Available online at www.sciencedirect.com

"-2* ScienceDirect

uzzy

sets and systems

Fuzzy Sets and Systems 160 (2009) 3382-3402
www.elsevier.com/locate/fss

Fuzzy description logics with general t-norms and datatypes*

Fernando Bobillo®*, Umberto Straccia®

aDepartment of Computer Science and Systems Engineering, University of Zaragoza, Spain
bIstituto di Scienza e Tecnologie dell’Informazione (ISTI), Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

Received 21 May 2007; received in revised form 19 November 2008; accepted 19 March 2009
Available online 5 April 2009

Abstract

Fuzzy description logics (DLs) are a family of logics which allow the representation of (and the reasoning within) structured
knowledge affected by vagueness. Although a relatively important amount of work has been carried out in the last years, current
fuzzy DLs still present several limitations. In this work we face two problems: the common restriction to Zadeh and Lukasiewicz
fuzzy logics and the inability to deal with datatypes different from fuzzy sets. In particular, we propose a semantics based on the
use of a general left-continuous t-norm and an involutive negation (specially focused on Product logic) and, furthermore, we show
how to handle functional concrete roles relating individuals of the domain and strings, real or integer numbers.
© 2009 Elsevier B.V. All rights reserved.

Keywords: Fuzzy description logics; Fuzzy ontologies; Fuzzy logic; Logic for the semantic web

1. Introduction

Description logics (DLs) [1] are a logical reconstruction of the so-called frame-based knowledge representation
languages, with the aim of providing a simple well-established Tarski-style declarative semantics to capture the mean-
ing of the most popular features of structured representation of knowledge. Nowadays, DLs have gained even more
popularity due to their application in the context of the semantic web [3,4]. For example, the current standard lan-
guage for specifying ontologies is the Web Ontology Language (OWL [32]), which comprises three sublanguages of
increasing expressive power: OWL Lite, OWL DL and OWL Full [24]. OWL 2 is a recently proposed extension of
OWL [13]. OWL Lite, OWL DL and OWL 2 are nearly equivalents to SHZ F (D), SHOZN (D) and SROZ Q(D) DLs,
respectively, [13,23].

The problem to deal with imprecise concepts has been addressed several decades ago by Zadeh [50], which gave
birth in the meanwhile to the so-called fuzzy set and fuzzy logic theory and a huge number of real life applications exist.
In fuzzy logic, there are a lot of families of fuzzy operators (or fuzzy logics). The most important ones are Lukasiewicz,
Godel and Product [19]. We call here Zadeh family to the operators originally proposed by Zadeh in his seminal work
[50]: Godel conjunction and disjunction, Lukasiewicz negation and Kleene—Dienes implication. Table 1 shows the
definition of these four families.

% Part of this work has been previously published in “A fuzzy description logic with product t-norm”, in the Proceedings of the 16th IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE 2007).
* Corresponding author. Ed. Ada Byron, C. Marfa de Luna 1, 50018, Zaragoza, Spain. Tel.: +34 9767623 37.
E-mail addresses: tbobillo@unizar.es (F. Bobillo), straccia@isti.cnr.it (U. Straccia).

0165-0114/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.£55.2009.03.006

http://www.elsevier.com/locate/fss
mailto:fbobillo@unizar.es
mailto:straccia@isti.cnr.it

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3383

Table 1
Popular families of fuzzy operators.
Family t-norm o« ® f§ t-conorm o @ f§ Negation Sa Implication a0 = f§
Zadeh min{o, f§} max{c, f} 1—a max{1l — o, ff}
Lukasiewicz max{o + f — 1, 0} min{o + f, 1} 1—o min{l — o+ f5, 1}

1, 2=0 I, a<p
Product o- B o+pf—o-f

0, «>0 plo, a>p

I, a=0 A
Godel min{o, ff} max{o, f}

0, >0 B a>p

Fuzzy set theory has been used to extend classical DLs by allowing to deal with fuzzy/vague/imprecise concepts for
which a clear and precise definition is not possible. Since the first work of Yen in 1991 [49], an important number of
works can be found in the literature. Straccia introduced assertional reasoning and provided reasoning algorithms for
several reasoning tasks [41,45]. He also proposed a fuzzy extension of the expressive fuzzy DL SHOZN (D), although
without considering reasoning [42]. Stoilos et al. have provided reasoning algorithms for some expressive DLs, such
as SHZN [39], and have proposed fuzzy extensions of the languages OWL [38] and OWL 2 [36]. Reductions to crisp
DLs have also been considered [5-8,11,36,46].

It is well known that different families of fuzzy operators lead to fuzzy DLs with different properties [37]. From
a semantics point of view, the previous works rely on the semantics of fuzzy set operators proposed by Zadeh [50].
However, some applications require the use of new fuzzy operators.

Example 1.1. Product t-norm has been used in the context of information retrieval with fuzzy ontologies [28]. Consider
the following concept hierarchy: A] ©& Ay >a, Ay E A3>ap, A3 & Ag>03,..., A, © Ayq1 >y, where A; T
A >o; means informally that A; can be considered more general than A; to degree o;.

If the retrieval algorithm decides to retrieve A1, it seems natural to retrieve also more general concepts with different
degrees computed using a t-norm ®. For example, suppose that A is found to be retrieved with degree «y. Then, A;
can be retrieved with a degree oy ® o1 and, in general, A; can be retrieved with a degree op ® 4] ® --- ® o, for
i={0,1,...,n}.

A desirable property for the t-norm is that the final degree should reflect the “distance” in the ontology, that is, the
greatest the distance to concept A1, the less the degree of retrieval. Hence, we need to consider a sub-idempotent t-norm
such as the product.

There are some few works that consider alternative fuzzy operators. Straccia [43,44] and Straccia et al. [47] propose
a reasoning solution for Lukasiewicz family, which is based on a mixture of tableau rules and Mixed Integer Linear
Programming (MILP) and is implemented in the fuzzyDL reasoner [10]. Some recent works consider reductions of
fuzzy DLs to their crisp versions under Lukasiewicz [11] and Godel [8] semantics. But neither the Product family
nor different t-norm have received enough attention. An exception is due to Hdjek, who considered fuzzy ALC under
arbitrary continuous t-norms and reports some reasoning algorithms based on a reduction to fuzzy propositional logic
[18]. For a more detailed survey on fuzzy DLs the reader is referred to [30].

On the other hand, some fuzzy DLs offer the possibility to use datatypes by means of fuzzy concrete domains (i.e., the
possibility to represent in fuzzy DLs concepts with explicit membership functions such as triangular, trapezoidal, left-
shoulder and right-shoulder functions) [43]. Nevertheless, nowadays it is not possible to use alternative datatypes such
as strings and integers. For instance, it is not possible to define the concept of people who are not old enough to vote
as Person 1 —(= hasAge 18).

The contributions of this paper are twofold. On the one hand, we consider fuzzy DLs under general t-norms and an
involutive negation, and provide a reasoning algorithm different to that in [18]. We also show how to particularize it to
the case of the Product t-norm, and how to reduce the number of generated variables with respect to similar algorithms.

On the other hand, we allow the use of functional concrete roles relating an individual with a string or a (real or
integer) number. To the best of our knowledge, this is the first attempt in this direction.

3384 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

The remainder of the paper is organized as follows. In the next section we refresh some necessary background
on some optimization problems. Section 3 presents a general fuzzy extension of the DL ALC. Section 4 propose a
reasoning algorithm under general t-norms. Next, Section 5 particularizes it with a semantics based on the Product
t-norm, discusses some logical properties and addresses the inference algorithm. Section 6 gives a step further and
considers fuzzy ALCF (D), presenting the syntax, semantics and reasoning rules for functional concrete roles. Finally,
Section 7 sets out some conclusions and ideas for future work.

2. Background: MILP, MIQCP and MINLP problems

In this section we recall Mixed Integer Linear Programming, Mixed Integer Quadratically Constrained Programming
(MIQCP) and Mixed Integer NonLinear Programming (MINLP) optimization problems.

MILP: A general Mixed Integer Linear Programming [34] problem consists in minimizing a linear function with
respect to a set of constraints that are linear inequations in which rational and integer variables can occur. More precisely,
let x = (x1,...,x;) and y = (yy, ..., ym) be variables over Q and Z, respectively, over the integers and let A, B be
integer matrices and 4 an integer vector. The variables in y are called control variables. Let f(x, y) be a k+m-ary linear
function. Then the general MILP problem is to find x € Q*, § € 7™ such that f(X, §) = min{f(x, y)| Ax + By >h}.

The general case can be restricted to what concerns the paper as we can deal with bounded MILP (bMILP). That
is, the rational variables usually range over [0, 1], while the integer variables range over {0, 1}. It is well known that
the bMILP problem is NP-COMPLETE (for the belonging to NP, guess the y and solve in polynomial time the linear
system, NP-hardness follows from NPHardness of 0—1 Integer Programming). Furthermore, we say that M C [0, 1]€
is bMILP-representable iff there is a bMILP (A, B, h) with k real and m 0-1 variables such that M = {x : 3y € {0, 1}""
such that Ax + By >h}.

In general, we require that every constructor is bMILP representable. For instance, classical logic, Zadeh’s fuzzy
logic, and Lukasiewicz connectives, are bMILP-representable, while Godel negation is not. In general, connectives
whose graph can be represented as the union of a finite number of convex polyhedra are bMILP-representable [27],
however, discontinuous functions may not be bMILP representable.

There are a lot of available tools for solving these problems, such as Cbc Lor lpsolve. 2

MIQCP: Let x = (x1,...,x;) and y = (yq, ..., ym) be variables over Q and Z, respectively. Now, for all i € 0,
1,...,n, let a; be an integer vector of length k, b; be an integer vector of length m, h; be an integer number and
Qix,y)=1/2-(x + y)T - Ci - (x + y), where C; is a symmetric integer matrix of dimension (k + m) x (k + m).
Let f(x,y) be a k + m-ary linear function. The MICQP problem is to find x € Q%, § € 7™ such that f(X,¥) =
min{f(x,y) : ap - x + bo - y=>ho} subject to a set of n constraints of the form: a; - x + b; - y + Q;(x, y)=>h; or
aix+b;j-y+ Qi(x,y)<h;, foralli = 1, ..., n. Notice that the objective function is linear, while the restrictions
can contain quadratic sections.

The general case can be restricted to what concerns the paper as we can deal with bounded MIQCP (bMIQCP), with
rational variables ranging over [0, 1] and integer variables range over {0, 1}. M C [0, 1] is bMICQP-representable
iff there is a bMICQP (a;, b;, C;, h;) with k real and m 0-1 variables such that M = {x : Iy € {0, 1} such that
ai-x+bi-y+ Qi(x,y)=h;ora; -x +b;i -y + Qi(x, y)<hi.

