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MEASURES, STATES AND DE FINETTI MAPS ON PSEUDO-BCK

ALGEBRAS

LAVINIA CORINA CIUNGU1, ANATOLIJ DVUREČENSKIJ2

Abstract. In this paper, we extend the notions of states and measures presented
in [12] to the case of pseudo-BCK algebras and study similar properties. We prove
that, under some conditions, the notion of a state in the sense of [12] coincides with
the Bosbach state, and we extend to the case of pseudo-BCK algebras some results
proved by J. Kühr only for pseudo-BCK semilattices. We characterize extremal states,
and show that the quotient pseudo-BCK algebra over the kernel of a measure can
be embedded into the negative cone of an archimedean ℓ-group. Additionally, we
introduce a Borel state and using results by J. Kühr and D. Mundici from [28], we
prove a relationship between de Finetti maps, Bosbach states and Borel states.

1. Introduction

BCK algebras were introduced originally by K. Isèki in [24] with a binary operation
∗ modeling the set-theoretical difference and with a constant element 0 that is a least
element. Another motivation is from classical and non-classical propositional calculi
modeling logical implications. Such algebras contain as a special subfamily a family of
MV-algebras where some important fuzzy structures can be studied. For more about
BCK algebras, see [29].

Pseudo-BCK algebras were originally introduced by G. Georgescu and A. Iorgulescu
in [18] as algebras with “two differences”, a left- and right-difference, instead of one
∗ and with a constant element 0 as the least element. In [16], a special subclass of
pseudo-BCK algebras, called  Lukasiewicz pseudo-BCK algebras, was introduced and
it was shown that it is always a subalgebra of the positive cone of some ℓ-group (not
necessarily abelian). The class of  Lukasiewicz pseudo-BCK algebras is a variety whereas
the class of pseudo-BCK algebras is not; it is only a quasivariety because it is not closed
under homomorphic images. Nowadays pseudo-BCK algebras are used in a dual form,
with two implications, → and  and with one constant element 1 that is a greatest
element. Thus such pseudo-BCK algebras are in a “negative cone” and are also called
“left-ones”. For a guide through the pseudo-BCK algebras realm, see the monograph
[23].

States or measures give a probabilistic interpretation of randomness of events of
given algebraic structures. For MV-algebras, Mundici introduced states (an analogue
of probability measures) in 1995, [30], as averaging of the truth-value in  Lukasiewicz
logic. Measures on BCK algebras were introduced by A. Dvurečenskij in [7, 12]. Based
on the notion of a measure it was defined a concept of state on these structures if such
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BCK algebra admits a smallest element 0. Today the notion of states has many forms:
The notion of a Bosbach state has been studied for other algebras of fuzzy structures
such as pseudo-BL algebras, [17], bounded non-commutative Rℓ-monoids, [14, 15, 13],
residuated lattices, [4], pseudo-BCK semilattices and pseudo-BCK algebras, [26].

In the present paper, we study Bosbach states and measures on pseudo BCK algebras.
In general, it can happen that on bounded BCK algebras states can fail. We will study
states, extremal states, Bosbach states, state-morphisms and we show the relationships
among them. Such relations were studied for pseudo MV-algebras, [8], and generalized
by Kühr [26] for pseudo-BCK algebras that are ∨-semilattices. In our paper we show
that the existence of the join in the pseudo-BCK algebra is not substantial for our
study. The main results say that the quotient pseudo-BCK algebra that is downwards-
directed over the kernel of a measure can be embedded as a subalgebra into the negative
cone of an abelian and archimedean ℓ-group. In particular that A is with strong unit,
the embedding is even onto. We will apply this result to characterize extremal state-
measures on unital ℓ-groups.

Finally, we show how Bosbach states and state-measures appear with respect to de
Finetti’s coherence principle.

The paper is organized as follows: Section 2 contains preliminary notions on pseudo-
BCK algebras. Section 3 is dedicated to states, extremal states, state-morphisms and
Bosbach states, kernels on pseudo-BCK algebras. Section 4 deals with a generalization
of a notion of measures, Section 5 presents results on state-measures on pseudo-BCK
algebras with strong unit. The last section deals with de Finetti’s notion of coherence
and it gives some integral representations of states and state-measures via Borel states.

2. Preliminaries on Pseudo-BCK Algebras

In the present section, we give elements of theory of pseudo-BCK algebras.

Definition 2.1. ([20]) A pseudo-BCK algebra is a structure A = (A,≤,→, , 1) where
≤ is a partial binary relation on A, → and  are total binary operations on A and 1 is
an element of A satisfying, for all x, y, z ∈ A, the axioms:

(A1) x → y ≤ (y → z) (x → z), x y ≤ (y  z) → (x z);
(A2) x ≤ (x → y) y, x ≤ (x y) → y;
(A3) x ≤ x;
(A4) x ≤ 1;
(A5) if x ≤ y and y ≤ x, then x = y;
(A6) x ≤ y iff x → y = 1 iff x y = 1.

Without loss of generality, we will denote a pseudo-BCK algebra (A,≤,→, , 1)
simply by A.

Remarks 2.2. ([20]) (1) A pseudo-BCK algebra A is a BCK algebra if → = .
(2) The partial operation ≤ is in fact a partial order on A.
(3) If there is an element 0 in A such that 0 ≤ x (i.e. 0 → x = 0 x = 1), for all x ∈ A,
then 0 is called the zero of A. A pseudo-BCK algebra with zero is called a bounded
pseudo-BCK algebra and it is denoted by A = (A,≤,→, , 0, 1), and in a simple way
also as A. In such a case, we define two negations, − and ∼, for any element x ∈ A :

x− := x → 0, x∼ := x 0.
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Example 2.3. Let (G,+, 0,∧,∨) be an ℓ-group (= a lattice ordered group that is not
necessarily abelian).
On the negative cone G− = {g ∈ G | g ≤ 0} we define:

g → h := h− (g ∨ h) = (h− g) ∧ 0,

g  h := −(g ∨ h) + h = (−g + h) ∧ 0.

Then (G−,→, , 0) is a pseudo-BCK algebra.

Example 2.4. Let (G,+, 0,∧,∨) be an ℓ-group with a strong unit u ≥ 0 (i.e. given
g ∈ G there is an integer n ≥ 1 such that g ≤ nu). On the interval [−u, 0] we define:

x → y := (y − x) ∧ 0,
x y := (−x + y) ∧ 0.

Then ([−u, 0],→, ,−u, 0) is a bounded pseudo-BCK algebra with x− = −u + x and
x∼ = −x + u. In a similar way, ((−u, 0],→, , 0) is a pseudo-BCK algebra that is not
bounded.

Example 2.5. Let (G,+, 0,∧,∨) be an ℓ-group with a strong unit u ≥ 0. On the
interval [0, u] we define:

x → y := (u− x + y) ∧ u,
x y := (y − x + u) ∧ u.

Then ([0, u],→, , 0, u) is a bounded pseudo-BCK algebra with x− = u− x and x∼ =
−x + u.

If on [0, u] we set →1= and  1=→, then ([0, u],→1, 1, 0, u) is isomorphic with
[−u, 0],→, ,−u, 0) under the isomorphism x 7→ x− u, x ∈ [0, u].

Proposition 2.6. ([21], [22]) In any pseudo-BCK algebra the following properties hold:
(c1) x → (y  z) = y  (x → z) and x (y → z) = y → (x z).
(c2) x ≤ y → x, x ≤ y  x.
(c3) [(y → x) x] → x = y → x, [(y  x) → x] x = y  x.
(c4) 1 → x = x = 1 x.
(c5) If x ≤ y, then z → x ≤ z → y and z  x ≤ z  y.
(c6) If x ≤ y, then y → z ≤ x → z and y  z ≤ x z.

For all x, y ∈ A, define:

x ∨1 y = (x → y) y, x ∨2 y = (x y) → y.

Proposition 2.7. In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈ A:
(1) 1 ∨1 x = x ∨1 1 = 1 = 1 ∨2 x = x ∨1 1.
(2) x ≤ y implies x ∨1 y = y and x ∨2 y = y.
(3) x ∨1 x = x ∨2 x = x.
(4) If x1 ≤ x2 and y1 ≤ y2, then x1 ∨1 y1 ≤ x2 ∨1 y2 and x1 ∨1 y2 ≤ x2 ∨1 y2.

Proof. (1) We have: 1 ∨1 x = (1 → x) x = 1 and x ∨1 1 = (x → 1) 1 = 1, so
1 ∨1 x = x ∨1 1 = 1, by (c4) of Proposition 2.6. Similarly, 1 ∨2 x = x ∨2 1 = 1.
(2) x ∨1 y = (x → y) y = 1 y = y. Similarly, x ∨2 y = y.
(3) By definitions of ∨1 and ∨2.
(4) It is evident. �

Proposition 2.8. In any bounded pseudo-BCK algebra A the following hold for all
x, y ∈ A:
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(1) x ∨1 y
−∼ = x−∼ ∨1 y

−∼ and x ∨2 y
∼− = x∼− ∨2 y

∼−.
(2) x ∨1 y

∼ = x−∼ ∨1 y
∼ and x ∨2 y

− = x∼− ∨2 y
−.

(3) (x−∼ ∨1 y
−∼)

−∼
= x−∼ ∨1 y

−∼ and (x∼− ∨2 y
∼−)

∼−
= x∼− ∨2 y

∼−.

