
University of Ostrava

Institute for Research and Applications of Fuzzy Modeling

A Neural Network Approach to the
Fuzzy Transform

Martin Štěpnička, Ondřej Polakovič

Research report No. 141

2009

Submitted/to appear:

Fuzzy Sets and Systems

Supported by:

Projects MSM6198898701 of the MŠMT ČR and DAR 1M0572 of the MŠMT ČR.

University of Ostrava
Institute for Research and Applications of Fuzzy Modeling

30. dubna 22, 701 03 Ostrava 1, Czech Republic

tel.: +420-59-7091401 fax: +420-59-6120478
e-mail: martin.stepnicka@osu.cz

A Neural Network Approach to the Fuzzy

Transform ?

Martin Štěpnička and Ondřej Polakovič

Institute for Research and Applications of Fuzzy Modeling, University of Ostrava,
30. dubna 22, 701 03 Ostrava 1, Czech Republic

Abstract

The paper deals with the F-transform technique which was introduced as a method
for an approximate representation of continuous functions. The same task is solved
by many methods from different areas. Neural networks also belong to techniques
which have been proved to be powerful for approximation objectives. They provide
us with many advantages, especially incremental way of learning parameters. The
paper inherits neural approaches to the F-transform method and presents experi-
ments justifying the proposed approach. Incremental way of determination of certain
parameters of the F-transform method which were up to now given by batch for-
mula enriches possible areas of application of the method by fast on-line processes.
Moreover, the neural approach is demonstrated to be an appropriate one for finding
such fuzzy partition of a domain which respects better a given set of measured sam-
ples which are to be approximated by a continuous function with no predetermined
shape.

Key words: Fuzzy approximation, Fuzzy transform, Neural network, RBF,
Learning
1991 MSC: 68T30, 68T35, 68T37

1 Introduction

Fuzzy approximation is a quickly developing mathematical branch aiming at
approximation of some dependencies by means of the fuzzy set theory and the
fuzzy logic in broader sense. We can find its roots in the Takagi-Sugeno fuzzy

? We gratefully acknowledge partial support of the projects MSM6198898701 and
DAR 1M0572 of the MŠMT ČR.

Preprint submitted to Elsevier 28 April 2009

rule based systems [16] and in works aiming at approximation capabilities of
fuzzy rule based systems, see [1,6].

Motivation of the paper is to introduce the study of relationships between
fuzzy approximation methods and other approximation techniques. It deals
with a particular fuzzy approximation method called the fuzzy transform (F-
transform) [10,11] and neural networks as another soft computing area which
has been many times demonstrated to be an appropriate tool for approxima-
tion tasks.

By studying both approaches together we expect:

• development of new algorithms (known in neural networks) for fuzzy ap-
proximation

• enriching both branches by already done results from each other
• possible improvements
• answering natural question about similarities and similar problems in both

branches
• inheriting theoretical results e.g. conditions of universal approximations etc.

At this first stage of our investigation, we try to look at the fuzzy transform
from a neural network point of view to open this problematic, inherit neural
network algorithms, investigate possible improvements, implement an incre-
mental type of learning and build a bridge between both branches for next
theoretical results and algorithmic improvements.

Structure of the paper is as follows. Section 2 focuses on the fuzzy transform,
recalls basic definitions and facts about the fuzzy transform and its inver-
sion and introduces some proved direct generalizations. Section ?? is devoted
to radial basis function neural networks and presents a network performing
the inverse fuzzy transform. The main aim of Section 3 is to inherit some
algorithms from the neural network area and apply them to the F-transform.
Good behaviour of the proposed algorithm is then justified by experiments in
Section 4 and discussed in Section 5.

2 Fuzzy transform

This sections is devoted to the fuzzy transform (F-transform for short) [10,11]
which is a method for an approximation of continuous functions.

We will assume an interval [a, b] to be a common domain of all functions in the
latter. This domain is partitioned by a fuzzy partition consisting of fuzzy sets.
For purposes of further usage of the fuzzy transform we restrict our choice of

2

fuzzy partitions to those which are comprised of the so called basic functions.

