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Abstract. This paper investigates the concave integral for capacities defined over

large spaces. We characterize when the integral with respect to capacity v can be rep-

resented as the infimum over all integrals with respect to additive measures that are

greater than or equal to v. We introduce the notion of loose extendability and study its

relation to the concave integral. A non-additive version for the Levi theorem and the

Fatou lemma are proven. Finally, we provide several convergence theorems for capacities

with large cores.
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1. Introduction

Choquet integral [2] was the first to deal with integration according to a capacity.

Choquet introduced an integral which coincides with that of Lebesgue when the capacity

is additive. Lehrer [4] presented a concave integral, which differs from the Choquet

integral when the capacity is not convex (super modular), and characterized it when

the underlying space is finite. This paper investigates the concave integral when the

underlying space is large (not necessarily finite).

The connection between the integral with respect to (w.r.t.) capacities and the the-

ory of decision making under uncertainty was made by Schmeidler [9] who proposed an

alternative theory to the traditional expected-utility theory of von-Neumann and Mor-

genstern [7]. According to Schmeidler’s model decision makers evaluate their alternatives

using non-additive probabilities, namely capacities, and the Choquet integral.

Lehrer [5] proposed a model of decision making with partially-specified probability.

This model suggests that decision makers obtain partial information about the governing

distribution and they utilize this partial information by resorting a variant of the concave

integral.

For a fixed capacity v we define the loose core to be the set of all additive measures

that are greater than or equal to v. It turns out that, unlike the finite case, in general

the loose core could be empty. The first results of this paper concern the possibility of

representing the integral w.r.t. a capacity v in a dual fashion, namely as the infimum of

integrals w.r.t. measures in the loose core. When the capacity is defined over a finite

space, this kind of a representation is always possible and is a consequence of a separation

theorem (see Lehrer [4]). In the general case, however, it is not true that the integral can

always be represented in this way. We characterize when the loose core is not empty and

when the integral coincides with the infimum of integrals w.r.t. measures in the loose

core.

A capacity v over a finite space has a large core (see Sharkey [10]) iff the core of v

is not empty, and for every additive measure µ ≥ v, there exist an additive capacity

µ ≥ P ≥ v. Lehrer [4] and Azrieli and Lehrer [1] showed the implication of a large core

to the concave integral in the finite case. In case v has a large core, then whenever the

integral of a non-negative function f is the infimum of integrals of f w.r.t. measures

in the loose core, it is also the infimum of integrals of f w.r.t. measures in the core.

Furthermore, the integral is invariant to the addition of a constant. That is, the integral
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of f + c w.r.t. v, where c is a constant, is equal to the sum of the integral of f with

respect to v and c.

It turns out that representing the integral in a dual fashion is tightly connected with

a property called loose extendability. We say that a capacity v is loosely extendable if for

any subset, say Y , any additive measure over Y which is greater than or equal to v over

Y can be extended to a member in the loose core. The second type of results deals with

the connection between loose extendability and the concave integral. For every subset

Y of the entire space we define an auxiliary capacity over Y , based on the maximal

marginal contribution of A ⊆ Y to any subset in the complement of Y . Some properties

that the concave integral w.r.t. this auxiliary capacity might possess determine whether

the capacity v is loosely extendable.

Convergence theorems are the last results of the paper. Li and Song [8] formulated a

few convergence theorems that refer to the Choquet integral. They proved that when-

ever an increasing sequence of non-negative measurable functions converges almost ev-

erywhere to a measurable function, then the sequence of Choquet integrals converges to

the Choquet integral of the limit function. In this analysis the precise definition of what

is ‘almost everywhere’ w.r.t. a capacity is crucial.

When a capacity is a measure, a property is satisfied almost everywhere if it is satisfied

over a set whose capacity is 1. According to the definition of Wang and Klir [11], a

property is satisfied almost everywhere w.r.t. a capacity if it fails to be satisfied over a

set of capacity 0. Using this definition Li and Song [8] proved a monotonic convergence

theorem w.r.t. the Choquet integral.

The definition of Wang and Klir [11] does not guarantee a convergence theorem w.r.t.

the concave integral. We adopt a stronger definition of ‘almost everywhere’. Assuming

the stronger definition, we establish integral convergence theorems. Specifically, we prove

versions of Levi monotonic convergence theorem and the Fatou lemma for capacities.

Making use of the integral’s representation, we strengthen these results for integrals

w.r.t. capacities that have a large core, and we prove a non-additive version for the dom-

inated convergence theorem.

The paper is organized as follows. Section 2 introduces the integral. Section 3 compares

the concave integral and the Choquet integral. Section 4 characterizes the representation

of the integral. Connections between the concave integral and the notion of extendabil-

ity appear in Section 5. Section 6 deals further with representation of integrals w.r.t.
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capacities with large cores. Section 7 presents integral convergence theorems, and we

conclude with some final comments in Section 8.

2. The concave integral for capacities

Let X be some set, F be a σ-algebra over X.

Definition 1. Consider an extended1 set function (or simply, set function) ν : F →
[0,∞] such that ν(∅) = 0.

• ν is monotone iff ν(A) ≤ ν(B) for all A ⊆ B where A,B ∈ F .

• ν is an additive measure iff ν is finite, that is ν(X) < ∞, and ν(A ∪ B) =

ν(A) + ν(B) whenever A, B ∈ F are disjoint.

• ν is a capacity iff it is monotone and ν(X) = 1.

Let M denote the collection of all non-negative measurable functions from X to R+.2

An extended function H : M → [0,∞] is concave iff H(αf + (1 − α)g) ≥ αH(f) +

(1 − α)H(G) for every α ∈ (0, 1) and f, g ∈ M, and it is positive homogeneous iff

H(αf) = αH(f) for every α ≥ 0 and f ∈M.

Fix a capacity v and f ∈M.

Definition 2 (Lehrer [4]). The concave integral of f over A w.r.t. v is defined by

(1)

∫ Cav

A

fdv := inf{H(f · 1lA)},

where the infimum is taken over all concave and positive homogeneous extended functions

H : M→ [0,∞] that satisfy H(1lE) ≥ v(E) for all E ∈ F , with 1lE being the indicator

function of E.

Remark 1. By considering concave and positive homogeneous functions to be extended

functions (i.e., that might infinite) we allow, just as in the additive case, for non-

integrable functions. This guarantees that the infimum in eq. (1) is not taken over

an empty set of functions.

