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Abstract

Among the various extensions to the common [0, 1]-valued truth degrees of “traditional” fuzzy set theory, closed intervals of
[0, 1] stand out as a particularly appealing and promising choice for representing imperfect information, nicely accommodating and
combining the facets of vagueness and uncertainty without paying too much in terms of computational complexity. From a logical
point of view, due to the failure of the omnipresent prelinearity condition, the underlying algebraic structure LI falls outside the
mainstream of the research on formal fuzzy logics (including MV-, BL- and MTL-algebras), and consequently so far has received
only marginal attention. This comparative lack of interest for interval-valued fuzzy logic has been further strengthened, perhaps,
by taking for granted that its algebraic operations amount to a twofold application of corresponding operations on the unit interval.
Abandoning that simplifying assumption, however, we may find that LI reveals itself as a very rich and noteworthy structure
allowing the construction of complex and surprisingly well-behaved logical systems. Reviewing the main advances on the algebraic
characterization of logical operations on LI , and relating these results to the familiar completeness questions (which remain as
major challenges) for the associated formal fuzzy logics, this paper paves the way for a systematic study of interval-valued fuzzy
logic in the narrow sense.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Interval-valued fuzzy set theory (apparently introduced independently in the mid-seventies by Grattan-Guinness [11],
Jahn [14], Sambuc [19] and Zadeh [21]) is an increasingly popular extension of fuzzy set theory where traditional [0, 1]-
valued membership degrees are replaced by intervals in [0, 1] that approximate the (partially unknown) exact degrees.
Hence, not only vagueness (lack of sharp class boundaries), but also a feature of uncertainty (lack of information) can
be addressed intuitively. Moreover, interval-valued fuzzy sets (IVFSs) are considerably easier to handle in practice than
the similarly inspired type-2 fuzzy sets (of which IVFSs are in fact a special case, called “interval type-2 fuzzy sets” in
that context, see e.g. [17]); as further evidence of their wide relevance, they also subsume the syntactically equivalent
frameworks of Atanassov’s intuitionistic fuzzy sets [1] and of Gau and Buehrer’s vague sets [7].
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Their potential to approximate reasoning applications was noticed early on, for instance by Türkşen [20] and Gorza-
łczany [10], who experimented with the extension of logical operations to interval-valued truth degrees. Unlike the
steep rise in interest that we have experienced over the past decade for t-norm-based (residuated) fuzzy logics defined
on the unit interval (see e.g. [12,18,6]), a similar development did not take place for IVFSs, and a unified, formal
treatment of interval-valued fuzzy logics is still lacking. As we will argue in the remainder of this paper, two important
obstacles are responsible for this: an underestimation of the richness of the associated algebraic structure, and a marked
preference within the research community for prelinear algebraic structures.

2. The lattice LI

From an algebraic perspective, an attractive and conceptually straightforward framework in which to develop the
theory of IVFSs and their associated operations is provided by Goguen’s L-fuzzy sets [9]. Indeed, the structure LI =
(LI , �LI ) given by

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 �x2},
[x1, x2]�LI [y1, y2] ⇐⇒ x1 �y1 and x2 �y2

is a complete lattice, and hence an IVFS A in U can be seen as an LI -fuzzy set in U, i.e. as a mapping from U to the
ordered structure LI . By virtue of the ordering �LI , definitions of graded logical connectives like negators, t-(co)norms
and implicators are readily obtained on LI . For instance, a t-norm on LI is a commutative, associative, �LI -increasing
(LI )2 → LI mapping T satisfying T ([1, 1], x) = x, for all x in LI .