This problem is known to be NP-HARD. Some examples of solvers are CPLEX> or mosek.*

MINLP: Let x = (x{,...,x;) and y = (y1, ..., yn) be variables over (0 and Z, respectively, and, for all i € 0,
1, ..., n, let h; be an integer number, and f;(x, y) be a k + m-ary (possibly nonlinear) function. The Mixed Integer
NonLinear Programming problem [16] is to find X € QF, 3 € 7™ such that fo(%, 7) = mingex, yey { fo(x, y)} subject
to a set of n constraints of the form: f;(x, y)>h;, foralli =1, ..., n.

As in the previous cases, in the bounded MINLP (bMINLP), rational variables range over [0, 1] and integer variables
range over {0, 1}. The problem is NP-HARD, and there some available solvers, such as Bonmin. 5

1 http://www.coin-or.org/projects/Cbc.xml

2 http://sourceforge.net/projects/Ipsolve

3 http://www.ilog.com/products/cplex/

4 http://www.mosek.com/

5 http://www.coin-or.org/projects/Bonmin.xml

http://www.coin-or.org/projects/Cbc.xml
http://sourceforge.net/projects/lpsolve
http://www.ilog.com/products/cplex/
http://www.mosek.com/
http://www.coin-or.org/projects/Bonmin.xml

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3385
3. Fuzzy description logics
In this section we define a fuzzy extension of ALC [35]. We recall here the semantics given in [18,42,43,45].
3.1. Syntax

Now, let A, R4 and I be non-empty enumerable and pair-wise disjoint sets of concept names (denoted A), abstract
role names (denoted R) and abstract individual names (denoted a, b). Concepts may be seen as unary predicates, while
roles may be seen as binary predicates.

ALC complex concepts can be built according to the following syntax rule:

C=T| L|AICINGC|CiuC|C — C|—=C|VYR.C|3IR.C.

An ALC fuzzy knowledge base (fuzzy KB) K = (7, A) consists of a fuzzy TBox 7, and a fuzzy ABox A.

In general, a fuzzy TBox 7T is a finite set of fuzzy concept inclusion axioms (C & D, n), where C, D are concepts
and n € (0, 1]. Informally, (C T D, n) states that all instances of concept C are instances of concept D to degree n, i.e.
the subsumption degree between C and D is at least n. We write C = D as a shorthand of the two axioms (C T D, 1)
and (D C C, 1).

However, for computational reasons, we will restrict TBoxes to be acyclic. That is, 7 is a finite set of fuzzy concept
inclusion axioms (A € C, n), and concept definitions A = C, where A is an atomic concept. Furthermore, we assume
that 7 verifies two additional constraints:

e There is no concept A such that it appears more than once on the left-hand side of some axiom in 7.
e No cyclic definitions are present in 7".°

It is well known that such TBoxes can be eliminated through a finite (although it can create an exponential growth
of the KB), expansion process, both in the crisp [33] and in the fuzzy case [45]. Instead, we will use a extension to the
fuzzy case of the lazy expansion technique [2], which has proved to be more useful in practice.

A fuzzy ABox A consists of a finite set of fuzzy concept and fuzzy role assertion axioms of the form (a: C, n) and
((a, b): R, n), where a, b are abstract individual names, C is a concept and R is an abstract role. Informally, from a
semantical point of view, a fuzzy axiom (t, n) constrains the membership degree of 7 to be at least .

Example 3.1. A fuzzy KB is K = {7, A} with 7 = {{Inn C Hotel,0.5)} and A = {(jim: YoungPerson, 0.2),
((jim, mary): likes, 0.8)}. The terminological axiom (Inn T Hotel, 0.5) means that every inn can be considered a ho-
tel with degree at least 0.5. (jim: YoungPerson, 0.2) says that jim is a YoungPerson with degree at least 0.2, while
((jim, mary): likes, 0.8), says that jim likes mary with degree at least 0.8.

3.2. Semantics

The semantics extends [45]. The main idea is that concepts and roles are interpreted as fuzzy subsets and fuzzy
relations over an interpretation domain. Therefore, ALC axioms, rather than being satisfied (true) or unsatisfied (false)
in an interpretation, become a degree of truth in [0, 1].

In the following, we use ®, @, © and = in infix notation, in place of a t-norm, t-conorm, negation function and
implication function. A fuzzy interpretation I = (4%, Ty consists of a non-empty set A7 (the domain) and of a fuzzy
interpretation function L that assigns:

1. to each abstract concept C a function cZ At - [0, 1];
2. to each abstract role R a function RZ: AL x 4% — [0, 1];
3. to each abstract individual a an element aZ € AL,

We also assume the unique names assumption over the individuals, i.e., if a # b then at * »T , where a, b are individuals

(different individuals denote different objects of the domains).

6 We will say that A directly uses primitive concept B in 7, if there is some axiom 7 € 7 such that A is on the left-hand side of = and B occurs in
the right-hand side of 7. Let uses be the transitive closure of the relation directly uses in 7. T is cyclic iff there is A such that A uses A in 7.

3386 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

Table 2
Fuzzy DL semantics for ALC.

1Zx) =0
TI(x) =1
Crnc)t =) ® L)
(C1uC)(x) = CiEx) @ G (x)
(€1 >)X) = 1T () = 6T)
=O%x) = 6T
(VR.C)Z(x) inf _,z RT(x,y) = C*(y)
@AR.CYE(x) = sup,_z RE(x,y)® CT(y)

The fuzzy interpretation function is extended to roles and complex concepts as specified in Table 2 (where x, y € A%
are elements of the domain).
Finally, L is extended to non-fuzzy axioms as specified below:
(cc DY = inf cZ(x)= DL (x),
xea®
(a:0)F = cT@h),
((a,b): BT = RT (%, bT).

Note here that, e.g., the semantics of a concept inclusion axiom C E D is derived directly from its FOL translation,
which is of the form Vx.Fc(x) = Fp(x). This definition is clearly different from the approaches in which C C D is
viewed as Vx.C(x) < D(x) [40,45]. This latter approach has the effect that the subsumption relationship is a Boolean
relationship, while in our approach subsumption is determined up to a degree in [0, 1].

A fuzzy interpretation 7 is witnessed [18,20,21] iff it verifies:

o forall x € A%, thereis y € 4% such that GR.C)Y = RZ(x, y) ® CL(y),
o forall x € A%, there is y € A% such that (VR.C)Z = RZ(x, y) = CL(y),
e there is x € A% such that (C C D)* = CcZ(x) = D% (x).

In the rest of the paper we will assume that Z is a witnessed fuzzy interpretation. Since fuzzy DLs are used in
knowledge representation, we argue that non-witnessed models are not interesting; what is interesting for us are those
role fillers which can be represented by specifying some particular individual of the domain. Quoting Héjek, “for the
aims of description logic non-witnessed models appear to be pathological” [21].

The notion of satisfaction of a fuzzy axiom 1 by a witnessed fuzzy interpretation Z, denoted ZFE, is defined as
follows: ZF(t >n), where 7 is a concept inclusion, a concept or a role assertion axiom, iff £ >n.

We say that a concept C is satisfiable iff there is a witnessed interpretation Z and an individual x € A7 such that
cZ(x) > 0. For example, the concept C rn (—C) is unsatisfiable under Lukasiewicz, Godel or Product families, but
satisfiable under Zadeh family.

For a set of fuzzy axioms £, we say that a witnessed model Z satisfies £ iff I satisfies each element in £. We say
that 7 is a model of t (resp. £) iff ZF1 (resp. ZEE). T satisfies (is a model of) a fuzzy knowledge base K = (7, A),
denoted ZFKC, iff Z is a model of each component 7 and A, respectively.

A fuzzy axiom 7 is a logical consequence of a knowledge base K, denoted /CF7 iff every witnessed model of
satisfies 7.

Given K and an axiom 7 of the form C T D, a: C or (a, b): R, it is of interest to compute 7’s best entailment degree
(BED).

Lower degree value bound. The greatest lower bound of t w.r.t. KC (denoted glb(KC, 1)) is glb(KC, t) = sup{n |
KFE(t>n)}, where sup ¥ = 0. Determining the glb is called the best entailment degree problem. For example, as we
will see in Example 5.3, given the L = {{(a, b) : R,0.7), (b: C, 0.8)}, glb(K, a: IR.C) = 0.56 under the Product
t-norm.

Finally, the best satisfiability degree of a concept C and amounts to determine bsd(KC, C) = supziic sup, 4z {C ().
Essentially, among all models Z of the knowledge base, we are determining the maximal degree of truth that the concept
C may have over all individuals x € A7,

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3387
4. Fuzzy DLs with general t-norms
4.1. Families of fuzzy operators

Given a left-continuous t-norm ®, in this section we consider arbitrary families of fuzzy operators of the following
form:

So=1-—aq,
rt®f = © (xR Op),
o= pf = sup {a®y<pl
yel0,1]

That is, we have a left-continuous t-norm ®, its residuum =, Lukasiewicz negation & and the t-conorm & which is
dual to ® with respect to this negation. We are doubtful about the practical interest of non-involutive negations such as
Godel negation and, thus, we prefer to use a continuous and involutive negation i.e., a negation verifying ©(6a) = o.

Note that a second negation can still be defined since ©gC = C = L, so we actually allow two negations:
Lukasiewicz and the negation of the logic of ®.

Due to the standard properties of the fuzzy operators, the following concept equivalences hold [45]: =T = L,
-1l=T,CnT=C,Cul=C,Cnl=1,CuT=T,3R.L=1,VRT=T.

In this logic, however, we have in general that =VR.C #3R.(—C) and =3R.C #VR.(—C). This is interesting since
assuming the inter-definability of quantifiers is generally an unnecessary restriction [21]. Note that the equality holds
for Lukasiewicz logic.

However, De Morgan laws are still verified, i.e., =(C M D) = (—C) U (—=D) and —=(C U D) = (—C) n (—D). Note
also that, in general, C#C M Cand C£#C U C.

4.2. Idea of the reasoning algorithm

For crisp DLs, the overall proof method is as follows (see, e.g., [26]): they show that a KB is satisfiable iff there is
a tableau for it, where a tableau is a particular mathematical structure from which a model may easily be built. Then
they provide a terminating algorithm, which builds a so-called completion forest, from which a tableau may be derived.
Finally, they show that there is a tableau for a KB iff there is a clash-free completion tree for the KB and, thus, a KB
is satisfiable iff there is a clash-free completion forest for it. The proof method for fuzzy DLs is essentially similar to
the crisp variant. So we will only highlight the differences, while the rest can be worked out similarly.