Given a monotone extended set function ν, the concave integral w.r.t. ν is defined in

the same manner.

1The word extended signifies that the function may take the value infinity.
2A real function f is measurable iff f−1(B) ∈ F for every Borel set B of real numbers.
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We say that f is integrable over A ∈ F if
∫ Cav

A
fdv is finite. If f is integrable over X

we say that it is integrable.

Proposition 1. For every capacity v and a measurable non-negative function f ,

∫ Cav

A

fdv := sup

{ N∑
i=1

λiv(Ai);
N∑

i=1

λi1lAi
≤ f · 1lA, A1, ..., AN ∈ F and λi ≥ 0, N ∈ N

}
.

Remark 2. a. If v is a measure, then the concave integral w.r.t. v is the usual Lebesgue

integral.

b. Lehrer [4] proved proposition 1 in the case where X is finite.

Proof. Define WA(f) = sup
{∑N

i=1 λiv(Ai);
∑N

i=1 λi1lAi
≤ f ·1lA, A1, ..., AN ∈ F and λi ≥

0, N ∈ N}
. We show first that WA(f) ≥ ∫ Cav

A
fdv for every f ∈M and A ∈ F . Let g, h ∈

M. If
∑

i≤N λi1lAi
≤ h ·1lA and

∑
j≤M αj1lBj

≤ g ·1lA, then
∑

i≤N λi1lAi
+

∑
j≤M αj1lBj

≤
(g +h) · 1lA. Thus, WA(·) is super additive. That is, WA(g)+WA(h) ≤ WA(g +h). Since

WA is also homogeneous, it is concave. Finally, since WA(1lA) ≥ v(A) for all A ∈ F , we

get the desired inequality.

To prove the inverse inequality, fix a concave and homogeneous H : M→ R satisfying

H(1lB) ≥ v(B) for all B ∈ F . Such a function H is super additive. Indeed, for g, h ∈M,

H(h + g) = H

(
2

(
h

2
+

g

2

))
= 2H

(
h

2
+

g

2

)
≥ 2

(
1

2
H(h) +

1

2
H(g)

)
= H(h) + H(g).

Now, for every
∑

i≤N λi1lAi
≤ f · 1lA,

H(f) ≥ H
( ∑

i≤N

λi1lAi

)
≥

∑
i≤N

λiH(1lAi
) ≥

∑
i≤N

λiv(Ai).

Thus,

H(f) ≥ WA(f).

Since H is arbitrary, we conclude that
∫ Cav

X
fdv ≥ WA(f). ¤

Notice that the proof also shows that the infimum in eq. (1) can be replaced by

minimum and the latter is obtained at H = WA.

From this point on we denote this integral of f w.r.t. v by
∫

X
fdv, omitting the notation

‘Cav’.

Whenever v is a measure than
∫

X
1lAdv = v(A) for every A ∈ F . In the non-additive

case, if the latter equality holds for every A ∈ F we say that v is totally ballanced (TB).

However, it is not hard to construct an example that
∫

X
1lAdv > v(A) for some A ∈ F .
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The following lemma shows that in the view of the concave integral all capacities are

totally balanced.

Lemma 1. Given a capacity v over F , the capacity over F defined by

v̂(A) :=

∫

X

1lAdv

satisfies the following properties:

(i) v̂ ≥ v;

(ii)
∫

X
fdv̂ =

∫
X

fdv for every f ∈M; and

(iii) v̂ is TB.

Proof. (i) By definition of the concave integral v(A) ≤ ∫
X

1lAdv for all A ∈ F , therefore

v ≤ v̂.

(ii) Let f be some non-negative integrable function. Since v̂ ≥ v,
∫

X
fdv̂ ≥ ∫

X
fdv.

Fix ε > 0. There exists
∑K

k=1 λk1lAk
≤ f such that

∫
X

fdv̂ ≤ ∑K
k=1 λkv̂(Ak) + ε. Now,

∫

X

fdv̂ ≤
K∑

k=1

λkv̂(Ak) + ε =
K∑

k=1

λk

∫

X

1lAk
dv + ε ≤

∫

X

fdv + ε.

If f is not integrable then by (i) we have the desired result.

Notice that this means that v̂(A) =
∫

X
1lAdv for every A ∈ F . Therefore v̂ is TB and

we have (iii). ¤

v̂ is called the totally balanced cover of v.

3. The concave integral and the choquet integral

Given a capacity v and a non-negative measurable function f , the Choquet integral

of f w.r.t. v over A ∈ F is defined by

(2)

∫ Cho

A

fdv :=

∫ ∞

0

v({s ∈ A; f(s) ≥ t})dt,

where the latter integral is an extended Reimann integral. by the definition of the

Reimann integral

∫ Cho

A

fdv = sup

{ N∑
i=1

λiv(Ai);
N∑

i=1

λi1lAi
≤ f ·1lA, {Ai}N

i=1 ⊂ F is decreasing, λi ≥ 0, N ∈ N
}

,

where by decreasing we mean that Ai+1 ⊆ Ai for every 1 ≤ i ≤ N − 1.
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A summation
∑N

i=1 λi1lAi
is a lower evaluation for f ∈M if it is less than or equal to

f . The value w.r.t. v of such a lower evaluation is
∑N

i=1 λiv(Ai). The concave integral of

f w.r.t. v is the supremum of values over all lower evaluations for f . We have seen that

Choquet integral is the supremum of values over a particular partial collection of lower

evaluations. In particular,
∫

A
fdv ≥ ∫ Cho

X
fdv for every f and A ∈ F .

The following example shows that the two integrals do not always coincide.

Example 1. Let X = [0, 1] endowed with the Borel σ-algebra. Define a capacity v as

follows. For every A ∈ F
v(A) :=

{
1, {0} $ A,

0, otherwise.

Let f = 1lX + 1l{1} and g = 1lX + 1l{0}. Now, v({f ≥ x}) = v({g ≥ x}) for every

x ∈ [0, 1], thus
∫ Cho

[0,1]
fdv =

∫ Cho

[0,1]
gdv. Moreover, both integrals are equal to 1. On the

other hand,
∫
[0,1]

fdv = 1, whereas
∫

[0,1]
gdv = v

(
[0, 1

2
]
)

+ v
({0} ∪ (1

2
, 1]

)
= 2. Note that

the two functions differ only at 0 and 1, but 0 is more likely than 1 in the sense that

1 = v({0} ∪ A) > v({1} ∪ A) = 0 for every A ∈ F that does not contain 0 or 1. As

oppose to the Choquet integral, the concave integral takes into account these differences

and as a result valuates g more than f .

