
Fuzzy Sets and Systems 160 (2009) 2224–2240
www.elsevier.com/locate/fss

FTMnodes: Fuzzy tree mining based on partial inclusion

F. Del Razo Lopezc, A. Laurenta,∗, P. Ponceletb, M. Teisseirea

aLIRMM, CNRS UMR 5506, Univ. Montpellier 2, France
bLGI2P, EMA, France

cInstituto Tecnológico de Toluca, Mexico

Available online 26 February 2009

Abstract

Mining frequent patterns from huge databases have been addressed for many years and results have been applied to many fields,
including banking, marketing, biology, health, etc. Fuzzy approaches have been proposed in order to soften the constraints on the
patterns found by the algorithms. However, when dealing with complex databases such as tree databases (as it is for instance the
case for XML databases), only a few methods have been proposed in order to handle soft constraints in discovering the frequent
subtrees from a forest of trees. Such algorithms can hardly deal with real data in a soft manner. Indeed, they consider a subtree as
fully included in the super-tree, meaning that all the nodes must appear. In this paper, we extend this definition to fuzzy inclusion
based on the idea that a tree is included to a certain degree within another one. This fuzzy degree being correlated to the number of
matching nodes. We propose the FTMnodes method together with the associated definitions, and we report the experiments lead on
synthetical and real databases, showing the interest of our approach.
© 2009 Elsevier B.V. All rights reserved.

Keywords: Semi-structured data; Tree mining; Tree inclusion; Soft inclusion

1. Introduction

Tree mining is a subfield of data mining aiming at discovering automatically all the subtrees that appear frequently
in a database of trees. Also known as structured data mining, this research area has several applications, including for
example phylogeny, or the automatic discovery of mediator schemas from XML databases.

Indeed, trees are now one of the major medias for hierarchical data exchanges, using the semi-structured XML
format. For instance, DBLP1 references [1] are stored using the XML format. Each entry of the database is a tree
describing a paper published in a DBLP linked conference or journal. Fig. 1 shows the typical form of such trees.

Mining such databases allow us to get information about how the data are structured, thus providing clues to query
them.

The background in this research is mainly constituted by the work by Asai et al. and Zaki et al. [2–6]. These work
address the problem of tree mining considering several ways to define when a tree S is included within another one T.
Inclusion is then decided depending on the way ancestry and brotherhood are considered. In this respect, the authors

∗Corresponding author.
E-mail addresses: delrazo@ittoluca.edu.mx (F. Del Razo Lopez), laurent@lirmm.fr (A. Laurent), pascal.poncelet@ema.fr (P. Poncelet),

teisseire@lirmm.fr (M. Teisseire).
1 Digital Bibliography & Library Project.

0165-0114/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2009.02.015

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2225

article

ee authorauthor title journal volume month year url cdrom

Fig. 1. Form of the DBLP trees.

AA

CB

S

A

C

A

CB

B

D

S

D B C D
D

T
T

Fig. 2. Traditional tree inclusion: (a) with connex nodes and (b) with intermediate nodes.

distinguish between approaches where (i) either all the pairs of connex nodes in the tree S must be found in T with no
intermediate node, (ii) or some intermediate nodes are accepted. Fig. 2 illustrates this difference.

The work from the literature is then twofolded, considering both:

• the representation of the trees and
• the extraction of frequent subtrees.

