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Abstract

In this paper, we propose a practical method, given a strict triangular norm with a convex additive generator,

for deriving a fuzzy equivalence relation whose reflexivity condition generalizes Ruspini’s definition of fuzzy

partitions. The properties of the relations, their comparison, their transitivity, the construction of fuzzy

equivalence relations on cartesian products are presented. A large part of the paper is devoted to applications with

fuzzy partitions defined on the real line. Several examples, including the fairy tale problem from De Cock and

Kerre [12], the comparison of colored objects and comfort situations are proposed. 

Keywords: Fuzzy equivalence relations, approximate equalities, strict t-norms, reflexivity, fuzzy meanings

and descriptions, fuzzy partitions.

1. Introduction

In many applications, especially in fuzzy control, triangular or trapezoidal membership functions are used.

Moreover, these membership functions define a fuzzy partition in the sense of Ruspini [25] as shown in figure 1.

Fig. 1 Fuzzy partition in the sense of Ruspini.

It is often recognized that this type of membership functions are simple to handle and to compute with. Only a
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few papers have tried to bring sound motivations for what can be considered as the simplest possible form for

membership functions. Pedrycz proposed two main interpretations: one is based on equalization, like entropy

equalization, while the second one relies on the error-free reconstruction of a fuzzified signal by means of a

defuzzification interface [23], [24]. In [14], de Soto and Recasens, showed that fuzzy partitions based on

triangular fuzzy numbers are obtained as compatible partitions associated with indistinguishability operators

associated with the Lukasiewicz triangular norm. Dubois et al. also showed that triangular fuzzy numbers can be

interpreted as the optimal probability-to-possibility transformation of a uniform probability distribution in a

bounded interval [16].

It is also quite conventional to use sum-product inference in fuzzy systems, like in Mizumoto fuzzy controllers

for instance. It is worth noticing that the sum operator is not a t-conorm. However, when a triangular based fuzzy

partition is used, the bounded sum, that is Lukasiewicz t-conorm, reduces to the sum operator and the output of

the fuzzy system also satisfies Ruspini’s condition on the cartesian product [2].

In this paper, we introduce a class of fuzzy equivalence relations whose reflexivity condition generalises

Ruspini’s condition. Compatible fuzzy partitions enable to obtain various types of membership functions,

including the triangular ones. In section 2, basic definitions are provided. In section 3, it is shown in which

conditions the class of relations which is studied in this paper becomes fuzzy equivalence relations. General

properties are given, including the comparison between relations, their transitivity and the construction of fuzzy

equivalence relations on cartesian products. A short discussion concludes this section. The links between fuzzy

partitions and a linguistic approach are presented in section 4. Finally, several examples are proposed in section 5.

The first one concerns the comparison between colored objects. The second one deals with the fairy-tale example

proposed by De Cock and Kerre [12]. Then, fairy-tale characters with colored clothes are used to illustrate an

equivalence relation on a cartesian product. Finally, the analysis of comfort situations is proposed to emphasize

the construction of fuzzy partitions associated with fuzzy equivalence relations.

2. Basic definitions

Definition 1: Let E be a set of vectors in [0, 1]n. Let T be a t-norm. Let  be the mapping from  to the

positive real line, defined from the pair (E, T), as :

(1)

RT E E×

a b,( )∀ E2∈ RT, a b,( ) T ai bi,( ).
i 1=

n

∑=



Definition 2: The mapping  is said to be:

i) reflexive on E if 

ii) a fuzzy relation on E if 

iii) a reflexive fuzzy relation on E if it is a fuzzy relation on E and is reflexive on E.

iv) a symmetric fuzzy relation on E if it is a fuzzy relation on E and is symmetric, i.e.

v) a T#-transitive fuzzy relation on E if it is a fuzzy relation on E and

vi) a T#-equivalence on E if it is a fuzzy relation on E, reflexive, symmetric and T#-transitive.

Definition 3: The mapping , defined by , is called the diagonal section of the t-

norm T [18]. 

Remark 1: Let  be the t-norm defined by . The reflexivity condition

for the mapping  becomes:

(2)

This condition corresponds to Ruspini’s definition of a fuzzy partition [25]. 

Definition 4: Let   be a finite family of fuzzy sets of X, such that  , and φ be a [0, 1]-

automorphism. The family P is a φ−partition on X [8], if it verifies: .

Remark 2: Thus, the reflexivity condition of the relations  can be related to De Baets’s and Mesiar’s definition

of φ-partitions, using  as the [0, 1]-automorphism with T a strict t-norm. Let us recall that a t-norm

T is strict if it is continuous and strictly monotone, i.e. T(u, v) < T(u, w) whenever u > 0 and v < w (see [18] for a

large covering on t-norms).

RT

a E R,∈∀ T a a,( ) 1.=

a b,( )∀ E2∈ RT a b,( ), 1.≤

a b,( )∀ E2∈ RT a b,( ), RT b a,( ).=

a b c, ,( )∀ E3 T# RT a b,( ) RT b c,( ),( ) RT a c,( ).≤,∈

φ: 0 1,[ ] 0 1,[ ]→ φ u( ) T u u,( )=

TM: 0 1,[ ]2 0 1,[ ]→ TM u v,( ) min u v,( )=

RTM

a E∈ RTM
a a,( ) φ ai( )

i 1=

n

∑=,∀ min ai ai,( )
i 1=

n

∑ ai

i 1=

n

∑ 1.= = =

P Ai{ }i I∈= i I Ai ∅≠,∈∀

x X φ Ai x( )( )
i I∈
∑,∈∀ 1=

RT

φ u( ) T u u,( )=



3. Properties of RT mappings

3.1 Generalities

Let T be a strict t-norm. It is well-known that strict t-norms are isomorphic to the product, that is there exists a

strictly increasing bijection , such that, for all :

(3)

Thus, we have for all :

(4)

As the bijection θ is strictly increasing, the function φ is also a strictly increasing bijection. The inverse

function  is defined, for all , by:

. (5)

Remark 3: The bijection φ can also be defined from the additive generator of the strict t-norm T. If T is a strict t-

norm, it has an additive generator  which is a strictly continuous decreasing function such that

t(0) = ∞, t(1) = 0 and:

(6)

Therefore, it can easily be deduced, for all :

, (7)

. (8)

Remark 4: It is always simple to build a set E of vectors in [0, 1]n such that the mapping  is reflexive on E.

