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Abstract
7

In this paper, the fuzzy perceptive model for average reward Markov decision processes is defined and a method of computing
the corresponding fuzzy perceptive values is proposed. Under the minorization condition for fuzzy perceptive transition matrices,9
it is characterized by the optimal average expected reward, called the average perceptive value, using a fuzzy optimality relation.
Also, we give a simple numerical example.11
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1. Introduction

In a real application of such a mathematical model as a Markov decision process (MDP), it often occurs that the15
required data is linguistically or roughly perceived (for example, the probability of the transition from one state to another
is about 0.3 or considerably larger than 0.8, etc.). A possible way of handling such a perception-based information is17
to use fuzzy sets (cf. [4,19]), whose membership function describes the level of the perception of the required data.
And refer to [15,14] for a possibility fuzzy theory in uncertain MDPs. If the fuzzy perception of the transition matrices19
in MDPs is given, how can we estimate the future expected reward, called a fuzzy perceptive value, in advance of our
actual decision, under the condition that we can know the true value of the transition matrices immediately before our21
decision-making. The concept of fuzzy perceptive values is the same as the perceptive value (possibility distribution) of
the objective function under the possibility constraints proposed by Zadeh [20] using a generalized extension principle.23

The objective of this paper is to formulate the perceptive model for average reward MDPs and derive the average fuzzy
optimality equation by which the average fuzzy perceptive values are obtained. In order to guarantee the ergodicity of25
the process, we impose the minorization condition (cf. [12]). Also, as a numerical example, a machine maintenance
problem is considered. In our previous works [9,10], we have given the perceptive models for an optimal stopping or27
discounted MDPs and the corresponding fuzzy perceptive values are characterized and calculated by the corresponding
fuzzy optimality equations. As for MDPs, the average case was not treated there. In remainder of this section, we29
will give some notation and fundamental results on average reward MDPs, from which the fuzzy perceptive model is
formulated in the sequel. For non-perception approaches to MDPs with fuzzy imprecision refer to [8].31
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2. Notations1

Let R, Rn and Rm×n be the sets of real numbers, real n-dimensional vectors and real m × n matrices, respectively.
The sets Rn and Rm×n are endowed with the norm ‖ · ‖, where we put ‖x‖ = ∑n

j=1 |x(j)| for a vector x =3
(x(1), x(2), . . . , x(n)) ∈ Rn and we write ‖y‖ = max1� i �m

∑n
j=1 |yij | for a matrix y = (yij ) ∈ Rm×n. For any set

X, let F(X) be the set of all fuzzy sets x̃ : X �→ [0, 1]. The �-cut of x̃ ∈ F(X) is given by x̃� := {x ∈ X|̃x(x)��}(� ∈5
(0, 1]) and x̃0 := cl{x ∈ X|̃x(x) > 0}, where cl is the closure of a set. Let R̃ be the set of all fuzzy numbers, i.e., r̃ ∈ R̃

means that r̃ ∈ F(R) and r̃ is normal, upper semi-continuous and fuzzy convex and has a compact support. Let C be7
the set of all bounded and closed intervals of R. Then, for r̃ ∈ F(R), it holds that r̃ ∈ R̃ if and only if r̃ normal and
r̃� ∈ C for � ∈ [0, 1]. So, for r̃ ∈ R̃, we write r̃� = [̃r−

� , r̃+
� ](� ∈ [0, 1]).9

The binary relation � on F(R) is defined as follows: for r̃ , s̃ ∈ F(R), r̃�̃s if and only if r̃ and s̃ satisfy the following
(i) and (ii): (i) for any x ∈ R, there exists y ∈ R such that x�y and r̃(x)� s̃(y); (ii) for any y ∈ R, there exists x ∈ R11
such that x�y and s̃(y)� r̃(x). Obviously, the binary relation � satisfies the axioms of a partial order relation on F(R)