The question arises as to when the two integrals coincide. A capacity v is convex iff

v(A) + v(B) ≤ v(A ∪B) + v(A ∩B) for all A,B ∈ F .

Proposition 2. The concave integral coincides with the Choquet integral iff v is convex.

Proof. The first implication is simple. Indeed, if a capacity v is not convex, then there

exist A,B ∈ F such that v(A) + v(B) > v(A ∪B) + v(A ∩B). Thus
∫

X

(1lA + 1lB)dv ≥ v(A) + v(B) > v(A ∪B) + v(A ∩B) =

∫ Cho

X

(1lA + 1lB)dv.

Now, assume that v is convex. Let f ∈ M be such that
∫

X
fdv < ∞, then for every

ε > 0 there exist
∑N

i=1 λi1lAi
≤ f such that

∫

X

fdv ≤
N∑

i=1

λiv(Ai) + ε ≤
∫ Cho

X

(
N∑

i=1

λi1lAi
dv

)
+ ε ≤

∫ Cho

X

fdv + ε,

where the second inequality holds due to Lovasz [6] and Azrieli and Lehrer [1] (given such

a lower evaluation of f we can reduce ourselves to the finite case). Since ε is arbitrarily

small we have that
∫

X
fdv ≤ ∫ Cho

X
fdv. The other inequality always holds therefore∫

X
fdv =

∫ Cho

X
fdv.
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If
∫

X
fdv = ∞ then for every large L there exist

∑N
i=1 λi1lAi

≤ f such that
∑N

i=1 λiv(Ai) >

L. The proof from this point is similar to the one above. ¤

4. Representation of the integral

The main result of this paper concerns the representation of the integral.

Let F∞(X) be the Banach space of all measurable bounded functions over X, endowed

with the sup norm.3 Denote by F+
∞(X) the closed convex subset of F∞(X) containing

all non-negative functions.

We note first that, as a functional, the integral w.r.t. a capacity need not be continuous

over F+
∞(X).

Example 2. Consider the capacity v over N such that for every A ⊆ N, v(A) :=

max
{

1
n
; n ∈ A

}
.

For every n ∈ N let,

fn :=
1l{1,...,n}∑
i≤n v({i}) .∫

N fndv = 1, while {fn}n∈N converges to 0 in the norm.

For f ∈ F+
∞(X) we define, with abuse of notation,

v̂(f) := inf
ε>0

∫

X

(f + ε)dv.

It is always true that v̂(f) ≥ ∫
fdv.

Definition 3. Let ν be a monotone set function.

(1) The loose core of ν, denoted by LsCore(ν), is the set of all additive measures that

are greater than or equal to ν.

(2) The core of ν, denoted by Core(ν), is the set of all additive measures P ∈ LsCore(ν)

such that P (X) = ν(X).

The capacity in Example 2 has an empty loose core.

Theorem 1. Let v be a capacity and let f ∈ F+
∞(X) such that v̂(f) < ∞. v̂(f) =

∫
X

fdv

iff ∫

X

fdv = inf
µ∈LsCore(v)

∫

X

fdµ.

3That is for every f ∈ F∞(X), ||f || = supx∈X |f(x)|. Note that this is not the usual essential

supremum norm of almost everywhere bounded measurable functions.
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Proof. Assume first that
∫

X
fdv = infµ∈LsCore(v)

∫
X

fdµ. Then, v̂(f) = infε>0

∫
X

(f +

ε)dv ≤ infε>0

∫
X

(f +ε)dµ for every finite and additive measure µ ∈ LsCore(v). The last

term is equal to infε>0

∫
X

fdµ + ε · µ(X) =
∫

X
fdµ, which proves the ‘if’ direction.

As for the inverse direction, assume that v̂(f) =
∫

X
fdv. v̂ is upper semicontinuous4

over F+
∞(X). Indeed, consider a sequence {fn}n∈N ⊂ F+

∞(X) that converges in the

norm to f ∈ F+
∞(X). Fix ε > 0. There exist δ > 0 and N ∈ N such that v̂(f) ≥∫

X
f + 2δdv − ε ≥ ∫

X
fn + δdv − ε ≥ v̂(fn)− ε, for all n > N . Since ε is arbitrary small

we have that v̂(f) ≥ limn→∞ v̂(fn). In the same way, applying the integral’s concavity,

we get that v̂ is concave over F+
∞(X).

We obtained that v̂ is an upper semicontinuous concave function defined over F+
∞(X),

which is a closed convex subset of a Banach space F∞(X). Thus, v̂ is the infimum over

all affine functions greater than or equal to v̂ over F+
∞(X) (see e.g., Ekeland and Temam

[3]).

Now fix f ∈ F+
∞(X) and ε > 0. There is a linear function ϕ and a constant c such that

v̂(f) ≤ ϕ(f)+c ≤ v̂(f)+ε and v̂(g) ≤ ϕ(g)+c for every g ∈ F+
∞(X). Let k be a positive

number and apply the previous inequality to g = kf . We get, v̂(kf) ≤ ϕ(kf) + c. Since

both ϕ and v̂ are homogenous, kv̂(f) ≤ kϕ(f) + c. Thus, v̂(f) ≤ ϕ(f) + c
k
. On one

hand, k can be arbitrary close to zero, meaning that c ≥ 0. On the other hand, k can

be arbitrary large which means that v̂(f) ≤ ϕ(f) ≤ v̂(f) + ε. We conclude that v̂ is the

infimum over all linear functions that are greater than or equal to v̂ over F+
∞(X).

Any linear ϕ which is greater than or equal to v̂ over F+
∞(X) induces a finite measure:

ϕ̂(A) = ϕ(1lA) for every A ∈ F . Since v̂(1lA) ≥ v(A), ϕ̂(A) ≥ v(A). Moreover, ϕ(f) ≥∫
X

fdϕ̂. Indeed, if
∑N

i=1 λi1lAi
≤ f , then

N∑
i=1

λiϕ̂(Ai) =
N∑

i=1

λiϕ(1lAi
) = ϕ

( N∑
i=1

λi1lAi

)
≤ ϕ(f).

The last inequality is due to the fact that f − λi1lAi
∈ F+

∞(X) and ϕ(f − λi1lAi
) ≥

v̂(f − λi1lAi
) ≥ 0. Thus,

∫
X

fdϕ̂ ≤ ϕ(f) and the proof is complete. ¤

The following example illustrates a case where v̂(f) >
∫

X
fdv.