Definition 1 Let c0 = c1 < · · · < cn = cn+1 be fixed nodes within [a, b] such
that c1 = a, cn = b and n ≥ 2. We say that fuzzy sets A1, . . . ,An are basic
functions and form a fuzzy partition of [a, b] if the following conditions

(i) Ai : [a, b] → [0, 1], Ai(ci) = 1, i = 1, . . . , n;
(ii) Ai(x) = 0 if x 6∈ (ci−1, ci+1);
(iii) Ai is continuous;
(iv) Ai, i = 2, . . . , n, strictly increases on [ci−1, ci] and Ai, i = 1, . . . , n − 1,

strictly decreases on [ci, ci+1];
(v)

∑n
i=1 Ai(x) = 1, for all x ∈ [a, b];

hold. If the nodes c1, . . . , cn are given equidistantly i.e. ci = a + h(i − 1), i =
1, . . . , n where h = (b−a)/(n− 1) and the following two additional properties
are met:

(vi) Ai(ci − x) = Ai(ci + x), for all x ∈ [0, h], i = 2, . . . , n− 1, n > 2,
(vii) Ai+1(x) = Ai(x− h), for all x ∈ [a + h, b], i = 2, . . . , n− 2, n > 2,

we call the fuzzy partition uniform.

The following lemma claims that the definite integral of a basic function does
not depend on its shape.

Lemma 2 [11] Let a uniform fuzzy partition of [a, b] be given by basic func-
tions A1, . . . ,An, n > 2. Then

∫ b

a
A1(x)dx =

∫ b

a
An(x)dx =

h

2
(1)

and for i = 2, . . . , n− 1 ∫ b

a
Ai(x)dx = h. (2)

Lemma 2 can be generalized for basic functions determining a fuzzy partition
which is not uniform.

Lemma 3 Let a fuzzy partition of [a, b] be given by basic functions Ai, . . . ,An, n >
2. Denote hi = ci+1 − ci. If the following condition

(vi’) Ai(ci + x) = Ai+1(ci+1 − x), x ∈ [0, hi]

holds for i = 1, . . . , n− 1 then

∫ b

a
Ai(x)dx =

(hi−1 + hi)

2
. (3)

3

PROOF. First of all let us express the value hi with help of integrals:

hi =
∫ ci+1

ci

1dx =
∫ ci+1

ci

n∑

k=1

Ak(x)dx =
∫ ci+1

ci

Ai(x)dx +
∫ ci+1

ci

Ai+1(x)dx. (4)

From assumption (vi’) we immediately get

∫ ci+1

ci

Ai(x)dx =
∫ ci+1

ci

Ai+1(x)dx (5)

and because of (4) we can state that both sides of equation (5) are equal to
hi/2 which proves the lemma. 2

It is easy to see that Lemma 3 generalizes Lemma 2 which is a special case
because conditions of uniformity of a fuzzy partition imply condition (vi’) and
obviously h0 = hn = 0. Let us consider the right hand side of (vi’). Then due
to properties of uniform fuzzy partition we can write

Ai+1(ci − x) = Ai(ci+1 − x− h) = Ai(ci − x) = Ai(ci + x)

which means that assumption (vi’) is fulfilled.

Let C([a, b]) stands for the space of continuous functions on [a, b] and let
f ∈ C([a, b]). Let us recall the definition of the fuzzy transform of f .

Definition 4 [10] Let A1, . . . ,An be basic functions which form a fuzzy par-
tition on [a, b] and f be an arbitrary function from C([a, b]). We say that the
n-tuple of real numbers [F1, . . . , Fn] given by

Fi =

∫ b
a f(x)Ai(x)dx

∫ b
a Ai(x)dx

, i = 1, . . . , n (6)

is the fuzzy transform (F-transform) of f w.r.t. the given fuzzy partition and
Fi, i = 1, . . . , n are the components of the F-transform.

Remark 5 Due to Lemma 3 we can simplify the computation of the F-transform
given by formula (6) and write

Fi =
2

(hi−1 + hi)

∫ b

a
f(x)Ai(x)dx (7)

Let us recall a lemma claiming that the definite integral of f can be computed
with help of the F-transform which can be useful in further numerical methods
based on this approximation model.

4

Lemma 6 [10] Let a uniform fuzzy partition of [a, b] be given by basic func-
tions Ai, . . . ,An, n > 2 and let f ∈ C([a, b]). Then

∫ b

a
f(x)dx = h(

1

2
F1 + F2 + · · ·+ Fn−1 +

1

2
Fn) (8)

where Fi, i = 1, . . . , n are the components of the F-transform w.r.t. the given
fuzzy partition.