(cf. [7,18]).13
For r̃ , s̃ ∈ R̃, m̃ax{̃r, s̃} and m̃in{̃r, s̃} are defined by

m̃ax{̃r, s̃}(y) := sup
x1,x2∈R
y=x1∨x2

{̃r(x1) ∧ s̃(x2)} (y ∈ R),

15

m̃in{̃r, s̃}(y) := sup
x1,x2∈R
y=x1∧x2

{̃r(x1) ∧ s̃(x2)} (y ∈ R),

respectively, where a ∧ b = min{a, b} and a ∨ b = max{a, b} for any a, b ∈ R. It is easily proved that m̃ax{̃r, s̃} ∈17
R̃ and m̃in{̃r, s̃} ∈ R̃ for r̃ , s̃ ∈ R̃. It is known that the following (i)–(iv) are equivalent each other (cf. [7]): (i)
r̃�̃s; (ii) r̃−

� � s̃−
� and r̃+

� � s̃+
� (� ∈ [0, 1]); (iii) m̃ax{̃r, s̃} = s̃; (iv) m̃in{̃r, s̃} = r̃ . Also we use the addition by19

(̃r + s̃)(y) := sup x1,x2∈R
y=x1+x2

{̃r(x1) ∧ s̃(x2)}(y ∈ R) for any r̃ , s̃ ∈ R̃. When r̃ , s̃ ∈ R̃, it holds (cf. [4]) that r̃ + s̃ ∈ R̃

and (̃r + s̃)−� = r̃−
� + s̃−

� and (̃r + s̃)+� = r̃+
� + s̃+

� (� ∈ [0, 1]).21
We denote by R+ and Rn+ the subsets of entrywise non-negative elements in R and Rn, respectively. Let C+ be the

set of all bounded and closed intervals of R+ and let Cn+ the set of all n-dimensional vectors whose elements are in23
C+.

Lemma 2.1 (Kurano et al. [6]). For any non-empty convex and compact set G ⊂ Rn+ and D = (D1, D2, . . . , Dn) ∈25
Cn+, it holds that

GD =
⎧⎨⎩g · d =

n∑
j=1

gjdj

∣∣∣∣∣∣ g ∈ G, d ∈ D

⎫⎬⎭ ∈ C+
27

for g = (g1, g2, . . . , gn) ∈ Rn+ and d = (d1, d2, . . . , dn) ∈ D.

Here, we define average reward MDPs whose extension to the fuzzy perceptive model will be done in Section29
3. Consider a finite state space S = {1, 2, . . . , n} and a finite action space A = {1, 2, . . . , k}, where n and k are
fixed positive integers. Let P(S) ⊂ Rn and P(S|SA) ⊂ Rn×nk be the sets of all probabilities on S and conditional31
probabilities on S when an elements of S × A is given, that is,

P(S) :=
{

q = (q(1), q(2), . . . , q(n))

∣∣∣∣∣q(i)�0,

n∑
i=1

q(i) = 1, i ∈ S

}
,

33

P(S|SA) := {Q = (qia : i ∈ S, a ∈ A)|qia = (qia(1), qia(2), . . . , qia(n)) ∈ P(S), i ∈ S, a ∈ A}.
For any Q = (qia) ∈ P(S|SA), we define a controlled dynamic system M(Q), called an MDP, specified by35
{S, A, Q, r}, where r : S × A �→ R+ is an immediate reward function. When the system is in state i ∈ S and
action a ∈ A is taken, the system moves to a new state j ∈ S selected according to qia(j) and a reward r(i, a) is37
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obtained. And at the next step the process goes on from the new state j ∈ S. The sample space is the product space1
� = (S × A)∞, and the projections Xt : � �→ S and �t : � �→ A describe a state and an action at time t, respectively
(t �0). A policy � = (�1, �2, . . .) is a sequence of conditional probabilities �t (·|x0, a0, . . . , xt ) on A for all histories3
(x0, a0, . . . , xt ) ∈ (S ×A)t ×S. The set of all policies is denoted by �. A policy � = (�0, �1, . . .) is called randomized
stationary if there exists a conditional probability � = (�(·|i), i ∈ S) for which �(·|x0, a0, . . . , xt ) = �(·|xt ) for all t �05
and (x0, a0, . . . , xt ) ∈ (S × A)t × S. Such a policy is simply denoted by �. We denote by F the set of functions from
S to A. A randomized stationary policy � is called stationary if there exists a function f ∈ F such that �({f (i)}|i) = 17
for all i ∈ S. For each � ∈ �, an initial state X0 = i and a transition matrix Q ∈ P(S|SA), the probability measure
P�(·|X0 = i, Q) on � is defined in a usual way. The problem we are concerned with is the maximization of the long-run9
expected average reward per unit time, �(i, �|Q), which is defined, as a function of Q ∈ P(S|SA), by