Proof. The proof follows by direct computations. �

Proposition 2.9. In any pseudo-BCK algebra the following hold for all x, y ∈ A:

x ∨1 y → y = x → y and x ∨2 y  y = x y. (2.1)

Proof. It is a consequence of property (c3). �

Lemma 2.10. In any pseudo-BCK algebra A we have
(1) x ∨1 y (y ∨1 x) is an upper bound of {x, y}.
(2) x ∨2 y (y ∨2 x) is an upper bound of {x, y}.

Proof. (1) By (A2) we have x ≤ (x → y) y.
Since by (c2), y ≤ (x → y) y, we conclude that x, y ≤ x ∨1 y.
Similarly we get x, y ≤ y ∨1 x.
(2) Similarly as (1). �

Example 2.11. ([3]) Consider A = {o1, a1, b1, c1, o2, a2, b2, c2, 1} with o1 < a1, b1 < c1 <
1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incomparable. Assume also
that any element of the set {o1, a1, b1, c1} is incomparable with any element of the set
{o2, a2, b2, c2}. Consider the operations →, given by the following tables:

→ o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

 o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

.

Then (A,≤,→, , 1) is a pseudo-BCK algebra which is not a BCK algebra.

Example 2.12. ([3]) Consider A = {0, a, b, c, 1} with 0 < a, b < c < 1 and a, b incom-
parable. Let the operations →, be given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then (A,≤,→, , 0, 1) is a bounded pseudo-BCK algebra.

Definition 2.13. ([20]) A pseudo-BCK algebra with the (pP ) condition (i.e. with the
pseudo-product condition) or a pseudo-BCK(pP ) algebra for short, is a pseudo-BCK
algebra A satisfying the (pP) condition:
for all x, y ∈ A, there exists x⊙ y = min{z | x ≤ y → z} = min{z | y ≤ x z}.
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Definition 2.14. ([20]) (1) Let (A,≤,→, , 1) be a pseudo-BCK algebra. If the poset
(A,≤) is a lattice, then we say that A is a pseudo-BCK lattice.
(2) Let (A,≤,→, , 1) be a pseudo-BCK(pP) algebra. If the poset (A,≤) is a lattice,
then we say that A is a pseudo-BCK(pP) lattice.

Definition 2.15. Let A be a bounded pseudo-BCK algebra. Then:
(1) A is called good if x−∼ = x∼− for all x ∈ A.
(2) A is with the (pDN) condition (i.e. with the pseudo-double negation condition) or
a pseudo-BCK(pDN) algebra for short if x−∼ = x∼− = x for all x ∈ A.

For example, Examples 2.4 and 2.5 are good pseudo-BCK algebras.

Example 2.16. Consider the pseudo-BCK lattice A from Example 2.12. Since a−∼ = 1
and a∼− = b, it follows that A is not good. A can be embedded into the good pseudo-
BCK lattice (A1,≤,→, , 0, 1), where A1 = {0, a, b, c, d, 1} with 0 < a < b, c < d < 1
and b, c are incomparable. The operations → and  are defined as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 a 1 c 1 1
c 0 b b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 c 1 c 1 1
c 0 a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

.

One can easily check that A1 is a good pseudo-BCK algebra. Moreover, we can see
that:

min{z | c ≤ b → z} = min{b, c, d, 1},
min{z | b ≤ c z} = min{b, c, d, 1}

do not exist. Thus, c⊙ b does not exist, so A1 is without the (pP) condition.
Since (A1,≤) is a lattice, it follows that A1 is a good pseudo-BCK lattice without the
(pP) condition.

Definition 2.17. ([18], [22]) Let A be a pseudo-BCK algebra.
(1) If x ∨1 y = y ∨1 x for all x, y ∈ A, then A is called ∨1-commutative.
(2) If x ∨2 y = y ∨2 x for all x, y ∈ A, then A is called ∨2-commutative.

Lemma 2.18. ([18], [22]) If A is a pseudo-BCK algebra, then:
(1) A is ∨1 -commutative if and only if it is a join-semilattice (under ≤).
(2) A is ∨2 -commutative if and only if it is a join-semilattice (under ≤).

Definition 2.19. ([18], [22]) A pseudo-BCK algebra is called sup-commutative if it is
both ∨1-commutative and ∨2-commutative.

Theorem 2.20. ([18], [22]) A pseudo-BCK algebra is sup-commutative if and only if it
is a semilattice with respect to both ∨1 and ∨2.

Corollary 2.21. ([18], [22]) If A is a sup-commutative pseudo-BCK algebra, then ∨1 =
∨2 for all x, y ∈ A, so A is a join-semilattice with x ∨1 y = x ∨2 y.

If A is a sup-commutative pseudo-BCK algebra, then ∨1 = ∨2 for all x, y ∈ A, so A
is a semilattice with x ∨ y = x ∨1 y = x ∨2 y.

Proof. It follows applying [18, Cor.1.17]. �
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In what follows, we introduce a new class of pseudo-BCK algebras which will be used
in the next sections.

Definition 2.22. A bounded pseudo-BCK algebra A is said to be with the join-negation
(JN for short) if

x ∨1 y = x−∼ ∨1 y
−∼ and x ∨2 y = x−∼ ∨2 y

−∼ for all x, y ∈ A.

Remark 2.23. (1) Every bounded pseudo-BCK(pDN) algebra is with (JN).
(2) Every bounded sup-commutative pseudo-BCK algebra is with (pDN), so it is with
(JN).
(3) Every locally finite pseudo-hoop is a bounded pseudo-BCK(pDN) algebra, so it is
with (JN) (see [5]).

We recall that a downwards-directed set (or a filtered set) is a partially ordered set
(A,≤) such that whenever a, b ∈ A, there exists x ∈ A such that x ≤ a and x ≤ b.

According to [16], we say that a pseudo-BCK algebra A satisfies the relative cancel-
lation property, (RCP) for short, if for every a, b, c ∈ A,

a, b ≤ c and c → a = c → b, c a = c b imply a = b.

We note that a pseudo-BCK algebra A that is sup-commutative and satisfies the
(RCP)-condition is said to be a  Lukasiewicz pseudo-BCK algebra, see [16].

Example 2.24. The pseudo-BCK algebra A from Example 2.12 is downwards-directed
with (RCP).

Proposition 2.25. Any downwards-directed sup-commutative pseudo-BCK algebra has
(RCP).

Proof. Consider a, b, c ∈ A such that a, b ≤ c. There exists x ∈ A such that x ≤ a, b.
By (c6), from a ≤ c it follows that c x ≤ a x.
According to Proposition 2.7(2) and (c1) we have:

a x = (c x) ∨1 (a x) = (a x) ∨1 (c x)

= [(a x) → (c x)] (c x) = c [(a x) → x] (c x)

= [c (a ∨2 x)] (c x) = (c a) (c x).

Similarly, b x = (c b) (c x) = a x.
We have: a = x ∨2 a = a ∨2 x = (a x) → x = (b x) → x = b ∨2 x = x ∨2 b = b.
Thus, A has (RCP). �

We say that a nonempty subset F of a pseudo-BCK algebra A is a filter (or a deductive
system, [26, 27]) if (i) 1 ∈ F , and (ii) if a ∈ F and a → b ∈ F, then b ∈ F. It is easy to
verify that a set F containing 1 is a filter if and only if (ii)’ if a ∈ F and a b ∈ F, then
b ∈ F. A filter F is (i) maximal if it is a proper subset of A and not properly contained
in another proper filter of A, (ii) normal if a → b ∈ F if and only if a  b ∈ F. Given
a normal filter F , the relation ΘF on A given by

(a, b) ∈ ΘF ⇔ a → b ∈ F and b → a ∈ F

is a congruence. Then F = [1]ΘF and the quotient class A/F defined as A/ΘF is again
a pseudo-BCK algebra, and we write a/F = [a]ΘF

for every a ∈ A, see [26, 27].
Given an integer n ≥ 1, we define inductively
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x →0 y = y, x →n y = x → (x →n−1 y), n ≥ 1,

and
x 0 y = y, x n y = x (x n−1 y), n ≥ 1.

For any nonempty system X of a pseudo-BCK algebra A, there is the least filter of
A generated by X, we denote it by F (X); in particular, if X = {u} is a singleton, we
set F (u) := F ({u}). By [26, 27], we have

F (X) = {a ∈ A : x1 → (· · · → (xn → a) · · · ) = 1, x1, . . . , xn ∈ X, n ≥ 1} (2.2)

and

F (u) = {a ∈ A : u →n a = 1, n ≥ 1} = {a ∈ A : u n a = 1, n ≥ 1}. (2.3)

If F is a filter and b ∈ A, then the filter, Fb, of A generated by F ∪ {b} is the set

Fb = {a ∈ A : b →n a ∈ F for some n ∈ N}. (2.4)

3. States on Pseudo-BCK Algebras

We present a notion of states on bounded pseudo-BCK algebras. We characterize
extremal states as state-morphisms and we show that the quotient pseudo-BCK algebra
through the kernel of a state is always an MV-algebra. We emphasize that our char-
acterizations of states can be studied without the assumption that the pseudo-BCK
algebra is a pseudo MV-algebra or a ∨-lattice, see [8, 26].

Definition 3.1. A Bosbach state on a bounded pseudo-BCK algebra A is a function
s : A −→ [0, 1] such that the following conditions hold for any x, y ∈ A :
(B1) s(x) + s(x → y) = s(y) + s(y → x);
(B2) s(x) + s(x y) = s(y) + s(y  x);
(B3) s(0) = 0 and s(1) = 1.