The basic idea behind our reasoning algorithm is as follows. Consider L = (7, A), where 7 is acyclic. In order
to solve the BDB problem, we combine appropriate DL tableaux rules with methods developed in the context of
many-valued logics (MVLs) [17]. In order to determine e.g., glb(IC, a: C), we consider an expression of the form
(a:—=C, 1 — x) (informally, {a: C <x)), where x is a [0, 1]-valued variable. Then we construct a tableaux for X =
(T, AU {{a: —=C, 1 — x)}) in which the application of satisfiability preserving rules generates new fuzzy assertion
axioms together with inequations over [0, 1]-valued variables. These inequations have to hold in order to respect the
semantics of the DL constructors. Finally, in order to determine the greatest lower bound, we minimize the original
variable x such that all constraints are satisfied.’

Similarly, for C © D, we can compute glb(C, C T D) as the minimal value of x such that K = (7, AU {{(a :
C,x1)}U {{a : D, xy)}) is satisfiable under the constraints expressing that x| = x» <x, x1 € [0, 1] and x» € [0, 1],
where a is new abstract individual. For a concrete example, see Section 5.1.

Finally, gib(IC, (a, b): R) is equivalent to glb(JC U {(b : B, 1)}, a: 3R.B), where B is a new concept (which does not
appear in C).

Therefore, the BDB problem can be reduced to minimal satisfiability problem of a KB. Finally, concerning the best
satisfiability bound problem, glb(KC, C) is determined by the maximal value of x such that (7, AU {{a: C, x)}) is
satisfiable.

In general, we end up with a bMINLP problem, but in some particular cases we can have an easier problem. For
example, for Lukasiewicz t-norm we end up with a bMILP problem [43,47], while for the Product t-norm we end up

7 Informally, suppose the minimal value is 7. We will know then that for any interpretation Z satisfying the knowledge base such that (a: C)I <n,
the starting set is unsatisfiable and, thus, (a: C)I >n has to hold. Which means that glb(IC, (a: C)) = n.

3388 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

with a bMICQP problem (see Section 5). Interestingly, the tableaux contains only one branch only and, thus, just one
bMINLP problem has to be solved.

4.3. A fuzzy tableau

Now, let V be a new alphabet of variables x ranging over [0, 1], W be a new alphabet of 0—1 variables y. We extend
fuzzy assertions to the form (t, /), where [is an arithmetic expression over variables in V, W and real values.

Similar to crisp DLs, our tableaux algorithm checks the satisfiability of a fuzzy KB by trying to build a fuzzy tableau,
from which it is immediate either to build a model in case KB is satisfiable or to detect that the KB is unsatisfiable.
The fuzzy tableau we present here can be seen as an extension of the tableau presented in [26], and is inspired by the
one presented in [39,40].

Given KC = (7, A), let R be the set of roles occurring in X and let sub(K) be the set of named concepts appearing
in IC. A fuzzy tableau T for I is a quadruple (S, £, £, V) such that: S is a set of elements, £ : S x sub(K) — [0, 1]
maps each element and concept, to a membership degree (the degree of the element being an instance of the concept),
and £ : R x (S x S) — [0, 1] maps each role of Ry and pair of elements to the membership degree of the pair
being an instance of the role, and V : I 4 — S maps individuals occurring in A to elements in S. For all s,7 € S,
C, D € sub(K), and R € Ry, T has to satisfy:

1. L(s, L)=0and L(s, T)=1foralls € S,
2. If L(s,—~A)>n, then L(s, A)< On.
3. If L(s, =—C)>n, then L(s, C)>n.
4. If L(s, Cn D)>n, then L(s, C)=>my, L(s, D)>m> and n = m| ® my, for some m and m>.
5. If L(s, =(C n D)) >n, then L(s, =C LU —=D)>n.
6. If L(s, C u D)>=n, then L(s, C) = L(s, D) >n.
7. If L(s, —=(C U D))>n, then L(s, ~C N —=D)>n.
8. If L(s, C — D)>n, then L(s, C)>=m1, L(s, D)>m) and n = m| = my, for some m and m>.
9. If L(s, =(C — D))>=n, then L(s,C) = L(s, D)<1 —n.
10. If L(s,VR.C)>n, then L(t, C)>E(R, (s, 1)) ® n,forall t € S.
11. If L(s, =VR.C) >n, then there exists ¢t € S such that £(R, (s, 1)) = L, C)<1 —n.
12. If L(s, AR.C) >n, then there exists ¢t € S such that E(R, (s, t))>m1, L(t, C)>my and n = m| ® my, for some
m1 and my.
13. If L(s, ~3R.C)>n, then E(R, (s,1)) ® L(t,C)<1 —n,forallt € S.
14. If (C € D,n) € 7, then L(s, D)>L(s,C) ® n,forall s € S.
15. If {(a: C, n) € A, then L(V(a), C)>=n.
16. If {(a, b): R, n) € A, then E(R, (V(a), V(b)) >n.

Proposition 4.1. K = (7, A) is satisfiable iff there exists a fuzzy tableau for K.

Proof. For the if direction if T = (S, £, £, V) is a fuzzy tableau for /', we can construct a fuzzy interpretation
7 = (4%,) that is a model of A and 7 as follows:

AL =8,
al = V(a), a occurs in A,
TL(s) = L(s, T), LI(s) = L(s, L) foralls €S,
AL(s) = L(s, A) foralls €S,
RZ(s,t) = E(R, (s,1)) forall (s,t) €S x S.

To prove that 7 is a model of .4 and 7, we can show by induction on the structure of concepts that L(s, C) > n implies
CI(s) >nforalls € S. Asillustrative purpose, assume C is IR.D. So, assume that L(s, IR.D) > n. By definition, there
ist € Ssuch that E(R, (s, t))=m, L(t, D) >m, and n = m| @ my, for some m| and m,. By induction, RE(s,t)>m,
and DL (t) >m, and, thus, (EIR.D)I (s) > n. Together with properties 15-16, this implies that 7 is a model of 7, and
that it satisfies each fuzzy assertion in 4.

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3389

For the converse, let Z be a witnessed model of /C. Then a fuzzy tableau T = (S, £, £, V) for K can be defined as
follows:

S = A7,
E(R. (s,1)) = RI(s,1),
L(s, C) = CL(s),
V(a) = a?.

It can be verified that T is a fuzzy tableau for /C. As illustrative purpose, let us show that condition 12 of the fuzzy
tableau is satisfied. So, assume that £(s, 3R.C) >n. The definition of T implies that (EIR.C)I(S)>n. Since 7 is a
witnessed model, there exists 7 € A7 such that (EIR.C)I(S) = RZ(s,1) @ CL(1), i.e., there are m; and m, such that
ER, (s, t))=my, L(t,C)>my and n = m| ® my and, thus, condition 12 of the fuzzy tableau is satisfied, which
concludes. [

4.4. An algorithm for building a fuzzy tableau

Now, in order to decide the satisfiability of K = (7, .A) (with 7 acyclic) a procedure that constructs a fuzzy
tableau 7 for I has to be determined. Like most of the tableaux algorithms (for instance [40]), our algorithm works on
completion-forests since an ABox might contain several individuals with arbitrary roles connecting them. It is worth to
note that, while reasoning algorithms within DLs usually transform concept expressions into a semantically equivalent
negation normal form or NNF (which is obtained by pushing in the usual manner negation on front of concept names
only), we cannot make this assumption now since in general =VR.C #3R.(—C) and —=3R.C #VR.(—C).

Let £ = (7, .A) be a fuzzy KB. A completion-forest F for K is a collection of trees whose distinguished
roots are arbitrarily connected by edges. Each node v is labelled with a set £(v) of expressions of the form (C, [),
where C € sub(K), and [is either a rational, a variable x, or a negated variable, i.e., of the form 1 — x, where
x is a variable. The intuition here is that v is an instance of C to degree equal to or greater than the evaluation
of [.

Each edge (v, w) is labelled with a set L({v, w)) of expressions of the form (R,), where R € Ry are roles
occurring in KC (the intuition here is that (v, w) is an instance of R to degree equal to or greater than the evaluation of /).
If nodes v and w are connected by an edge (v, w) with (R, I) occurring in L({v, w)), then w is called an R;-successor
of v.

The forest has associated a set Cx of constraints of the form [</’,l =1, x; € [0,1], y; € {0, 1}, where [, " are
arithmetic expressions, on the variables occurring the node labels and edge labels.

The algorithm initializes a forest F to contain (i) a root node vé, for each individual @; occurring in A, labelled with
E(vé) such that E(vé) contains (C;, n) for each fuzzy assertion {(«;: C;, n) € A, and (ii) an edge (vf), v{)), for each fuzzy
assertion ((a;, aj): R;, n) € A, labelled with E((vf), v(]))) such that L((vé, vé)) contains (R;, n). F is then expanded
by repeatedly applying the completion rules described below. The completion-forest is complete when none of the
completion rules are applicable. Then, the bMINLP problem on the set of constraints Cr is solved.

As anticipated, we will use an extension to the fuzzy case of the lazy expansion technique in order to remove the
axioms in 7. The basic idea is as follows (recall that there are only two types of fuzzy concept inclusions):

e Given (A C C, n), add C only to nodes with a label containing A.
e Given (C C A, 1), add —C only to nodes with a label containing —A.

We assume a fixed rule application strategy as e.g., the order of rules below, such that the rules for (3) and (—V) are
applied as last. Also, all expressions in node labels are processed according to the order they are introduced into F.
Note that we do not need a notion of blocking as 7T is acyclic.

With x; we denote the variable associated to the assertion t of the form a: C or (a, b): R. x; will take the truth value
associated to 1.