Due to Lemma 3 we can formulate the following generalization.

Lemma 7 Let a fuzzy partition of [a, b] be given by basic functions Ai, . . . ,An, n >
2 which fulfill condition (vi’) and let f ∈ C([a, b]). Then

∫ b

a
f(x)dx =

1

2

n∑

i=1

((hi−1 + hi)Fi) (9)

where Fi, i = 1, . . . , n are the components of the F-transform w.r.t. the given
fuzzy partition.

PROOF. By direct computation one gets

∫ b

a
f(x)dx =

∫ b

a
f(x)

n∑

i=1

Ai(x)dx =
n∑

i=1

∫ b

a
f(x)Ai(x)dx

which due to Lemma 3 (see Remark 5) equals to

n∑

i=1

(
(hi−1 + hi)

2
Fi

)

which proves the lemma. 2

The F-transform serves as a discrete approximate representation of a given
function. It has been shown that it is an appropriate approximate representa-
tion by proving the fact that its components approximately equal to function
values at respective nodes.

Lemma 8 [10] Let a uniform fuzzy partition of [a, b] be given by basic func-
tions Ai, . . . ,An, n > 2 and let f ∈ C([a, b]). Then

Fi = f(ci) + O(h2), i = 1, . . . , n (10)

where Fi, i = 1, . . . , n are the components of the F-transform w.r.t. the given
fuzzy partition.

5

Analogously to the previous results, we can state the following lemma general-
izing this property even for the F-transform w.r.t. basic functions comprising
a non-uniform fuzzy partition.

Lemma 9 Let a fuzzy partition of [a, b] be given by basic functions Ai, . . . ,An, n >
2 which fulfill condition (vi’) and let f ∈ C([a, b]). Then

Fi = f(ci) + O(h2
i−1 + h2

i), i = 1, . . . , n (11)

where Fi, i = 1, . . . , n are the components of the F-transform w.r.t. the given
fuzzy partition.

PROOF. To prove the lemma we use the technique already used in [10] to
prove Lemma 8.

Fi =
2

(hi−1 + hi)

(∫ ci

ci−1

f(x)Ai(x)dx +
∫ ci+1

ci

f(x)Ai(x)dx

)

and to both integrals on the right hand side we apply the trapezium formula
i.e.

Fi =
2

(hi−1 + hi)

hi−1

2
(f(ci−1)Ai(ci−1) + f(ci)Ai(ci)) + O(h2

i−1)

+
2

(hi−1 + hi)

hi

2
(f(ci)Ai(ci) + f(ci+1)Ai(ci+1)) + O(h2

i) =

hi−1

(hi−1 + hi)
f(ci) +

hi

(hi−1 + hi)
f(ci) + O(h2

i−1 + h2
i) =

= f(ci) + O(h2
i−1 + h2

i).

2

The F-transform is a discrete approximate representation of f which can re-
place it in complex numerical computations. Let us recall the following defin-
ition of the inverse F-transform which maps the discrete representation back
to the space of continuous functions.

Definition 10 Let A1, . . . ,An be basic functions and [F1, . . . , Fn] be the F-
transform of a function f w.r.t. the given fuzzy partition. Then function

fF,n(x) =
n∑

i=1

FiAi(x) (12)

is called the inverse F-transform

6

The universal approximation property and the uniform convergence of a se-
quence of the F-transforms to the original approximated function have been
proven as well, see [11].

If we deal with an approximation of a function it is necessary to distinguish
the approximation among other possible ones. This is guaranteed by a mini-
mization of a certain criterion which defines a closeness of an original function
to its approximation.

Assume, that the basic functions are fixed. In [10], there was an error function
E : Rn → R+ given as follows

E(Q1, . . . , Qn) =
∫ b

a

(
n∑

i=1

(f(x)−Qi)
2Ai(x)

)
dx, Qi ∈ R (13)

proposed to measure the quality of a discrete approximation of a function.
By direct computation, one can check that the error function E called piece-
wise integral least square criterion[10] is minimized by the components of the
F-transform Fi i.e. E(Q1, . . . , Qn) ≤ E(F1, . . . , Fn) for Fi given by (6) and
arbitrary Qi ∈ R. Advantages of criterion (13) were discussed, e.g. in [12,15].

