in-
stance, in [34,10], the authors assume ttiad is exactly known, and in [41](x) is
assumed to be strictly diagonal dominant with known state dependent upper bounds
for the time derivatives of the main diagonal entries.

The design of such adaptive fuzzy controllers must inherently consider robustness
issues since any finite dimensional fuzzy approximator unavoidably introduces an

approximation error. Such an error is usually handled as a disturbance acting on the
system by means of modifications such as:

¢ An additional damping terfprusually in the sliding mode framework [50,20,49],
[12,57,10].

¢ A modified adaptive lawuch as a projection [60,61], dead-zones [33]modi-
fication ore—modification [48].

Adaptive controllers with composite adaptive laws, based on both the tracking and
model prediction error, have been also proposed in the literature [64,25].

4.3 Remarks and open issues

Fuzzy systems have the potential to play an important role in nonlinear adaptive
control, mainly thanks to theuniversal function approximatioproperty and their
amenability to (linguistic) interpretation of the input-output relationships. The use
of fuzzy systems instead of a black-box technique is advantageous not only be-
cause fuzzy systems can provide a good guess for the initial system model (by the
including prior qualitative knowledge), but also to gather more insight about the
unknown systems dynamics and/or control law during or at the end of adaptation.
These issues are, however, still to be explored and exploited.

The efforts in current research on AFC are directed toward:

e the use of more general (nonlinear) parameterizations for the fuzzy systems
[23,1];

¢ the extension of AFC to discrete-time systems [39] and other classes of systems
(e.g., systems described by a TS fuzzy model rather than the canonical control-
lable form (10) [42,16]);



e the assessment not only of the closed-loop stability but also of the performance
of the adaptive controller (e.g., in terms of control effort [39]).

Finally, note that the class of input-affine nonlinear systems is still very restricted
and the hypothesis of having a measurable state vector is unrealistic. The next step
should be to investigate the use of state observers to eliminate this drawback.

5 Expert control, supervision and diagnosis

Historically, the use of fuzzy systems in control started in a close relation to logic,
inference and ‘linguistic’ information processing (based on knowledge of plant op-
erators). Direct fuzzy controllers implementing heuristic rules from operators had a
significant success in application areas such as cement kilns [38,26] or waste-water
treatment [55]. However, closer analysis reveals that many proposed strategies are
remarkably similar to the basic proportional, integral and derivative control actions.
Their tuning involves adjustable ‘scaling factors’, and is thus not fundamentally dif-
ferent from adjusting gains in a conventional regulator (see [40] for an example).

Higher decision levels in process control also use rule bases for decision support.
Supervision, diagnosis and condition monitoring are examples of successful appli-
cation domains for fuzzy reasoning strategies [8,18]. Rule bases can be regarded
ascompileddictionaries of faults (or operation modes) and symptoms, without re-
sorting to a deep knowledge of the plant being monitored. If fuzzy logic is used,
the plant condition may be expressed as a partial membership to one or several
prototype situations (identifying membership with fault ‘severity’).

Setting up the rules seems an easy task if expert knowledge is available. However,
there are three significant issues complicating this procedure:

e Rules are not always true (some rules hold in the majority of cases, but have
exceptions, cumbersome to be detailed),

e A rule with a set of conditions ‘i), andC, andC; and ...’ fails to fire if a mea-
surement involved in ang; is missing. Therefore, one unmeasured premise may
prevent, say, a 30 symptom rule from firing, even if it is clear that the likelihood
of the fault, based on 29 matching conditions, is very high.

e Some conditions are diagnosed by detecting patterns over time, so dynamics
need to be considered.

In the fuzzy logic area, refinements have been worked out to deal with the first two
situations above. For instance, ‘certainty factors’ can be used to weight the rule acti-
vations when deriving conclusions. However, the interpretation of certainty factors
may be unclear. Many schemes for reasoning under uncertainty have been devel-
oped [21,47]. A promising approach is the possibilistic reasoning [17], in which
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symptoms have possibility and necessity measures in the intgrvdl and ex-
tended deduction axioms are applied. In practical situations, possibility and neces-
sity may be roughly understood as upper and lower probability bounds (or mem-
bership —severity— ones), respectively. For instance, in [9], a list of consistent faults
is generated and further information may reduce the possibility or increase the ne-
cessity of a particular condition. However, if information is scarce, a lot of possible
faults are generated and one needs to rank them. In the absence of probabilistic in-
formation,abductiontechniques are used (the most evident is symptom counting,
see [9] and the references therein).

5.1 Remarks and open issues

Fuzzy control. The inherent limitations of the PID-like control structure in dealing

with nonlinear process are usually not recognized in the literature on knowledge-
based fuzzy control. For instance, unless inversion or linearisation-based designs
are pursued, to cope with significantly nonlinear systems the controller rule base
must include additional inputs, such as the setpoint. However, the corresponding
designs cannot be pursued using only heuristic knowledge in most cases: long ago,
it has been recognized that a successful fuzzy control design relies on the mix of
heuristic knowledge and solid control-theoretic insights. In general, the knowledge-
based approach to direct control has been presently superseded by the developments
described in previous sections.