Example 3.2. Consider the bounded pseudo-BCK lattice A from Example 2.16. The
function s : A −→ [0, 1] defined by: s(0) = 0, s(a) = 1, s(b) = 1, s(c) = 1, s(d) =
1, s(1) = 1 is a unique Bosbach state on A.

Not every bounded pseudo-BCK algebra has a Bosbach state:

Example 3.3. Consider the bounded pseudo-BCK lattice A from Example 2.12. One
can prove that A has no Bosbach state. Indeed, assume that A admits a Bosbach state
s such that s(0) = 0, s(a) = α, s(b) = β, s(c) = γ, s(1) = 1. From s(x) + s(x → y) =
s(y) + s(y → x), taking x = a, y = 0, x = b, y = 0 and respectively x = c, y = 0 we get
α = 1, β = 0, γ = 1.
On the other hand, taking x = b, y = 0 in s(x) + s(x  y) = s(y) + s(y  x) we get
β + 0 = 0 + 1, so 0 = 1 which is a contradiction. Hence, A does not admit a Bosbach
state.

Proposition 3.4. Let A be a bounded pseudo-BCK algebra and s a Bosbach state on
A. For all x, y ∈ A, the following properties hold:
(1) s(y → x) = 1 + s(x) − s(y) = s(y  x) and s(x) ≤ s(y) whenever x ≤ y.
(2) s(x ∨1 y) = s(y ∨1 x) and s(x ∨2 y) = s(y ∨2 x).
(3) s(x ∨1 y

−∼) = s(x−∼ ∨1 y
−∼) and s(x ∨2 y

∼−) = s(x∼− ∨2 y
∼−).

(4) s(x−∼ ∨1 y) = s(x ∨1 y
−∼) and s(x∼− ∨2 y) = s(x ∨2 y

∼−).
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(5) s(x−∼) = s(x) = s(x∼−).
(6) s(x−) = 1 − s(x) = s(x∼).

Proof. (1) It is straightforward.
(2) By (2.1) and property (1), we have s(x → y) = s(x∨1y → y) = 1+s(y)−s(x∨1y)

and s(y → x) = s(y ∨1 x → x) = 1 + s(x) − s(y ∨1 x). Then s(x → y) = s(y) + s(y →
x)− s(x) = s(y) + (1 + s(x)− s(y ∨1 x))− s(x) proving s(x∨1 y) = s(y ∨1 x). Similarly,
s(x ∨2 y) = s(y ∨2 x).

(3) and (4) follow from Proposition 2.8.
(5) Since x−∼ = x∨1 0, by (2) we have s(x−∼) = s(x∨1 0) = s(0∨1 x) = s((0 → x) 

x) = s(x). In a similar way, we have s(x) = s(x∼−).
(6) s(x−) = s(x → 0) = s(0) − s(x) + s(0 → x) = 1 − s(x). �

Proposition 3.5. Let A be a bounded pseudo-BCK algebra and s a Bosbach state on
A. For all x, y ∈ A, the following properties hold:
(1) s(x−∼ → y) = s(x → y−∼) and s(x∼−

 y) = s(x y∼−).
(2) s(x → y−∼) = s(y−  x−) = s(x−∼ → y−∼) = s(x−∼ → y) and

s(x y∼−) = s(y∼ → x∼) = s(x∼−
 y∼−) = s(x∼−

 y).
(3) s(x∼ → y−∼) = s(x∼ → y) and s(x−

 y∼−) = s(x−
 y).

Proof. (1) Using Proposition 3.4(4), we have:
s(x−∼ → y) = 1 − s(x−∼ ∨1 y) + s(y) = 1 − s(x ∨1 y

−∼) + s(y−∼) = s(x → y−∼).
(2) It follows by (c4) and (1).
(3) Applying Proposition 3.4(4) we get:
s(x∼ → y−∼) = 1 − s(x∼ ∨1 y

−∼) + s(y−∼) = 1 − s(x∼−∼ ∨1 y) + s(y) =
1 − s(x∼ ∨1 y) + s(y) = s(x∼ → y).
Similarly, s(x−

 y∼−) = s(x−
 y). �

Proposition 3.6. Let A be a bounded pseudo-BCK algebra and a function s : A −→
[0, 1] such that s(0) = 0, s(x∨1 y) = s(y∨1 x) and s(x∨2 y) = s(y∨2 x) for all x, y ∈ A.
Then the following are equivalent:
(a) s is a Bosbach state on A.
(b) for all x, y ∈ A, y ≤ x implies s(x → y) = s(x y) = 1 − s(x) + s(y).
(c) for all x, y ∈ A, s(x → y) = 1 − s(x ∨1 y) + s(y) and

s(x y) = 1 − s(x ∨2 y) + s(y).

Proof. (a) ⇒ (b). It follows from Proposition 3.4(1).
(b) ⇒ (c). It follows from the proof of Proposition 3.4(2).
(c) ⇒ (a). Using Proposition 3.4(2), we get:

s(x) + s(x → y) = s(x) + 1 − s(x ∨1 y) + s(y)

= 1 − s(y ∨1 x) + s(x) + s(y) = s(y) + s(y → x).

Similarly,

s(x) + s(x y) = s(x) + 1 − s(x ∨2 y) + s(y)

= 1 − s(y ∨2 x) + s(x) + s(y) = s(y) + s(y  x).

Moreover, by (c) we have:
s(1) = s(x → x) = 1 − s(x) + s(x) = 1.

Thus, s is a Bosbach state on A. �

The following proposition is crucial for our study.
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Proposition 3.7. Let s be a Bosbach state on a bounded pseudo-BCK algebra. Then,
for all x, y ∈ A, we have:
(1) s(x ∨1 y) = s(x ∨2 y).
(2) s(x → y) = s(x y).

Proof. (1) First we prove the equality for y ≤ x.
Using Proposition 3.4(2), we have s(x ∨1 y) = s(y ∨1 x) = s(x) and by Proposition

2.7(2) s(x ∨2 y) = s(x), i.e., s(x ∨1 y) = s(x ∨2 y).
Assume now that x and y are arbitrary elements of A. Using again Proposition 3.4(2)

and the first part of the proof, we have

s(x ∨1 y) = s(x ∨1 (x ∨1 y)) = s((x ∨1 y) ∨1 x)

= s((x ∨1 y) ∨2 x) ≥ s(y ∨2 x)

= s(x ∨2 (y ∨2 x)) ≥ s(x ∨2 y)

= s(y ∨2 (x ∨2 y)) = s((x ∨2 y) ∨2 y)

≥ s(x ∨1 y).

(2) This follows immediately from Proposition 3.6(c) and the first equation. �

Consider the real interval [0, 1] of reals equipped with the  Lukasiewicz implication
→ L defined by

x → L y = x− ⊕ y = min{1 − x + y, 1}, x, y ∈ [0, 1].

Definition 3.8. Let A be a bounded pseudo-BCK algebra. A state-morphism on A is
a function m : A −→ [0, 1] such that:
(SM1) m(0) = 0.
(SM2) m(x → y) = m(x y) = m(x) → L m(y), x, y ∈ A.

Proposition 3.9. Every state-morphism on a bounded pseudo-BCK algebra A is a
Bosbach state on A.

Proof. It is obvious that m(1) = m(x → x) = m(x) → L m(x) = 1.
We also have:

m(x) + m(x → y) = m(x) + m(x) → L m(y) = m(x) + min{1 −m(x) + m(y), 1}

= min{1 + m(y), 1 + m(x)} = m(y) + min{1 −m(y) + m(x), 1}

= m(y) + m(y) → L m(x) = m(y) + m(y → x).

Similarly, m(x) + m(x y) = m(y) + m(y  x).
Thus, s is a Bosbach state on A. �

Proposition 3.10. Let A be a bounded pseudo-BCK algebra. A Bosbach state m on A
is a state-morphism if and only if:

m(x ∨1 y) = max{m(x), m(y)}

for all x, y ∈ A, or equivalently,

m(x ∨2 y) = max{m(x), m(y)}

for all x, y ∈ A.
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Proof. In view of Proposition 3.7, the two equations are equivalent. If m is a state-
morphism on A, then by Proposition 3.9 m is a Bosbach state. Using the relation:
m(x → y) = 1 −m(x ∨1 y) + m(y), we obtain:

m(x ∨1 y) = 1 + m(y) −m(x → y) = 1 + m(y) − (m(x) → L m(y))

= 1 + m(y) − min{1 −m(x) + m(y), 1}

= 1 + m(y) + max{−1 + m(x) −m(y),−1} = max{m(x), m(y)}.

For the converse, assume that m is a Bosbach state on A such that
m(x ∨1 y) = max{m(x), m(y)} for all x, y ∈ A.

Then, using again the relation:
m(x → y) = 1 −m(x ∨1 y) + m(y), we have :

m(x → y) = 1 + m(y) − max{(m(x), m(y)}

= 1 + m(y) + min{−m(x),−m(y)}

= min{1 −m(x) + m(y), 1} = m(x) → L m(y).

Similarly,
m(x y) = m(x) → L m(y).
Thus, m is a state-morphism on A. �

Now we present an example of a linearly ordered pseudo-BCK algebra without the
(pP) condition but having a unique Bosbach state (= a unique state-morphism). On
the other hand, not every linearly ordered pseudo-BCK algebra admits a Bosbach state,
see Example 3.28.