It should be noted that designing efficient algorithms to tackle the problem of extracting frequent subtrees is highly
correlated to the representation of the trees, as this representation may help scanning the trees. Usually, the process of
extracting frequent subtrees is based on the a priori approach [7], which is a recursive process. It can be divided into
the following two steps: for each size of trees (i) generation of candidates and (ii) validation of candidates within the
database. Roughly speaking, a candidate is a tree that is considered as being potentially frequent. Basically, the well-
known method applied for tree mining performs by building the candidates of size k from the frequent subtrees of size
k−1. However, all the existingmethods consider that a tree is or is not includedwithin another one, which is definitively
too restrictive to be efficient and relevant. For example, when building a mediator schemata we must extract schemas
from several databases and with a too strict inclusion, the resulting mediator schema will be empty and useless. The
problem would be the same when dealing with XML queries, it is obvious that if we do not relax some constraints we
will not be able to extract frequent substructures. So, we first propose the concept of fuzzy tree mining, which has been
introduced in [8]. This concept has been detailed in [9], where we have defined a fuzzy ancestor-descendant relation
(fuzzy vertical path). In this paper, we consider another way to softenize the tree inclusion definition by considering
that some nodes may be discarded (e.g. partial inclusion). In classical approaches, all the nodes of a subtree S must
be included in a tree T if S is included in T. For instance, Fig. 3 shows a tree S that will not be considered as being
included in T. However, we argue that this is too restrictive when mining data from the real world where imperfections
are often present. For instance, in Fig. 3 S has 75% of its nodes included in T [10]. Furthermore, an other challenging
part of our work is that we want to remain efficient, in the framework of fuzzy data mining.

The paper is organized as follows: Section 2 recalls the existing work on tree mining and our previous work on
dealing with fuzzy tree mining. Section 3 introduces the necessary definitions for dealing with partial inclusion.
Section 4 introduces the algorithms we design for extracting frequent subtrees from a tree database in a soft man-
ner by considering partial inclusion. Conducted experiments both on synthetical and real databases are reported in
Section 5. Finally, Section 6 concludes this work and presents our future working directions.

2226 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

A

C

F

B

A

D

S

EC E

T

Fig. 3. Partial inclusion.

2. Background

In this section, we recall, from the literature and from previous work, the basic definitions of tree mining and the
ways trees can be represented.

2.1. Tree mining

A tree is a connected graph containing no cycle. A tree is composed by nodes, which are linked by edges such that
their exists a particular node called root and such that all the nodes but the root are composed by subtrees. A tree is
said to be an ordered tree if the children from a node are ordered. A tree is said to be an unordered tree otherwise.

Let L = {a, b, c, . . .} be a set of labels. A labelled ordered tree is a tree T = (r, N , B, L , !) where r is the root, N
is the set of nodes, B is the set of edges such that B ⊆ N2, (L : N → L) is a mapping from the set of labels L to the
set of nodes N, and ! is an ordered relation between brother nodes. For instance, in Fig. 3, S and T are two labelled
ordered trees. In S, the root node is A and all its children are ordered: D ! C ! E. In T, children of A are such that B !
C ! E.

Tree mining refers to the process of extracting all the subtrees that appear frequently in a database D of trees. The
frequency is computed using the notion of support: Given a databaseD, the support of a tree S is the proportion of trees
from the database where S is embedded:

Support(S) = # of trees where S is embedded
of trees in D

S is said to be frequent if Support(S)"! where ! is a user-defined minimal support threshold.
Depending on the way ancestors and siblings are considered, several kinds of tree inclusion can be defined [11]. For

instance, [6] defines the inclusion as follows:

Definition 1. A tree S is embedded into a tree T if there exists an injective and total function " : NS → NT such as
for all n,m ∈ NS :

• " keeps the labels: LS(n) = LT (" (n));
• " keeps the relations ancestor-descendant: (n,m)⇐⇒ (" (n), " (m)); and
• " keeps order relations: (n!Sm)⇐⇒ (" (n)!T" (m)).

As highlighted in [8], fuzzy data mining can help when mining frequent subtrees from a tree database. Four ways to
soften classical approaches has been proposed:

• Ancestor-descendant degree: In classical approaches, a node is or is not an ancestor of another one. We propose, in
our approach, to indicate by a degree between 0 and 1 to which extent a node is an ancestor of another one, meaning
that if there are too many nodes between them, then this degree will decrease.

• Sibling ordering degree: In classical approaches, nodes are or are not searched in the initial order. In our approach,
we propose to indicate by a degree the sibling disorder.

• Partial inclusion: In classical approaches, all the nodes from the candidate must be in the tree. We propose to soften
this rule by considering the degree to which the nodes are embedded in the tree.