Now we are ready to present the inference rules:

(A) IE () (A, 1) € L(v), and (ii) [£xp:4 then Cr = Cr U {xpa =1} U {xp4 € [0, 1]},

(A) If (—A, 1) € L(v) then Cr = Cr U {xp:a <1 — 1} U {xy:4 € [0, 1]}.
(C) If (i) (C, 1) € L(v), and (ii) [£xp.c then Cr = Cx U {xy:c =1} U {xp:c € [0, 1]}

3390 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

(6) If (R, 1) € L({v, w)) then Cxr = Cr U {x@,w):r 21} U {x@,wy:r € [0, 1]}.
(M If(=T,l) e Lw)ythenCr =Cr U {l =0}.
(L) If(L,l) e Lv)thenCr =Cr U{l =0}.
(—=) If (=—C, 1) € L(v) then L(v) = L(v) U (C,).
(M) If(CnD, 1) € L(v)then (i) append (C, x,.c)and (D, xy:p) to L(v),and (i) Cr = CrU{xy:.c Q@xy:p = }U{xy:c €
[0, 11} U {xy.p € [0, 1]}.
(M) If (=(C n D), 1) € L(v) then append (—C L1 =D, [) to L(v).
(W) If(CuD, 1) € L(v)then (i) append (C, x,.c) and (D, x,:p) to L(v), and (i) Cxr = CrU{xy.c Dxy.p 2 }U{xy:c €
[0, 1T} U {xy:p € [0, 1]}
(0) If (=(C u D), 1) € L(v) then append (—C M =D, [) to L(v).
(=) If (C — D, 1) € L(v) then (i) append (C, x,:¢) and (D, x,:p) to L(v), and (ii)) Cx = Cr U {xy.c = xy:p =1} U
{xv:c € [0, 1} U {xy:p € [0, 1]}
(=) If (=(C — D),Il) € L(v) then (i) append (C, xy.c) and (D, x,.p) to L(v), and (ii) Cr = Cr U {xy.c =
Xp:p<1 =1} U{xyc € [0, 11} U {xy:p € [0, 1]}
(V) If) (VR.C, 1) € L(v), (R,) € L({v, w), and (ii) the rule has not been already applied to this pair then (i)
append (C, xy:c) to L(w), and (ii) Cx = Cx U {xy:c 211 ® lo} U {xy:c € [0, 1]}
Q) If (i) (—3R.C, 1) € L(v), (R,]2) € L({v, w), and (ii) the rule has not been already applied to this pair then (i)
append (C, xy:c) to L(w), and (ii) Cr = Cx U {x@,w):r ® xu:c <1 — 11} U {xy:c € [0, 1]}
OO (AT C,n) €T, (i) (A, xy:4) € L(v), and (iii) v is a node to which this rule has not yet been applied then
(1) append (C, xy:¢) to L(v), and (ii) Cx = Cx U {xy:c Zxp:4 @ n} U {xy:c € [0, 11}
(C©) IfG) (CC A, 1) e T, (ii) (—A, xp.—a) € L(v), and (iii) v is a node to which this rule has not yet been applied
then (i) append (—C, xy:~¢) to L(v), and (ii) Cx = CF U {xy:~4 2 Xy:—~c} U {xy:~c € [0, 1]}
(@) If (3R.C, 1) € L(v) then (i) create a new node w, and (ii) append (R, x(v,w):r) to L({v, w)), and (iii) append
(C, xu:c) to L(w), and (iv) Cx = Cx U {xy:c ® Xw,wyR 21} U {xw:c € [0, 1]}.
(V) If (<VR.C, 1) € L(v) then (i) create a new node w, and (ii) append (R, x(y,w):R) to L({v, w)), and (iii) append
(C, xy:c) to L(w), and (iv) Cr = Cx U {xy.c = X@,wyr <1 — 1} U {xy.c € [0, 1]}.

In order to write the fuzzy operators, we may need to create some new control variables. For example, under
Fukasiewicz t-norm, x; ® xp >/ can be written as {{ <y, x; +x2 — 1<, x1 +x2 —y>1,y € {0, 1}}. If y = 0, then
[= 0 (it simulates the case where x; 4+ x> <1, and hence x| ® x; = 0),andif y = 1, then] = x; +xo — 1.

Now we will illustrate the full procedure with an example.

Example 4.1. Consider K = (7, A), where 7 = ¢ and A = {{(a,b) : R,0.7), (b:C,0.8)}. Let us show that
glb(KC,a:3R.C) = 0.8 ® 0.7. To this end, we have to determine the minimal value for x such that
(T, AU {{a:—3R.C, 1 — x)}) is satisfiable.

To start with, we construct a forest F with two root nodes a and b (one for each individual in .4). We process
first {(a, b): R, 0.7), then (b: C,0.8) and finally (a: =3R.C, 1 — x). Therefore, we set L(a) = [(—3R.C, 1 — x}],
L({a, b)) = [(R,0.7)], L(b) = [{(C,0.8)] and Cx = {x € [0, 1]}.

We first process (R,0.7) € L({a, b)), apply rule (R) and, thus, add x(p).r >0.7 and x(, p).zr € [0, 1] to CF.
Then we process (C, 0.8) € L(b), apply rule (A) and, thus, add xp.c >0.8 and xp.c € [0, 1] to Cz. We next process
(—=3R.C, 1 — x) € L(a), apply rule (3) and, thus, we set L(b) = (C, xp.c) and add {(X@p)yR @ xpc <1 —(1 —x)} =
{X(a,b):R @ xp:c <x} and xp.c € [0, 1] to Cx. Next we process (C, xp.c) € L(b), but since I = xp.c, rule (A) is not
applied.

Now the forest F is complete as no more rules are applicable and we consider the set of inequations Cx. It remains
to solve the bMINLP problem on Cr. Indeed, it holds that g/b(IC, a: D) = min x.Cx. It can be verified that this value
is0.8®0.7.

Note that there is a significative difference with other similar algorithms for fuzzy DLs combining tableau algorithms
with optimization problems [9,43,47]. In those algorithms, every time a concept C appears in the list of expressions
of a node v, a new variable x is created. In this paper, we introduce a variable x,.c once, and reuse it the following
times. This reduction in the number of generated variables is important because it makes the bMINLP problem easier
to solve.

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382 —-3402 3391

Example 4.2. Consider IC = (7, A), where 7 = @Jand A = {{a : C1 D, 1), (a : CNE, [)}. Each of the algorithms
in [9,43,47] introduce the fuzzy assertions (a : C, x1), {(a : D, x3), {(a : C, x3), (a : E, x4), as well as some constraints.
Hence, four new variables have been generated.

The new algorithm only introduces three variables, since it creates the fuzzy assertions (a : C, x4.c), (@ : D, x4:p)
and (a : E, x4.E).

Proposition 4.2 (Termination). For each KB IC, the tableau algorithm terminates.

Proof. Termination is a result of the properties of the expansion rules, as in the classical case [26]. More precisely
we have the following observations: (i) The expansion rules never remove nodes from the tree or concepts from node
labels or change the edge labels. (ii) Successors are only generated by the rules (3) and (—V). For any node and for each
concept these rules are applied at-most once. (iii) Since nodes are labelled with non-empty sets of sub(kC), obviously
there is a finite number of possible labelling for a pair of nodes. Consequently, any path of the tree will have a finite
length. O

Proposition 4.3 (Soundness). If the expansion rules can be applied to a KB KC such that they yield a complete
completion-forest F such that Cx has a solution, then K has a fuzzy tableau for K.

Proof. Let 7 be a complete completion-forest constructed by the tableaux algorithm for &C. By hypothesis, C has a
solution. If / is a linear expression in Cx, with [we denote the value of [in this solution. If the variable x does not
occur in Cr then X = 0 is assumed. A fuzzy tableau T = (S, £, £, V) can be defined as follows:

S = {v | vis anodein F},

L, 1l)y=0 ifves,

L, T)y=1 ifves,

L, A) = Xy.a ifves,

L, C) = max(l | (C,1) € L(v)) ifveS,
E(R, (v, w)) = Xw,wy:r ifv,weS,
ER, (v, w)) = Xpuw)r fv,weS,

V(a;) = v(i) where 06 is a root node.

It can easily be shown that 7 is a fuzzy tableau for K. For illustrative purpose, let us show that condition 12 is satisfied.
So assume that L(v, 3R.C) > n. The definition of T implies that (3R.C, I) € L(v). Then the (3) rule ensures that there
is a successor w’ of v such that (R, x1) € L({v, w’)) and (C, x3) € L(w") with {x; ® xo =1, x; € [0, 1]} in Cx. That
is, we have that X] ® x> >1. Now, w’ € S, E(R, (v, w')) = X,wy:r =X1 and L(w’, C) > x> and, thus, condition 12 of
the fuzzy tableau is satisfied. [J

Proposition 4.4 (Completeness). Consider a KB IC. If IC has a fuzzy tableau, then the expansion rules can be applied
in such a way that the tableaux algorithm yields a complete completion-forest for K such that C has a solution.

Proof. Let T = (S, L, £, V) be a fuzzy tableau for K. Using T', we can trigger the application of the expansion rules
such that they yield a completion-forest F that is complete. Using £ and £ we can find a solution to C. As illustrative
purpose, assume that for some node s, (AR.C,) € L(s) and the (3) rule can be applied to it. Then, as condition 12 of
the fuzzy tableau holds, we apply the (3) rule by creating a new node ¢, and append (R, x1) to L((s, t)) and (C, x»)
to L(¢), and set Cxr = Cr U {x] ® xp =1, x; € [0, 1]}, where x; are new variables. Now, from condition 12 we get
immediately that for any n € [0, 1], by letting / = n there are m1, m> € [0, 1] such that for x; = m, xp = mj the
new constraints are satisfied. [

5. The case of the Product t-norm
5.1. Properties of the logic

In this section we will focus on the particular case of the Product t-norm. Hence, the semantics is given by the fuzzy
operators of the Product logic family extended with Lukasiewicz negation. Note that Product negation can still be

3392 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

defined since ©g5C = C = L, so we actually allow two negations: Lukasiewicz and the negation of Product logic
(Godel negation).

We follow the inspiration of probabilistic theory, which combines this negation (in the probability of the negated
event) and the product (in the probability of the conjunction of independent events) [29]. Note that the t-norm is
subidempotent and the t-conorm is superidempotent, so in general C # C 1 C and C # C U C. Furthermore, universal
and existential quantifiers are not inter-definable.

Note also that extending Product logic with Fukasiewicz involutive negation leads to the logic £.IT? [15] since:

e As shown in [12], Lukasiewicz t-conorm can be defined from Lukasiewicz negation &, Product t-norm ® and
Product implication = as

1dr =6 (Bn @ O(Ou = f))

e Asitis well known, in Lukasiewicz logic the negation and the t-conorm can be used to define the remaining operators
using duality (for the t-norm) and the definition of S-implication (for the implication).

Hajek showed for Lukasiewicz logic that if K has a model then it also has a witnessed model. Unfortunately, our
logic does not share this witnessed model property, as the following example shows ° :

Example 5.1. Consider a fuzzy KB with the following axioms:

a:=VRA > 1, (1
a:VR.B > 1, 2)
(BB C A,l). A3)

Let us show that there is an infinite model, but no witnessed model. Consider an interpretation Z such that its domain
is A = {a} U {b, | n € N} and

RE(a, by)=1/n, 4)
AL (b =1/n?, ©)
BL(by)=1/n. (6)

For all other cases the value 0 is assumed. Let us verify that 7 is indeed a model:

Tka: —VR.A>1: TFa : =VR.A>1iff (VR.A) (a) = 0iff 0 = inf,, R(a, b,) = AL(b,) iff 0 = inf,, 1/n =
1/n%. As1/n > 1/n”> we have that 1 /n = 1/n> = 1/n and, hence, inf,, 1/n = 1/n? = infp, 1/n = 0. Therefore,
IFa: —=VR.A>1.