Note that the infimum ∧ (meet) and supremum ∨ (join) on LI are given by, for [x1, x2], [y1, y2] in LI ,

[x1, x2] ∧ [y1, y2] = [min(x1, y1), min(x2, y2)], (1)

[x1, x2] ∨ [y1, y2] = [max(x1, y1), max(x2, y2)]. (2)

In other words, ∧ and ∨ emerge as componentwise applications of their counterparts on [0, 1]. For many authors
(see e.g. [8,15]), this observation serves as adequate justification to restrict the definition of logical connectives to
componentwise operations, which amounts to the implicit acknowledgment that the research on IVFSs would reduce
to a mere twofold (and hence not very challenging) application of the results from fuzzy set theory. For instance, Jenei
[15] defined a t-norm on LI as an (LI )2 → LI mapping T such that there exist t-norms T1, T2 on [0, 1] for which
T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)]. Such an assumption however not only disregards the natural partial
ordering �LI , it also remains blind to some of the most significant and exciting aspects of IVFS theory.

Definition 1 (Deschrijver et al [5]). Let T be a t-norm on LI . We say that T is t-representable if there exist t-norms
T1 and T2 on [0, 1] such that, for all x, y in LI , T (x, y) = [T1(x1, y1), T2(x2, y2)].

Clearly, by this definition Jenei’s t-norms are t-representable. In [5,3] it is shown on the other hand that not all t-norms
on LI are t-representable; moreover, as will be clear from the sequel, some of the non t-representable t-norms are far
superior to their t-representable counterparts in terms of the algebraic properties that they satisfy.

In the following section, we will use the structure LI as the algebraic basis for developing logical calculi in a natural
and interpretation-independent manner.

3. Algebraic structures for interval-valued fuzzy logics—a brief synopsis of the state of the art

First, we recall some structures commonly used in fuzzy logic (see e.g. [12,18,6,2]).

Definition 2. An algebraic structure L = (L, ∧, ∨, ∗, ⇒, 0, 1) is called a residuated lattice if

(RL.1) (L, ∧, ∨) is a bounded lattice with ordering �L and 0 and 1 as its smallest and greatest element, respectively;
(RL.2) (L, ∗, 1) is a commutative semigroup with neutral element 1, i.e. ∗ is a commutative, associative L2 → L

mapping such that x ∗ 1 = x, for all x in L;
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(RL.3) ⇒ is an L2 → L mapping such that, for all x, y, z in L:

(x ∗ y)�Lz if and only if y�L(x ⇒ z).

It is an MTL-algebra if furthermore it satisfies, for all x, y in L:

(MTL.1) (x ⇒ y) ∨ (y ⇒ x) = 1 (prelinearity),

a BL-algebra if it is an MTL-algebra and for all x, y in L :
(BL.1) x ∧ y = x ∗ (x ⇒ y) (divisibility),

and an MV-algebra if it is a BL-algebra and for all x in L :
(MV.1) ((x ⇒ 0) ⇒ 0) = x (involutivity).

Definition 3. An algebraic structure L = (L, ∧, ∨, ⇒, 0) is called a Heyting algebra if, for all a, b, c in L,

(H1) a ⇒ a = b ⇒ b,
(H2) (a ⇒ b) ∧ b = b,
(H3) a ⇒ (b ∧ c) = (a ⇒ b) ∧ (a ⇒ c),
(H4) a ∧ (a ⇒ b) = a ∧ b,
(H5) (a ∨ b) ⇒ c = (a ⇒ c) ∧ (b ⇒ c),
(H6) 0 ∧ a = 0.

Now we discuss the existence of these structures on the lattice LI . Let T be a t-norm on L. We define the residuum
IT of T by, for all x, y in LI ,

IT (x, y) = sup{z | z ∈ LI and T (x, z)�LI y}.
If T satisfies the residuation principle, i.e. (RL.3) holds for ∗ = T and ⇒ = IT , then (LI , ∧, ∨, T , IT , 0LI , 1LI )

is a (distributive) residuated lattice, where 0LI = [0, 0] and 1LI = [1, 1]. In [5] it is shown that such t-norms on LI

exist, 1 so a residuated lattice can be built on top of LI . As a consequence, for such a t-norm, the associated interval-
valued fuzzy logic is a particular type of monoidal logic in the sense of Höhle [13], in which e.g. modus ponens
holds.