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2227

(−1)

st

lb

−1

210

0

0

1

2

3

4

T

root
branchB

A

C

A

A

A

B A C A
3 4

1 2 0

right−most

Fig. 4. Representation of a tree.

• Node similarity: In classical methods, a node label is or is not the same as another one. In our approach, we propose
to soften this by indicating by a degree to which extent two nodes are similar (e.g. based on a taxonomy).

The ancestor-descendant degree has been studied in [9]. In the rest of this paper, we focus on the partial inclusion.

2.1.1. Algorithms
Several algorithms have been designed to address the problem of tree mining. The main ones are reported in

TreeMiner [6], FreqT [2], Chopper [12], Free-Tree-Miner [13], and CMTreeMiner [14]. All of them are based on a
process consisting of the following two iterative or recursive steps: generation of candidates and validation of candidates.
This process starts from the candidates that contain only one node, to discover the frequent 1-node subtrees, which are
used to build the 2-node candidates, and so on.

These two steps have been extensively studied. The generation of candidates is either based on methods that build
trees containing n nodes by considering one tree containing n − 1 nodes and adding another node, or is based on
methods that mix two subtrees containing n nodes and sharing n− 1 nodes to build a new candidate subtree containing
n + 1 nodes.

The validation aims at checking whether a tree is embedded within another one. Several approaches have been
proposed. In our previous work, we have defined some algorithms that are based on the idea of anchoring: we try
to anchor the root of the subtree until we find a node that matches. Then the following nodes are tested until (i) it is
no more possible to find some remaining nodes for matching, or (ii) an incompatibility has been detected, or (iii) the
subtree fully matches.

2.2. Tree representation

Several ways of representing trees have been proposed to support the algorithms cited above. The representation
impacts the two steps discussed above (generation and validation of candidates). However, it may be the case that the
representation is too rich and requires too much memory (e.g. representing trees as strings). We have thus proposed in
previous work a low-memory representation of trees: RSF. This representation is defined below.

When representing a tree T, we keep in mind the following property: all the nodes but the root have one and only
one parent node (a node has at most one parent). We propose thus to use two vectors to represent a tree, as proposed in
[15]. The first vector is denoted by st. It stores the position of each node predecessor. Nodes are numbered considering
a depth-first traversal. The root is numbered as being at position 0, with st[0] = −1 since it has no predecessor. The
values st[i], i = 1, 2, . . . , k − 1 correspond to all other predecessor positions, as shown in Fig. 4.
This representation provides a constant-time method to retrieve the predecessor of a node. Moreover, it allows us to

find directly the most right leaf when considering an index k. Finally, when visiting the tree, it is possible to build all
direct links from predecessors to descendants.

The second vector is denoted by lb. It is used to store all the tree labels. lb[i], i = 0, 1, . . . , k − 1 are the labels of
each node ni ∈ T .

2228 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

The data structure we have chosen needs very low memory since it is reduced to the size of 2|T |. Moreover, it has
good properties when mining frequent subtrees.

2.3. Fuzzy tree mining

Fuzzy data mining has been addressed for the last years, aiming at providing methods for discovering both trends
and exceptions using the fuzzy logic framework to provide more comprehensible and valuable results, but remaining
scalable.

When dealing with fuzzy constraints in data mining, the challenge is often to maintain several solutions during the
mining process so as to finally come up with the best solution of counting to which extent an object can fit a constraint.
The counting methods have to be adapted to soft constraints, as for instance done for fuzzy sequential pattern mining
in [16].

When dealing with fuzzy tree mining, the counting method has also to be revised, based on the definition of how to
consider the fuzzy inclusion of a tree within another one. As it has been pinpointed before, four fuzzy inclusions have
been presented in [8] to consider fuzzy inclusion of a tree within another one:

• The first way aims at considering the vertical paths of trees. Contrary to induced one, embedded inclusion allows us
to soften the ancestor-descendant relationship by computing to which extent a tree is included within another one
with respect with a fuzzy membership function defining the approximate acceptable number of nodes that can occur
between the ancestor and its descendant. Sanchez [9] proposes to control this degree of relationship.