Example 3.11. ([3]) Consider A = {0, a, b, c, 1} with 0 < a < b, c < 1 and b, c incom-
parable. Consider the operations →, given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 a 1 c 1
c 0 b b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 a b 1 1
1 0 a b c 1

.

Then (A,≤,→, , 0, 1) is a bounded pseudo-BCK algebra.
Since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.
Moreover, we can see that c ⊙ b = min{z | c ≤ b → z} = min{b, c, 1} does not
exist. Hence, A is a pseudo-BCK lattice without the (pP) condition and the function
m : A −→ [0, 1] defined by:

m(0) = 0, m(a) = 1, m(b) = 1, m(c) = 1, m(1) = 1
is a unique state-morphism on A.
Moreover, m(x ∨1 y) = m(x ∨2 y) = max{m(x), m(y)} for all x, y ∈ A, hence m is also
a Bosbach state on A.

The set
Ker(s) := {a ∈ A | s(a) = 1}

is called the kernel of a Bosbach state s on A.

Proposition 3.12. Let A be a bounded pseudo-BCK algebra and let s be a Bosbach
state on A. Then Ker(s) is a proper and normal filter of A.
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Proof. Obviously, 1 ∈ Ker(s) and 0 /∈ Ker(s).
Assume that a, a → b ∈ Ker(s). We have 1 = s(a) ≤ s(a ∨1 b), so s(a ∨1 b) = 1.
It follows that 1 = s(a → b) = 1 − s(a ∨1 b) + s(b) = s(b).
Hence b ∈ Ker(s), so Ker(s) is a proper filter of A.
By Proposition 3.7(2), s(a b) = s(a → b), and this proves that Ker(s) is normal. �

Lemma 3.13. Let s be a Bosbach state on a bounded pseudo-BCK algebra A and
K = Ker(s). In the bounded quotient pseudo-BCK algebra (A/K,≤,→, , 0/K, 1/K)
we have:
(1) a/K ≤ b/K iff s(a → b) = 1 iff s(a ∨1 b) = s(b) iff s(a ∨2 b) = s(b).
(2) a/K = b/K iff s(a → b) = s(b → a) = 1 iff s(a) = s(b) = s(a ∨1 b) iff s(a  b) =
s(b a) = 1 iff s(a) = s(b) = s(a ∨2 b).

Moreover, the mapping ŝ : A/K → [0, 1] defined by ŝ(a/K) := s(a) (a ∈ A) is a
Bosbach state on A/K.

Proof. (1) It follows easily: a/K ≤ b/K iff (a → b)/K = a/K → b/K = 1/K = K iff
a → b ∈ K iff s(a → b) = 1.
As s(a → b) = 1 − s(a ∨1 b) + s(b), we get a/K ≤ b/K iff s(a ∨1 b) = s(b).
Similarly, a/K ≤ b/K iff (a  b)/K = a/K  b/K = 1/K = K iff a  b ∈ K iff
s(a b) = 1.
As s(a b) = 1 − s(a ∨2 b) + s(b), we get a/K ≤ b/K iff s(a ∨2 b) = s(b).
(2) It follows easily from (1).

The fact that ŝ is a well-defined Bosbach state on A/K is now straightforward. �

Proposition 3.14. Let s be a Bosbach state on a bounded pseudo-BCK algebra A and
let K = Ker(s). For every element x ∈ A, we have

x−∼/K = x/K = x∼−/K,

that is, A/K satisfies the (pDN) condition.

Proof. On one side, we have x ≤ x−∼. On the other one, by definition of a Bosbach
state and Proposition 3.4(5), we have s(x−∼ → x) = s(x) + s(x → x−∼) − s(x−∼) =
s(x → x−∼) = s(1) = 1. Hence, x−∼/K = x/K. In a similar way, we prove the second
identity. �

Remark 3.15. Let s be a Bosbach state on a pseudo-BCK algebra A. According to
the proof of Proposition 3.14, we have s(x−∼ → x) = 1 = s(x∼− → x) and s(x−∼

 

x) = 1 = s(x∼−
 x).

Proposition 3.16. Let s be a Bosbach state on a bounded pseudo-BCK algebra A. Then
A/K is ∨1-commutative as well as ∨2-commutative, where K = Ker(s). In addition,
A/K is a ∨-semilattice and good.

Proof. Since s is a Bosbach state, A/K is a BCK algebra. We denote by x̄ := x/K,
x ∈ A and ŝ(a) := s(a) (a ∈ A) is a Bosbach state on A/K.

(1) We show that if x̄ ≤ ȳ, then

x̄ ∨1 ȳ = ȳ = ȳ ∨1 x̄. (∗∗)

By Proposition 2.7, we have x̄ ∨1 ȳ = ȳ. We have to show that s((y ∨1 x) → y) = 1.
Calculate: By Proposition 3.4(1), we have s(y ∨1 x) = s((y → x) x) = ŝ((ȳ → x̄) 
x̄) = 1 + ŝ(x̄) − ŝ(ȳ → x̄) = 1 + ŝ(x̄) − [1 + ŝ(x̄) − ŝ(ȳ)] = ŝ(ȳ) = s(y).
Therefore, using Proposition 3.4(2),
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s((y ∨1 x) → y) = ŝ((ȳ ∨1 x̄) → ȳ) = 1 + ŝ(ȳ) − ŝ(ȳ ∨1 x̄) = 1 + ŝ(ȳ) − ŝ(x̄ ∨1 ȳ) =
1 + ŝ(ȳ) − ŝ(ȳ) = 1. Hence, (∗∗) holds for x̄ ≤ ȳ.

(2) Now we show that (∗∗) holds for all x, y ∈ A. By (1), we have
x̄∨1 ȳ = x̄∨1 (x̄∨1 ȳ) = (x̄∨1 ȳ)∨1 x̄ ≥ ȳ∨1 x̄ = ȳ∨1 (ȳ∨1 x̄) = (ȳ∨1 x̄)∨1 ȳ ≥ x̄∨1 ȳ.
This implies that A/K is ∨1-commutative. In a similar way we prove that A/K is

∨2-commutative. By Lemma 2.10, A/K is a ∨-semilattice. �

Proposition 3.17. ([3]) Let A be a bounded good pseudo-BCK algebra. We define a
binary operation ⊕ on A by x⊕ y := x∼ → y∼−. For all x, y ∈ A, the following hold:
(1) x⊕ y = y−  x∼−,
(2) x, y ≤ x⊕ y,
(3) x⊕ 0 = 0 ⊕ x = x∼−,
(4) x⊕ 1 = 1 ⊕ x = 1,
(5) (x⊕ y)−∼ = x⊕ y = x−∼ ⊕ y−∼,
(6) ⊕ is associative.

An MV-algebra is an algebra (A,⊕,⊙,− , 0, 1) of type 〈2, 2, 1, 0, 0〉 such that (i) ⊕
is commutative and associative, (ii) 0− = 1, (iii) x ⊕ 0 = x, (iv) x ⊕ 1 = 1, (v)
x∗∗ = x, (vi) y ⊕ (y ⊕ x−)− = x⊕ (x⊕ y−)−, and (vi) x⊙ y = (x− ⊕ y−)−. If we define
x → y = x y = x− ⊕ y, then (A,→, , 0, 1) is a bounded pseudo-BCK algebra.

An MV-state on an MV-algebra A is a mapping s : A → [0, 1] such that s(1) = 1
and s(a⊕ b) = s(a) + s(b) whenever a ⊙ b = 0. Every MV-algebra admits at least one
MV-state, and due to [17], every MV-state on A coincides with a Bosbach state on the
BCK algebra A and vice versa.

We note that the radical, Rad(A), of an MV-algebra A is the intersection of all
maximal ideals of A, [2].

Proposition 3.18. ([12, Thm 6.1.32]) In any MV-algebra A the following conditions
are equivalent:
(a) Rad(A) = {0}.
(b) nx ≤ x− for all n ∈ N implies x = 0.
(c) nx ≤ y− for all n ∈ N implies x ∧ y = 0.
(d) nx ≤ y for all n ∈ N implies x⊙ y = x,
where nx = x1 ⊕ · · · ⊕ xn with x1 = · · · = xn = x.

Remark 3.19. An MV-algebra A is archimedean in the sense of [12] if it satisfies the
condition (b) of Proposition 3.18 and A is archimedean in Belluce’s sense [1] if it satisfies
the condition (d) of Proposition 3.18.
By Proposition 3.18 the two definitions of archimedean MV-algebras are equivalent.

Theorem 3.20. Let s be a Bosbach state on a pseudo-BCK algebra A and let K =
Ker(s). Then (A/K,⊕,− , 0/K), where

a/K ⊕ b/K = (a∼ → b)/K and (a/K)− = a−/K,

is an archimedean MV-algebra and the map ŝ(a/K) := s(a) is an MV-state on this
MV-algebra.

Proof. By Propositions 3.14 and 3.16, A/K is a good pseudo-BCK algebra that is a
∨-semilattice and ŝ on A/K is a Bosbach state such that Ker(ŝ) = {1/K}. Due to [26,
Prop 3.4.7], (A/K)/Ker(ŝ) is term-equivalent to an MV-algebra that is archimedean
and ŝ is an MV-state on it. Since A/K = (A/K)/Ker(ŝ), the same is true also for A/K,
and this proves the theorem. �
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We recall that if a pseudo-BCK algebra A is good, in view of Proposition 3.17, we
can define a binary operation ⊕ via x⊕y = x∼ → y∼− = y−  x∼− that corresponds to
an “MV-addition”. And for any pseudo MV-algebra A we know, [8], that an MV-state
is a state-morphism iff m(a ⊕ b) = m(a) ⊕ L m(b) for all a, b ∈ A. Inspired by this we
can characterize state-morphisms as follows.