Usually in practical situations, function f is not given analytically and we
are provided only with a set of, say measured, samples (xk, f(xk)) where k =
1, . . . , K and n << K, in principle. For this case, formula (6) defining the
components is modified as follows

Fi =

∑K
k=1 f(xk)Ai(xk)∑K

k=1 Ai(xk)
, i = 1, . . . , n (14)

and sometimes we talk about so called discrete F-transform.

In the case of the discrete F-transform, criterion (13) is modified to the fol-
lowing one

E(Q1, . . . , Qn) =
K∑

k=1

Ek(Q1, . . . , Qn) (15)

where

Ek(Q1, . . . , Qn) =
n∑

i=1

(f(xk)−Qi)
2Ai(xk), Qi ∈ R. (16)

for k = 1, . . . , K.

And again, it has been proved that the (discrete) F-transform components
given by (14) minimize criterion (15)-(16). For proofs and details we refer to
[11].

7

3 Fuzzy transform as an RBF neural network

Compared to fuzzy techniques, neural nets are usually implemented as black
boxes but they also have advantages such as e.g. an algorithmic approach to
an identification of a model or incremental (on-line) learning algorithms which
can be very useful for approximation tasks in various applications [8].

Basic functions Ai, i = 1, . . . , n partitioning the domain [a, b] can be viewed (in
the neural network terminology) as local units. Let us consider RBF (Radial
Basis Function) one hidden layer neural nets with local units in the hidden
layer and with one linear unit (performing the identity activation function) in
the output layer.

Usually, RBF neural networks deal with a continuous non-increasing activation
function A : R+ → [0, 1] and the inner potential is given by the following
formula

ξi(x) =
||x− ci||

hi

(17)

where x ∈ Rm is an input vector, ci ∈ Rm is a vector determining center of
the i-th unit and finally hi ∈ R+ is a parameter determining the width of the
i-th unit. For more details we refer to [2,3,5,14].

In the latter, we restrict our focus on the case m = 1 for a simplified vi-
sualization. The above displayed RBF neural network is depicted on Figure
1.

Fig. 1. One hidden layer RBF neural network with a linear unit in the output layer

The basic functions from Definition 1 can be constructed in the presented
RBF neural network way. For instance, if we take A(z) = (1− z) ∧ 0, z ∈ R
then it is easy to check that

Ai(x) = A (ξi(x)) (18)

8

where Ai, i = 1, . . . , n are triangular shaped basic functions determining a
uniform fuzzy partition i.e. h = hi for i = 1, . . . , n−1. Analogously, if we take

A(z) =





1
2
(cos (Πz) + 1) z ≤ 1,

0 otherwise
(19)

which is for z ∈ R+ obviously a non-increasing function then one can again
check that equality (18) holds for sinusoidal shaped basic functions Ai, i =
1, . . . , n. So, the neural network depicted on Figure 1 may perform the inverse
F-transform function for in case of appropriately chosen parameters.

3.1 Learning algorithm

The most important feature of neural networks is hidden in the possibility to
learn or tune distinguish parameters, especially incrementally. Otherwise the
neural network would serve just as a visualization, as in case of the F-transform
and the neural network on Figure 1

In the terminology of the neural nets, the computation of the components
of the F-transform Fi according to (14) is called off-line (or batch) learning.
However, for certain applications incremental learning algorithms have to be
used [8], especially for on-line identification problems where we have to avoid
complete rebuilding of a model because of new measurements which could
yield high computational efforts.

From the original definitions we keep only the inverse F-transform formula
which is performed by the RBF neural net displayed on Figure 1 and criterion
(15)-(16) which is to be minimized. Formula (14) defining the F-transform
components will be replaced by an on-line algorithm. For this purpose, we
adopt the delta rule which modifies weights (components Fi in this case) after
each new sample (xk, f(xk)) is involved. The gradient descent method as a
standard tool for finding the delta is used.

To minimize the error function E(Q1, . . . , Qn) =
∑K

k=1 Ek(Q1, . . . , Qn) where
Ek are given by (16), we differentiate

∂Ek

∂Qi

, for i = 1, . . . , n (20)

which is
∂Ek

∂Qi

= 2A (ξi(xk)) (f(xk)−Qi) (21)

where

ξi(xk) =
|xk − ci|

h
(22)

9

and hence the delta rule is as given follows

F
(k)
i = F

(k−1)
i + θ1(f(xk)− F

(k−1)
i)A (ξi(xk)) (23)

where 0 < θ1 ≤ 1 is a learning coefficient and F
(k)
i is the i-th component of

the F-transform after k samples involved where k = 1, . . . , K.