• In the second way, we address the horizontal paths of trees. While classical approaches consider that sibling nodes
are ordered or not, there is no way to consider the proportion of sibling nodes included.

• The third way (addressed in this paper) generalizes the previous one by considering the proportion of nodes.
• The last one considers similarities between nodes.

3. FTMnodes: definitions

In this paper, we formally extend the definition of tree inclusion to partial inclusion based on the number of nodes
that are matched. Partial inclusion is defined as follows:

Definition 2. Given a null value ⊥, a tree S is partially embedded into a tree T with a degree #(S, T) if there exists an
injective and total function " : NS → NT ∪ ⊥ such that for all n,m ∈ N :

• " keeps the labels: LS(n) = LT (" (n)) or " (n) = ⊥;
• " keeps the relations ancestor-descendant: (n,m)⇐⇒ (" (n), " (m)) or (" (n), " (m)) = ⊥;
• " keeps the order relations:
(n!Sm)⇐⇒ (" (n)!T" (m)) or (" (n)!T" (m)) = ⊥;

• #(S, T) = |{n ∈ S: " (n) #⊥}|/# of nodes in S.

From this definition, it is possible to define the support of a subtree, as follows:

Definition 3. Given a database D and a tree S, the support of S in D is given by

Support(S) = AggT∈D(#(S, T))

where Agg is a function of aggregation.

For instance, we may use ordered weighted aggregators (OWA) [17]. An OWA operator of dimension n is a mapping

F : Rn → R

that has an associated n vectorW = (w1, w2, . . . , wn)T such thatwi ∈ [0, 1] and
∑n

i=1 wi = 1.We have F(a1, a2, . . . ,
an) =

∑n
j=1 w j · b j where b j is the j th largest value of the ai .

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2229

For instance, the average may be applied:

Support(S) =
∑

T∈D #(S, T)
of trees in D

In fact, we consider a thresholded $ -count so that:

• a tree cannot be considered as being embedded within another one if the number of embedded nodes is too
low and

• the degree to which a tree is embedded within another one is taken into account.

We thus have:

Definition 4. Given a database D, a threshold % and a tree S, the support of S in D is given by

Support(S) =
∑

T∈D
(&%(#(S, T)))

where

&%(x) =
{
0 if x > %
x otherwise

4. FTMnodes: algorithms

Note that in the classical case, mining totally included trees allows to cut in the database scan since whenever a node
cannot be matched, there is not necessary to look for the other ones. In our approach, outliers are accepted, which
may be considered as a drawback considering scalability. However, it is still possible to cut off the search when the
proportion has been overpassed.

As defined previously, we consider that a tree cannot be considered as being embedded within another one if the
number of matching nodes is not greater than a user-defined threshold %. This definition not only guarantees the quality
of the research from a semantic point of view, but it also guarantees the scalability of our approach. Indeed, it is
then possible to draw the property of anti-monotonicity which is the basis of levelwise algorithms (e.g. the a priori
algorithm). We have the following property:

Property. Considering that the first n nodes of tree S matched to nodes from T , and that '% of the nodes of S have
been matched, then the first n + 1 nodes of S cannot be embedded in T to a proportion greater than '.

This property comes from the fact that if it has not been possible to match (nodes among the first n nodes of S, then
the number of nodes being not matched when going ahead in the process to the first n + 1 nodes will either be equal
or will be greater (equal to (+ 1).

As a consequence, whenever the threshold % is overpassed, the process can be stopped for this path as it will never
be considered in the thresholded

∑
-count.

Note that it may be the case that a subtree is included within another one in different manners, as illustrated by Fig. 5.
In this case, the best degree of inclusion will be considered and this best degree is found by maintaining all the possible
ways of inclusion until all the solutions have been considered as studied in Section 2.3.