Lemma 3.21. Let m be a Bosbach state on a bounded pseudo-BCK algebra A. The
following statements are equivalent:
(a) m is a state-morphism.
(b) m(a∼ → b−∼) = min{m(a) + m(b), 1} for all a, b ∈ A.
(c) m(b−  a∼−) = min{m(a) + m(b), 1} for all a, b ∈ A.

Proof. Due to Theorem 3.20, conditions (b) and (c) are equivalent, and, moreover, we
can assume that m is the same as m̂.

(a) ⇒ (b). Assume that m is a state-morphism on A, so it is a Bosbach state.
By Proposition 3.5(3), we have

m(a∼ → b−∼) = m(a∼ → b) = m(a∼) → L m(b)

= m(a)− → L m(b) = min{m(a) + m(b), 1}.

(b) ⇒ (a). Exchanging m with m̂, we have

m(a → b) = m(a−∼ → b−∼) = min{m(a−) + m(b∼−), 1}

= min{1 −m(a) + m(b), 1} = m(a) → L m(b).

Similarly, m(a b) = m(a) → L m(b). Hence, m is a state-morphism. �

Proposition 3.22. Let s be a Bosbach state on a bounded pseudo-BCK algebra A. The
following are equivalent:
(a) s is a state-morphism.
(b) Ker(s) is a normal and maximal filter of A.

Proof. (a) ⇒ (b). It is similar as in [26, Prop.3.4.10].
(b) ⇒ (a). Let K = Ker(s). According to Theorem 3.20, A/K = (A/K)/Ker(ŝ) is a
BCK algebra that is term equivalent to an MV-algebra. Assume F is a filter of A/K
and let K(F ) = {a ∈ A | a/K ∈ F}. Then K(F ) is a filter of A containing K. The
maximality of K implies K = K(F ) and F = {1/K}. Due to Theorem 3.20, A/K
can be assumed to be an archimedean MV-algebra having only one maximal filter,
{1/F}. Therefore, A/K is an MV-subalgebra of the MV-algebra of the real interval
[0, 1]. This yields that the mapping a 7→ a/K (a ∈ A) is the Bosbach state s that is a
state-morphism. �

Lemma 3.23. Let m be a state-morphism on a bounded pseudo-BCK algebra A and
K = Ker(m). Then

a/K ≤ b/K if and only if m(a) ≤ m(b),
a/K = b/K if and only if m(a) = m(b).

Proof. By Proposition 3.9 it follows that m is a Bosbach state on A. Applying Lemma
3.13, a/K ≤ b/K iff m(b) = m(a ∨1 b).
But m(a ∨1 b) = max{m(a), m(b)} and hence m(a) ≤ m(b).
For the later assertion we apply the first one. �
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Proposition 3.24. Let m be a state-morphism on a bounded pseudo-BCK algebra A.
Then (m(A),⊕,− , 0) is a subalgebra of the standard MV-algebra ([0, 1],⊕,− , 0) and the
mapping a/Ker(m) 7→ m(a) is an isomorphism of A/Ker(m) onto m(A).

Proof. Similarly as [26, Prop. 3.4.12]. �

Proposition 3.25. Let A be a bounded pseudo-BCK algebra and m1, m2 two state-
morphisms such that Ker(m1) = Ker(m2). Then m1 = m2.

Proof. By Proposition 3.9, m1 and m2 are two Bosbach states. The conditions yield
A/Ker(m1) = A/Ker(m2), and as in the proof of Proposition 3.22, we have that
A/Ker(m1) is in fact an MV-subalgebra of the MV-algebra of the real interval [0, 1].
But Ker(m̂1) = {1/K} = Ker(m̂2). Hence, by [8, Prop. 4.5], m̂1 = m̂2, consequently,
m1 = m2. �

Let A be a bounded pseudo-BCK algebra. We say that a Bosbach state s is extremal
if for any 0 < λ < 1 and for any two Bosbach states s1, s2 on A, s = λs1 + (1 − λ)s2

implies s1 = s2.
Summarizing previous characterizations of state-morphisms, we have the following

result.

Theorem 3.26. Let s be a Bosbach on a bounded pseudo-BCK algebra A. Then the
following are equivalent:
(a) s is an extremal Bosbach state.
(b) s(x ∨1 y) = max{s(x), s(y)} for all x, y ∈ A.
(c) s(x ∨2 y) = max{s(x), s(y)} for all x, y ∈ A.
(d) s is a state-morphism.
(e) Ker(s) is a maximal filter.

Proof. The equivalence of (b)–(e) was proved in Propositions 3.10 and 3.22.
(d) ⇒ (a). Let s = λs1 + (1 − λ)s2, where s1, s2 are Bosbach states and 0 < λ < 1.

Then Ker(s) = Ker(s1) ∩ Ker(s2) and the maximality of Ker(s) gives that Ker(s1) and
Ker(s2) are maximal and normal filters. (e) yields that s1 and s2 are state-morphisms
and Proposition 3.25 entails s1 = s2 = s.

(a) ⇒ (d). Let s be an extremal state on A. Define ŝ by Proposition 3.13 on A/Ker(s).
We assert that ŝ is an extremal MV-state on the MV-algebra A/Ker(s). Indeed, let
m̂ = λµ1 + (1 − λ)µ2, where 0 < λ < 1 and µ1 and µ2 are states on A/Ker(s). There
exist two Bosbach states s1 and s2 on A such that si(a) := µi(a/Ker(s)), a ∈ A for
i = 1, 2. Then s = λs1 + (1 − λ)s2 which gives s1 = s2 = s, so that µ1 = µ2 = ŝ.

Since A/Ker(s) is in fact an MV-algebra, we conclude from [12, Thm 6.1.30] that ŝ
is a state-morphism on A/Ker(s). Consequently, so is s on A. �

Remark 3.27. In the case of pseudo-BL algebras and bounded non-commutative Rℓ-
monoids it was proved that the existence of a state-morphism is equivalent with the
existence of a maximal filter which is normal (see [17] and respectively [13]). This result
is based on the fact that, if A is one the above mentioned structures and H is a maximal
and normal filter of A, then A/H is an MV-algebra.

In the case of pseudo-BCK algebras this result is not true as we can see in the next
example.
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Example 3.28. Consider A = {0, a, b, c, 1} with 0 < a < b < c < 1 and the operations
→, given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b c 1 1 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1

.

Then (A,≤,→, ) is a good pseudo-BCK lattice. D = {1} is a maximal normal
filter of A, but there is no Bosbach state on A. Indeed, assume that A admits a
Bosbach state s such that s(0) = 0, s(a) = α, s(b) = β, s(c) = γ, s(1) = 1. From
s(x) + s(x → y) = s(y) + s(y → x), taking x = a, y = 0, x = b, y = 0 and respectively
x = c, y = 0 we get α = 1/2, β = 1/2, γ = 1.
On the other hand, we have:

s(a) + s(a b) = s(a) + s(1) = 1/2 + 1 = 3/2,
s(b) + s(b a) = s(b) + s(b) = 1/2 + 1/2 = 1,

so condition (B2) does not hold.
Thus, there is no Bosbach state, in particular, no state-morphism on A.

Remark 3.29. The reason why the above result does not hold is that A/{1} ∼= A is
not an MV-algebra, see Remark 3.27.

Inspired by the latter remark, we have the following characterization of the existence
of Bosbach states on a bounded pseudo-BCK algebra.

Theorem 3.30. Let A be a bounded pseudo-BCK algebra. The following statements
are equivalent:
(a) A admits a Bosbach state.
(b) There exists a normal filter F 6= A of A such that A/F is termwise equivalent to an
MV-algebra.
(c) There exists a normal and maximal filter F such that A/F is termwise equivalent
to an MV-algebra.

Proof. (a) ⇒ (b). Let m be a Bosbach state, then the normal filter F = Ker(m) accord-
ing to Theorem 3.20 satisfies (b).

(b) ⇒ (a). If A/F is an MV-algebra, then it possesses at least one MV-state, say µ.
The function m(a) := µ(a/F ) (a ∈ A) is a Bosbach state on A.

(a) ⇒ (c). If A possesses at least one state, by the Krein-Mil’man theorem (see (3.1)
below), ∂eBS(A) = SM(A) 6= ∅. Then there is a state-morphism m on A and due to
Theorem 3.26(d), the filter F = Ker(m) is maximal and normal, and by Theorem 3.20,
F satisfies (c).

(c) ⇒ (a). It is the same as that of (b) ⇒ (a). �

Remark 3.31. The previous example of a linearly ordered stateless pseudo-BCK al-
gebra shows another difference between pseudo-BCK algebras and pseudo-BL algebras
because: Every linearly ordered pseudo-BL algebra admits a Bosbach states (see [9, 11]).

We say that a net of Bosbach states {sα} converges weakly to a Bosbach state s if
s(a) = limα sα(a) for every a ∈ A. According to the definition of Bosbach states, the
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set of Bosbach states is a compact Hausdorff topological space (theoretically empty) in
the weak topology.

Extremal Bosbach states are very important because they generate all Bosbach states:
Due to the Krein–Mil’man theorem, [19, Thm 5.17], every Bosbach state is a weak limit
of a net of convex combinations of extremal Bosbach states.