Remark 11 Notice, that although we use standard RBF neural network and
standard neural tools like the gradient descent method together with the delta
rule, the error function which is minimized is different compared to usual ap-
proaches. We do not compare function values f(xk) with the outputs of the

network but with its weights F
(k−1)
i . This is a significant difference which is

inherited from the F-transform to keep its properties.

3.2 Learning of other parameters

The construction of the basic functions can be the key issue for the results
of the approximation. In general, one can hardly expect that the uniform
distribution of the basic functions of the same width would provide us with
the best results but on the other hand, the basic functions cannot be chosen
arbitrarily and some cluster analysis would have to be used. Therefore, in most
applications, the uniform fuzzy partition has been chosen. We will discuss the
possibility of the neural approach to the fuzzy partition construction.

The nonsymmetric basic functions are functions of one variable x and three
parameters ci−1, ci, ci+1. Therefore, in the latter, we will again use the notation
from the F-transform since it is shorter:

Ai(x) = A(x, ci−1, ci, ci+1) (24)

for i = 1, . . . , n.

For instance, nonuniform triangular shaped basic functions are given by

Ai(x) =





(x−ci−1)
ci−ci−1

x ∈ [ci−1, ci]

(ci+1−x)
ci+1−ci

x ∈ [ci, ci+1]

0 otherwise

(25)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn and nonuniform sinusoidal

10

shaped basic functions are given by

Ai(x) =





1
2

(
cos

(
Π(x−ci)
(ci−ci−1)

)
+ 1

)
x ∈ [ci−1, ci]

1
2

(
cos

(
Π(x−ci)
(ci+1−ci)

)
+ 1

)
x ∈ [ci, ci+1]

0 otherwise

(26)

where i = 0, . . . , n + 1 and c0 = c1, cn+1 = cn.

For a given shape of basic functions the centroids ci for i = 1, . . . , n already
completely specify the fuzzy partition. The task is to tune the centroids. Again,
let us use the advantage of incremental self-organizing (unsupervised) algo-
rithms already developed for neural networks and adopt the k-means clustering
for RBF neural networks, see [9,14].

The resulting algorithm using both, the self-organizing method for determining
a distribution of the nodes ci and the gradient descent method for adapting
the components Fi will be as follows.

Algorithm:

(27)

FOR k := 1 TO K DO BEGIN

j = argmini=1,...,n{|xk − c
(k−1)
i |};

FOR i := 1 TO n DO BEGIN

IF i = j AND j /∈ {1, n} THEN

c
(k)
i := c

(k−1)
i + θ2(xk − c

(k−1)
i)

ELSE

c
(k)
i := c

(k−1)
i ;

F
(k)
i = F

(k−1)
i + θ1(f(xk)− F

(k)
i)Ai(xk);

END;

END.

The inputs F
(0)
i for i = 1, . . . , n to the algorithm described above are small

random numbers and c
(0)
i for i = 0, . . . , n + 1 are distributed equidistantly on

the domain and keeping the conditions c
(0)
0 = c

(0)
1 = a and c(0)

n = c
(0)
n+1 = b.

The algorithm is independent on the shape of the basic functions. In its first
part, it searches for the closest centroid to an actual incoming value xk. The
chosen centroid is then shifted unless it is a corner centroid c

(k−1)
1 or c(k−1)

n .
Then the delta rule formula is applied to each component of the F-transform
but because of the influence of the basic function Ai weighting the formula
only two neighboring components are modified.

11

4 Experiments

Let us consider a function f given by

f(x) = 2e(−40(x−0.5)) − 1 (28)

on a domain [a, b] = [0, 1]. Function (28) has been sampled to get a training
set (xk, f(xk)) at randomly chosen nodes xk where k = 1, . . . , K = 100. For
simplicity, only one learning coefficient θ = θ1 = θ2 has been considered.

Obviously, incremental learning (23) cannot reach the accuracy obtained in
case when the components are given by original formula (14). The components
given by the delta rule only tend to the optimal ones given by (14).