The following process is thus considered in our approach:

• anchoring: for each possible anchor, for each node n in S to be matched:

◦ scan the nodes of T until n is matched, start another way to find the other possible matches,
◦ if no match is possible then go to the next node in n and increment the number of mismatched nodes and
◦ if the number of mismatched nodes is greater than the threshold % or if T has been fully scanned, then discard this
anchor.

• compute the best inclusion from non-discarded anchoring paths.

2230 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

A

AAB A

B

B

C

S T1 T2 T3

C D

C D B D

Fig. 5. Several ways of including S in {T1, T2, T3} with % = 0.75 (at least 3 nodes out of 4).

Algorithms 1 and 2 formally describe the process:

Algorithm 1. ANCHORING.
Data: S //subtree to validate,

T //tree from database
Result: true //if S is embedded within T

M← ∅; // mapping set of S within T;
foreach node m ∈ NT do

n← root(S);
if L(n) = L(m) then

PartialInclusionDegree (S, T, n,m, M);
M←

⋃
M ;

return the best inclusion {M ∈M|MI N {M.mismatchedNodes}};

Algorithm 2. PARTIALINCLUSIONDEGREE.
Data: S //the subtree to validate,

T //a tree from the database,
n,m //anchoring points, from n ∈ S to m ∈ T ,
M //occurrence of S

M[n]← m;
n← n + 1;
if n < = |S| then

P ← {w:w ∈ T such that L(w) = L(n) and m!w and ancestor (w) = M[ancestor (n)]};
if P # ∅ then

foreach node w ∈ P do
PartialInclusionDegree (S, T, n, w, M);

else
M.mismatchedNodes ← M.mismatchedNodes + 1;
if M.mismatchedNodes > = % then

exit;

else
PartialInclusionDegree (S, T, n,m, M);

return;

Note that our approach is consistent, meaning that if % = 1 (i.e. all the nodes must be mapped), then our algorithms
are exactly the same as the ones defined in the crisp case [18] (see experiments below).

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2231

Table 1
Parameters chosen for the generation of the tree database.

Parameter Value

Number of trees to be generated 10,000
Maximal depth of a tree 5
Maximal number of edges for a node 5
Maximal number of labels 50
Probability for a node to be a parent 0.4

 0

 50

 100

 150

 200

 0.01 0.1 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 6. Number of frequent trees w.r.t. support with % = 1.

5. Experiments

In this section, we report experiments on synthetical and real databases. We aim at showing that by considering
soft inclusion instead of crisp induced inclusion, it is easier to find out frequent subtrees (more frequent patterns are
discovered) but that we also remain scalable as we can run our program on large databases. We thus use RSF with the
induced inclusion and we compare the results to the ones obtained by considering the partial inclusion defined in this
paper.

We detail below the results we have obtained using a core 2 duo/2 Gb computer, running Mac OS X (leopard 10.5).
The algorithms have been developed using C + + (STL library) and compiled with gcc 4.0.1.

5.1. Synthetical databases

Synthetical databases are generated using the XML tree generator developed by Alexandre Termier [4]. This ap-
plication allows to adapt the tree parameters (e.g. number of trees, depth of trees, number of distinct labels) to the
behaviour we want to test (e.g. scalability with respect to the depth of the tree).

Table 1 details the parameters chosen for our experiments.
Note the memory used for these experiments is not reported here as it has been regular and non-explosive, whatever

the database type (synthetical of real). This result is due to the RSF representation, which is a non-memory consuming
one.

As shown in Figs. 6 and 7, and as expected, the results obtained when considering % = 1 are exactly the same as the
ones obtained with the crisp algorithm. Note that the runtime, displayed by Fig. 8, is also the same, showing that our
approach is fully consistent.

When considering % values lower than 1, more frequent subtrees are discovered, as the inclusion constraint has been
relaxed. Figs. 9–12 report these results.

The number of candidates has of course been also increased, as shown in Figs. 13–16.
The runtime remains reasonable, as shown in Figs. 17–20.

2232 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

 0

 5000

 10000

 15000

 20000

 25000

 0.01 0.1 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 7. Number of candidates generated w.r.t. support with % = 1.