�(i, �|Q) = lim inf
T →∞

1

T
E�(�T |X0 = i, Q) (2.1)11

(i ∈ S, � ∈ �), where E�(·|X0 = i, Q) is the expectation wrt. P�(·|X0 = i, Q) and �T = ∑T −1
t=0 r(Xt , �t ) (T �1).

For any Q ∈ P(S|SA), a policy �∗ satisfying that13

�(i, �∗|Q) = �(i|Q) := sup
�∈�

�(i, �|Q) for all i ∈ S

is called to be Q-average optimal (simply Q-optimal). In order to insure the ergodicity of the process, we introduce the15
minorization Condition M (cf. [12]). We say that the transition matrix Q = (qia : i ∈ S, a ∈ A) ∈ P(S|SA) satisfies
Condition M if17

	(Q) := min
i,j∈S,a∈A

qia(j) > 0.

Let B(S) be the set of all functions u : S �→ R. For any Q = (qia : i ∈ S, a ∈ A) ∈ P(S|SA), we define a map19
U{Q} : B(S) �→ B(S) by

U{Q}u(i) := max
a∈A

{r(i, a) +
∑
j∈S

(qia(j) − 	(Q))u(j) (2.2)
21

for all i ∈ S. Then, if Q ∈ P(S|SA) satisfies Condition M, U{Q} is a contraction map on B(S), so that there exists a
unique fixed point v = v(Q) ∈ B(S) such that23

U{Q}v = v. (2.3)

Putting �(Q) = 	(Q)
∑

j∈S v(j) in (2.3), we obtain an optimality equation for the average expected reward:25

v(Q)(i) + �(Q) = max
a∈A

⎧⎨⎩r(i, a) +
∑
j∈S

qia(j)v(Q)(j)

⎫⎬⎭ . (2.4)

The following lemma follows from (2.4). Refer to [1,3,5,13] as for the theory of MDPs.27

Lemma 2.2. Suppose that Q ∈ P(S|SA) satisfies Condition M. If f (i) ∈ A∗(i|Q) for each i ∈ S and �(i|Q) is
independent of i ∈ S, and hence we put �(Q) := �(i|Q), then f is Q-optimal where A∗(i|Q) := {a ∈ A|a maximizes29
the right-hand side of (2.4)}.

Let PM be the set of all Q ∈ P(S|SA) which satisfies Condition M. Then, we have the following used in the sequel.31

Lemma 2.3 (cf. Schweizer [16], Solan [17]). The optimal average reward �(Q) is continuous in PM.

In Section 3, we define a fuzzy perceptive model for average reward MDPs, which is analyzed in Section 5 with a33
numerical example.
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3. Fuzzy perceptive model1

We define a fuzzy-perceptive model, in which fuzzy perception of the transition probabilities in MDPs is accommo-
dated. In a concrete form, we use a fuzzy set on P(S|SA) whose membership function Q̃ describes a perception value3
of the transition probability.