Example 3. Let X = (0, 1) endowed with the Borel σ-algebra, and let v(A) = 1 if A

contains an open neighborhood of 1 and if 0 is an accumulation point of A; otherwise,

4A function H : X → R is upper semicontinuous iff for every xn → x (in the norm), lim supH(xn) ≤
H(x).
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v(A) = 0. Consider f = 1l[ 1
2
,1). It is easy to check that

∫
X

fdv = 0, whereas
∫

X
(f+ε)dv =

1 for all ε > 0. Thus, v̂(f) >
∫

X
fdv.

Corollary 1. The following are equivalent:

(i) LsCore(v) 6= ∅;
(ii)

∫
X

dv < ∞;

(iii)
∫

X
fdv < ∞ for every f ∈ F+

∞(X);

(iv) v̂(f) < ∞ for every f ∈ F+
∞(X); and

(v) The set of all concave and positive homogeneous functions H : F+
∞(X) → [0,∞) that

satisfy H(1lE) ≥ v(E) for all E ∈ F is not empty.

Proof. By the monotonicity and homogeneity of the integral, we have that (ii),(iii)

and (iv) are equivalent and that (i) implies (ii). Now, assume (ii), that is v̂(1lX) =

infε>0

∫
X

(1 + ε)dv = infε>0(1 + ε)
∫

X
dv =

∫
X

dv < ∞. Theorem 1 holds for 1lX , in

particular LsCore(v) is not empty, and we have (i). Finally, it is clear that (ii) and (v)

are equivalent. ¤

Corollary 2. Let f ∈ F+
∞(X) be a function such that inf{f(x); x ∈ X} > 0 and

v̂(f) < ∞. Then,

(3)

∫

X

fdv = inf
µ∈LsCore(v)

∫

X

fdµ.

Proof. We prove that v̂(f) =
∫

X
fdv by showing that the integral w.r.t. v is continuous

at f . Fix ε > 0. Since inf{f(x); x ∈ X} > 0, there is δ > 0 such that (1 − δ)f ≤ fε ≤
(1 + δ)f for every non-negative fε in the open ball centered at f with radius ε. Define,

δ̂ = inf
{

δ > 0; (1− δ)f ≤ fε ≤ (1 + δ)f for all fε ∈ Bε(f)
}

.

Note that δ̂ → 0 as ε → 0.

Since the integral is homogenous and monotonic, we obtain

(1− δ̂)

∫

X

fdv ≤
∫

X

fεdv ≤ (1 + δ̂)

∫

X

fdv.

By letting ε → 0, we conclude that
∫

X
fεdv → ∫

X
fdv. ¤

Let ν be a monotone set function and A ∈ F . FA := {F ⊆ A; F ∈ F}. Define

νA := ν|FA
, that is νA(F ) = ν(F ) for all F ∈ FA.

For f ∈ F+
∞(X) define PD(f) := {x ∈ X; f(x) > 0}. The next example shows that

in general the conclusion of Corollary 2 is incorrect.
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Example 4. Recall Example 3. There, PD(f) = [1
2
, 1) and the infimum of f over PD(f)

is greater than 0. Corollary 2 states that eq. (3) holds. Indeed,
∫

X
fdv =

∫
X

fdµ0, where

µ0 is identically zero over FPD(f). Let P be the additive capacity assigning 1 to sets that

contain an open neighborhood of 1, and 0 otherwise. LsCore(v) consists only of additive

measures of the form cP , where c ≥ 1. The integral of f w.r.t. any member of LsCore(v)

is greater than 1. Thus, the integral of f w.r.t. v cannot be expressed as eq. (3).

Now, for g ∈ F+
∞(X), similar to v̂ we define v̂PD(f)(g) :=

∫
X

(g + ε · 1lPD(f))dv. When

inf{f(x); x ∈ PD(f)} > 0 we can prove, just as in Corollary 2, that

(4)

∫

PD(f)

fdv = inf
µ∈LsCore(vPD(f))

∫

PD(f)

fdµ.

5. Extendability

In eq. (4) the infimum is taken over all additive measures µ in the loose core of vPD(f).

If any such additive measure can be extended to the whole space while being above v,

then the integral of f could be expressed as in eq. (3).

Definition 4. Let ν be a monotonic set function.

(1) An additive measure µ ∈ LsCore(νA) is extendable iff there exists an additive

measure m ∈ LsCore(ν) such that mA = µ.

(2) ν is loosely extendable iff for every A ∈ F , every additive measure in LsCore(νA)

is extendable to an additive measure in LsCore(ν).

An obvious consequence of Corollary 2 is,

Corollary 3. If v is loosely extendable and v̂(f) < ∞, then for every A ∈ F ,

(5)

∫

X

1lAdv = inf
µ∈LsCore(v)

∫

X

1lAdµ.

Note that in Example 4, the measure µ0 defined over PD(f) is not extendable and

therefore v is not loosely extendable. In this example, as well as in any other example

that we could construct, when the integral of f cannot be expressed as in eq. (3), v is

not loosely extendable. We are unable to answer the question whether when v is loosely

extendable, eq. (3) holds true for every f ∈ F+
∞(X).

The rest of this section is devoted to presenting results that connect the concave

integral and extendability.
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Let E ∈ F . For any monotonic set function ν over FEc , define a new monotonic set

function ϕ(E,ν) over FE as follows:

ϕ(E,ν)(A) := sup
B⊆Ec

v(A ∪B)− ν(B).

Lemma 2. v is loosely extendable iff
∫

E
dϕ(E,µ) < ∞, for every E ∈ F and µ ∈

LsCore(vEc).

Proof. Fix some E ∈ F and µ ∈ LsCore(vEc). Suppose first that
∫

E
dϕ(E,µ) < ∞.

By Corollary 1 there exists µ0 ∈ LsCore(ϕ(E,µ)). In particular, µ0(A) ≥ ϕ(E,µ)(A) ≥
v(A ∪ B) − µ(B) for every A ⊆ E and B ⊆ Ec. Therefore, µ0(A) + µ(B) ≥ v(A ∪ B).

Thus, µ1 defined as µ1(A ∪ B) = µ0(A) + µ(B) for every A ⊆ E and B ⊆ Ec, is in

LsCore(v) and it extends µ.