Tka :YR.B>1: TkFa : YR.B>1iff (YR.B)(a) = 1iff 1 = inf,, R%(a, by) = BL(b,) = infy, 1/n = 1/n =
infp, 1 = 1. Therefore, Z=a : VR.B > 1.

TE(BMBE A,1): IE(BN B T A, 1) iff 1 = inf. BZ(c) - BZ(¢) = AZ(c) iff for all objects ¢ of the domain
BZ(¢)- BL(c)< AZ(c). Now, for all individuals ¢ #b, we have BZ(c) = 0 so the condition holds trivially. For ¢ = b,
we have BL(b,) = 1/n and, thus, BL(b,) - BL(b,) = 1/n% < AL(b,). Therefore, I=(B N B C A, 1).

Therefore, Z is a model of the KB. Now, let us show that the KB does not have a witnessed model. Assume to the
contrary that there is such a model Z. Then:

1. From Eq. (1), 0 = inf, RZ(a%, b) = AZ(b). As T is witnessed, there is b such that 0 = RZ(aZ, b) = AL(b), i.c.,
AL(b) =0 and RZ (%, b) > 0.

2. From Eq. (3), for this b we have that BZ(b) - BZ(b) < AZ(b) = 0. That is, BZ(b) = 0.

3. Finally, from Eq. (2), we have that 1 = inf. RZ(a”, ¢) = BZ(c)<(R%(a”,b) = BL(b)) = 0, as RZ(a%,b) > 0
and BZ(b) = 0, which is absurd.

Hence, Z cannot be a witnessed model of the KB.
8 .17 is a very expressive logic combining Eukasiewicz and Product fuzzy operators and containing not only Lukasiewicz and Product logics, but

also Godel logic and many others.
9 We are grateful to Lluis Godo, who significantly contributed to figure out the example.

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3393

We point out that in the paper [9] we claim that this logic has the witnessed model property, but this may not be
the case as we have just seen. Hence, that paper also needs to restrict the reasoning tasks to witnessed models and to
restrict the concept inclusion such as we do in this paper.

In this case, g/b(IC, C T D) can be computed as the minimal value of x such that £ = (7, AU {{a : C, x1)} U {{a :
=D, 1 — x2)}) is satisfiable under the constraints {x >1 — y,x; + (1 —y) - x2> -x2,y - xo0<x - x1,x1 € [0, 1], x0 €
[0, 1], ¥y € {0, 1}}, where a is new abstract individual.

5.2. An algorithm for building a fuzzy tableau

In this case, the inference rules are the following:

(A) If (4) (A,) € L(v), and (ii) [#xy:a then Cr = Cx U {xy. 4 =1} U {xy:4 € [0, 1]}.
(A) If (=A, 1) € L) then Cr = Cr U {xp:a <1 — I} U {xp.4 € [0, 1]}.
(C) If (1) (C, 1) € L(v), and (ii) [#xy:c then Cr = Cx U {xy.c =1} U {xy.c € [0, 1]}.
(R) If (R. 1) € L((v, w)) then Cx = C U {xwwy& =1} U (x.uyk € [0, 11},
(T) If (=T, 1) € L(v) then Cr = Cr U {l = 0}.
(L) If(L,I) € L(v) then Cr = Cr U {l = 0}.
(—==) If (==C, 1) € L(v) then L(v) = L) U (C,).
(M) If G) (C 1 D, 1) € L(v), and (ii) not both (C, x,.c) € L(v) and (D, x,:.p) € L(v) then (i) append (C, x,.c) and
(D, xu:p) to L(v), and (ii) Cxr = Cx U {xy:c - xp:p 21} U {xy:c € [0, 11} U {xy:p € [0, 1]}.
(M) If (=(C n D), 1) € L(v) then append (—C U =D,) to L(v).
(L) If) (Cu D, 1) € L(v), and (ii) not both (C, x,.¢c) € L(v) and (D, x,:p) € L(v) then (i) append (C, x,.c) and
(D, xy:p) to L(v), and (ii) Cr = Cx U {xy:c + Xy:p — Xp:c - Xu:p 21} U {xp:c € [0, 11} U {xy:p € [0, 1]}.
(0) If (=(C u D), 1) € L(v) then append (—C N =D, [) to L(v).
(—) If (C — D, 1) € L(v) then (i) append (C, xy.c) and (D, xy:p) to L(v), and (ii)) Cx = Cx U {xy:p Zxy.c - [} U
{xv:c € [0, 1} U {xy:p € [0, 1]}.
(=) If (=(C — D), 1) € L(v) then (i) append (C, x,:c) and (D, x,:p) to L(v), and (ii)) Cx = CrU {xp.c + (1 — y) -
Xp:D 2 Xp:D, LK<Y, Y - Xp:p <Xp:c — - Xp:c} U {xy:p € [0, 1]} U {y € {0, 1}}, where y is a new variable.
(V) If) (VR.C, 1) € L(v), (R,) € L({v, w), and (ii) the rule has not been already applied to this pair then (i)
append (C, xy:c) to L(w), and (ii) Cx = Cx U {xu:c 21 - b} U {xy:c €10, 11}.
(3) If (i) (—3R.C, I}) € L(v), (R, L) € L({v, w), and (ii) the rule has not been already applied to this pair then (i)
append (C, xy.c) to L(w), and (ii) Cx = Cx U {(Xx@,w)R - Xw:c <1 =11} U {xy.c € [0, 1]}.
O IO (AC C,n) € T,(3) (A, xp:4) € L(v), and (iii) v is a node to which this rule has not yet been applied then
(i) append (C, xy:¢) to L(v), and (i) Cx = Cr U {xysc = xuia - 1} U {xusc € [0, 11).
O If(@) (CC A, 1) € T, (ii) (—A, xy:~a) € L(v), and (iii) v is a node to which this rule has not yet been applied
then (i) append (=C, xy:~¢) to L(v), and (ii) Cx = Cx U {xy.~4 = Xy—c} U {xy:~c € [0, 1]}
(@) If (3R.C, 1) € L(v) then (i) create a new node w, and (ii) append (R, x(y,):r) to L({v, w)), and (iii) append
B (C, xu:c) to L(w), and (iv) Cr = Cx U {xy:c - Xw,wy:r =1} U {xu:c € [0, 1]}
(V) If (=VR.C,) € L(v) then (i) create a new node w, and (ii) append (R, x(y,w):r) to L({v, w)), and (iii) append
(C, xu:c) to L(w), and (iv) C]: = C]:U {x(v,w):R + (1 =y)-Xyp:c ZXw:c, [y, Y Xu:C gx(v,w):R -1 'x(v,w):R} U
{xw:c €10, 1]} U {y € {0, 1}}, where y is a new variable.

Example 5.2. Let us comment the (V)-rule. If (=VR.C,) € L(v) then inf,, RL(v, w) = CcT(w)<1 — . For a new
abstract individual w, there are two possibilities to satisfy this restriction:

e [= 0, since obviously (=VR.C, 0) € L(v) holds;
o RT(v, w)>CL(w)and CLZ(w)< RL(v, w) — RZ (v, w) - I.

The binary variable y simulates the two branches:

e if y = 0 then [<O0;
e if y = 1 then x(yuwyr = Xu:c (50 RE(a,b)>CL(b)) and xy:c <Xw,wik — X@wyr - | (50 CEw)< R (v, w) —
Ri(w,w)-0). O

3394 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

Notice that every constructor of the logic is bMICQP representable i.e., it generates a set of bMICQP representable
constraints. Hence, we end up solving a bMICQP problem, instead of a bMINLP problem as it occurs in the general
case.

Example 5.3. Consider again the fuzzy KB in Example 4.1 K = (7, A), where 7 =) and A = {{(a, D) : R, 0.7),
(b:C,0.8)}. Let us show that glb(C, a: 3R.C) = 0.56. To this end, we have to determine the minimal value for x such
that (7, AU {{a: ~3R.C, 1 — x)}) is satisfiable.

To start with, we construct a forest F with two root nodes a and b (one for each individual in .4). We process
first ((a, b): R, 0.7), then (b: C,0.8) and finally (a: =3R.C, 1 — x). Therefore, we set L(a) = [(—3IR.C, 1 — x)],
L({a, b)) = [(R,0.7)], L(b) = [(C,0.8)] and Cr = {x € [0, 1]}.

We first process (R, 0.7) € L({a, b)), apply rule (R) and, thus, add x(4. =>0.7 and x¢ p).z € [0, 1] to Cr.
Then we process (C, 0.8) € L(b), apply rule (A) and, thus, add x,.c >0.8 and xp.¢c € [0, 1] to Cx. We next process
(—3R.C, 1—x) € L(a), apply rule (3) and, thus, we set L(b) = (C, xp.c) and add {x(@,b):r - Xp:c <x}and {xp.c € [0, 1]}
to Cr. Next we process (—C, 1 — x1) € L(b), apply rule (A) and, thus, add x;.c <x| to Cr.

Now the forest F is complete as no more rules are applicable and we consider the set of inequations Cr. It remains
to solve the bMIQCP problem on Cx. Indeed, it holds that gib(KC, a: D) = min x.Cx. It can be verified that this value
is 0.56.

6. Concrete features

The aim of this section is to add the possibility to deal with reals, integers and strings within the language. Essentially,
we allow to specify some constraints on the allowed values of an attribute, i.e., functional role such as hasAge and
hasName. For instance, we may want to express the concept of person who are not old enough to vote as those having
an age of less than 18 years, i.e.,

Person 1 (< hasAge 18)
or the concept of people whose first name is “umberto”:
Person M (= hasName ‘“umberto”)

It is interesting to note that this approach is independent of the family of operators, and hence can be combined with
the Product logic described in Section 5, but also with Lukasiewicz and Zadeh families [43,47].

We start this section by proposing a fuzzy extension of ALCF (D) including reals, integer and strings. Once the
syntax and the semantics are defined, we address the reasoning algorithm.

6.1. ALCF (D) Syntax

ALCF (D) extends ALC with functional roles (also called attributes or features) and concrete domains [31] allowing
to deal with datatypes such as strings and integers. We will also allow modifiers. For the sake of brevity, in this section
we will focus on the differences with respect to fuzzy ALC as defined in Section 3.

A fuzzy data type theory D = (4p, -p) is such that - p assigns to every n-ary data type predicate an n-ary fuzzy
relation over Ap. For instance, as for ALCF(D), the predicate < ;g may be a unary crisp predicate over the natural
numbers denoting the set of integers smaller or equal to 18. On the other hand, concerning non-crisp fuzzy domain
predicates, we recall that in fuzzy set theory and practice, there are many functions for specifying fuzzy set membership
degrees. However, the triangular, the trapezoidal, the L-function (left-shoulder function), and the R-function (right-
shoulder function) are simple, but most frequently used to specify membership degrees. The functions are defined
over the set of non-negative rationals @™ U {0} (see Fig. 1). Using these functions, we may then define, for instance,
Young: Natural — [0, 1] to be a fuzzy concrete predicate over the natural numbers denoting the degree of youngness
of a person’s age. The concrete fuzzy predicate Young may be defined as Young(x) = L(x; 10, 30).