Equation (5) provides a simple means to define a set F such that, given a strict t-norm T with a diagonal section φ,

the mapping  is reflexive on F. Indeed, it can be defined as follows:

(9)

Obviously, we have:

θ: 0 1,[ ] 0 1,[ ]→ u v,( ) 0 1,[ ]2∈

T u v,( ) θ 1– θ u( ) θ v( )⋅( ).=

u 0 1,[ ]∈

φ u( ) T u u,( ) θ 1– θ2 u( )( ).= =

φ 1– u 0 1,[ ]∈

φ 1– u( ) θ 1– θ u( )( )=

t: 0 1,[ ] 0 ∞,[ ]→

u v,( ) 0 1,[ ]2 T u v,( ),∈∀ t 1– t u( ) t v( )+( ).=

u 0 1,[ ]∈

φ u( ) t 1– 2t u( )( )=

φ 1– u( ) t 1– t u( )
2

---------⎝ ⎠
⎛ ⎞=

RTM

RT

F b 0 1,[ ]n∈  a∃ E such that b∈ i φ 1– ai( ), for all i 1, … n,{ }∈=;{ }.=



(10)

This property will be used in section 4 to define fuzzy partitions on ℜ.

Example 1: Let E = {a, a’} with a = [0.3 0.2 0.5] and a’ = [0.1 0.7 0.2]. The mapping , defined from the pair

(E, TM), is a fuzzy reflexive relation on E.

Example 2: Let  be the t-norm defined by TP(u, v) = u.v. According to equation (10), we get

F = {b, b’} with b = [0.5477 0.4472 0.7071] and b’ = [0.3162 0.8367 0.4472]. The mapping , defined from

the pair (E, TP), is also a fuzzy reflexive relation on F.

Proposition 1: All strict t-norms T satisfy:

Proof. Let us write the t-norm using its multiplicative generator.

(11)

Because, , we have:

(12)

a a’

a 1.000 0.500
a’ 0.500 1.000

Table 1: Fuzzy reflexive relation on E.

b b’

b 1.000 0.8636
b’ 0.8636 1.000

Table 2: Fuzzy reflexive relation on F.

b F∈ RT b b,( ) φ bi( )
i 1=

n

∑=,∀ φ φ 1– ai( )( )
i 1=

n

∑ ai

i 1=

n

∑ 1.= = =

RTM

RTM

TP: 0 1,[ ]2 0 1,[ ]→

RTP

RTP

T u v,( ) φ 1– T φ u( ) φ v( ),( )( ).=

T φ u( ) φ v( ),( ) θ 1– θ φ u( )( ) θ φ v( )( )⋅( ).=

θ φ u( )( ) θ2 u( )=

T φ u( ) φ v( ),( ) θ 1– θ2 u( ) θ2 v( )⋅( ) φ T u v,( )( ).= =



Proposition 2: Let T be a strict t-norm. Let E be a set of vectors in [0, 1]n. Let  be the mapping reflexive on E.

If the additive generator t of the t-norm T is strictly convex, then the following are equivalent for all :

(i) ,

(ii) ,

and, therefore, the relation  is a reflexive fuzzy relation.

Proof. (ii) implies (i) from the fuzzy reflexivity condition of .

To prove that (i) implies (ii), let us remark that if the additive generator t of the t-norm T is strictly convex

then, as it is decreasing by definition, its inverse t-1 is also strictly convex. Therefore, for all :

(13)

Due to the fuzzy reflexivity condition of  , we have  and , leading to:

(14)

Remark 5: This property is satisfied for the following families because their additive generators are strictly convex

for the given parameter ranges:

•  of Frank t-norms when λ ∈ ]0, ∞[,

•  of Schweizer-Sklar t-norms when λ ∈ ]-∞, 1[, 

•  of Aczél-Alsina t-norms when λ ∈ [1, ∞[,

•  of Dombi t-norms when λ ∈ [1, ∞[,

•  of Hamacher t-norms when λ ∈ [0, 2[.

The family of Frank t-norms is continuous with respect to the parameter λ and we have  where TM

RT

a b,( ) E2∈

i 1, … n,{ } ai bi≠,∈∃

RT a b,( ) 1<

RT

RT

ai bi≠

2t 1– t ai( ) t bi( )+( ) t 1– 2t ai( )( ) t 1– 2t bi( )( )+<

2T ai bi,( ) T ai ai,( ) T+ bi bi,( ).<⇔

RT RT a a,( ) 1= RT b b,( ) 1=

2 T ai bi,( )
i 1=

n

∑ T ai ai,( )
i 1=

n

∑ T bi bi,( )
i 1=

n

∑+<

2RT a b,( ) RT a a,( ) RT b b,( )+<⇔

RT a b,( ) 1.<⇔

Tλ
F

Tλ
SS

Tλ
AA

Tλ
D

Tλ
H

T0
F TM=



is the minimum. Although TM is not a strict t-norm, proposition 2 holds true for this t-norm (Let us note that the

proof without using the continuity of a family of t-norms is quite obvious). It can also easily be shown that all t-

norms built as the ordinal sum [18] of strict t-norms with convex additive generators also satisfy the equivalence

in proposition 2.

3.2 Comparison of RT fuzzy relations

In this section, after a general proposition, it will be shown that  fuzzy relations can be compared with 

relations. Then, given two strict t-norms T1 and T2, the condition under which the relation  can be compared

with  is given.

Proposition 3: Let T be a strict t-norm. Let t be its additive generator and φ its diagonal section. For any

 and  and , we have:

Proof. Let us write T with its additive generator, that is  and use equation (8) in

remark 3, that is . Replacing into the definition of the t-norm, we get:

(15)

Proposition 4: Let T be a strict t-norm whose additive generator t is strictly convex and diagonal section is denoted

. Let E be a set of vectors in [0, 1]n. Let  be the mapping reflexive on E. Then, for all ,

 where  and  for all .