As for the inverse direction, fix ε > 0. Let µ1 ∈ LsCore(v) be an extension of

µ. Then, for every
∑N

i=1 λi1lAi
≤ 1lE, there exist BAi

⊆ Ec for all i ≤ N such that∑N
i=1 λiϕ(E,µ)(Ai) ≤

∑N
i=1 λi

[
v(Ai ∪BAi

)− µ(BAi
)
]
+ ε. The last expression is less than

or equal to
∑N

i=1 λi

[
µ1(Ai) + µ1(BAi

) − µ(BAi
)
]

+ ε =
∑N

i=1 λiµ1(Ai) + ε ≤ µ1(E) + ε.

Thus,
∫

E
dϕ(E,µ) < µ1(E) + 1. ¤

For every E ∈ F and ε > 0, define ψE(ε) = sup
∫

X
(f + ε1lE)dv − ∫

X
fdv, where the

supremum is taken over all f ∈ F+
∞(X) such that PD(f) ⊆ Ec.

Lemma 3. Let E ∈ F . If
∫

E
dϕ(E,v̂) < ∞, then limε→0 ψE(ε) = 0.

Proof. Fix f ∈ F+
∞(X) with PD(f) ⊆ Ec and some ε > 0. For every δ > 0 there exist∑N

i=1 λi1lAi∪BAi
≤ f + ε1lE such that

(6)

∫

X

(f + ε1lE)dv ≤
N∑

i=1

λiv(Ai ∪Bi) + δ,

where Ai ⊆ Ec and Bi ⊆ E for all 1 ≤ i ≤ N . Since,
∑N

i=1 λi1lAi
≤ f ,

∑N
i=1 λi

∫
X

1lAi
dv ≤∫

X
fdv. Eq. (6) implies,

∫

X

(f + ε1lE)dv −
∫

X

fdv ≤
N∑

i=1

λiv(Ai ∪Bi) + δ −
N∑

i=1

λiv̂(Ai) ≤

N∑
i=1

λiϕ(E,v̂)(Bi) + δ ≤ ε

∫

E

dϕ(E,v̂) + δ.

Since δ is arbitrarily small,
∫

X
(f + ε1lE)dv − ∫

X
fdv ≤ ε

∫
E

dϕ(E,v̂). As the right-hand

side does not depend on f and since
∫

E
dϕ(E,v̂) < ∞, the proof is complete. ¤
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The next example shows that the converse of Lemma 3 does not hold.

Example 5. Consider the capacity over the Borel σ-algebra over X = [0, 1] defined by

v(A) :=

{
1, {0} $ A,

0, otherwise.

Consider E = [1
2
, 1] and f = 1l{0}. The integral of f equals to 0, while

∫
X

(f +ε1lE) = 1

for every ε. Finally,
∫

E
dϕ(E,v̂) = 1.

Lemma 4. If for every E ∈ F , limε→0 ψE(ε) = 0, then v is loosely extendable.

Proof. Fix some E ∈ F . We show that if limε→0 ψE(ε) = 0, then
∫

E
dϕ(E,µ) < ∞ for

every µ ∈ LsCore(vEc). By Lemma 2 it implies that v is loosely extendable. If, on

the contrary,
∫

E
dϕ(E,µ) = ∞, then for every c > 0 there is

∑Nc

i=1 λi1lAi
≤ 1lE such that

1
c
≤ ∑Nc

i=1 λiϕ(E,µ)(Ai) ≤
∑Nc

i=1 λi

[
v(Ai ∪Bi)− v̂(Bi)

]
+ ε, where Bi ⊆ Ec.

Denote f =
∑Nc

i=1 λi1lBi
. We obtain 1

c
≤ ∫

X
f + 1lEdv − ∫

X
fdv + ε. Thus, 1 ≤∫

X
cf + c1lEdv− ∫

X
cfdv + cε. If ε is small enough so that cε < 1

2
, then for every c > 0,

we obtained a function cf such that PD(cf) ⊆ Ec and 1
2
≤ ∫

cf + c1lEdv−∫
cfdv which

contradicts the assumption. ¤

We summarize Lemmas 3 and 4 in the following theorem.

Theorem 2.
∫

E
dϕ(E,v̂) < ∞ for every E ∈ F implies limε→0 ψE(ε) = 0 for every E ∈ F ,

which implies that v is loosely extendable.

Define ṽ(f) = infε>0

∫
X

(f + ε1lPD(f)c)dv. Note that ṽ(f) ≤ v̂(f) for every f ∈ F+
∞(X).

We conclude this section with a diagram summarizing the relations obtained between

the various properties presented so far.
∫

E
dϕ(E,v̂) < ∞, ∀E ∈ F

®¶
limε→0 ψE(ε) = 0, ∀E ∈ F ====⇒

®¶

v is loosely extendable

ṽ(f) =
∫

X
fdv, ∀f ∈ F+

∞(X)

v̂(f) =
∫

X
fdv, ∀f ∈ F+

∞(X) if
∫

X dv<∞
⇐=========⇒

KS

∫
X

fdv = infµ∈LsCore(v)

∫
X

fdµ, ∀f ∈ F+
∞(X)
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6. The integral and large cores

Sharkey [10] introduced the definition of large core in the case where X is finite. v has

a large core if for every additive measure µ ∈ LsCore(ν) there is P ∈ Core(ν) such that

µ ≥ P ≥ ν. When X is finite, LsCore(ν) is always not empty. However, in the general

case this should be explicitly assumed.

Definition 5. A monotone set function ν has a large core iff LsCore(ν) is not empty

and if for every additive measure µ ∈ LsCore(ν) there is P ∈ Core(ν) such that µ ≥
P ≥ ν.

Azrieli and Lehrer [1] proved that if X is finite, then a capacity v has a large core if

and only if the integral w.r.t. v can be represented as the minimum of integrals w.r.t.

capacities in the core of v. Moreover, v has a large core if and only if the integral w.r.t.

v is additive w.r.t. constants.

Corollary 4. If v is a loosely extendable capacity and has a large core, then Corollary

2 can be restated as follows:
∫

X

fdv = inf
P∈Core(v)

∫

X

fdP

for every f ∈ F+
∞(X) such that inf{f(x); x ∈ PD(f)} > 0.

Remark 3. Example 4 shows that having a large core is not enough for representing an

integral, that is, being loosely extendable is necessary in the large core case as well.