Let BS(A), ∂eBS(A) and SM(A) denote the set of all Bosbach states, all extremal
Bosbach states, and all state-morphisms on (A,→, , 0, 1), respectively. Theorem 3.26
says

∂eBS(A) = SM(A) (3.1)

and they are compact subsets of BS(A) in the weak topology.

Definition 3.32. ([3]) Let A be a good bounded pseudo-BCK algebra. The elements
x, y ∈ A are called orthogonal, denoted by x ⊥ y iff x−∼ ≤ y∼. If the elements x, y ∈ A
are orthogonal, we define a partial operation + on A by x + y := x⊕ y.

Definition 3.33. ([3]) Let A be a good bounded pseudo-BCK algebra. A Riečan state
on A is a function s : A −→ [0, 1] such that the following conditions hold for all x, y ∈ A :
(R1) If x ⊥ y, then s(x + y) = s(x) + s(y);
(R2) s(1) = 1.

Proposition 3.34. ([3]) If s is a Riečan state on a good bounded pseudo-BCK algebra
A, then the following properties hold for all x, y ∈ A :
(1) s(x−) = s(x∼) = 1 − s(x).
(2) s(0) = 0.
(3) s(x−∼) = s(x∼−) = s(x−−) = s(x∼∼) = s(x).
(4) if x ≤ y, then s(x) ≤ s(y) and s(y → x−∼) = s(y  x∼−) = 1 + s(x) − s(y).
(5) s((x ∨1 y) → x−∼) = s((x ∨1 y) x−∼) = 1 − s(x ∨1 y) + s(x) and

s((x ∨2 y) → x−∼) = s((x ∨2 y) x−∼) = 1 − s(x ∨2 y) + s(x).
(6) s((x ∨1 y) → y−∼) = s((x ∨1 y) y−∼) = 1 − s(x ∨1 y) + s(y) and

s((x ∨2 y) → y−∼) = s((x ∨2 y) y−∼) = 1 − s(x ∨2 y) + s(y).

Remark 3.35. According to [3, Thm 3.17] every Bosbach state on a good bounded
pseudo-BCK algebra is a Riečan state. The converse is not true in general, as it was
proved in [3, Ex. 3.18], see also the next Example 3.36.

In the following example, we show that there exists a Riečan state on a bounded
pseudo-BCK algebra A, that is not a Bosbach state. Moreover, this A has no Bosbach
state.

Example 3.36. Consider A = {0, a, b, c, 1} with 0 < a < b < c < 1 from Example
3.28. Then (A,≤,→, ) is a good pseudo-BCK algebra. The function s : A −→ [0, 1]
defined by

s(0) = 0, s(a) = 1/2, s(b) = 1/2, s(c) = 1, s(1) = 1
is a unique Riečan state. Indeed, the orthogonal elements of A are the pairs (x, y) in
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the following table:
x y x−∼ y∼ x + y
0 0 0 1 0
0 a 0 b b
0 b 0 b b
0 c 0 0 1
0 1 0 0 1
a 0 b 1 b
a a b b 1
a b b b 1
b 0 b 1 b
b a b b 1
b b b b 1
c 0 1 1 1
1 0 1 1 1

We prove now that s is not a Bosbach state. Look at a < b. We have: s(b → a) =
s(c) = 1, but s(b  a) = s(b) = 1/2. So, s is not a Bosbach state. We recall that the
kernel of s is the set {c, 1} that is not a filter.

On the other hand, as it was shown in Examle 3.28, A has no Bosbach state.

4. Measures on Pseudo-BCK Algebras

In this section we generalize measures on pseudo-BCK algebras introduced by A.
Dvurečenskij in [7] and [12] to pseudo-BCK algebras that are not necessarily bounded.
In particular, we show that if A is a downwards-directed pseudo-BCK algebra and m a
measure on it, then the quotient over the kernel of m can be embedded into the negative
cone of an abelian, archimedean ℓ-group as its subalgebra. This result will enable us to
characterize nonzero measure-morphisms as measures whose kernel is a maximal filter.

Consider the bounded ∨1-commutative BCK(P) algebra (i.e. an MV-algebra) A L =
([0, 1],≤,→ L, 0, 1), where → L is the  Lukasiewicz implication: x → L y = min{1 − x +
y, 1}.

Definition 4.1. Let (A,≤,→, , 1) be a pseudo-BCK algebra. A mapping m : A −→
[0,∞) such that for all x, y ∈ A,
(1) m(x → y) = m(x y) = m(y) −m(x) whenever y ≤ x is said to be a measure;
(2) if 0 ∈ A and m is a measure with m(0) = 1, then m is said to be a state-measure;
(3) if m(x → y) = m(x y) = max{0, m(y)−m(x)} is said to be a measure-morphism;
(4) if 0 ∈ A, m(0) = 1 and m is a measure-morphism, m is said to be a state-measure-
morphism.

Of course, the function vanishing on A is always a (trivial) measure.
We note that our definition of a measure (a state-measure) is a definition of a map

that maps pseudo-BCK algebra that is in the “negative cone” to the positive cone of
the reals R. For a relationship with the previous type of Bosbach state see the second
part of the present section and Remark 4.16.

For example, let (G,+, 0,∧,∨) be an ℓ-group, with the negative cone G−, see Example
2.3. Assume that m is a positive-valued function on G− that preserves addition in G−.
Then m is a measure on the pseudo-BCK algebra G−, and conversely if m is a measure
on G−, then m is additive on G− and positive-valued.
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We recall that not every negative cone even of abelian ℓ-group admits a nontrivial
measure. To see that look [19, Ex. 9.6].

Proposition 4.2. Let m be a measure on a pseudo-BCK algebra A. For all x, y ∈ A,
we have
(1) m(1) = 0.
(2) m(x) ≥ m(y) whenever x ≤ y.
(3) m(x ∨1 y) = m(y ∨1 x) and m(x ∨2 y) = m(y ∨2 x).
(4) m(x ∨1 y) = m(x ∨2 y).
(5) m(x → y) = m(x y).

Proof. (1) Since 1 ≤ 1 we get m(1) = m(1 → 1) = m(1) −m(1) = 0.
(2) Since x ≤ y it follows that m(y → x) = m(x) −m(y), so m(x) −m(y) ≥ 0.
(3) First, let x ≤ y. Then by Proposition 2.7(2), we have m(x∨1y) = m(y). Using the

property of measures, we have m((y ∨1 x) → x) = m(x) −m(y ∨1 x) = m(x) −m((y →
x) x) = m(x) −m(x) + m(y → x) = m(x) −m(y) giving m(y ∨1 x) = m(y).

Let now x, y ∈ A be arbitrary. Using the first part of the present proof and (2), we
have m(x∨1 y) = m(x∨1 (x∨1 y)) = m((x∨1 y)∨1 x) ≤ m(y ∨1 x) = m(y ∨1 (y ∨1 x)) =
m((y ∨1 x) ∨1 y) ≤ m(x ∨1 y).

In a similar way we prove the second equation in (3).
(4) First again, let x ≤ y. Then m(x∨1y) = m(y). And m(x∨2y) = m(y∨2x) = m(y).
Let now x, y ∈ A be arbitrary. Using (3), we have: m(x ∨1 y) = m(x ∨1 (x ∨1 y)) =

m((x ∨1 y) ∨1 x) = m((x ∨1 y) ∨2 x) ≤ m(y ∨2 x) = m(x ∨2 y) = m(x ∨2 (x ∨2 y)) =
m((x ∨2 y) ∨2 x) = m((x ∨2 y) ∨1 y) ≤ m(x ∨1 y).

(5) According to (2.1) and (4), m(x → y) = m((x ∨1 y) → y) = m(y) −m(x ∨1 y) =
m(y) −m(x ∨2 y) = m((x ∨2 y) y) = m(x y). �

Proposition 4.3. Let A be a pseudo-BCK algebra. Then
(1) y ≤ x implies m((x → y)  y) = m((x  y) → y) = m(x) whenever m is a
measure on A.
(2) If m is a measure on A, then Ker0(m) = {x ∈ A | m(x) = 0} is a normal filter of
A.
(3) Any measure-morphism on A is a measure on A.

Proof. (1) From y ≤ x → y we get m((x → y)  y) = m(y) − m(x → y) = m(y) −
(m(y) −m(x)) = m(x).
Similarly, m((y  x) → x) = m(x).
(2) According to Proposition 4.2(1), 1 ∈ Ker0(m). Assume that x, x → y ∈ Ker0(m).
Since x ≤ x ∨1 y, due to Proposition 4.2(2), we have 0 = m(x) ≥ m(x ∨1 y), so
m(x ∨1 y) = 0.
In addition,
0 = m(x → y) = m(x ∨1 y → y) = m(y) −m(x ∨1 y) = m(y), so y ∈ Ker0(m).
(we applied the fact that y ≤ x ∨1 y and Proposition 2.9).
Thus, Ker0(m) is a filter of A. The normality of Ker0(m) follows from Proposition
4.2(5).
(3) We have m(1) = m(1 → 1) = max{0, m(1) − m(1)} = 0 so that if y ≤ x then
0 = m(1) = m(y → x) = max{0, m(x) −m(y)} and m(x) ≤ m(y) so that m(x → y) =
max{0, m(y) −m(x)} = m(y) −m(x). Similarly, m(x y) = m(y) −m(x). �
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Example 4.4. Consider the bounded pseudo-BCK lattice A from Example 2.16. The
function m : A −→ [0,∞) defined by: m(0) = 1, m(a) = m(b) = m(c) = m(d) =
m(1) = 0 is a unique measure on A. Moreover, m is even a state-measure on A.