Proof. If  then, because t is a strictly decreasing function,  and, therefore,

. Then, using proposition 3 with  and  leads to

RT RTM

RT1

RT2

u v,( ) 0 1,[ ]2∈ u′ φ 1– u( )= v′ φ 1– v( )=

T u′ v′,( ) t 1– t u( ) t v( )+
2

-------------------------⎝ ⎠
⎛ ⎞ .=

T u′ v′,( ) t 1– t u′( ) t v′( )+( )=

φ 1– u( ) t 1– t u( )
2

---------⎝ ⎠
⎛ ⎞=

T u′ v′,( ) t 1– t t 1– t u( )
2

---------⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞ t t 1– t v( )

2
---------⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞+⎝ ⎠

⎛ ⎞ t 1– t u( ) t v( )+
2

-------------------------⎝ ⎠
⎛ ⎞ .= =

φ RT a b,( ) E2∈

RT a b,( ) RTM
a′ b′,( )≥ a′i φ ai( )= b′i φ bi( )= i 1, … n,{ }∈

a′i b′i≤ a′i t 1– t a′i( ) t b′i( )+
2

--------------------------------⎝ ⎠
⎛ ⎞ b′i≤ ≤

min a′i b′i,( ) t 1– t a′i( ) t b′i( )+
2

--------------------------------⎝ ⎠
⎛ ⎞≤ u φ ai( )= v φ bi( )=



, which holds true for all . Thus, we have .

Proposition 5: Let T1 and T2 be two strict t-norms whose respective additive generators t1 and t2 are strictly con-

vex and diagonal sections are respectively denoted  and . Let E and F be two sets of vectors in [0, 1]n. Let

 and  be two mappings respectively reflexive on E and F. If the additive generators t1 and t2 are such that

 is concave then, for all ,  where ,  and

 for all .

Proof. If  is concave, then for all ,

. (16)

Because t2 is bijective, there exists  such that  and . Replacing in equation

(16) leads to:

. (17)

Composing by  and taking into account that  is strictly decreasing gives:

(18)

Now, using proposition 3 with  and , it comes:

. (19)

Finally, since (19) holds for all , we get:

 and, therefore, . (20)

Corollary 1: If  is concave then  and . 

min a′i b′i,( ) T ai bi,( )≤ i 1, … n,{ }∈ RT a b,( ) RTM
a′ b′,( )≥

φ1 φ2

RT1
RT2

t1o t2
1– a b,( ) E2∈ RT1

a b,( ) RT2
a′ b′,( )≥ a′ b′,( ) F2∈ a′i φ2

1– φ1 ai( )( )=

b′i φ2
1– φ1 bi( )( )= i 1, … n,{ }∈

t1o t2
1– x y,( ) 0 ∞,[ ]2∈

t1o t2
1– x y+

2
-----------⎝ ⎠

⎛ ⎞ t1o t2
1– x( ) t1o t2

1– y( )+
2

-----------------------------------------------------≥

u v,( ) 0 1,[ ]2∈ x t2 u( )= y t2 v( )=

t1o t2
1– t2 u( ) t2 v( )+

2
------------------------------⎝ ⎠

⎛ ⎞ t1 u( ) t1 v( )+
2

------------------------------≥

t1
1– t1

1–

t2
1– t2 u( ) t2 v( )+

2
------------------------------⎝ ⎠

⎛ ⎞ t1
1– t1 u( ) t1 v( )+

2
------------------------------⎝ ⎠

⎛ ⎞ .≤

u φ1 ai( ) φ2 a′i( )= = v φ1 bi( ) φ2 b′i( )= =

T2 a′i b′i,( ) T1 ai bi,( )≤

i 1, … n,( )∈

T1 ai bi,( )
i 1=

n

∑ T2 a′i b′i,( )
i 1=

n

∑≥ RT1
a b,( ) RT2

a′ b′,( )≥

t1o t2
1– T1 T2≤ RT2

a′ b′,( ) RT1
a b,( )≤



Proof. From the work of Schweizer and Sklar, it is known that, for continuous Archimedian t-norms,  is

subadditive and  are equivalent [18]. As a corollary, if  is concave then it is subadditive [18]. Thus,

if  is concave then  and, according to proposition 5, 

3.3 Transitivity of RT fuzzy relations

In this section, we first demonstrate that all  fuzzy relations are TD-transitive, where TD is the smallest t-

norm. Although this theorem is general, it also quite weak since many reflexive relations are TD-transitive. Then,

a second proposition shows that  relations are TL-transitive, where TL is the Lukasiewicz t-norm. Another

proof, based on the equality , was proposed in by Bezdek and Harris [3]. A third

proposition concerning the transitivity of  relations is given. Finally, simulation results are proposed for the

family of Frank t-norms.

Proposition 6: Let T be a strict t-norm. Let E be a set of vectors in [0, 1]n. Let  be the relation reflexive on E.

If the additive generator of the t-norm T is strictly convex, then  is a fuzzy relation TD-transitive on E where

 is the smallest t-norm, that is:

TD(x, y) = 0 if x≠1 and y≠1,

TD(x, y) = min(x, y) otherwise.

Proof. According to proposition 2,  is a fuzzy relation. Now, we have to show:

(21)

Three cases must be considered:

i)  and . In this case, according to proposition 2 and the reflexivity of , we have

, therefore equation (21) holds true.

ii)  or . According to the symmetry of TD, we will only consider the case where

. The left hand side part of equation (21) is equal to . According to proposition 2 and the

t1o t2
1–

T1 T2≤ t1o t2
1–

t1o t2
1– T1 T2≤ RT2

a′ b′,( ) RT1
a b,( ).≤

RT

RTM

min u v,( ) u v u v––+
2

--------------------------------=

RTP

RT

RT

TD: 0 1,[ ]2 0 1,[ ]→

RT

a b c, ,( )∀ E3 TD RT a b,( ) RT b c,( ),( ) RT a c,( ).≤,∈

RT a b,( ) 1= RT b c,( ) 1= RT

a b c= =

RT a b,( ) 1= RT b c,( ) 1=

RT a b,( ) 1= RT b c,( )



reflexivity of  , we have . Thus, equation (21) holds true.

iii)  and . In this case equation (21) is always satisfied since the left hand side part is

equal to 0.

Remark 6: Under the assumptions of proposition 6, all relations  on E are TD-equivalences on E.

Proposition 7: Let T = TM where TM is the minimum. Let E be a set of vectors in [0, 1]n. Let  be the reflexive

fuzzy relation on E. Then,  is TL-transitive on E where  is the Lukasiewicz t-norm, that is

.