On the other hand, by resulting algorithm (27) which besides the components
also modifies the distribution of the nodes ci significantly better results have
been achieved. It is impossible to measure the accuracy of the approximations
by criterion (15)-(16) since particular errors are weighted by the basic func-
tions which are different for both approximations. So, the simple normed least
square criterion let

Error = 100
1

K

K∑

k=1

(f̂(xk)− f(xk))
2

(max f(xk)−min f(xk))
(29)

where f̂ is the approximate output, have been used to measure the accuracy.

The proposed neural approach provided very often even better than the origi-
nal batch formula. For instance, for n = 10 the original approach gives results
with 0.523 error for the triangular shaped basic functions and 0.462 for the
sinusoidal shaped basic functions. The neural approach gives always different
errors depending on random generation of F

(0)
i and the choice of θ but in gen-

eral, oscillating between 0.457 and 0.966 depending on different θ coefficient
or methods varying the learning coefficient.

The advantage of shifting centroid will play the more important role the more
basic functions we use. For the case of n = 7 and sinusoidal shaped basic
functions, in which the original batch formula gives error 1.227, the neural
approach returns much better results, see Table 1.

Similar result were obtained for the other combinations of number n and θ.
In general, it can be stated, that for smaller numbers of the basic functions
the advantage of the neural network approach of shifting the centroids can
compensate the the higher impreciseness caused by the incremental character
of the algorithm.

12

Learning coefficient θ Error

0.6 0.669

0.7 0.618

0.8 0.586
Table 1
Table of errors of the proposed neural approach, n = 7.

(a) Original F-transform, uniform
fuzzy partition comprised from n = 8
sinusoidal shaped basic functions.

(b) Proposed neural improvement of
the F-transform, fuzzy partition com-
prised from n = 8 sinusoidal shaped
basic functions.

(c) Original F-transform, uniform
fuzzy partition comprised from n = 9
sinusoidal shaped basic functions.

(d) Proposed neural improvement of
the F-transform, fuzzy partition com-
prised from n = 8 sinusoidal shaped
basic functions.

Fig. 2. Samples of function f given by (28) and its approximations by the inverse
F-transform and by the proposed neural improvement of the fuzzy transform with
learning coefficient θ = 0.8.

Due to Lemma 6 we can use the F-transform technique to very fast and com-
putationally simple numerical evaluation of the definite integral of f . Due to
Lemma 7 we can analogously use the F-transform w.r.t. non-uniform fuzzy
partitions so, even the incremental variant with centroids shifting can be con-
sidered.

Again, function (28) has been considered. Its definite integral is according to
adaptive recursive Simpson’s method implemented in MATLABr [4] equal to
−0.440 (with the tolerance responsiveness toll = 10−6 certifying a very high
accuracy, for details see [4]). The F-transform gives numerical definite integral
equal to −0.455 for n = 10 sinusoidal shaped basic functions and equal to

13

−0.479 for n = 7 sinusoidal shaped basic functions. The neural improvement
of the F-transform returns again always a bit different integral because of
random start setting but of a very high preciseness, see Table 2.

Remark 12 Note, that the numerical integral of function f has been computed
by MATLAB using its analytical description (28) while the F-transform either
in batch or neural incremental version used only a set of 100 random samples.

Learning coefficient θ MATLAB F-transform Neural F-transform

0.6 -0.440 -0.479 in (-0.459, -0.457)

0.7 -0.440 -0.479 in (-0.456, -0.455)

0.8 -0.440 -0.479 in (-0.454, -0.454)
Table 2
Numerical integrals by MATLAB, the fuzzy transform and the proposed neural
approach to the fuzzy transform, n = 7.

Even for the case of n = 10 sinusoidal shaped basic functions, neural algorithm
(27) gives again numerical integral based on Lemma 7 which is always closer to
the value −0.440, than the integral computed with help of the original formula
for the fuzzy transform and based on Lemma 6, see Table 3.

Learning coefficient θ MATLAB F-transform Neural F-transform

0.6 -0.440 -0.455 in (-0.447, -0.445)

0.7 -0.440 -0.455 in (-0.442, -0.441)

0.8 -0.440 -0.455 in (-0.438, -0.437)
Table 3
Numerical integrals by MATLAB, the fuzzy transform and the proposed neural
approach to the fuzzy transform, n = 10.

It can be stated, that the advantage of shifted centroids is even stronger in
numerical integration no matter that the approximation was obtained incre-
mentally.