Proposition 4.5. Let A be a bounded pseudo-BCK algebra. If M is a Bosbach state,
then m = 1 −M is a state-measure.

Proof. Let y ≤ x, that is y → x = y  x = 1.
Replacing in the axioms (B1) and (B2) of a Bosbach state, we obtain:
M(x) + M(x → y) = M(y) + 1 and M(x) + M(x y) = M(y) + 1,
which implies M(x → y) = M(x y) = 1 −M(x) + M(y).
We get m(x → y) = m(x  y) = 1 −M(x → y) = M(x) −M(y) = 1 −M(y) − (1 −
M(x)) = m(y) −m(x).
Also, m(0) = 1 −M(0) = 1 by (B3), and thus, m is a state-measure. �

Proposition 4.6. Let A be a bounded pseudo-BCK algebra. If m is a state-measure on
A, then M = 1 −m is a Bosbach state on A.

Proof. We have: y ≤ x ∨1 y and using the definition of the measure, we get
m(x ∨1 y → y) = m(x ∨1 y  y) = m(y) −m(x ∨1 y). Using Proposition 2.9, we have:
x ∨1 y → y = x → y, so we get m(x → y) = m(y) −m(x ∨1 y).
Similarly, m(y → x) = m(x) −m(y ∨1 x) and also, m(x y) = m(y) −m(x ∨2 y),
m(y  x) = m(x)−m(y∨2 x). According to Proposition 4.2(3), m(x∨1 y) = m(y∨1 x),
so that m(x) + m(x → y) = m(y) + m(y → x).
Similarly, m(x) + m(x y) = m(y) + m(y  x).
Therefore, M(x) + M(x → y) = M(y) + M(y → y) and M(x) + M(x  y) = M(y) +
M(y  y). Also, M(0) = 0 by the hypothesis, and M(1) = 1 by Proposition 4.2(1).
Thus, M is a Bosbach state. �

If A is a bounded pseudo-BCK algebra, in a similar way as for Bosbach states, we
can define extremal state-measures, as well as the weak-topology. Let us denote the set
of state-measures, SM1(A), the set of state-measure-morphisms, SMM1(A), and the
set of extremal state-measures, ∂eSM1(A), respectively.

Theorem 4.7. Let A be a bounded pseudo-BCK algebra. Define a map Ψ : SM1(A) →
BS(A) via Ψ(m) = 1 −m, m ∈ SM1(A). Then Ψ is a affine-homeomorhism such that
m is a state-measure-morphism if and only if Ψ(m) is a state-morphism. In particular,
m is an extremal state-measure if and only if m is a state-measure-morphism.

Proof. Propositions 4.5-4.6 show that Ψ is a bijection preserving convex combinations
and weak topologies.

If, say, s is a state-morphism on A, i.e. s(x → y) = min{1 − m(x) + m(y)}, then
it is straightforward to show that m = 1 − s is a state-measure-morphism on A, i.e.
m(x → y) = max{m(y) −m(x), 0} (as well as for the second arrow  ).

In view of Theorem 3.26, we see that a state-measure is extremal iff it is state-
measure-morphism. �

As a corollary of Theorem 4.7 and (3.1), we have that if A is a bounded pseudo-BCK
algebra, then

∂eSM1(A) = SMM1(A). (4.1)

Theorem 4.8. Let m be a measure on a pseudo-BCK algebra A. Then A/Ker0(m) is a
pseudo-BCK algebra and the mapping m̂ : A/Ker0(m) −→ [0,+∞) defined by m̂(x̄) :=



MEASURES, STATES AND DE FINETTI MAPS ON PSEUDO-BCK ALGEBRAS 20

m(x), x̄ := x/Ker0(m) ∈ A/Ker0(m), is a measure on A/Ker0(m), and A/Ker0(m) is
∨-commutative.

Proof. By (2.1) and (4) of Proposition 4.2, we have m(x → y) = m(x ∨1 y → y) =
m(y) − m(x ∨1 y) = m(y) − m(x ∨2 y) = m(x ∨2 y  y) = m(x  y). According to
(2) of Proposition 4.3, Ker0(m) is a normal filter. Since if x → y, y → x ∈ Ker0(m), we
have m(x → y) = m(x∨1 y → y) = 0 = m(y)−m(x∨1 y). Similarly, m(x) = m(y∨1 x).
But m(y) = m(x ∨1 y) = m(y ∨1 x) = m(x). Hence, m̂ is a well-defined function on
A/Ker0(m).

We recall that x̄ = ȳ iff m(x) = m(y) = m(x ∨1 y), and x̄ ≤ ȳ iff m(x → y) = 0.
Therefore, if x/Ker0(m) = y/Ker0(m), then x/Ker0(m) = (x ∨1 y)/Ker0(m) = (x ∨2

y)/Ker0(m) = (y ∨1 x)/Ker0(m) = (y ∨2 x)/Ker0(m).
To show that m̂ is a measure, assume ȳ ≤ x̄. By (2) of Proposition 2.7, ȳ ∨1 x̄ = x̄.

Then m̂(x̄ → ȳ) = m(x → y) = m(x ∨1 y → y) = m(y) −m(x ∨1 y). But m(x ∨1 y) =
m(y∨1 x) = m̂(ȳ∨1 x̄) = m̂(x̄) = m(x). Therefore, m̂(x̄ → ȳ) = m̂(ȳ)− m̂(x̄). Similarly,
m̂(x̄ ȳ) = m̂(ȳ) − m̂(x̄).

In the same way as in the proof of Proposition 3.16 we can show that A/Ker0(M) is
∨-commutative. �

In view of Theorem 3.20 and Theorem 4.7 we know that if m is a state-measure
on a bounded pseudo-BCK algebra A, then A/Ker(m) is in fact an MV-algebra, so
that according to the famous representation theorem of Mundici, [2], A/Ker(m) is an
interval in an ℓ-group with strong unit. In the following result we generalize this ℓ-group
representation of the quotient for measures on unbounded pseudo-BCK algebra that are
downwards-directed.

Theorem 4.9. Let m be a measure on an unbounded pseudo-BCK algebra A that is a
downwards-directed set. Then the arrows → /Ker0(m) and  /Ker0(m) on A/Ker0(m)
coincide. Moreover, there is a unique (up to isomorphism)) archimedean ℓ-group G
such that A/Ker0(m) is a subalgebra of the pseudo-BCK algebra G− and A/Ker0(m)
generates the ℓ-group G.

Proof. We note that if a is an arbitrary element of A, then ([a, 1],≤,→, , a, 1) is a
pseudo-BCK algebra.

We denote by K0 := Ker0(m). Given x, y ∈ A, choose an element a ∈ A such that
a ≤ x, y.

If m(a) = 0, then a/K0 = x → y/K0 = x y/K0 = 1/K0.
Assume m(a) > 0 and define ma(z) := m(z)/m(a) for any z ∈ [a, 1]. Then ma is a

state-measure on [a, 1] and in view of Theorem 4.7, sa := 1 −ma is a Bosbach state on
[a, 1]. Theorem 3.20 entails that [a, 1]/Ker(sa) can be converted into an archimedean
MV-algebra. In particular, (x → y)/Ker(sa) = (x  y)/Ker0(sa). This yields sa((x →
y) → (x  y)) = 1 and m((x → y) → (x  y)) = 0. In a similar way, m((x  y) →
(x → y)) = 0. This proves → /Ker0(m) = /Ker0(m).

In addition, we can prove that, for all x, y ∈ A,

((x → y) ∨ (y → x))/Ker0(m) = 1/Ker0(m) = ((x y) ∨ (y  x))/Ker0(m).

It is clear that if m = 0, then Ker0(m) = A and A/Ker0(m) = {1/Ker0(m)} so
that the trivial ℓ-group G = {0G}, where 0G is a neutral element of G, satisfies our
conditions.
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Therefore, let m 6= 0. By [26, Lem 4.1.8], A/Ker0(m) is a distributive lattice. As
in Proposition 2.25 we can show that A/Ker0(m) satisfies the (RCP) condition, and
therefore, A/Ker0(m) is a  Lukasiewicz BCK algebra, see [16]. Therefore, [16, 10], there
is a unique (up to isomorphism of ℓ-groups) ℓ-group G such that A/Ker0(m) can be
embedded into the pseudo-BCK algebra of the negative cone G−, moreover, A/Ker0(m)
generates G. Since the arrows in A/Ker0(m) coincide, we see that G is abelian, and
every interval [a/K0, 1/K0] is an archimedean MV-algebra, so is G. �

We note that if m is a measure-morphism on A, then

m(u →n x) = max{0, m(x) − nm(u)} (4.2)

for any n ≥ 0, and

m(x1 → (· · · → (xn → a) · · · )) = max{0, m(a) −m(x1) − · · · −m(xn)}. (4.3)

Proposition 4.10. Let m be a measure-morphism on a pseudo-BCK algebra A such
that m 6= 0. Then Ker0(m) is a normal and maximal filter of A.