Proof. We have to show:

. (22)

Let us replace  by its definition:

(23)

If , Eq. (23) always holds true.

In the other case, the reflexivity of the relation gives  which can be replaced in Eq. (23) leading to:

(24)

Using the distributivity of the addition with respect to the minimum, we have:

(25)

which is always true.

RT a b=

RT a b,( ) 1≠ RT b c,( ) 1≠

RT

RTM

RTM
TL: 0 1,[ ]2 0 1,[ ]→

TL u v,( ) max u v 1–+ 0,( )=

a b c, ,( )∀ E3 max RTM
a b,( ) RTM

b c,( ) 1 0,–+( ),∈ RTM
a c,( )≤

RTM

max TM ai bi,( ) TM bi ci,( )+( )
i 1=

n

∑ 1– 0,
⎝ ⎠
⎜ ⎟
⎛ ⎞

TM ai ci,( ).
i 1=

n

∑≤

TM ai bi,( ) TM bi ci,( )+( )
i 1=

n

∑ 1– 0≤

bi

i 1=

n

∑ 1=

TM ai bi,( ) TM bi ci,( )+( )
i 1=

n

∑ bi TM ai ci,( )+( )
i 1=

n

∑ .≤

TM ai bi,( ) TM bi ci,( )+( )
i 1=

n

∑ TM ai bi+ ci bi+,( )
i 1=

n

∑ ,≤



Proposition 8: Let T = TP where TP is the product. Let E be a set of vectors in [0, 1]n. Let  be the reflexive

fuzzy relation on E. Then,  is -transitive on E where  is Yager’s t-norm, that is

Proof. We have to show:

. (26)

If , Eq. (26) always holds true.

In the other case, according to equation (1),  is the dot product of the vectors a and b. Thus, we have

to show:

(27)

Let us note that the vectors in E are unit vectors due to the reflexivity condition of the fuzzy relation . Let us

denote respectively  the three vectors a, b, and c. The norm of the vector  is given by:

(28)

According to the triangular inequality, we have  and therefore (27) holds true.

Remark 7: The t-norm  and the family  belong to the family of nilpotent t-norms. A t-norm T# is nilpotent

if it is continuous and each  is a nilpotent element, i.e. there exists  such that

. Let us also note that  because the family of Yager t-norms is continuous

with respect to its parameter and strictly increasing. It is known that any nilpotent t-norm T# is isomorphic to Lu-

kasiewicz t-norm, i.e. there exists a strictly increasing bijection  such that for all

RTP

RTP
T0.5

Y Tλ
Y: 0 1,[ ]2 0 1,[ ]→

TD u v,( ) if λ 0,=,

max 1 1 u–( )λ 1 v–( )λ+( )

1
λ
---

– 0,
⎝ ⎠
⎜ ⎟
⎛ ⎞

otherwise.,
⎩
⎪
⎨
⎪
⎧

a b c, ,( )∀ E3 max 1 1 RTP
a b,( )– 1 RTP

b c,( )–+( )
2

– 0,( ),∈ RTP
a c,( )≤

1 RTP
a b,( )– 1 RTP

b c,( )–+( )
2

1>

RTP
a b,( )

1 a b⋅– 1 b c⋅–+ 1 a c⋅– .≥

RTP

OA OB OC, , AB

AB bi ai–( )2

i 1=

n

∑ ai
2 bi

2 2aibi–+( )
i 1=

n

∑ 2 1 a b⋅– .= = =

AB BC+ AC≥

TL Tλ
Y

a ]0 1[,∈ n ℵ∈

aT
n( ) T# a a … a, , ,( ) 0= =

n times
TD T0

Y=

ϕ: 0 1,[ ] 0 1,[ ]→



:

(29)

This remark opens an interesting question. Given a set E of vectors in [0, 1]n and a t-norm T with a strictly

convex additive generator, can we find the greatest T# nilpotent t-norm such that the relation  reflexive on E is

a T# equivalence on E ?

As a first step towards an answer, figure 2 represents the highest λ, obtained by numerical computations, for

which the relation  associated with the family of Frank t-norms is -transitive on E. The x-axis is the base

10 logarithm of Frank’s t-norm parameter α.

Fig. 2  -transitivity of the family of Frank t-norms.

3.4 Fuzzy equivalence on E1×E2

Equivalence relations are closely related to pseudo-metrics. In particular, if Q is a T#-equivalence on E then

dQ: E2 →[0, ∞] defined by dQ = t#oQ, with t# the additive generator of T#, is a pseudo-metric on E [9]. In this

section, we show how to build a T#-equivalence on E1×E2, given two T#-equivalences respectively on E1 and E2.

Thus, it makes it possible to keep the same pseudo-metric on the cartesian product.

Proposition 9: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let E1

and E2 be two sets of vectors respectively in [0, 1]n and [0, 1]m. Let  and  be the two T#-equivalences re-

spectively on E1 and E2. Let  be the strict t-norm defined by:

.

Then, for all  and , the mapping  defined by:

u v,( ) 0 1,[ ]2∈

T# u v,( ) ϕ 1– TL ϕ u( ) ϕ v( ),( )( ) ϕ 1– max ϕ u( ) ϕ v( ) 1–+ 0,( )( ).= =

RT

R
Tα

F Tλ
Y
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α

Tλ
Y

RT
1 RT

2

T*: 0 1,[ ]2 0 1,[ ]→

T* u v,( ) φ 1– φ u( ) φ v( )⋅( )=

a a′,( ) E1
2∈ b b′,( ) E2

2∈ RT



,

is a T#-equivalence on the cartesian product E=E1×E2.

Proof. First of all, let us note that T* is a strict t-norm because, as shown in section 3, φ is a strictly increasing

bijection from [0, 1] to [0, 1], which can therefore be used as a multiplicative generator. Now, to prove the

proposition, as the additive generator of the t-norm T is strictly convex, it is sufficient to prove that the fuzzy

relation  is reflexive on E. The reflexivity of the relation  is given, for all (a, b) ∈ E2, by:

(30)

Replacing T* by its definition, then using the distributivity of the sum with respect to the product and, finally,

the reflexivity of the relations  and  respectively on E1 and E2, we have:

(31)

Example 3: Let E1 = {a, a’} with a = [0.36 0.48 0.80] and a’ = [0.48 0.60 0.64] and  be the relation on E1. Let

E2 = {b, b’} with b = [0.28 0.96] and b’ = [0.60 0.80] and  be the relation on E2. The resulting relations are:

, 

Table 3: Fuzzy relations on E1, E2 and E1×E2.