Example 6.1. Assume, that a car seller sells an Audi TT for $31500, as from the catalog price. A buyer is looking
for a sports car, but wants to pay no more than around $30000. In classical DLs no agreement can be found. The

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3395

a b
1 1
I
I
I
I
[
[
I
I
I
I
o' i o' >
a b c d a b c
X X
c d
A
1 1—— p——
|
|
1
1
[
[
[
|
1
1
I > £
0 a b 0 a b
X X

Fig. 1. (a) Trapezoidal function; (b) triangular function; (c) L-function; (d) R-function.

Buyer’s Seller’s
soft constraint soft constraint

30000 31500

05 [——————7—

30500 31000 32000
X

Fig. 2. The soft price constraints.

problem relies on the crisp condition on the seller’s and the buyer’s price. A more fine grained approach would be
(and usually happens in matchmaking) to consider prices as concrete fuzzy sets instead. For instance, the seller may
consider optimal to sell above $31 500, but can go down to $30500. The buyer prefers to spend less than $30 000, but
can go up to $32000. We may represent these statements using two axioms (see Fig. 2):

AudiTT = SportsCar 1 JhasPrice.R(x; 30500, 31 500),
Query = SportsCar 1 3hasPrice.L(x; 30000, 32 000),

where hasPrice is a concrete feature (a car has only one price, which is a number). Then we may find out that the
highest degree to which the concept AudiTT M Query is satisfiable is 0.5 (the possibility that the Audi TT and the query
matches is 0.5). That is, glb(IC, C) = 0.5 and corresponds to the point where both requests intersects (i.e., the car may
be sold at $31 000).

3396 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

We also allow fuzzy modifiers in fuzzy ALCF (D), like very, more_or _less and slightly, apply to fuzzy sets to
change their membership function. Formally, a modifier is a function f,,: [0, 1] — [0, 1]. For instance, we may define
very(x) = x? and slightly(x) = +/x. Modifiers have been considered, for instance, in [22,48].

Now, let A, R4, R¢, I, I, and M be non-empty enumerable and pair-wise disjoint sets of concept names (denoted A),
abstract role names (denoted R), i.e., binary predicates concrete role names (denoted T), abstract individual names
(denoted a), concrete individual names (denoted ¢) and modifiers (denoted m). R4 also contains a non-empty sub-
set F, of abstract feature names (denoted r), while R¢ contains a non-empty subset F. of concrete feature names
(denoted t). Features are functional roles.

Firstly, concrete features should be defined using the syntax (cf name type [range]), where:

o fype of the related datatypes can be real, integer or string.

e range (only for reals and integers) is optional and has the form k| ky, where k1, k> is a real or an integer (depending
on the type);

e name is the name of the concrete feature.

For instance, some valid declarations are (cf hasAge integer 0 150) and (cf hasName string).
Now, ALCF (D) concepts can be built according to the following syntax rule (for ease, we assume that fuzzy domain
predicates are unary):

C

T| L |A|C; N Ca|Ci U Ca|Cy — Ca|~C|VR.C|AR.C|
m(C)|VT.D|3T.D|CDC,

D :=d|—d,
CDC = (Ztn)|(<tn)|(=tn),

where d is a unary fuzzy domain predicate, n is a value for feature 7 of the appropriate type (currently, a real, an integer
or a string). The syntax of concepts (=t n) and (<t n) should not be confused with the similar syntax of unqualified
cardinality restrictions (in more expressive DLs).

6.2. ALCF (D) semantics

In ALCF (D) a fuzzy interpretation T = (AI , L) relative to a fuzzy data type theory D = (4p, -p) consists of a
non-empty set AL (the domain), disjoint from Ap, and of a fuzzy interpretation function Z that coincides with - on
every data value, data type, and fuzzy data type predicate, and it assigns:

1. to each abstract concept C a function cT: AT - [0, 1];

2. to each abstract role R a function RZ: A7 x 4% — [0, 1];

3. to each abstract feature r a partial function rZ: A% x AT — {0, 1} such that for all u € A% there is an unique w € At

on which rZ (u, w) is defined;

4. to each concrete role T a function RZ: A% x Ap — [0, 1];

. to each concrete feature ¢ a partial function T 4T x Ap — {0, 1} such thatforallu € AL there is an unique 0 € Ap
on which £ (u, 0) is defined;

. to each modifier m the modifier function f,: [0, 1] — [0, 1];

. to each abstract individual a an element in A% ;

. to each concrete individual ¢ an element in Ap.

. to each n-ary concrete predicate d the interpretation dp C Ay,.

W

Neliie SN o)

Notice that we force features to be crisp. In our opinion, the notion of functionality induces a crisp interpretation
over a concrete feature and hence saying that e.g., the degree of truth of hasAge(x, 18) is 0.5 is rather unrealistic. '

The fuzzy interpretation function is extended as shown in Table 3, where x, y € @t , U € Ap and = denotes the crisp
equality. Notice that CDC are crisp concepts and, accordingly, ®, @ and & denote the classical intersection, union and
complement, respectively. Furthermore, it is easy to see that (=7 n) = (<t n) @ (=t n).

10 personal communication with Llufs.

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3397

Table 3
Fuzzy DL semantics for ALCF (D).

1Zx) =0
TZw) =1
€rnc)tx) = G ® Cxx)
Cruc)fx) = I @)
(€1 =) x) = 1T) = GTK)
~Orx) = 6T
(VR.CO)Z(x) = inf _,z R (x,y) = C*(y)
@ER-OF(x) = sup, 4z RT(x,) ® CT(y)
mECONE(x) = fu(CT(x))
(VT.D)Z (x) = infyeq, (TZ(x,) = DL(y)
@AT.DYE(x) = supycqy (T7(x,) ® DE(y)
(Ztm¥(a) = supyey), [t7(a,b) ® (b=n)]
=(=tn)%(@) = 1 — (>t n)¥(a) = infpes, [O1F(a, b) ® (b <)]
(<t (@) = supyey), [t7(a,b) ® (b<n)]
=(<t n)¥(@) = 1 — (<t n)¥(a) = infpes, [O1F(a, b) ® (b > n)]
(=t n)¥(a) = supyey, [tT(a,b) ® (b =n)]
=(=tn)%@) = 1 - (=t n)k(a) = infpes, [StT(a, b) ® (b#£n)]

6.3. Reasoning

Reasoning within ALCF (D) relies on the construction of a fuzzy tableau. In this section we concentrate on the
differences with respect to the algorithm described in Section 5.

Firstly, we need a technical definition involving feature roles (see [31]). Let F be a forest, r an abstract or concrete
feature such that we have two edges (v, wy) and (v, wy) such that (r, [1) and (r,) occur in L({v, wy)) and L({v, w»)),
respectively (informally, F contains ((v, wy):7,[1) and ((v, wa):r,l3)). Then we call such a pair a fork. As r is a
function, such a fork means that w; and w» have to be interpreted as the same individual. Such a fork can be deleted by
adding both L£({v, wy)) to L({v, wy)) and L(w») to L(w1), and then deleting node w,. A similar argument applies to
concrete feature roles. At the beginning, we remove the forks from the initial forest. We assume that forks are eliminated
as soon as they appear (as part of a rule application) with the proviso that newly generated nodes are replaced by older
ones and not vice versa.

Then, we have to extend the notion of fuzzy tableau with the following additional conditions (associated to the new
constructs):

e If L(s, m(C))>n, then L(s, C)=m and n = f,,,(m) for some m.

o If L(s,VT.D)>n, then DL(c)>E(R, (s,c)) @n, forall ¢ € S.

e If L(s, =VT.D)>n, then there exists ¢ € S such that £(R, (s, ¢)) = DL(c)<1 —n.

o If L(s,3T.D)>n, then there exists ¢ € S such that E(R, (s, ¢)) >m, DI(c)>m2 and n = m; ® my, for some m
and m>.

o If L(s, ~3T.D)>n, then E(R, (s, ¢)) ® DX(c)<1 —n, forall c € 8.

e L(s, (=t n)) €{0,1}.

e If L(s, (>t n)) = 1, then there exists ¢ € S such that £(¢, (s, c)) = 1 and c >n.

o If L(s,(—>t n)) =1,then E(R, {c,t)) =0or L(#,C) < n,forall c € S.

o L(s, (<t n)) ef{0,1}.

o If L(s, (<t n)) = 1, then there exists ¢ € S such that £(¢, (s, c)) = 1 and c <n.

o If L(s,(—>t n)) = 1,then E(R, {(c,t)) =0or L(t,C) > n, forall c € S.

e L(s,(=1tn)) e{0,1}.

e If L(s, (=t n)) = 1, then there exists ¢ € S such that £(z, (s, c)) = 1 and ¢ = n.

o If L(s,(—>t n))=1,then E(R, {(c,t)) =0o0r L(#,C) > nor L(t,C) < n,forall c € S.

Now, we introduce the inference rules, where x; will take the truth value associated to 7, while with x. we denote
the variable associated to the concrete individual c. Note that these rules generate a set of constraints which is a bMILP

3398 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

problem. Hence, if we combine concrete features with fuzzy operators from Lukasiewicz and Zadeh families, we may
rely on a bMILP solver. However, if we want to use it with Product logic, we still need a bMIQCP solver.

We will start by showing how to deal with modifiers and fuzzy concrete roles, then we consider integers and reals
and finally we extend the work to strings.

6.3.1. Inference rules for modifiers and fuzzy membership functions

In order to represent the membership functions of modifiers and concrete fuzzy predicates, we use a linear function
(or a combination of linear functions) L. In order to represent it as a bMILP, we have to define the graph g(L) =
{{(x1,x2) : L(x1)>x2} as the solutions of a bMILP. Similarly, as we may have negation in front of modifiers and fuzzy
domain predicates, we also need to define g(L) = {(x1, x2) : L(x1)<x2}.