 2

 4

 6

 8

 10

 0.01 0.1 1

S
ec

on
ds

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMNodes

Fig. 8. Runtime w.r.t. support with % = 1.

 0

 50

 100

 150

 200

 250

 300

 350

 0.01 0.1 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 9. Number of frequent trees w.r.t. support with % = 0.9.

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2233

 0

 500

 1000

 1500

 2000

 2500

 0.01 0.1 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 10. Number of frequent trees w.r.t. support with % = 0.8.

 1

 10

 100

 1000

 10000

 100000

 0.1 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 11. Number of frequent trees w.r.t. support with % = 0.7.

 1

 10

 100

 1000

 10000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 12. Number of frequent trees w.r.t. support with % = 0.6.

2234 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.01 0.1 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 13. Number of candidates generated w.r.t. support with % = 0.9.

 0

 20000

 40000

 60000

 80000

 100000

 0.01 0.1 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 14. Number of candidates generated w.r.t. support with % = 0.8.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.1 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 15. Number of candidates generated w.r.t. support with % = 0.7.

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2235

 1

 10

 100

 1000

 10000

 100000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMnodes

Fig. 16. Number of candidates generated w.r.t. support with % = 0.6.

 2

 4

 6

 8

 10

 12

 14

 16

 0.01 0.1 1

S
ec

on
ds

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMNodes

Fig. 17. Runtime w.r.t. support with % = 0.9.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01 0.1 1

S
ec

on
ds

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMNodes

Fig. 18. Runtime w.r.t. support with % = 0.8.

2236 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

 1

 10

 100

 1000

 10000

 0.1 1

S
ec

on
ds

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMNodes

Fig. 19. Runtime w.r.t. support with % = 0.7.

 0.1

 1

 10

 100

 1000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Support (%)

|DBsynt| = 10K

Rsf−Induced
FTMNodes

Fig. 20. Runtime w.r.t. support with % = 0.6.

 0

 200

 400

 600

 800

 1000

 1200

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMNodes

Fig. 21. Runtime w.r.t. support with % = 1.

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2237

 0

 1000

 2000

 3000

 4000

 5000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMNodes

Fig. 22. Runtime w.r.t. support with % = 0.9.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMNodes

Fig. 23. Runtime w.r.t. support with % = 0.8.

5.2. Real databases

The real database we have experimented our methods on is the DBLP database [1]. This database stores bibliographic
information about the articles and conference papers published in the field of computer science. It contains 328,458
objects.

Figs. 21–23 report the runtime with respect to the support value. Figs. 24–26 report the number of candidates
generated with respect to the support value. Figs. 27–29 report the number of frequent subtrees extracted with respect
to the support value.

These results confirm the ones obtained on synthetical databases, as we remained quite efficient and extracted more
frequent subtrees are discovered.

6. Conclusion

In this paper, we have detailed our previous work on fuzzy tree mining by giving the necessary definitions and
algorithms in order to address the partial inclusion. Partial inclusion is a big deal in tree mining as it is not possible
to consider full matches in real applications. However, it is necessary to remain scalable as the volumes of data
being considered in real databases is huge. We thus design solutions based on levelwise algorithms, which consider
anti-monotonic properties that guarantee the scalability. The algorithms presented here are currently implemented, and
it is possible to conclude that this approach allows the extraction of more frequent subtrees (as fuzziness is introduced)

2238 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

 0

 100

 200

 300

 400

 500

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 24. Number of candidates w.r.t. support with % = 1.

 0

 500

 1000

 1500

 2000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 25. Number of candidates w.r.t. support with % = 0.9.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nt

 tr
ee

s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 26. Number of candidates w.r.t. support with % = 0.8.

F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240 2239

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 27. Number of frequent trees w.r.t. support with % = 1.

 0

 10000

 20000

 30000

 40000

 50000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 28. Number of frequent trees w.r.t. support with % = 0.9.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.4 0.5 0.6 0.7 0.8 0.9 1

C
an

di
da

te
 tr

ee
s

Support (%)

|DBLP| = 328857

Rsf−Induced
FTMnodes

Fig. 29. Number of frequent trees w.r.t. support with % = 0.8.