3.5 Discussion

It is well known that, given a crisp partition P of a crisp set X, there exists a unique equivalence relation Q

such that P is the quotient set of X by this relation which is defined by:

(32)

RT a b,( ) a′ b′,( ),( ) T T* ai bj,( ) T* a′i b′j,( ),( )
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m

∑
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n
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RT RT

RT a b,( ) a b,( ),( ) φ T* ai bj,( )( )
j 1=

m

∑
i 1=

n
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RT
1 RT

2

RT a b,( ) a b,( ),( ) φ ai( ) φ bj( )⋅
j 1=

m

∑
i 1=

n

∑ φ ai( )
i 1=

n

∑ φ bj( )
j 1=

m

∑⋅ 1.= = =

RTP

1

RTP

2

 a a’ b b’

a 1.0000 0.9728 b 1.0000 0.9360
a’ 0.9728 1.0000 b’ 0.9360 1.0000

RTP

1 RTP

2 (a, b) (a’, b) (a, b’) (a’, b’)

(a, b) 1.0000 0.9360 0.9728 0.9105
(a’, b) 0.9360 1.0000 0.9105 0.9728
(a, b’) 0.9728 0.9105 1.0000 0.9360
(a’, b’) 0.9105 0.9728 0.9360 1.0000

RTP

xQy A P x A∈ y A.∈∧,∈∃⇔



Now, let  and let us assume that the partition P is a finite family of non-empty fuzzy sets, that

is  and , the fuzzy version of Eq. (32) is given by:

(33)

Since I is finite, the supremum can be replaced by the maximum which itself can be replaced by a t-conorm S,

leading to QS-T fuzzy relations defined by:

(34)

Given , let us denote  the vector in [0, 1]n and , its component defined by:

(35)

Thus, under the condition of proposition 2, we can link the fuzzy relations  with the fuzzy equivalence

relations , where  is Lukasiewicz triangular conorm, i.e. , as

follows:

(36)

This approach, which provides a restrictive class of equivalence relations (see [6] for a survey on fuzzy

equivalence relations), relies on the same trends as the pioneering works of Bezdek and Harris on likeness

relations [3] or Ovchinnikov’s on proximity relations [22], which emphasize the definition of fuzzy partitions and

study the properties of the associated relations. For example, a  fuzzy relation is given in [3] for the Fuzzy C-

Means clustering algorithm, where the TL-transitivity is shown from the triangle inequality. Indeed, the reflexivity

condition gives the constraint  where c is the number of classes and ui(x) the class membership

function of the data set X. 

As already mentioned, it is also closely related to φ-partitions obtained from an algebraic (or strict) fuzzy

partition, as proposed by De Baets and Mesiar [8]. Links between a linguistic variable and indistinguishability

relations, introduced by Valverde and Trillas [26], [27], have been studied by De Soto and Recasens [14].

Finally, let us also remark that  fuzzy relations are a particular case of the parametrized family

I 1, … n,{ }=

P Ai{ }i I∈= i I Ai ∅≠,∈∀

x y,( ) X X×∈ Q x y,( ),∀ supi I∈ T Ai x( ) Ai y( ),( ). =

x y,( ) X X×∈ QS-T x y,( ),∀ Si I∈ T Ai x( ) Ai y( ),( ). =

x X∈ Dx Dx i( )

i I∈∀ x X∈∀ Dx i( ) Ai x( ).=, ,

QSL-T
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T Dx i( ) Dy i( ),( ) min T Dx i( ) Dy i( ),( )
i I∈
∑ 1,⎝ ⎠

⎛ ⎞= =

min RT Dx Dy,( ) 1,( ) RT Dx Dy,( ).==

RTM
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c

∑ 1=

QSL-T Q
Sλ

Y-T



where  is Yager’s t-conorm family, that is , obtained when

λ=1. They provide an interesting means to define fuzzy equivalence relations when using linguistic hedges as

proposed by De Cock and Kerre [11] (see an example in section 5.3 on the fairy-tale problem).

4. Fuzzy partitions

4.1 Fuzzy partitions on 

Proposition 10: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let

 be a φ-partition on . Let  and , for all 

and all . Then,  is, at least, a TD-equivalence on X where TD is the smallest t-norm.

Proof. Because P is a φ-partition on X,  is reflexive on X. It is symmetric by definition. Because the additive

generator is strictly convex, the relation is at least TD-transitive on X according to proposition 6.

Proposition 11: Let T be a strict t-norm with a convex additive generator and a diagonal section φ. Let

 and  be a φ-partition on . Let  be a partition on the set I. Let

 be the t-conorm isomorphic to Lukasiewicz t-conorm defined by:

 with ,

then , with , is a φ-partition on .

Proof. Let us write the condition for P’ to be a φ-partition on X:

(37)

Since P is φ-partition on X, we have  and, therefore, because J is a partition on I, we have:

(38)
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Remark 8: This proposition will be very useful to build fuzzy partition, on cartesian products, for rule-based agre-

gation as described in section 5.5.

Definition 5: An (L-R) fuzzy interval [15] (see figure 3) is defined by the following membership function:

where ,  and  and L, R two non-increasing left-continuous functions from ]0, 1] to

[0, 1[, with  and  for all .

Fig. 3 A (L-R) fuzzy interval.

Proposition 12: Let T be a strict t-norm with a diagonal section φ. Let

 be a family of (L-R) fuzzy intervals defined on ,

with  for all , and such that:

Then, for all  and all , we have 

Proof. For all , we have . Now, for all  and all  we

have:

(39)
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Corollary 2: P is a φ-partition on .