The inference rules are the following:

(T) If (T, 1) € L({v, w)) the case is similar as in rule (R), but considering concrete roles.
(r) If (r, 1) € L({v, w)) then Cr = CrU{x(,w):r 2} U{xw,w):r € {0, 1}}. The case for concrete features ¢ is similar.
(m) If (m(C),1) € L) then Cr = Cr U {y(v : C, 1)}, where the set y(v : C,[) is obtained from the bMILP
representation of g(m) as follows: replace in g(m) all occurrences of x» with [. Then resolve for x| and replace all
occurrences of the form x| >1" with (v : C, I’), while replace all occurrences the form x; </’ with (v : (=C), 1-1').
(m) The case (—m(C),1) € L(v) is similar as in rule (m), but using the bMILP representation of g(m) in place of
g(m).
(d) If(d,l) € L(v)thenCr = CrU{p(v : d, 1)}, where the set y(v : d, [) is obtained from the bMILP representation
of g(d) by replacing all occurrences of x, with / and x; with x,,.
(d) The case (—d, 1) € L(v)is similar as in rule (d), where we use the bMILP representation of g(d) in place of g(d).
(Vp) If (VT.D,) € L(v), the case is similar as in rule (V).
(3p) If (=3T.D, 1) € L(v), the case is similar as in rule (3).
(3p) If (3T.D, 1) € L(v), the case is similar as in rule (3).
(Vp) If (=VT.D, 1) € L(v), the case is similar as in rule ™).

Note that rules for modifiers and concrete roles are similar to [43], but in rule (m) we write v : (—C) instead of
v : (nnf(—C)). The reason is that we want to express this rules independently from the family of fuzzy operators, and
in general (e.g., in the Product logic in Section 5) we cannot suppose that concepts are in NNF.

For the sake of a concrete illustration of the meaning of g and g, consider a left-shoulder function with k; = 0 and
ky = b. Then,

gm)={{x1,x2) : x; Za(l —y)+ by, x2 21—y, x; =ay, x1 <b, x; + (b — a)x2 > by}.

It can be verified that the control variable y simulates two branches: if y = 0 then x, = 1, whereas if y = 1 then
x22(b —x1)/(b —a).

6.3.2. Inference rules for integers and reals
We will start by showing the inference rules, and then we will illustrate them with a pair of examples.

(Z4p) (=1 n), a1) € L(v) then: (i) if (t(v,), B) ¢ L(v, ¢) then add (t(v, ¢), o1) to L(v, ¢), (ii) for some ¢ such
that (1(v, ©), f) € L, ¢),Cr=Cr U {a1 +y=e} U {1 +y<1} U (o =1 -y} U fre>n—(n —
k1)y} U {y € {0, 1}}, where y is a new variable.

(=2 4p) If () (=(>1 n), o) € L(v) and (i) {t(v,¢),) € L(v,c),then Cr = Cxr U {y1<y} U (X0 =
L=y} Ufou+yr+y=e Ufou—yi+y<lUfoSl-ynl U {xes(n—e)—(m—e—ka)y2} U {yi €
{0, 1}}, where y; are new variables.

(<a,) (<t n), q) € L(v) then: (i) if (t(v, ¢), B) ¢ L(v, ¢) then add (t(v, ¢), a1) to L(v, ¢), (ii) for some ¢ such
that (1(v, ©), f) € L, ¢),Cr=Cr U {a1 +y=e} U {1 +y<1} U (o =1 —y) U fre<n — (1 —
k2)y} U {y € {0, 1}}, where y is a new variable.

(=<4p) If () (=(=1 n),0n) € L(v) and (ii) (t(v, c),02) € L(v,c), then Cr = Cr U {yi<y} U {x@,e) =
I—yi} Ufag+yi+y22el Ular—y1+y <1 U {o<l—y1} U {xe2(m+e)—(n+e—ki)y2} U {y; €
{0, 1}}, where y; are new variables.

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382—3402 3399

(=4p) f {(=1 n),a1) € L(v) then: (3) if (t(v, ¢), f) ¢ L(v,) then add (¢(v, ¢), a1) to L(v, ¢), (ii) for some ¢ such
that (t(v, ¢), f) € L(v,¢),Cr=Cr U {or+y=e} U {o1 +y<1} U {50021 =y} U {xe2n—(n —
kDyy U {xc<n—(n—ko)y} U {y € {0, 1}}, where y is a new variable.

(= =4,) I () (=(= 1t n), 1) € L(v) and (ii) (t(v,), %2) € L(v,¢), then: Cr = Cr U {y22y1} U {y3=y} U
ey =1T=—y} Ufa+yi+yze U —yi+n<l U{n<l-yn} U {x<h-—g—-n-—¢c—
k), —(n—e—k)(1—y3)} U {xc=2(n+e)—m+e—k1)yz} U {y; € {0, 1}}, where y; are new variables.

Rules (= 4,)), (< 4,) and (=4,,) start by checking if there exists a concrete individual ¢ such that it is related with v
by means of feature ¢ and otherwise such a relation is created. Hence, before step (ii) is applied, there exists a relation
(t(v, c), By € L(v, ¢) for some f € [0, 1], to which these rules are applied.

On the other hand, rules (—2 4,), (—<4,) and (— =,,)) are applied to every concrete individual ¢ such that
(t(v,c),) € L(v, c¢), but since ¢ is functional, ¢ is unique for every node v.

Notice that strict inequalities are not allowed, and hence for any linear expression t, the inequality T > 0 is expressed
as 7> ¢, for a sufficiently small ¢ > 0.

Example 6.2. Let us comment the (=2 4,)-rule. If (=(>hasAge 18), a1) € L(v) and, for some c, (t(v, c), %2) €
L(v, ¢), there are three possibilities to satisfy these formulae:

1. o1 = 0, because (—(=>hasAge 18), 0) is always true.

2. XpasAge(v,c) = 0, since it implies [©hasAge(a, b) ® (b < n)] = 1 and hence (O (> hasAge 18), o1) is true. In order
to satisfy hasAge(v, ¢) > o, oz must be 0.

3. XhasAge(v,c) = 1 and x < n, because this implies [©hasAge(a, b)® (b < n)] = 1 and hence (© (> hasAge 18), a1)
is true.

In order to cover all these possibilities, the control variables y; and y, simulate three branches:

1. y1 =0, y» = 1. In this case, «; = 0 and hence the other variables are not constrained (Xpasage(v,c) = 1, 02 <1,
xe <ko).

2. y1 =1, y2 = 1. Now, Xpasage(v,c) = 0 and op = 0. x. is not constrained (x, <kz).

3. y1 = 0, Y2 = 0. Then, XhasAge(v,c) = 1 and Xe < 18.

4. Since y; < y2, the case y; = 1 and y, = 0 is not possible.

Example 6.3. Let us consider now the (— =4,)-rule. The scenario is similar to the one in Example 6.2 but now there
are four possibilities. In fact, (b#n) is true if either b > n or b < n. Now, variables y;, y2 and y3 simulate four
branches:

1. yy =0, y2 =1, y3 = 1. In this case, «; = 0 and hence the other variables are not constrained.
2. y1 = 1, Y2 = 1, y3 = 1. NOW, xhasAge(v,c) = 0 and Oy = 0.

3. y1=0, y2 =0, y3 =0. Then, Xp454ge(v,c) = 1 and x > n.

4. y1 =0, y2 =0, y3 = 1. Then, Xpasage(v,c) = 1 and x, < n.

5. Since y; <y and y; < y3, the other cases are not possible.

6.3.3. Inference rules for strings
First of all, some preprocessing is needed. Essentially, we collect all strings in the KB, order them in alphabetical
order and assign a progressive natural number to them. The algorithm is:

1. Get the set of strings S appearing in the fuzzy KB K i.e., for every concrete feature ¢ such that (cf ¢ string) € K,
consider {s : s is a string, (o<t 5) € K, = {>, <, =}}.

2. Order S = {s1, ..., s} in alphabetical order.

3. Compute for every string s; its order order(s;) (which is obviously an integer in [1, n]).

Then, we add the following rule (which should have higher priority than inference rules for integer and reals):

(string) If ((<t s),a) € L(v), with s being a string then: (i) replace ((><t s),) with ((>t order(s)), «) where
>a1 = {>, <, =} and order(s) is the ordinal assigned to s, (ii) change the type of ¢, becoming real.

3400 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

Example 6.4. Suppose we want to know if the KB K = {(x:(=hasName “u”), 1), (x:(<hasName “v”), 1),
(x: (= hasName “umberto™), 1)} is consistent.

To start with, the order of every string in K is computed: order(‘“u”) = 1, order(“umberto”) = 2, order(“v”) = 3.
Then, we construct a forest F with a root node x and L(x) = [{((=hasName “u”), 1), ((<hasName “v”), 1)], ((=
hasName “umberto™), 1)].

Now, we apply (string) rule to L(x). We consider the tuple ((>hasName “u”), 1) and we replace the string “u”
with the number order(u) = 1. Once applied the rule two more times, we have that £L(x) = [{((=hasName 1), 1),
((LhasName 3), 1)], ((= hasName “umberto™), 2)].

Next, (= 4,,), (< 4,) and (=,4,,) are applied. It is easy to see that the set of constraints which is generated has a
solution, so K is satisfiable.

Finally, we will discuss correctness, completeness and termination results of the reasoning procedure for

ALCF(D).
Proposition 6.1. A ALCF(D) KB K = (7, A) is satisfiable iff there exists a fuzzy tableau for K.
Proposition 6.2 (Termination). For each ALCF (D) KB K, the tableau algorithm terminates.

Proposition 6.3 (Soundness). If the expansion rules can be applied to an ALCF D) KB K such that they yield a
complete completion-forest F such that Cr has a solution, then K has a fuzzy tableau for K.

Proposition 6.4 (Completeness). Consider an ALCF (D) KB IKC. If KC has a fuzzy tableau, then the expansion rules can
be applied in such a way that the tableaux algorithm yields a complete completion-forest for IC such that Cr has a
solution.

The proofs of these propositions can straightforwardly be obtained by extending the ones described in Section 4.
7. Conclusions

In this work we have provided a reasoning algorithm for a general family of fuzzy DLs which extend a general
t-norm with an involutive negation (Lukasiewicz negation). In general, universal and existential quantifiers are not
inter-definable. The reasoning algorithm combines tableaux rules with a reduction to a bMINLP problem. The algorithm
uses a fuzzy version of the lazy expansion technique, as well as a more sophisticated technique with respect to the
related work which makes possible to save some of the generated variables. In some particular cases, we can obtain
an easier optimization problem. For example, for Zadeh and Lukasiewicz t-norms we end up with a bMILP problem
[43,44,47], and for Product t-norm we end up with a bMIQCP problem. We have provided the set of rules that make
possible to reason with Product t-norm.

As already mentioned, there is a significative difference with other similar algorithms for fuzzy DLs combining
tableau algorithms with optimization problems [9,43,47]. In those algorithms, every time a concept C appears in the
list of expressions of a node v, a new variable x is created. In this paper, we introduce a variable x,.c once, and reuse
it the following times. This reduction in the number of generated variables is important because it makes the bMINLP
problem easier to solve.