Monitoring. Monitoring (supervision and diagnosis) can be regarded as estimating
the plant’s state based on measurements. Not so surprisingly, analytical model-
based techniques have been developed, interpreting the monitoring process as set-
ting up a (nonlinear) observer. Observation errors called residuals are generated by
processing input output data, y), which depend on the process condittband
unmeasurable disturbance inputsThe task is to devise a dynamic systainsuch
that V; (u(0,n),y(6,n)) is near zero except wheéh= 6;, denoting a particular con-

dition. That residual may also be generated from discrete-event and graph models
of failure, or by parameter estimation techniques. The reader is referred to [14,5]
and references therein for details. In a sense, there is a complementarity between
rule-based designs and dynamic processing: the more elaborate and accurate the
dynamic models are, the simpler and more reliable the post-processing rules will
be.

In the Al community, Bayesian network approaches are gaining popularity, in con-
trast to traditional rule-based systems. In Bayesian nets, uncertainty (both in the
rules and the individual premises) is treated under a probabilistic setting and miss-
ing observations are handled naturally, as well as some cases of learning from ex-
perience [44]. However, the Bayesian approach has some drawbacks. First, one
needs to define a multitude of probability coefficients (many may be unknown to
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the expert) and even continuous multivariate probability density functions (if, in-
stead of binary outputs, real-valued conclusions such as severity of faults are de-
sired). Second, computational issues may render fuzzy conclusions an intractable
problem in practice, unless partitioned into discrete states symbolizing intermedi-
ate membership ranges. Regarding practical applications there is certainly some
room for mixed schemes including fuzzy or possibilistic inference combined with
probabilistic information.

6 Concluding remarks and future perspectives

Theoretical results and possibilities of the fuzzy control approach have been re-
viewed in the preceding sections. Conclusions and more general open questions
are given here.

First, the use of fuzzy logic as a reasoning tool in direct process control has been
superseded by the model-based techniques. Clearly, the mainstream fuzzy control
has become one of the nonlinear control design methods, with a strong mathemati-
cal basis and reliance on a (fuzzy) plant model. This is a departure from the original
goals of fuzzy control, neglecting the fact that fuzzy systems provide an alternative
representation scheme to incorporate extra relevant information that cannot be used
in the standard control-theoretic framework. For instance, in the realm of possibil-
ity theory, fuzzy logic can be used to represent uncertainty. However, in the control
area, fuzzy systems are not used as a framework for uncertainty representation, but
rather as a nonlinear function approximation tool.

Questions about the difference between fuzzy and other non-linear control strate-
gies arise. Indeed, the difference between some specific fuzzy-neural and nonlinear
control applications is often unclear. Although emphasis is put on trying to show
specific advantages, the opposite question can (and should) also be posed: which
are the specific disadvantages of using fuzzy logic? Every methodology has its par-
ticular drawbacks.

The motivation behind the current fuzzy control approaches is still the simplic-
ity of representation (albeit in a different interpretation than the original Zadeh’s
approach). Current fuzzy control tries to get as much performance as possible by
using a convex combination of local linear models and local controllers, setting
up conditions that depend on the models themselves rather than on the weighting
coefficients (membership degrees). Indeed, intricate behaviors can be modeled as
a combination of simpler ones and significant results are available (despite the in-
herent conservatism). However, the sophistication of the current LMI conditions
for fuzzy control design is reaching practical computational tractability limits for
high-order plants.
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Another use of fuzzy logic is decision support at higher levels of the control hierar-
chy (supervision, planning, monitoring). With fuzzy models serving as a simplified
representation of uncertain systems, near-qualitative decisions can be made at this
level of abstraction. Different fuzzy models of the same process may coexist (from
gualitative descriptions and diagnosis rules to precise settings approximating a non-
linear function). At higher levels, simple decision tables have limitations that can
be overcome by incorporating possibilistic and probabilistic information.

Finally, a slightly provocative question arises whether the fuzzy control commu-
nity should not adopt a more ambitious view to broaden its perspective in order to
achieve some breakthrough results. Humans exhibit ‘intelligent behavior’ in con-
trolling complex, poorly understood processes; they can learn from past experi-
ence, organize knowledge about the process and its surrounding environment and
plan their future behavior. It can be assumed that for a large part, they achieve this
thanks to their reasoning capabilities. Although fuzzy set methods have been con-
sidered as powerful reasoning tools with the potential to bridge traditional Al and
control, the present use of them in the control area has adopted quite a restricted
view.

Fuzzy systems may contribute to the solution of really hard control problems en-
countered in distributed and networked systems, autonomous agents, hybrid sys-
tems (switching, mix of symbolic and continuous variables, fault-tolerant systems),
high-level coordination and control (enterprise-wide systems, supply chain man-
agement), systems interacting with humans, etc. Assuming that complex behaviors
can emerge from the interaction of agents using simple sets of understandable fuzzy
rules, how can this behavior be designed to accomplish some predefined goals? Fi-
nally, biological organisms are equipped with a highly efficient, redundant system
for sensing the environment and for processing and storing the acquired informa-
tion. Along with new sensor technologies, we need to develop tools for interpreting
the vast amounts of acquired data and storing them in the form of knowledge rel-
evant for on-line decision making and control. Here too, fuzzy set techniques can
play an important role.
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