Proof. For all  and for all , . Now, for all  and all

 we have:

(40)

Remark 9: This generic method to build the fuzzy partitions associated with  relations is a straightforward con-

sequence of the definition of a φ-partition from an algebraic (or strict) fuzzy partition [8]. For the same reason, it

can be generalized by using a mapping  where h: [0, 1] → [0, 1], is a strictly increasing func-

tion with h(0) = 0 and h(1) = 1, such that:

(41)

4.2 Fuzzy partition on 

Proposition 13: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let

 and . Let  and  be two -partitions respectively

on X1 and X2. Let  be the strict t-norm defined by . Then,

 such that for all ,

,

is a -partition on 

Proof. According to proposition 10, for all  and ,  and

 are, at least, -equivalences. Now, from proposition 9 we know that the relation defined by:
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, (42)

is a fuzzy equivalence relation on  The reflexivity condition leads to:

(43)

Proposition 14: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let

 and . Let  and  be two φ-partitions respectively

on X1 and X2. Then, , we have for all :

(44)

Proof. For the sake of simplicity, let us denote    Replacing T* and S* by

their respective definitions on the left hand side part leads to:

(45)

Similarly, replacing S* and T* on the right hand side part gives:

(46)

Because P2 is a φ-partition, we have  and, thus:

(47)

Remark 10: It should be noted that equation (45) is not the conventional distributivity between T* and S* which

is known to hold true only if T*=TM. Indeed,  and  are not independant since they belong to the same

φ-partition. However, it will be very interesting in applications because it allows to define a «linguistic distributiv-

ity» between connectives, which makes it possible to aggregate linguistic terms indifferently on the cartesian prod-

uct X=X1×X2 or on the sets X1 or X2, as shown in the next sections.
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4.3 Linguistic labeling and connectives

A few years after his seminal paper on fuzzy set theory, Zadeh introduced the concept of fuzzy meaning [28].

It can be represented by a mapping M: L→F(X), where F(X) is the set of fuzzy subsets of X, given a relation

between terms and numbers. The grade of membership to which x belongs to the meaning of the term l will be

denoted . 

In [28], Zadeh introduced also the concept of descriptor set that are extensively used in fuzzy sensors [1][21].

It provides a simple means of representing measurement results by a fuzzy subset of linguistic terms. The

conversion from numerical to linguistic representation is called fuzzy linguistic (or symbolic) description or, more

simply, fuzzy description and is defined by a mapping D: X→F(L), where F(L) is the set of fuzzy subsets of L,

given the same relation between terms and numbers as the one used for the fuzzy meaning. The grade of

membership to which l belongs to the description of the number x will be denoted . Fuzzy description is

very close to the representation defined in the scale formalism [17] and allows the introduction of graduality in the

conversion of physical states into fuzzy subsets of terms.

Example 4: Let us assume that a very simple sensor returns the size of a human being. Let the linguistic set be

L = {Small, Medium, Tall} and the measurement set X = {1.4, 1.5, 1.6, 1.7, 1.8} where the sizes are given in

meters. A possible relation linking the size attributes to the measurements is given in table .

Then, using the conventional additive notation for discrete fuzzy subsets, we have:

MSmall = 1/1.4 + 0.7/1.5 + 0.3/1.6 + 0.1/1.7 + 0/1.8 and D1.7 = 0.1/Small + 1/Medium + 0.3/Tall. (48)

Remark 11: The fuzzy meaning and the fuzzy description are two different projections of the same relation. There-

fore, for all  and all , we have 

Small Medium Tall
1.4 1 0 0
1.5 0.7 0.4 0
1.6 0.3 0.8 0
1.7 0.1 1 0.3
1.8 0 0.8 0.7

Table 4: Fuzzy relation between the linguistic set L 
and the measurement set X.

Ml x( )

Dx l( )

l L∈ x X∈ Ml x( ) Dx l( ).=



Remark 12: The fuzzy description of number x is an element of F(L) and, therefore a vector in [0, 1]n if

card(L) = n. Thus, the fuzzy description provides a simple means to build fuzzy equivalence relations on set of

numbers. The partitions associated with these equivalence relations are given by the fuzzy meaning of the terms.

Indeed, given a set  of membership functions with , we can always define a bijection

 such that, for all , . The use of a set linguistic terms l ∈ L and their fuzzy meaning Ml is

nothing more than a re-labeling of the membership function  which will be more convenient to develop appli-

cations.

Definition 6: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L1 and

L2 be two sets of linguistic terms whose fuzzy meanings are defined respectively on X1 and X2 and denoted , for

all  and . Let  be the strict t-norm defined by .

For all , we will say that T* defines the meaning of a new term «l1 and l2» on  as follows:

Definition 7: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L be

a set of linguistic terms whose fuzzy meanings are defined on X and denoted , for all . Let

 be the t-conorm, isomorphic to Lukasiewicz t-conorm, defined by

, where . For all , we will say that S* de-

fines the meaning of a new term «l1 or l2» on  as follows:

Definition 8: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L be

a set of linguistic terms. Let  be a -partition on X, with  the fuzzy meanings of the term l, such that,

for all all , there exists  and  Let  defined by

. For all , we will say that N* defines the meaning of a new term «not l» on  as

follows:
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Remark 13: The negation N* can be used with -partitions defined by means of (L-R) intervals as shown in sec-

tion 4.1. Let us note also that the triplet (S*, T*, N*) obtained by means of the bijection φ satisfies the functional

equation of Alsina [7], that is S*(T*(u, v), T*(u, N(v)) = u, for all  and , with  and 

two -partitions respectively on X1 and X2. The proof is obvious using proposition 14.

5. Examples

5.1 Fuzzy partitions on ℜ

Figure 4 represents three fuzzy partitions and their associated fuzzy equivalence relations generated according

to the principle given in section 4.1. They are respectively obtained with the t-norm TM,  with h(x) = x and TM

with . 

Fig. 4 Examples of fuzzy partitions and their associated equivalence relations.

5.2 Comparing colors

Let us analyze a more complex example where colored objects have to be compared. It will be assumed that

the color information comes from a sensor based on three photo-detectors recreating the effects of the red, green,

blue cones of the human eyes. When the sensor information is normalized, the color space is simply defined as the

unit cube (R, G, B). In order to allow a simple description of colors, the luminosity will be separated from the
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chrominance information by a non linear mapping as shown in figure 5.

Fig. 5 From the (R, G, B) cube to the Chrominance-Luminance representation

Now let us assume that the Delaunay triangulation of the chrominance plane is used to perform a multi-linear

interpolation that defines the 2D-fuzzy meanings of the linguistic terms, as shown in figure 6 for the two terms

Red and Grey [1]. The origin of the chrominance plane is labelled with the term Grey and the luminance

information should be used to distinguish grey levels from Black to White. 