On the other hand, the failure of the prelinearity condition rules out the existence of MTL-algebras on LI . To see
this, assume that such a t-norm T exists. Let x, y in LI , then from (RL.3) it follows that

x = T (x, 1LI )�LI y if and only if 1LI �LI IT (x, y). (3)

Since, for all a = [a1, a2], b = [b1, b2] in LI , it holds that sup(a, b) = [max(a1, b1), max(a2, b2)] = 1LI implies that
a = 1LI or b = 1LI , from (MTL.1) it follows that IT (x, y) = 1LI or IT (y, x) = 1LI . Thus, using (3), we obtain that
x�LI y or y�LI x, which is a contradiction, since in LI incomparable elements exist. Hence, the following theorem
holds:

Theorem 4. There does not exist a t-norm T on LI such that (LI , ∧, ∨, T , IT , 0LI , 1LI ) is an MTL-algebra.

As a corollary of Theorem 4, there does not exist any t-norm on LI such that (LI , ∧, ∨, T , IT , 0LI , 1LI ) is a BL-
or an MV-algebra. These negative results might raise the impression that interval-valued fuzzy logics are rather weak
logical systems; in what follows we argue that the bias is largely due to the importance attached to (MTL.1), and that
most of the interesting properties valid in MV-algebras can be preserved by a deliberate choice of connectives.

On the unit interval it holds (see e.g. [16]) that ([0, 1], min, max, T , IT , 0, 1) is an MV-algebra if and only if T is
isomorphic to the Łukasiewicz t-norm TW defined by TW(x, y) = max(0, x + y − 1) for x, y in [0, 1], or equivalently,

1 Moreover, unlike on [0, 1], on LI condition (RL.3) is not equivalent to the left-continuity of T ; refer to [5] for an example of a continuous
t-norm on LI which does not satisfy the residuation principle.
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if IT satisfies all Smets–Magrez axioms, i.e. for all x, y, z in [0, 1],
IT (IT (y, 0), IT (x, 0)) = IT (x, y) (contrapositivity),

IT (x, IT (y, z)) = IT (y, IT (x, z)) (exchange principle),

IT (x, y) = 1 if and only if x�y (confinement principle),

IT is a continuous [0, 1]2 → [0, 1] mapping (continuity).

Clearly, this equivalence is not transferred to LI , since there does not exist an MV-algebra on LI . Nevertheless, as the
following example shows, a t-norm can be constructed on LI such that its residuum satisfies all Smets–Magrez axioms.

Example 5. In [5] the following t-norms on LI are introduced: for x, y in LI ,

Tw(x, y) = [max(0, x1 + y1 − 1), max(0, x2 + y2 − 1)],
TW(x, y) = [max(0, x1 + y1 − 1), max(0, x1 + y2 − 1, x2 + y1 − 1)].

Their residuum is given by, for x, y in LI ,

ITw
(x, y) = [min(1, y1 + 1 − x1, y2 + 1 − x2), min(1, y2 + 1 − x2)],

ITW
(x, y) = [min(1, y1 + 1 − x1, y2 + 1 − x2), min(1, y2 + 1 − x1)].

Both these t-norms are extensions of TW (recall that ITW
, the residuum of TW , is given by ITW

(x, y) = min(1, 1−x+y),
for all x, y in [0, 1]); the former is t-representable while the latter is not (since its second component depends also on
x1 and y1).

Both Tw and TW satisfy the residuation principle, hence (LI , ∧, ∨, Tw, ITw
, 0LI , 1LI ) and (LI , ∧, ∨, TW, ITW

,

0LI , 1LI ) are residuated lattices. In [3] it is proven that ITW
satisfies all Smets–Magrez axioms; on the other hand, ITw

is not contrapositive. So, the property that ITW
satisfies all Smets–Magrez axioms, is not inherited by the componentwise

extension Tw of TW , but by the non t-representable TW . More generally, in [3] it was proven that an (LI )2 → LI

mapping I on LI satisfies the Smets–Magrez axioms if and only if it is isomorphic to ITW
.