Lemma 5. Assume that v is a loosely extendable capacity with a large core. Then∫
X

(f + c)dv =
∫

X
fdv + c for every c > 0 and f ∈ F+

∞(X) such that inf{f(x); x ∈
PD(f)} > 0.

Proof. Always,
∫

X
(f + c)dv ≥ ∫

X
fdv + c. On the other hand, given ε > 0 we can find

some P ∈ Core(v) such that
∫

X

(f + c)dv ≤
∫

X

(f + c)dP =

∫

X

fdP + c ≤
∫

X

fdv + c + ε.

Thus,
∫

X
(f + c)dv ≤ ∫

X
fdv + c. ¤

The next proposition shows the continuity of the integral w.r.t. capacities with large

cores.
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Proposition 3. Let v be a loosely extendable capacity with a large core. Then the integral

w.r.t. v is continuous over F+
∞(X). In particular, v̂(f) =

∫
X

fdv for all f ∈ F+
∞(X).

Proof. Consider f ∈ F+
∞(X) and, as before, define fn = 1l{x; f(x)≥ 1

n
}f for every n ∈ N.

Clearly, limn→∞
∫

X
fndv ≤ ∫

X
fdv.

For the other implication, fix ε > 0. There exist N ∈ N such that f ≤ fn + ε
2

for any

n > N , and there exist Pn ∈ Core(v) such that
∫

X
fnPn ≤

∫
X

fndv + ε
2
. We now have

that, for any n > N ,
∫

X

fdv ≤
∫

X

fdPn ≤
∫

X

fn +
ε

2
dPn =

∫

X

fndPn +
ε

2
≤

∫

X

fndv + ε.

Now, assume that {gn}n∈N ⊂ F+
∞(X) is such that gn → f (in the norm). For every

k ∈ N, fk ∈ B 1
k
(f), therefore, there exist N ∈ N such that gn ∈ B 2

k
(fk) for every n > N .

Thus, ∫

X

gndv ≤
∫

X

(fk +
2

k
)dv =

∫

X

fkdv +
2

k
,

that is

lim
n→∞

∫

X

gndv ≤ lim
k→∞

∫

X

fkdv =

∫

X

fdv.

Conversely, define gnk
:= 1l{x; gn(x)≥ 1

k
}gn. Again, for every k ∈ N, there exist N ∈ N such

that gn ∈ B 1
k
(f) for every n > N that is, gnk

∈ B 2
k
(f), for every n > N . Thus,

∫

X

gndv +
2

k
≥

∫

X

gnk
dv +

2

k
=

∫

X

(gnk
+

2

k
)dv ≥

∫

X

fdv.

Therefore,

lim
n→∞

∫

X

gndv ≥
∫

X

fdv.

Concluding that limn→∞
∫

X
gndv =

∫
X

fdv. ¤

Theorem 1 implies the following.

Corollary 5. Let v be a loosely extended capacity with a large core. Then,
∫

X

fdv = inf
P∈Core(v)

∫

X

fdP

for every f ∈ F+
∞(X). Furthermore,

∫
X

f + cdv =
∫

X
fdv + c for every f ∈ F+

∞(X) and

c > 0.
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7. Integral convergence theorems

7.1. The notion of “almost everywhere”. The analysis of the integral’s asymptotic

behavior resorts to the notion of almost everywhere w.r.t. a non-additive capacity v.

Definition 6. A property q over X is a function q : F → F that satisfies, q(A) =

A ∩ q(X) for all A ∈ F .

For example, let f, g : X → R+ be measurable functions. The function ef,g, defined

by ef,g(A) := {x ∈ A; f(x) = g(x)} for every A ⊆ X, is a property over X.

Definition 7 (Wang and Klir [11]). A property q is satisfied v-almost everywhere iff

v(q(X)c) = 0.

In the case where P is additive, if two functions f, g are P -almost surely equal, then

their integrals coincide. The next example shows that in the non-additive case a stronger

definition should be adopted in order to obtain integral equality.

Example 6. Consider the following capacity over X = {0, 1, 2}. Define

v(A) :=

{
1, {0} $ A,

0, otherwise.

Now define two functions,

f(x) =





2, x = 0,

1, x = 1,

0, x = 2,

and g(x) =





2, x = 0,

1, x = 1,

2, x = 2.

These functions coincide over a set of capacity 1 and differ over a set of capacity 0, thus

equal “almost everywhere” both according to the standard definition (the additive case)

and to the definition of Wang and Klir [11]. Nevertheless
∫

X

fdv = 1 < 2 =

∫

X

gdv.

Whenever two functions f and g are equal P -almost surely, then for every A ∈ F ,

P ({x ∈ A; f(x) = g(x)}) = P (A). The example shows that in the non-additive case

this is not necessarily so.

The next two lemmas examine the behavior of properties in two families of capacities.
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Lemma 6. Let v be a convex capacity and q a property, then v(q(X)) = 1 iff v(q(A)) =

v(A) for every A ∈ F .

Proof. Since q(A) ⊆ A, v(q(A)) ≤ v(A). Assume v(q(X)) = 1. Since v is convex we get,

v(A) + v(q(X)) ≤ v(A ∪ q(X)) + v(A ∩ q(X)) = v(q(X)) + v(q(A)).

Thus, v(A) ≤ v(q(A)) and we obtain v(q(A)) = v(A).

On the other hand, if v(q(A)) = v(A) for all A ∈ F , in particular v(q(X)) = v(X)

and the result follows. ¤

Definition 8. 1. A capacity is said to be totally balanced iff v(A) =
∫

X
1lAdv for all

A ∈ F .

2. The integral w.r.t. a capacity v is said to be additive w.r.t. constants iff
∫

X
f + cdv =∫

X
fdv + c for every measurable non-negative function f and c > 0.

Lemma 7. Assume that v is totally balanced and let q be a property such that v(q(X)) =

1. If the integral w.r.t. v is additive w.r.t. constants, then v(q(A)) = v(A) for all A ∈ F .

Proof. Assume that A ∈ F is such that v(q(A)) < v(A). Let f = 1lAq . Now
∫

X

(1lq(A) + 1)dv ≥ v(A) + v(q(X)) > v(q(A)) + 1 = 1 +

∫

X

1lq(A)dv,

implying that the integral is not additive w.r.t. constants. ¤

Note that a convex capacity satisfies the hypothesis of Lemma 7.

In order to obtain integral convergence theorems we adopt the following definition of

“almost everywhere”:

Definition 9. Property q is satisfied v-a.e. in X iff v(q(A)) = v(A) for every A ∈ F .