Fig. 6 The 2D-Fuzzy meaning of the terms Red and Grey.

This representation verifies the property:

, (49)

where L= {Red, Yellow, Grey, Magenta, Cyan, Blue, Green}.

Now, let us assume that O = {A, B, C, D, E, F} is a set of six objects to be analyzed by a fuzzy color sensor.

Let  be the chrominance information associated with an object o ∈ O, that is Color(o) = . The

fuzzy sensor provides the fuzzy description of the chrominance information associated with each object, thus we

have:

. (50)
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The position of each object in the chrominance plane is represented in figure 7.

Fig. 7 Objects in the chrominance plane

The fuzzy description of the pair (x1, x2) associated with each object is given in table 6. For example, we have:

DColor(A) = D(0.1, 0.8) = 0.1423/Grey + 0.7423/Red + 0.1154/Magenta.

Thanks to the property given by Eq. (49), a TL-equivalence can be obtained from the following  fuzzy

relation:

(51)

When there is no ambiguity, it can be expedient to abbreviate Attribute(o) to o, relying on the context for the

determination of whether o stands for an object or for its attribute. Thus, for the sake of readibility, the results

given in table 7 are labelled with the objects instead of their color (e.g. A is used in place of Color(A)).

Grey Red Magenta Blue Cyan Green Yellow
A 0.1423 0.7423 0.1154 0 0 0 0
B 0.2536 0.0536 0.6928 0 0 0 0
C 0.1979 0.3979 0 0 0 0 0.4042
D 0.0381 0.0381 0 0 0 0 0.9238
E 0.1916 0 0.1042 0.7042 0 0 0
F 1 0 0 0 0 0 0

Table 6: Fuzzy descriptions of the colors of the six objects

B

A

C

F

E

D

x1

x2

x1 x2

A 0.1 0.8
B 0.4 0.6
C 0.6 -0.35
D 0.5 -0.8
E -0.3 0.7
F 0 0
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This  fuzzy relation is a TL-equality, therefore d = tL o  is a metric on the set X, where tL is the additive

generator of the t-norm TL, that is tL(u) = 1 - u (see [18] for example). Thus, it makes it possible to compare

objects in terms of distance in the color space:

(52)

For example, the color of B is closer to the color of A than that of C because we have

d(Color(B), Color(A)) = 0.6887 and d(Color(B), Color(C)) = 0.7485.

5.3 Comparing beauty

In [12], De Cock and Kerre have proposed an interesting example where fairy-tale characters, belonging to the

set O = {Snowwhite, Witch, Wolf, Dwarf, Prince, Little-Red-Riding-Hood}, have their beauty compared (see also

comments on this paper [4], [5], [13], [20], [19]). Available information is given by the following table:

Rather than interpreting this table as «the fuzzy sets beautiful, average and ugly in O», as suggested in [12], we

will consider it as the fuzzy linguistic descriptions of the characters’ beauty (Let us note that in [12] the set of the

fairy-tale characters is denoted X which has another meaning in this paper). More formally, this means that the

beauty of one character in O is a fuzzy subset defined on the set L = {Beautiful, Average, Ugly}. In other words,

A B C D E F

A 1.0000 0.3113 0.5402  0.0762 0.2465 0.1423
B 0.3113 1.0000 0.2515 0.0762 0.2958 0.2536
C 0.5402 0.2515 1.0000 0.4804 0.1916 0.1979
D  0.0762 0.0762 0.4804 1.0000 0.0381 0.0381
E 0.2465 0.2958 0.1916 0.0381 1.0000 0.1916
F 0.1423 0.2536 0.1979 0.0381 0.1916 1.0000

Table 7:  fuzzy relation for the color example.

Beautiful Average Ugly
Snowwhite 1.00 0.00 0.00
Witch 0.00 0.30 0.70
Wolf 0.00 0.00 1.00
Dwarf 0.10 0.70 0.20
Prince 0.80 0.20 0.00
Red-Riding-Hood 0.50 0.50 0.00

Table 8: the fairy-tale characters.

RTM

RTM

RTM
RTM

o1 o2,( ) O2,∈∀ d Color o1( ) Color o2( ),( ) 1-RTM
DColor o1( ) DColor o2( ),( )=



we have a horizontal reading of the table instead of a vertical one. For example, let us write the beauty of the

Dwarf as Beauty(Dwarf). It is assumed that Beauty(Dwarf) is an unknown piece of information but whose fuzzy

description is known and given by:

DBeauty(Dwarf) = 0.10/Beautiful + 0.70/Average + 0.20/Ugly. (53)

Since the linguistic description of beauty is given by a human being, it will be supposed that he/she uses fuzzy

meanings of Beautiful, Average and Ugly resulting from a non-explicit aggregation of several criteria of beauty

and it will be assumed that he/she provides coherent information. 

As can be observed, the sum of the grades of memberships for each line of table 8 is equal to one. Therefore, a

TL-equivalence is obtained from the following  fuzzy relation:

. (54)

The resulting table for the fairy-tale characters is given in Table 9 which is exactly the same as the one given

in [12].

As for the color example, a distance can be associated with this equivalence relation in order to compare the

beauty of the fairy-tale characters:

. (55)

As mentioned in section 3.5,  fuzzy relations are a particular case of the parametrized family  where

 is Yager’s t-conorm family. It provides an interesting feature to deal with linguistic hedges based on the

powering of the membership functions [11]:

Snowwhite Witch Wolf Dwarf Prince Red-Riding-
Hood

Snowwhite 1.00 0.00 0.00 0.10 0.80 0.50
Witch 0.00 1.00 0.70 0.50 0.20 0.30
Wolf 0.00 0.70 1.00 0.20 0.00 0.00
Dwarf 0.10 0.50 0.20 1.00 0.30 0.60
Prince 0.80 0.20 0.00 0.30 1.00 0.70
Red-Riding-
Hood

0.50 0.30 0.00 0.60 0.70 1.00

Table 9: The fairy-tale  fuzzy relation.
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, where h is a linguistic hedge [29]. (56)

Indeed, under the conditions for proposition 2, we have:

(57)

The  fuzzy relation built using the membership functions modified by powering hedges is the  fuzzy

relation raised to the power of the hedge as represented in figure 8.