We have also proposed a fuzzy extension of ALCF(D) which allows to use fuzzy modifiers, fuzzy membership
functions and concrete features relating individuals with strings, real or integer numbers. This extension is general in
the sense that does not depend on any particular semantics of the fuzzy operators. Moreover, the constraints that these
features introduce are linear, so they do not add extra complexity, that is, in Lukasiewicz/Zadeh, Product or a general
t-norm-based fuzzy DL, we still end up with a bMILP, a bMIQCP or a bMINLP problem, respectively.

The algorithms to reason with general t-norms are currently under implementation as an extension of the fuzzyDL
reasoner [10]. Concrete features are already supported, as well as Lukasiewicz, Zadeh and Godel fuzzy logics.

Using Héjek’s translation [18], it is possible to reduce fuzzy ALC to fuzzy propositional logics with an in-
volutive negation [14], although the reduction is exponential in size. For example, our fuzzy DL under Product
logic can be reduced to I1~ (propositional Product logic with an involutive negation [14]). The advantage of our

F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 3382 —-3402 3401

approach is that we can also support ALCF(D), with fuzzy modifiers, fuzzy membership functions and concrete
features.

The results could be extended to more expressive fuzzy DLs, such as SHZF(D) and SHOIN (D), the logics
behind OWL-DL and OWL-Lite, by using an appropriate blocking condition similarly as done in [25]. It would also
be interesting to support fuzzy general (i.e., unrestricted) concept inclusion axioms.

Acknowledgement

We would like to thank to the anonymous referees for their very valuable comments on an earlier version of this
paper.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation,
and Applications, Cambridge University Press, Cambridge, 2003.

[2] F. Baader, E. Franconi, B. Hollunder, B. Nebel, H.J. Profitlich, An empirical analysis of optimization techniques for terminological representation
systems, or: Making KRIS get a move on, Applied Artificial Intelligence 4 (1994) 109-132.

[3] F. Baader, 1. Horrocks, U. Sattler, Description logics as ontology languages for the semantic web, in: Mechanizing Mathematical Reasoning:
Essays in Honor of Jorg H. Siekmann on the Occasion of His 60th Birthday, Lecture Notes in Artificial Intelligence, Vol. 2605, Springer, Berlin,
2005, pp. 228-248.

[4] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American 284 (5) (2001) 34-43.

[5] F. Bobillo, M. Delgado, J. Gémez-Romero, A crisp representation for fuzzy SHOZN with fuzzy nominals and general concept inclusions,
in: Uncertainty Reasoning for the Semantic Web I, Lecture Notes in Artificial Intelligence, Vol. 5327, Springer, Berlin, 2008, pp. 174—188.

[6] F. Bobillo, M. Delgado, J. Gémez-Romero, Optimizing the crisp representation of the fuzzy Description Logic SROZQ, in: Uncertainty
Reasoning for the Semantic Web I, Lecture Notes in Artificial Intelligence, Vol. 5327, Springer, Berlin, 2008, pp. 189-206.

[7] F. Bobillo, M. Delgado, J. Gomez-Romero, Crisp representations and reasoning for fuzzy ontologies, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, in press.

[8] F. Bobillo, M. Delgado, J. Gomez-Romero, U. Straccia, Fuzzy description logics under Gédel semantics, International Journal of Approximate
Reasoning 50 (3) (2009) 494-514.

[9] F. Bobillo, U. Straccia, A fuzzy description logic with product t-norm, in: Proc. 16th IEEE Internat. Conf. on Fuzzy Systems (FUZZ-IEEE
2007), 2006, pp. 652-657.

[10] F. Bobillo, U. Straccia, fuzzyDL: an expressive fuzzy Description Logic reasoner, in: Proc. 17th IEEE Internat. Conf. on Fuzzy Systems
(FUZZ-IEEE 2008), 2008, pp. 923-930.

[11] F. Bobillo, U. Straccia, Towards a crisp representation of fuzzy Description Logics under Lukasiewicz semantics, in: Proc. 17th Internat.
Sympos. on Methodologies for Intelligent Systems (ISMIS 2008), Lecture Notes in Artificial Intelligence, Vol. 4994, Springer, Berlin, 2008,
pp. 309-318.

[12] P. Cintula, An alternative approach to the £.11 logic, Neural Network World 11 (6) (2001) 561-572.

[13] B. Cuenca-Grau, 1. Horrocks, B. Motik, B. Parsia, P.F. Patel-Schneider, U. Sattler, OWL 2: the next step for OWL, Journal of Web Semantics
6 (4) (2008) 309-322.

[14] F. Esteva, L. Godo, P. Hijek, M. Navara, Residuated fuzzy logics with an involutive negation, Archive for Mathematical Logic 39 (2) (2000)
103-124.

[15] E Esteva, L. Godo, F. Montagna, The £.IT and £.11 % logics: two complete fuzzy systems joining Lukasiewicz and Product logics, Archive for
Mathematical Logic 40 (1) (2001) 39-67.

[16] C.A. Floudas, Nonlinear and Mixed-integer Optimization, Oxford University Press, Oxford, 1995.

[17] R. Hihnle, Advanced many-valued logics, in: Handbook of Philosophical Logic, Vol. 2, second ed., Kluwer Academic Publishers, Dordrecht,
2001.

[18] P. Hijek, Making fuzzy description logics more general, Fuzzy Sets and Systems 154 (1) (2005) 1-15.

[19] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 2001.

[20] P. H4jek, On witnessed models in fuzzy logic, Mathematical Logic Quarterly 53 (1) (2007) 66-77.

[21] P. H4jek, What does mathematical fuzzy logic offer to description logic? in: Capturing Intelligence: Fuzzy Logic and the Semantic Web,
Elsevier, Amsterdam, 2006, pp. 91-100.

[22] S. Holldobler, H.P. Storr, T.D. Khang, The fuzzy description logic ALC g with hedge algebras as concept modifiers, Journal of Advanced
Computational Intelligence 7 (3) (2003) 294-305.

[23] I. Horrocks, P.F. Patel-Schneider, Reducing OWL entailment to description logic satisfiability, Journal of Web Semantics 1 (4) (2004) 345-357.

[24] I. Horrocks, P.F. Patel-Schneider, From SHZ Q and RDF to OWL: the making of a Web ontology language, Journal of Web Semantics 1 (1)
(2003) 7-26.

[25] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for very expressive description logics, Logic Journal of the Interest Group in Pure and
Applied Logic 8 (3) (2000) 239-263.

[26] I. Horrocks, U. Sattler, S. Tobies, Reasoning with individuals for the description logic SHZQ, in: Proc. 17th Internat. Conf. on Automated
Deduction (CADE-17), Lecture Notes in Artificial Intelligence, Vol. 1831, Springer, Berlin, 2000, pp. 482-496.

3402 F. Bobillo, U. Straccia / Fuzzy Sets and Systems 160 (2009) 33823402

[27] R.G. Jeroslow, Logic-based Decision Support. Mixed Integer Model Formulation, Elsevier, Amsterdam, 1989.

[28] R. Knappe, H. Bulskov, T. Andreasen, Perspectives on ontology-based querying, International Journal of Intelligent Systems 22 (7) (2006)
739-761.

[29] T. Lukasiewicz, Expressive probabilistic description logics, Artificial Intelligence 172 (6-7) (2008) 852-883.

[30] T. Lukasiewicz, U. Straccia, Managing uncertainty and vagueness in description logics for the semantic web, Journal of Web Semantics 6 (4)
(2008) 291-308.

[31] C. Lutz, Description logics with concrete domains—A survey, Advances in Modal Logics, Vol. 4, King’s College Publications, 2003.

[32] D. L. McGuinness, F. van Harmelen, OWL Web Ontology Language overview, 2004, Retrieved October 1, 2007, from (http://www.w3.org/
TR/owl-features).

[33] B. Nebel, Terminological reasoning is inherently intractable, Artificial Intelligence 43 (2) (1990) 235-249.

[34] H. Salkin, M. Kamlesh, Foundations of Integer Programming, North-Holland, Amsterdam, 1988.

[35] M. Schmidt-Schauf3, G. Smolka, Attributive concept descriptions with complements, Artificial Intelligence 48 (1991) 1-26.

[36] G. Stoilos, G. Stamou, Extending fuzzy description logics for the semantic web, in: Proc. 3rd Internat. Workshop on OWL: Experiences and
Directions (OWLED 2007), 2007.

[37] G. Stoilos, G. Stamou, J.Z. Pan, Handling imprecise knowledge with fuzzy description logic, in: Proc. 2006 Internat. Workshop on Description
Logics (DL 2006), 2006, pp. 119-126.

[38] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, I. Horrocks, Fuzzy OWL: uncertainty and the semantic web, in: Proc. 1st Internat. Workshop on
OWL.: Experiences and Directions (OWLED 2005), 2005.

[39] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, I. Horrocks, Reasoning with very expressive fuzzy description logics, Journal of Artificial
Intelligence Research 30 (8) (2007) 273-320.

[40] G. Stoilos, U. Straccia, G. Stamou, J.Z. Pan, General concept inclusions in fuzzy description logics, in: Proc. 17th European Conf. on Artificial
Intelligence (ECAI-06), IOS Press, 2006, pp. 457-461.

[41] U. Straccia, A fuzzy description logic, in: Proc. 15th National Conf. on Artificial Intelligence (AAAI-98), 1998, pp. 594-599.

[42] U. Straccia, A fuzzy description logic for the semantic web, in: Fuzzy Logic and the Semantic Web, Capturing Intelligence, Elsevier, Amsterdam,
2006, pp. 73-90 (Chapter 4).

[43] U. Straccia, Description logics with fuzzy concrete domains, in: Proc. 21st Conf. on Uncertainty in Artificial Intelligence (UAI-05), AUAI
Press, 2005, pp. 559-567.

[44] U. Straccia, Reasoning in L-SHZF: an expressive fuzzy description logic under Lukasiewicz semantics, Technical Report ISTI-018/2007,
ISTI-CNR, 2007.

[45] U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research 14 (2001) 137-166.

[46] U. Straccia, Transforming fuzzy description logics into classical description logics, in: Proc. 9th European Conf. on Logics in Artificial
Intelligence (JELIA-04), Lecture Notes in Computer Science, Vol. 3229, Springer, Berlin, 2004, pp. 385-399.

[47] U. Straccia, F. Bobillo, Mixed integer programming, general concept inclusions and fuzzy description logics, Mathware & Soft Computing 14
(3) (2007) 247-259.

[48] C. Tresp, R. Molitor, A description logic for vague knowledge, in: Proc. 13th European Conf. on Artificial Intelligence (ECAI-98), 1998.

[49] J. Yen, Generalizing term subsumption languages to fuzzy logic, in: Proc. 12th Internat. Joint Conf. on Artificial Intelligence (IICAI-91), 1991,
pp. 472-477.

[50] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.

http://www.w3.org/TR/owl-features
http://www.w3.org/TR/owl-features