Note that the new definition implies both the standard definition of “almost everywhere”

and the definition by Wang and Klir [11].

The following lemma shows that if a property occurs almost everywhere w.r.t. a ca-

pacity v then it occurs almost everywhere w.r.t. the totally balanced cover v̂. It is easy

to verify that the converse does not always hold.

Lemma 8. If property q occurs v-a.e. then it occurs v̂-a.e.

Proof. For A ∈ F such that v̂(A) < ∞, for every ε > 0 there exist
∑N

k=1 λk1lAk
≤ 1lA such

that v̂(A) =
∫

X
1lAdv ≤ ∑N

k=1 λkv(Ak) + ε =
∑N

k=1 λkv(q(Ak)) + ε ≤ ∫
X

1lq(A)dv + ε =
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v̂(q(A)) + ε, therefore, v̂(A) ≤ v̂(q(A)). The other inequality is clear and we obtain the

desired result. If v̂(A) = ∞ than for every large L there exist
∑N

k=1 λk1lAk
≤ 1lA such

that
∑N

k=1 λkv(Ak) > L. From this point the proof is similar to the one above. ¤

7.2. Capacities that are continuous from below.

Definition 10. A monotone set function ν is continuous from below iff

lim
n→∞

ν(An) = ν
( ⋃

n∈N
An

)
whenever A1 ⊆ A2 ⊆ · · · .

Remark 4. Let ν be an extended monotone set function. Assume that {fn}n∈N is an

increasing sequence of non-negative measurable functions that converges ν-a.e. to a func-

tion f . That is, ν({x ∈ A; lim fn(x) = f(x)}) = nu(A), for every A ∈ F . If ν is

continuous from below, then for every A ∈ F with ν(A) < ∞, ε′ > 0 and δ > 0 there is

N ∈ N such that for every n > N , ν({x ∈ A; f(x)− fn(x) < δ}) > ν(A)− ε′.

The following is the non-additive version of the Levi monotone convergence theorem.

Theorem 3 (Monotonic convergence 1). Let v be a capacity. limn→∞
∫

X
fndv =

∫
X

fdv

for every increasing sequence of non-negative measurable functions {fn}n∈N converging

v-a.e. to a function f iff v̂ is continuous from below.

Proof. Assume that v is such a capacity that v̂ is continuous from below. Assume at

first that
∫

X
fdv < ∞. Since fn ≤ f , lim

∫
X

fndv ≤ ∫
X

fdv. We will show that for every

ε > 0, there exist M ∈ N such that for every n ≥ M ,
∫

X
fndv̂ >

∫
X

fdv̂ − ε, and by

Lemma 1 we will have that
∫

X
fndv ≥ ∫

X
fdv.

Fix ε > 0. There exist
∑N

k=1 λk1lAk
≤ f such that

∫

X

fdv̂ −
K∑

k=1

λkv̂(Ak) < ε.

denote by V := max{v̂(Ak); 1 ≤ k ≤ N}.
By Lemma 8 we have that {fn}n∈N converges v̂-a.e. to f . Applying Remark 4 to v̂,

A = Ak, ε′ = ε
Kλk

and δ = ε
V K

(k = 1, ..., K) one obtains an Nk ∈ N and a set Bk ⊆ Ak

that satisfy v̂(Bk) > v̂(Ak) − ε
Kλk

and f(x) − fn(x) < ε
K

for every x ∈ Bk and every

n ≥ Nk. Set M := max{N1, ..., NK}. Now, for every n ≥ M we get

∫

X

fndv̂ >

K∑

k=1

(
λk− ε

V K

)
v̂(Bk) ≥

K∑

k=1

λkv̂(Bk)−ε >

K∑

k=1

λk

(
v̂(Ak)− ε

Kλk

)
−ε >

∫

X

fdv̂−3ε.
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Since ε is arbitrarily small, the result follows.

Now, if f is not integrable, that is
∫

X
fdv = ∞, given a large L, there exist

∑K
k=1 λk1lAk

≤
f such that

K∑

k=1

λkv̂(Ak) > L.

The proof from this point is similar to the one above.

For the converse assume that v̂ is not continuous from below, that is there exist a

sequence {An}n∈N ⊂ F increasing to A such that limn v̂(An) < v̂(A). Since v̂ is totally

balanced,
∫

X
1lEdv̂ = v̂(E) for every E ∈ F , therefore limn

∫
X

1lAndv̂ <
∫

X
1lAdv̂. ¤

A conclusion from Theorem 3 is the non-additive version of the Fatou lemma.

Lemma 9 (Fatou).
∫

X
fndv ≤ M for all n ∈ N implies

∫
X

fdv ≤ M for every sequence

of non-negative measurable functions {fn}n∈N converging v-a.e. to a function f iff v̂ is

continuous from below.

The proof is presented below as a part of Theorem 5’s proof.

The integral’s continuity from below, as a set function over F , is an immediate conse-

quence of the monotonic convergence theorem.

Corollary 6. Let f be a non-negative measurable function, A ∈ F and {An}n∈N ⊆ F is

increasing to A. Then limn→∞
∫

An
fdv =

∫
A

fdv iff v̂ is continuous from below.

7.3. Large cores and convergence.

Lemma 10. If v is a capacity with a large core, then v̂ is a capacity with a large core.

Proof. v̂ is clearly a capacity since v̂(X) =
∫

X
dv =

∫
X

0dv + 1 = 1.

v̂(X) = 1, and by Corollary 1 we have that LsCore(v̂) is not empty. Now, fix µ ∈
LsCore(v̂), then µ ∈ LsCore(v). Since v has a large core, there exist some P ∈ Core(v)

such that µ ≥ P ≥ v. Given an arbitrary A ∈ F ,

v̂(A) =

∫

X

1lAdv ≤
∫

X

1lAdP = P (A).

Therefore, P ∈ Core(v̂). ¤

The following is a second version of a monotonic convergence theorem.
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Theorem 4 (Monotonic convergence 2). Assume that v is a loosely extendable capacity

and has a large core. Then limn→∞
∫

X
fndv =

∫
X

fdv for every increasing sequence

{fn}n∈N ⊆ F+
∞(X) converging to f ∈ F+

∞(X) over a set of capacity 1 iff v̂ is continuous

from below.