Fig. 8 Links between powering hedges and  fuzzy relations.

Table 10 illustrates the equivalence relation generated when using the membership functions obtained with the

linguistic hedges very defined as P2. It means that the fuzzy descriptions of the characters’ beauty are defined on

the set L’ = {Very_Beautiful, Very_Average, Very_Ugly} as for example:

DBeauty(Dwarf) = 0.01/Very_Beautiful + 0.49/Very_Average + 0.04/Very_Ugly.

5.4 Fairy-tale characters with colored clothes

In order to illustrate a  fuzzy equivalence relation on a cartesian product, we will compare fairy tale

Snowwhite Witch Wolf Dwarf Prince Red-Riding-
Hood

Snowwhite 1.00 0.00 0.00 0.01 0.64 0.25
Witch 0.00 1.00 0.49 0.25 0.04 0.09
Wolf 0.00 0.49 1.00 0.04 0.00 0.00
Dwarf 0.01 0.25 0.04 1.00 0.09 0.36
Prince 0.64 0.04 0.00 0.09 1.00 0.49
Red-Riding-
Hood

0.25 0.09 0.00 0.36 0.49 1.00

Table 10: The fairy-tale fuzzy equivalence relation using the linguistic hedge very.
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characters with regard to their beauty and the color of their clothes. The objects whose color were described in

section 5.2 are considered as fairy-tale characters’ clothes according to table 11.

Let O = {Snowwhite, Witch, Wolf, Dwarf, Prince, Little-red-riding-Hood}, L1 = {Beautiful, Average, Ugly}

and L2 = {Red, Yellow, Grey, Magenta, Cyan, Blue, Green}, the  fuzzy relation is given by:

(58)

When using the t-norm T = TM, we have  and, therefore, T* = TP, which leads to the following table.

Let us note that, for the sake of simplicity, the table is labeled with the character’s name instead of the pair

(Beauty(o), Color(Clothes(o)) where o would be the character’s name.

As can be noticed, the Prince’s beauty was quite similar to Snowwhite’s in table 9 but their respective clothes

have different colors leading to a low similarity in the cartesian product.

Clothes Object
Snowwhite D

Witch F
Wolf C

Dwarf B
Prince E

Red-riding-Hood A

Table 11: Fairy-tale characters’ clothes.

Snowwhite Witch Wolf Dwarf Prince Red-riding-
Hood

Snowwhite 1.0000 0.0000 0.0000 0.0307  0.0381 0.0762
Witch 0.0000 1.0000 0.1979 0.2282 0.0383 0.0712
Wolf 0.0000 0.1979 1.0000 0.0614 0.0000 0.0000
Dwarf 0.0307 0.2282 0.0614 1.0000 0.1538 0.2548
Prince 0.0381 0.0383 0.0000 0.1538 1.0000 0.1880
Red-riding-
Hood

0.0762 0.0712 0.0000 0.2548 0.1880 1.0000

Table 12: The fairy-tale  fuzzy equivalence relation on the cartesian product.
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5.5 Comparing comfort

In this section, the aggregation of temperature and humidity to build comfort information [2] is proposed to

illustrate fuzzy partitions on a cartesian product X1×X2 where X1 and X2 are respectively associated with the

temperature and the humidity. Let L1={Cold, Cool, Mild, Warm, Hot}, L2 = {Very_Low, Low, Medium, High} and

L = {Comfortable, Acceptable, Uncomfortable} be the sets of linguistic terms associated respectively with the

temperature, the humidity and the comfort. As explained in section 4.2, the fuzzy meanings are obtained by the

union of cartesian products of membership functions X1 and X2. It can be interpreted as a set of linguistic rules

represented in figure 9. The black cell corresponds to the term Comfortable, while the grey and white ones are

respectively associated with Acceptable and Uncomfortable.

Fig. 9 Linguistic terms associated with comfort.

The definition of the terms Comfortable and Acceptable are given by: 

Comfortable = Mild and Medium.

Acceptable = (Cool and Low) or (Mild and Low) or (Warm and Low) or (Cool and Medium) or (Warm and

Medium).

Thanks to the «linguistic distributivity» of the connective and with respect to the linguistic connective or (see

proposition 14), the latter definition can be rewritten as: 

Acceptable = ((Cool or Mild or Warm) and Low) or ((Cool or Warm) and Medium).

The definition of the term Uncomfortable could be obtained similarly. However, it is simpler to use the negation

connective and write:

Uncomfortable = not(Comfortable or Acceptable).

The fuzzy meanings of the linguistic terms on X1, X2 and X1×X2 for T = TP are represented in figure 10. Now,

let S1, S2, S3, S4 be four comfort situations characterized by the following measurements:

Very_Low Low Medium High
Hot

Warm
Mild
Cool
Cold



Fig. 10 Fuzzy meanings on X1, X2 and X1×X2 for T= TP.

The fuzzy meanings on X1×X2 can be used to compute the fuzzy descriptions of the four situations. It leads to

the table 14.

Finally, the  fuzzy relation obtained is a -equivalence.

Situation Temperature Humidity
S1 17 °C 65 %

S2 28 °C 30 %

S3 22 °C 45 %

S4 20 °C 55 %

Table 13: Comfort situations.

Situation Comfortable Acceptable Uncomfortable
S1 0.000000 0.790569 0.612372

S2 0.000000 0.577350 0.816497

S3 0.707107 0.707107 0.000000

S4 1.000000 0.000000 0.000000

Table 14: Fuzzy descriptions of the four comfort situations.
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Fig. 11  fuzzy equivalence relation.

6. Conclusion

In this paper,  fuzzy relations have been introduced. It was shown that  fuzzy relations are at least TD-

equivalences when T is a strict t-norm with a convex additive generator. Finding the greatest T# t-norm such that

 fuzzy relations are T#-equivalences is still an open question. 

Several examples as close as possible to real problems were proposed to illustrate the interest of this work. For

example, it justifies the choice of the operators «sum» and «product» in many rule-based applications. Indeed,

when the membership functions define a strict partitioning, the sum and the product are respectively the S* and T*

operators when T = TM since . Therefore, it makes it possible to have  relations on the cartesian

product and therefore, to preserve the associated pseudo-metric.
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