Firstly, for each i ∈ S and a ∈ A, we give a fuzzy perception of qia = (qia(1), qia(2), . . . , qia(n)). Denote by Q̃ia(·)5
a fuzzy set on P(S) satisfying the following conditions (i) and (ii). (i) Normality: There exists a q = qia ∈ P(S) with
Q̃ia(q) = 1. (ii) Convexity and compactness: For each � ∈ [0, 1], its �-cut Q̃ia,� = {q = qia ∈ P(S)|Q̃ia(q)��} is a7
convex and compact subset in P(S).

Secondly, from a family of fuzzy-perceptions {Q̃ia(·) : i ∈ S, a ∈ A}, we define the fuzzy set Q̃ on P(S|SA), which9
is called fuzzy perception of the transition probability Q in MDPs, as follows:

Q̃(Q) = min
i∈S,a∈A

Q̃ia(qia(·)), (3.1)11

where Q = (qia : i ∈ S, a ∈ A) ∈ P(S|SA).
The �-cut of the fuzzy perception Q̃ is described explicitly in the following:13

Q̃� = {Q = (qia : i ∈ S, a ∈ A) ∈ P(S|SA)|qia ∈ Q̃ia,� for i ∈ S, a ∈ A}
=

∏
i∈S,a∈A

Q̃ia,� (� ∈ [0, 1]). (3.2)

Remark. For each i ∈ S and a ∈ A, in place of giving the fuzzy perception Q̃ia on P(S), it may be convenient to give
a fuzzy set q̃ia(j) ∈ R̃(j ∈ S), which represents the fuzzy perception of qia(j) (the transition probability to j ∈ S15
when an action a ∈ A is taken in state i ∈ S). Then, Q̃ia(·) is defined by

Q̃ia(q) = min
j∈S

q̃ia(j)(qia(j)), (3.3)17

where q = (qia(1), qia(2), . . . , qia(n)) ∈ P(S).

For any fuzzy perception Q̃ on P(S|SA), our fuzzy-perceptive model is denoted by M(Q̃), in which for any19
Q ∈ P(S|SA) the corresponding MDPs M(Q) is perceived with perception level Q̃(Q). The map 	 on P(S|SA) with
	(Q) ∈ � for all Q ∈ P(S|SA) is called a policy function. The set of all policy functions will be denoted by �. For21
any 	 ∈ �, the fuzzy perceptive reward �̃ is a fuzzy set on R denoted by

�̃(i, 	)(x) = sup
Q∈P(S|PS)

x=�(i,	(Q)|Q)

Q̃(Q) (i ∈ S). (3.4)

23

The policy function 	∗ ∈ � is said to be optimal if �̃(i, 	)��̃(i, 	∗) for all i ∈ S and 	 ∈ �, where the partial order � is
defined in Section 1. If there exists an optimal policy function 	∗, we put �̃ = (�̃(1), �̃(2), . . . , �̃(n)) will be called a25
fuzzy perceptive value, where �̃(i) = �̃(i, 	∗)(i ∈ S). Here, we can specify the fuzzy perceptive problem investigated
in the next section. The problem is to find an optimal policy function 	∗ and to characterize the fuzzy perceptive value.27

4. Perceptive analysis

In this section, we derive a new fuzzy optimality relation to solve our perceptive problem. The sufficient condition29
for the fuzzy perceptive reward �̃(i, 	) to be a fuzzy number is given in the following lemma.

Lemma 4.1. For any 	 ∈ �, if �(i, 	|Q) is continuous in Q ∈ Q̃0, then �̃(i, 	) ∈ R̃, where Q̃0 is the 0-cut of Q̃.31

Proof. From the normality of Q̃, there exists Q∗ ∈ P(S|SA) with Q̃(Q∗) = 1, such that �̃(i, 	)(x∗) = 1 for
x∗ = �(i, 	|Q∗). For any � ∈ [0, 1], we observed that33

�̃(i, 	)� = {�(i, 	|Q)|Q ∈ Q̃�}.
Please cite this article as: M. Kurano, et al., Fuzzy optimality relation for perceptive MDPs—the average case, Fuzzy Sets and Systems (2007),
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Since Q̃� is convex and compact, the continuity of �(i, 	|·) means the convexity and compactness of �̃(i, 	)� (� ∈ [0.1]).1
�

Lemma 2.2 in Section 1 guarantees that for each Q ∈ P(S|SA) satisfying Condition M there exists a Q-optimal3
stationary policy f∗(f∗ ∈ F). Thus, for each Q ∈ P(S|SA), we denote by 	∗(Q) the corresponding Q-optimal
stationary policy, which is thought as a policy function. Here we introduce the minorization condition for the perceptive5
model M(Q̃). We say that Q̃ on P(S|SA) satisfies Condition M if Q̃0 ⊂ PM, where Q̃0 is the 0-cut of Q̃.

Lemma 4.2. Suppose that Q̃ satisfies Condition M. Then, �(i, 	∗) is independent of i ∈ S and �̃ := �̃(i, 	∗) ∈ R̃.7

Proof. By Lemma 2.2, �̃(i, 	∗|Q) is continuous in Q̃0, so that �̃(i, 	∗) ∈ R̃ follows from Lemma 4.1. Also, from
Lemma 2.1, �(i, 	∗) is clearly independent of i ∈ S. �9

Theorem 4.3. The policy function 	∗ is optimal.

Proof. Let 	 ∈ �. Since 	∗(Q) is Q-optimal, for any Q ∈ P(S|SA) it holds that11

�(i, 	|Q)��(i, 	∗|Q) (i ∈ S). (4.1)

For any x ∈ R, let � := �̃(i, 	)(x). Then, from the definition there exists Q ∈ Q̃� with x = �(i, 	|Q). By (3.1),13
y := �(i, 	∗|Q)�x, which implies �̃(i, 	∗)(y)��. On the other hand, for y ∈ R, let � := �̃(i, 	∗)(y). Then, there
exists Q ∈ Q̃� such that y = �(i, 	∗|Q). From (3.1), we have that y�x := �(i, 	|Q). This implies �̃(i, 	|Q)��. The15
above discussion yields that �̃(i, 	)��̃(i, 	∗). �

From Lemma 4.2, we denote by �̃� := [�̃−
� , �̃+

� ] ∈ C the �-cut of �̃ ∈ R̃(i ∈ S). In the following theorem, the17
fuzzy perceptive value �̃ is characterized by a fuzzy optimality relation.

Theorem 4.4. Suppose that Q̃ ∈ P(S|SA) satisfies Condition M. Then, the fuzzy perceptive value �̃ ∈ R̃ is a unique19
solution to the following fuzzy optimality relations:

ṽi + �̃ = m̃ax
a∈A

{1{r(i,a)} + Q̃ia · ṽ}, (4.2)21

where ṽ = (̃v1, ṽ2, . . . , ṽn) ∈ R̃
n

and Q̃ia · ṽ(x) = sup{Q̃ia(q) ∧ ṽ(�)} and the supremum is taken on the range
{(q, �)|x = ∑n

j=1 q(j)�(j), q ∈ P(S), � ∈ Rn)} and ṽ(�) = ṽ1(�(1)) ∧ · · · ∧ ṽn(�(n)).23

The explicit form for the �-cut expression of (4.2) means as follows:

ṽ−
i,� + �̃− = max

a∈A

{
r(i, a) + min

qia∈Q̃ia,�

qia · ṽ−
�

}
(� ∈ [0, 1]), (4.3)

25

ṽ+
i,� + �̃+ = max

a∈A

{
r(i, a) + max

qia∈Q̃ia,�

qia · ṽ+
�

}
(� ∈ [0, 1]), (4.4)

where ṽi,� = [̃v−
i,�, ṽ

+
i,�], �̃∓

� = (�̃∓
1,�, . . . , �̃

∓
n,�), ṽ∓

� = (̃v∓
1,�, . . . , ṽ

∓
n,�), and qia · ṽ∓

� = ∑
j∈S qia(j )̃v∓

j,�.27

We note that �-cut of Q̃ia · ṽ in (4.2) is in C from Lemma 2.1, so that Q̃ia · ṽ ∈ R̃. Thus, the right-hand side of (4.2)
is well defined.29