5 Discussion

We have recalled the F-transform technique as a robust fuzzy approxima-
tion method as well as the RBF neural networks as appropriate tools for an
approximation of functions. We have shown that the inverse F-transform map-
ping can be realized by a certain RBF neural network. The difference in both
methods is in learning of parameters especially the components Fi.

We have introduced a computationally cheap delta rule based on the gradient

14

descent method which determines the components incrementally. It is an obvi-
ous computational advantage and for some (especially real-time) applications
even a necessary condition [8].

Moreover, we can analogously adopt other approaches and techniques already
developed in the neural network area. One of them, unsupervised k-means
clustering for determining an appropriate distribution of nodes ci for non-
uniform fuzzy partition, has been implemented to increase the approximation
accuracy of the model.

Better results could be obtained by an off-line cluster analysis and afterwards
by applying the batch formula for the components. Incremental algorithms
can hardly compete with batch ones in accuracy. On the other hand, from the
computational complexity point of view it does not have to be always efficient
and therefore only uniform fuzzy partitions have been used so far.

Experimental part of the paper justified the suggested approach. For lower
numbers of basic functions, the proposed algorithm provided better results
then the original batch F-transform due to the advantage of shifting the cen-
troids. Moreover, due to Lemma 7 introduced in Section 2, definite integral
of functions can be computed with help of the F-transform w.r.t non-uniform
fuzzy partitions. Sections 4 demonstrated that the usefulness of the suggested
approach which provides us with a powerful incremental tool for an accurate
approximation of a function as well as for a precise and computationally cheap
numerical integration of a sampled function.

Acknowledgements

The authors would like to express their thanks to anonymous referees for their
valuable comments which helped to improve the paper.

References

[1] J. Buckley and Y. Hayashi, Fuzzy input-output controllers are universal
approximators, Fuzzy Sets and Systems 58 (1993) 273-278.

[2] D. Coufal, Radial implicative fuzzy systems, in: Proceedings of the FUZZ-
IEEE’05, Nevada, Reno, 2005 963-968.

[3] D. Coufal, Radial implicative fuzzy inference systems, PhD-thesis, University
of Pardubice, 2003.

15

[4] W. Gander and W. Gautschi, Adaptive Quadrature - Revisited, BIT 40(1)
(2000) 84-101.

[5] S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition.
Prentice Hall, Upper Saddle River, 1998.

[6] B. Kosko, Fuzzy systems as universal approximators, in: Proceedings of the
FUZZ-IEEE’92, California, San-Diego, 1992 1153-1162.

[7] V. Kurková, Approximation of functions by neural networks, in: V. Mař́ık, O.
Štěpánková and J. Lažanský, (Ed.), Artificial Intelligence vol. 4, Academia,
Prague, in Czech 2003 254-273.

[8] E. Lughofer, Data-driven incremental learning of Takagi-Sugeno fuzzy models,
PhD-Thesis, University Linz, Department of Knowledge-Based Mathematical
Systems 2005.

[9] J. Moody and C. Darken, Fats adaptive k-means clustering: some empirical
results, in: Proceedings of the IJCNN’90 Volume 2, California, San Diego, pp.
233-238.

[10] I. Perfilieva, Fuzzy approach to solution of differential equations with imprecise
data: Application to reef growth problem, in: R.V. Demicco and G. J. Klir,
(Ed.), Fuzzy Logic in Geology, Academic Press, Amsterdam, 2003 275-300.

[11] I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and
Systems 157 (2006) 993-1023.

[12] I. Perfilieva and R. Valášek, Fuzzy transforms in removing noise, in: B. Reusch,
(Ed.), Computational Intelligence, Theory and Applications (Advances in Soft
Computing), Springer-Verlag, Berlin, 2005 225-236.

[13] E.H. Ruspini, A new approach to clustering, Inform. and Control 15 (1969)
22-32.

[14] J. Š́ıma and R. Neruda, Theoretical Problems of Neural Networks, Matfyzpres,
Prague, in Czech, 1996.

[15] M. Štěpnička and R. Valášek, Numerical solution of partial differential equations
with help of fuzzy transform, in: Proceedings of the FUZZ-IEEE’05, Nevada,
Reno, 2005 1104-1109.

[16] T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications
to modeling and control, IEEE Transactions on Systems, Man and Cybernetics
15 (1985) 116-132.

16