Furthermore, using the arithmetical operators ⊕LI and �LI , defined in [4] by, for all x, y in {[x1, x2] | (x1, x2) ∈ R2

and x1 �x2},
x ⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2],
x�LI y = [x1 − y2, max(x1 − y1, x2 − y2)],

we can write TW and its residuum in a similar way as their counterparts on the unit interval: for all x, y in LI ,

TW(x, y) = sup(0LI , x�LI (1LI �LI y)) = sup(0LI , y�LI (1LI �LI x)),

ITW
(x, y) = inf(1LI , y ⊕LI (1LI �LI x)).

Hence, even though the entire structure of an MV-algebra is not preserved, many important properties that are valid for
the Łukasiewicz t-norm TW also hold for its non t-representable extension TW (but not for the t-representable extension
Tw; more properties that are inherited by TW are discussed in [5,3]).

Furthermore, the following example shows that, similarly to the unit interval, a Heyting algebra can be constructed
on LI (see also [2]).

Example 6. It can be verified that the residuum I∧ of ∧, given by, for all x, y in LI ,

I∧(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1LI if x�LI y,

[y2, y2] if x1 �y1 and x2 > y2,

[y1, 1] if x1 > y1 and x2 �y2,

y else,

satisfies (H.1)–(H.6), so (LI , ∧, ∨, I∧, 0LI ) is a Heyting algebra.

Finally, note that in (LI , ∧, ∨, ∧, I∧, 0LI , 1LI ), the divisibility condition (BL.1) holds, but not the involutivity
condition (MV.1); in (LI , ∧, ∨, TW, ITW

, 0LI , 1LI ) on the other hand, (MV.1) is valid but not (BL.1); in general, in a
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residuated lattice (LI , ∧, ∨, T , IT , 0LI , 1LI ), (BL.1) and (MV.1) cannot hold simultaneously, due to a result of Höhle
[13] stating that (BL.1) and (MV.1) taken together imply (MTL.1).

4. Conclusion—the challenges ahead

While the study of IVFSs and their intended semantics has received ample attention, and their application in
knowledge-based systems is widely understood and promoted, the research on interval-valued fuzzy logic in the
narrow sense is still at the very outset.

Up to now the research on fuzzy logic in the narrow sense mainly focussed on prelinear structures, such as MTL-,
BL- and MV-algebras (which are all generalizations of structures generated by special classes of t-norms on [0, 1]).
However, from our exposition, it is clear that the underlying lattice LI of interval-valued fuzzy logic does not fit in that
framework, due to the failure of the prelinearity condition; we can only assert at this moment that residuated lattices
(and Heyting algebras) can be constructed on top of LI .

Therefore, an important issue that has to be dealt with in the future, is whether suitable residuated structures can be
found in which prelinearity and divisibility are not necessarily satisfied but in which a maximal number of properties
valid in MTL- and other algebras do hold. Similarly as for the prelinear structures, the new structures should form
generalizations of the structures generated by special classes of t-norms on LI that satisfy the residuation principle. The
t-norm TW , which has a behaviour that is surprisingly similar to the Łukasiewicz t-norm on [0, 1], acts as an elegant role
model for what can be achieved with interval-valued logic, and in particular with non t-representable connectives. So,
what we propose is to extend the well-studied prelinear structures such as MTL-, BL- and MV-algebras to more general
structures in which prelinearity and divisibility do not necessary hold and which, when considered in the framework
of IVFSs, are closely related to some special classes of t-norms on LI .

Another challenge concerns completeness of the generated logics: e.g. given a class T of t-norms on LI , find a set
of axioms and deduction rules, and the most general class K of residuated lattices such that
• each formula that can be proven from the axioms using one or more deduction rules, is a tautology, i.e. evaluates to

1LI whatever the value of the propositional variables, for each L in K;
• each formula that is a tautology for each L in K is provable;
• each formula that is a tautology for each (LI , ∧, ∨, T , IT , 0LI , 1LI ), where T is a t-norm from T, is also a tautology

for each L in K.
In conclusion, we envisage that the formalization of interval-valued fuzzy logics with Łukasiewicz-like properties

will generate an interesting parallel development to the mainstream of prelinear fuzzy logics.
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