Proof. Under Condition M, we have Q̃0 ⊂ PM, so that 	 := minQ∈Q̃0
	(Q) > 0 and qia(j)�	 for all q = (qia(·)) ∈

Q̃ia,�(� ∈ [0, 1]). For any � ∈ [0, 1], we define maps U�, U
� : B(S) �→ B(S) by31

U�u(i) = min
qia∈Q̃ia,�

max
a∈A

⎧⎨⎩r(i, a) +
n∑

j=1

(qia(j) − 	)u(j)

⎫⎬⎭ (i ∈ S), (4.5)
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U
�
u(i) = max

qia∈Q̃ia,�

max
a∈A

⎧⎨⎩r(i, a) +
n∑

j=1

(qia(j) − 	)u(j)

⎫⎬⎭ (i ∈ S), (4.6)
1

for any u ∈ B(S). Then, it is easily proved that the maps U� and U
�

are contractive with modulus 
 = 1 − 	(< 1).
Thus, the unique fixed points exist for U� and U

�
. Let us denote the fixed points of U� and U

�
, respectively, by v� and3

v� ∈ B(S). Also, by the same discussion as Lemma 4.2 in ?, we observe that v� and v� satisfy (4.7) and (4.8):

v�(i) = max
a∈A

⎧⎨⎩r(i, a) + min
qia∈Q̃ia,�

n∑
j=1

(qia(j) − 	)v�(j)

⎫⎬⎭ (i ∈ S), (4.7)
5

v�(i) = max
a∈A

⎧⎨⎩r(i, a) + max
qia∈Q̃ia,�

n∑
j=1

(qia(j) − 	)v�(j)

⎫⎬⎭ (i ∈ S). (4.8)

Putting �−
� = ∑

j∈S v�(j) and �+
� = ∑

j∈S v�(j) in (4.7) and (4.8), we get that7

v�(i) + �−
� = max

a∈A

⎧⎨⎩r(i, a) + min
qia∈Q̃ia,�

n∑
j=1

qia(j)v�(j)

⎫⎬⎭ (i ∈ S), (4.9)

v�(i) + �+
� = max

a∈A

⎧⎨⎩r(i, a) + max
qia∈Q̃ia,�

n∑
j=1

qia(j)v�(j)

⎫⎬⎭ (i ∈ S). (4.10)
9

It is easily shown that v� �v�′ , v� �v�′(0��′ ���1). Also we have that v� and v� are continuous from below in
� ∈ [0, 1] (cf. [4]). So, applying the representative theorem (cf. [4]), we can construct fuzzy numbers ṽi (i ∈ S) and �̃11
by

ṽi (x) = sup
�∈[0,1]

{� ∧ 1[v�(i),v�(i)](x)} (x ∈ R), (4.11)
13

�̃(x) = sup
�∈[0,1]

{� ∧ 1[�−
� (i),�+

� ](x)} (x ∈ R). (4.12)

Then, �̃ and ṽi (i ∈ S) satisfy (4.2). In fact, by (4.11) and (4.12), the �-cuts of ṽi and �̃ are equal to ṽi� = [v�(i), v�(i)]15
and �̃� = [�̃−

� , �̃+
� ]. So, the �-cut representation of (4.2) becomes (4.9) and (4.10). Also, the uniqueness of �̃ in (4.2)

follows from the uniqueness of �−
� and �+

� in (4.9) and (4.10). �17

5. An example for a machine maintenance

As a simple example, we consider a fuzzy perceptive model of a machine maintenance problem dealt with in [11],19
pp. 17–18. We consider a machine which is operated synchronously, say, once an hour. At each period there are two
states; one is operating(state 1), and the other is in failure(state 2). If the machine fails, it can be restored to perfect21
functioning by repair. At each period, if the machine is running, we earn the return of $3.00 per period; the fuzzy set
of probability of being in state 1 at the next step is (0.6/0.7/0.8) and that of the probability of moving to state 2 is23
(0.2/0.3/0.4), the triangular fuzzy number (a/b/c) on [0, 1] is defined by