2240 F. Del Razo Lopez et al. / Fuzzy Sets and Systems 160 (2009) 2224–2240

while remaining scalable. Futurework include the comparison of the results depending on the choices of the aggregation
function. This comparison will be lead both on the quality of frequent subtrees and on runtime, as some aggregation
functions are easier to compute than other ones.

References

[1] Department of Computer Science & Engineering, University of Washington, Xml data repository, 2002, in ⟨http://www.cs.washington.edu/
research/xmldatasets⟩.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, Efficient substructure discovery from large semi-structure data, in: Second Annual
SIAM Symp. on Data Mining, SDM2002, Springer, Arlington, VA, USA, 2002.

[3] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in: IEEE Internat. Conf. on Data Mining (ICDM), 2001.
[4] A. Termier, M.-C. Rousset, M. Sebag, Treefinder, a first step towards XML data mining, in: IEEE Conf. on Data Mining (ICDM), 2002, pp.

450–457.
[5] X. Yan, J. Han, gspan: graph-based substructure pattern mining, in: Proc. IEEE Conf. on Data Mining (ICDM), 2002.
[6] M.J. Zaki, Efficiently mining frequent trees in a forest, in: KDD’02, ACM, Edmonton, Alberta, Canada, 2002.
[7] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: Proc. 20th VLDB Conf., Santiago, Chile, 2002.
[8] A. Laurent, P. Poncelet, M. Teisseire, Fuzzy data mining for the semantic web: building XML mediator schemas, in: E. Sanchez (Ed.), Fuzzy

Logic and the Semantic Web, Elsevier, Amsterdam, 2006, pp. 249–265.
[9] S. Sanchez, A. Laurent, P. Poncelet, M. Teisseire, Fuzbt: a binary approach for fuzzy tree mining, in: Proc. 11th IPMU Internat. Conf. on

Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), 2006.
[10] F.D.R. López, A. Laurent, P. Poncelet, M. Teisseire, Fuzzy tree mining: go soft on your nodes, in: Proc. Internat. Fuzzy Systems Association

World Congress (IFSA 07), Lecture Notes in Computer Science, Vol. 4529, Springer, Berlin, Heidelberg, 2007, pp. 145–154.
[11] Y. Chi, R.R. Muntz, S. Nijssen, J.N. Kok, Frequent subtree mining—an overview, Fundamenta Informaticae XXI (2005) 1001–1038.
[12] C. Wang, Q. Yuan, H. Zhou, W. Wang, B. Shi, Chopper: an efficient algorithm for tree mining, Journal of Computer Science and Technology

19 (2004) 309–319.
[13] Y. Chi, Y. Yang, R.R. Muntz, Indexing and mining free trees, in: Internat. Conf. on Data Mining 2003 (ICDM2003), 2003.
[14] Y. Chi, Y. Yang, R. Muntz, Cmtreeminer: mining both closed and maximal frequent subtrees, in: The Eighth Pacific-Asia Conf. on Knowledge

Discovery and Data Mining (PAKDD’04), 2004.
[15] M.A. Weiss, Data Structures and Algorithm Analysis in C, Addison-Wesley, Reading, MA, 1998.
[16] C. Fiot, A. Laurent, M. Teisseire, From crispness to fuzziness: three algorithms for soft sequential pattern mining, IEEE Transactions on Fuzzy

Systems 15 (6) (2007) 1263–1277.
[17] R. Yager, Families of owa operators, Fuzzy Sets and Systems 57 (3) (1993) 125–148.
[18] F. Del Razo, A. Laurent, P. Poncelet, M. Teisseire, Rsf—a new tree mining approach with an efficient data structure, in: Proc. Joint Conf.:

Fourth Conf. of the European Society for Fuzzy Logic and Technology (EUSFLAT 2005), 2005, pp. 1088–1093.