Proof. Assume that v̂ is continuous from below. By Lemma 10 the capacity v̂ satisfies

the conditions of Lemma 7 and so {fn}n∈N converges v̂-a.e. to f . Applying Theorem 3

and Lemma 1 we obtain,

lim
n→∞

∫

X

fndv = lim
n→∞

∫

X

fndv̂ =

∫

X

fdv̂ =

∫

X

fdv.

The converse implication is immediate. ¤

Theorem 5 (Dominated convergence). Assume that v is a loosely extendable capacity

having a large core. limn→∞
∫

X
fndv =

∫
X

fdv for every {fn}n∈N ⊆ F+
∞(X) converging

to f on a set of capacity 1 such that fn ≤ g for every n ∈ N where g ∈ F+
∞(X) iff v̂ is

continuous from below.

Proof. Assume that v̂ is continuous from below. Again, by Lemma 10 v̂ satisfies the

conditions of Lemma 7, thus {fn}n∈N converges v̂-a.e. to f . g ∈ F+
∞(X), that is, g is

integrable. f ≤ g v̂-a.e., thus f is integrable.

For every n ∈ N and x ∈ X, let

gn(x) := inf
k≥n

fk(x).

For every n ∈ N, gn is measurable since {x; gn(x) < c} =
⋃

k≥n{x; fk(x) < c}. Moreover,

0 ≤ gn ≤ fn, that is, ∫

X

gndv̂ ≤
∫

X

fndv̂

for every n ∈ N. Clearly, {gn}n∈N increases v̂ a.e. to f . Applying Theorem 3, we obtain

that ∫

X

fdv̂ = lim
n→∞

∫

X

gndv̂,

and from Lemma 1 we now have

lim
n→∞

∫

X

fndv = lim
n→∞

∫

X

fndv̂ ≥ lim
n→∞

∫

X

gndv̂ =

∫

X

fdv̂ =

∫

X

fdv.

Conversely, fix ε > 0. There exist an additive capacity P ∈ Core(v̂) such that∫
X

fdv̂ ≥ ∫
X

fdP − ε. For every n ∈ N, define An := {x ∈ X; |f(x) − fn(x)| < ε}.
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There exist N ∈ N such that
∫

Ac
n
gdP < ε for all n ≥ N . Now, for every n ≥ N

∫

X

fdv =

∫

X

fdv̂ ≥
∫

X

fdP − ε ≥
∫

An

fdP − ε ≥
∫

An

fndP − 2ε ≥

≥
∫

X

fndP − 3ε ≥
∫

X

fndv̂ − 3ε =

∫

X

fndv − 3ε.

Since ε is arbitrarily small, we get that
∫

X
fdv ≥ limn→∞

∫
X

fndv, and the theorem is

proved.

The other implications is obvious. ¤

8. Final comments

8.1. Infinite additive measures. Consider the case that a monotonic set function ν

need not be finite, and define the loose core of ν to be all additive (not necessarily

finite) measures greater than or equal to ν. In this case, given f ∈ F+
∞(X) such that

inf{f(x); x ∈ PD(f)} > 0, any additive measure in LsCore(vPD(f)) could be trivially

extended to an additive measure in LsCore(v), resulting in
∫

X

fdv = inf
µ∈LsCore(v)

∫

X

fdµ.

8.2. Dominated convergence without a large core. We have proven in section

7.3 that every loosely extendable capacity with a large core satisfies the dominated

convergence theorem. The following example shows that having a large core is not a

necessary condition for a capacity to satisfy the dominated convergence theorem.

Example 7. Recall the capacity v from Example 2. Although LsCore(v) is empty, we

will show that this capacity over N possesses the dominated convergence property.

Notice, that for any function f , we have
∫
N fdv =

∑
i∈N v({i})f(i). Suppose that

{fn}n∈N converges v-a.e. to f , and there exists some integrable g with fn ≤ g for all

integers n. In particular, {fn}n∈N converges to f pointwise.

Let ε > 0 and fix an integer K such that
∑

i>K v({i})g(i) < ε
4
. Let M be large enough

so that for each n > M ,

|fn(i)− f(i)| < ε

2
∑

i≤K v({i}) for all i ≤ K.
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To see that | ∫N fndv − ∫
N fdv| < ε for every n > M , notice that

∣∣∣∣
∫

N
fndv −

∫

N
fdv

∣∣∣∣ =

∣∣∣∣∣
∑

i∈N
v({i})fn(i)−

∑

i∈N
v({i})f(i)

∣∣∣∣∣ ≤
∑

i∈N
v({i}) |fn(i)− f(i)| =

∑
i≤K

v({i}) |fn(i)− f(i)|+
∑
i>K

v({i}) |fn(i)− f(i)| ≤ ε

2
+ 2

ε

4
= ε.

It would be nice to find a necessary and sufficient condition for capacities which have

such a convergence property.

8.3. Open problems. We leave open the question whether the converse of Theorem 2

is true. In other words, whether v is loosely extendable implies
∫

E
dϕ(E,v̂) < ∞ for every

E ∈ F .

Another question we leave open is whether, when v is loosely extendable,
∫

X
fdv =

infµ∈LsCore(v)

∫
X

fdµ for every f ∈ F+
∞(X).

References

[1] Azrieli, Y. and Lehrer, E. (2007) Extendable cooperative games, Journal of Public Economic The-

ory, 9, 1069-1078.

[2] Choquet, G. (1955) Theory of capacities, Ann. Inst. Fourier, 5, 131-295.

[3] Ekeland, I. and Temam, R. (1976) Convex analysis and variational problems, Elsevier, New York.

[4] Lehrer, E. (2005) A new integral for capacities, to appear in Economic Theory.

[5] Lehrer, E. (2006) Partially-specified probabilities: decisions and games, mimeo.

[6] Lovasz, L. (1983) Submodular functions and convexity, in: A. Bachem et al. (Eds.) Mathematical

programing: the state of the art. Springer-Verlag, Berlin, 235-257.

[7] von Neumann, J. and O. Morgenstern (1944) , Theory of games and economic behavior, Princeton

University Press.

[8] Li, J. and Song, J. (2005) Lebesgue theorems in non-additive measure theory, Fuzzy sets and

systems, 149, 543-548.

[9] Schmeidler, D. (1989) Subjective probabilities without additivity, Econometrica, 57, 571-587.

[10] Sharkey, W. W. (1982) Cooperative games with large cores, International Journal of Game Theory,

11, 175-182.

[11] Wang, Z. and Klir, G. J. (1992) Fuzzy measure theory, Plenum, New York.