(a/b/c)(x) =
{

(x − a)/(b − a) ∨ 0 if 0�x�b,

(x − c)/(b − c) ∨ 0 if b�x�1,25

where for any 0�a < b < c�1. If the machine is in failure, we have two actions to repair the failed machine; one is
a rapid repair, denoted by 1, that yields the cost of $2.00(that is, a return of −$2.00) with the fuzzy set (0.5/0.6/0.7) of27
the probability moving in state 1 and the fuzzy set (0.3/0.4/0.5) of the probability being in state 2; another is a usual
repair, denoted by 2, that requires the cost of $1.00 (that is, a return of −$1.00) with the fuzzy set (0.3/0.4/0.5) of the29
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(0.6/0.7/0.8) (0.2/0.3/0.4) (0.3/0.4/0.5)

(0.5/0.6/0.7)

1 2

(0.6/0.7/ 0.8) (0.2/0.3/0.4) (0.5/0.6/0.7)

(0.3/0.4/0.5)

1 2

Fig. 1. (a) Transition diagram of the rapid repair f1. (b) Transition diagram of the usual repair f2.

probability moving in state 1 and the fuzzy set (0.5/0.6/0.7) of the probability being in state 2. For the model considered,1
S = {1, 2} and there exists two stationary policies, F = {f1, f2} with f1(2) = 1 and f2(2) = 2, where f1 denotes a
policy of the usual repair and f2 a policy of the rapid repair. The state transition diagrams of two policies are shown in3
Fig. 1(a) and (b).

Using (3.3), we obtain Q̃ia(·)(i ∈ S, a ∈ A), whose �-cut is given as follows (cf. [6]):5

Q̃11,� = co{(.6 + .1�, .4 − .1�), (.8 − .1�, .2 + .1�)},
Q̃21,� = co{(.5 + .1�, .5 − .1�), (.7 − .1�, .3 + .1�)},7

Q̃22,� = co{(.3 + .1�, .7 − .1�), (.5 − .1�, .5 + .1�)},
where co{A, B} is a convex hull of A ∪ B.9

So, putting x1 = ṽ−
1�, x2 = ṽ+

1�, ṽ−
2� = 0, ṽ+

2� = 0, y1 = �̃−
� , y2 = �̃+

� , the �-cuts of the optimality Eqs. (4.3) and
(4.10) become11

x1 + y1 = 3 + min{(.6 + .1�)x1, (.8 − .1�)x1},
y1 = max[−2 + min{(.5 + .1�)x1, (.7 − .1�)x1}, −1 + min{(.3 + .1�)x1, (.5 − .1�)x1}],

x2 + y2 = 3 + .9 max{(.6 + .1�)x2, (.8 − .1�)x2},
y2 = [−2 + max{(.5 + .1�)x2, (.7 − .1�)x2}, −1 + max{(.3 + .1�)x2, (.5 − .1�)x2}],

After a simple calculation, we get

x1 = x2 = 50

9
, y1 = 7

9
+ 5

9
�, y2 = 17

9
− 5

9
�.13

Thus, the average fuzzy perceptive value is a triangular fuzzy number

�̃ =
(

7

9

/
12

9

/
17

9

)
= (0.778/1.333/1.889).15

6. Conclusions with summary

We considered the average case of MDPs with fuzzy perceptive transition matrices. Not an optimality equation but17
a fuzzy optimality “relation" is defined, so that we could characterize the optimal average expected reward, that is,
the average perceptive value. Also a numerical example for a machine maintenance is calculated under a triangular19
fuzzy number. The corresponding fuzzy relation is not so simple in general, because of innovating the fuzzy perceptive
reward. It should be solved by cooperating an interval analysis method by expanding the usual Dynamic Programming.21
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