Proof. Since m is a measure-morphism, by Proposition 4.3, Ker0(m) is a normal filter.
Choose a ∈ A such that m(a) 6= 0. Let F be the filter generated by Ker0(m) and

by the element a. Let z ∈ A be an arbitrary element of A. There is an integer n ≥ 1
such that (n − 1)m(a) ≤ m(z) < nm(a). Due to (4.3), we have that m(a →n z) =
max{0, m(z) − nm(a)} = 0 so that z ∈ F and A ⊆ F proving that Ker0(m) is a
maximal filter. �

If m 6= 0 is a measure on a bounded pseudo BCK-algebra A, then passing to a
state-measure sm(a) := m(a)/m(1), a ∈ A, and using Theorem 4.7, we see that m
is a measure-morphism iff Ker0(m) is a maximal filter. The same result is true for
unbounded pseudo-BCK algebra that is downwards-directed:

Theorem 4.11. Let m 6= 0 be a measure on an unbounded pseudo-BCK algebra A that
is downwards directed. Then m is a measure-morphism if and only if Ker0(m) is a
maximal filter.

Proof. By Proposition 4.10, Ker0(m) is a maximal filter of A.
Suppose now Ker0(m) is a maximal filter of A. In view of Theorem 4.7, A/Ker0(m) can

be embedded as a subalgebra into the pseudo-BCK algebra G−, where G− is the negative
cone of an abelian and archimedean ℓ-group G that is generated by A/Ker0(m). Let
m̂(a/Ker0(m)) := m(a) (a ∈ A). Then Ker0(m̂) = {1/Ker0(m)} and 0G := 1/Ker0(m)
is the neutral element of G.

Fix an element a ∈ A with m(a) > 0. Since Ker0(m) is maximal in A, Ker0(m̂) =
{1/Ker0(m)} is maximal in A/Ker0(m) and consequently, {1/Ker0(m)} is a maximal
filter of the pseudo-BCK algebra G− because A/Ker0(m) generates G. Therefore, the ℓ-
ideal L := {0g} = {1/Ker0(m)} is a maximal ℓ-ideal of G. We recall that every maximal
ℓ-ideal, L, of an ℓ-group is prime (a, b ∈ G+ with a ∧ b = 0 implies a ∈ L or b ∈ L),
whence G/L is a linearly ordered ℓ-group (see e.g. [6, Prop. 9.9]). Since G = G/L, G
is archimedean and linearly ordered, due to the Hölder theorem, [6, Thm 24.16], G is
an ℓ-subgroup of the ℓ-group of real numbers, R. Let s be the unique extension of m̂
onto G, then s is additive on G and s(g) ≥ 0 for any g ∈ G−. Since G is an ℓ-subgroup
of R, s is a unique additive function on G that is positive on the negative cone (see
example just after Definition 4.1) with the property s(a/Ker0(m)) = m(a) > 0 for our
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fixed element a ∈ A. Because A/Ker0(m) can be embedded into R
−, we see that s is a

measure-morphism on G−. Consequently, m is a measure-morphism on A. �

Proposition 4.12. Let m1 and m2 be two measure-morphisms on a downwards-directed
pseudo-BCK algebra A such that there is an element a ∈ A with m1(a) = m2(a) > 0. If
Ker0(m1) = Ker0(m2), then m1 = m2.

In addition, let a ∈ A be fixed. If m is a measure-morphism on A such that m(a) > 0,
then m cannot be expressed as a convex combination of two measure m1 and m2 such
that m1(a) = m2(a) = m(a).

Proof. (1) Due to Theorem 4.11, A/Ker0(m1) = A/Ker0(m2) is a pseudo-BCK subalge-
bra of R−. The condition m1(a) = m2(a) > 0 entails m̂1 = m̂2 so that m1 = m2.

(2) Let m = λm1 + (1 − λ)m2 where m1 and m2 are measures on A such that
m1(a) = m2(a) = m(a) and 0 < λ < 1. Then Ker0(m) ⊆ Ker0(m1) ∩ Ker0(m2). The
maximality of Ker0(m) entails that both Ker0(m1) and Ker2(m) are maximal ideals and
by Theorem 4.11, we see that m1 and m2 are measure-morphisms on A. The condition
m1(a) = m2(a) = m(a) yields by (1) that m = m1 = m2. �

Proposition 4.13. Let m be a state-measure on a good bounded pseudo-BCK algebra.
Then M = 1 −m is a Riečan state.

Proof. Let x, y be a pair of orthogonal elements, that is y−∼ ≤ x− and using the fact
that m is a measure, we obtain: m(x− → y−∼) = m(x−

 y−∼) = m(y−∼) −m(x−).
Now, because A is good we get: m(x− → y∼−) = m(y) − 1 + m(x), which implies
M(x ⊕ y) = M(x) + M(y). Thus, M is a Riečan state. �

Proposition 4.14. Let A be a bounded pseudo-BCK(pDN) algebra and s a Riečan state
on A. Then S = 1 − s is a state-measure.

Proof. Let s be a Riečan state on A.
Consider y ≤ x. According to [3] we have

s(x → y−∼) = s(x y∼−) = 1 − s(x) + s(y).
Taking into consideration the (pDN) condition we get

s(x → y) = s(x y) = 1 − s(x) + s(y).
It follows that S(x → y) = S(x y) = S(y) − S(x).
Moreover, we have S(0) = 1, so S is a state-measure on A. �

Remark 4.15. We can also define a measure as a map m : A −→ (−∞, 0] such that
m(x → y) = m(x y) = m(x) −m(y) whenever y ≤ x.

Properties (2) of Proposition 4.2 and (1) in Proposition 4.3 become:
(2′) m(x) ≤ m(y) whenever x ≤ y and m is a measure on A;
(1′) y ≤ x implies m((x → y)  y) = m((x  y) → y) = −m(x) whenever m is a
measure on A;
If m(0) = 0 then m is a state on A.
Proposition 4.5 will be modified such that m = 1 + M .
Consider again the bounded pseudo-BCK lattice A from Example 2.16. The function
m : A −→ (−∞, 0] defined by: m(0) = −1, m(a) = m(b) = m(c) = m(d) = m(1) = 0 is
the unique measure on A.

Remark 4.16. If a pseudo-BCK algebra is defined on the negative cone, like in Exam-
ples 2.3 and 2.4, we map through the negative cone to the positive cone in R. According
to the second kind of definition, we map the negative cone to negative numbers.
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5. Pseudo-BCK Algebras with Strong Unit

In the present section, we will study state-measures on pseudo-BCK algebras with
strong unit. We apply the results of the previous section to show how to characterize
state-measure-morphisms as extremal state-measures or as those with the maximal filter.
In particular, we show that for unital pseudo-BCK algebras that are downwards directed,
the quotient over the kernel can be embedded into the negative cone of an abelian,
archimedean ℓ-group with strong unit.

According to [12], we are saying that an element u of a pseudo-BCK algebra A is a
strong unit if, for the filter (F9u) of A that is generated by u, we have F (u) = A. For
example, if (A,→, , 0, 1) is a bounded pseudo-BCK algebra, then u = 0 is a strong
element. If G is an ℓ-group with strong unit u ≥ 0, then the negative cone G− is an
unbounded pseudo-BCK algebra with strong unit −u.

Remark 5.1. We note that a filter F of a pseudo-BCK algebra with a strong unit u is
a proper subset of A if and only if u /∈ F.

By a unital pseudo-BCK algebra we mean a couple (A, u) where A is a pseudo-BCK
algebra with a fixed strong unit u. We say that a measure m on (A, u) is a state-measure if
m(u) = 1. If, in addition, m is a measure-morphism such that m(u) = 1, we call it also a
state-measure-morphism. We denote by SM(A, u) and SMM(A, u) the set of all state-
measures and state-measure-morphisms on (A, u), respectively. The set of SM(A, u)
is convex, i.e. if m1, m2 ∈ SM(A, u) and λ ∈ [0, 1], then m = λm1 + (1 − λ)m2 ∈
SM(A, u); it could be empty. A state-measure m is extremal if m = λm1 + (1 − λ)m2

for λ ∈ (0, 1) yields m = m1 = m2. We denote by ∂eSM(A, u) the set of all extremal
state-measures on (A, u).

Example 5.2. Let G be an ℓ-group with strong unit u ≥ 0, i.e., given g ∈ G there
is an integer n ≥ 1 such that g ≤ nu. Then a mapping m on G− is a state-measure
on (G−,−u) if and only if (i) m : G− → [0,∞), (ii) m(g + h) = m(g) + m(h) for
g, h ∈ G−, and (iii) m(−u) = 1. A state-measure m is extremal if and only if m(g∧h) =
max{m(g), m(h)}, g, h ∈ G−, see [8, Prop. 4.7]. In addition, (−u) →n g = (g + nu)∧ 0
for any n ≥ 1.

Example 5.3. Let Ω 6= ∅ be a compact Hausdorff topological space and let C(Ω) be
the set of all continuous functions on Ω. Then C(Ω) is an ℓ-group with respect to the
pointwise ordering and usual addition of functions and the element u = 1, the constant
function equals 1, is a strong unit. According to Riesz Representation Theorem, see e.g.
[19, p. 87], a mapping m : A → [0,∞) is a state-measure on (C(Ω)−,−1) if and only if
there is a Borel probability measure µ on B(Ω) such that

m(f) = −

∫
Ω

f(x) dµ(x), f ∈ C(Ω)−, (5.1)

and vice-versa, given a Borel probability measure µ, the integral (5.1) defines always a
state-measure. A state-measure is extremal if and only if it is a state-measure-morphism
if and only if µ = δx for some point x ∈ Ω, where δx(M) = 1 iff x ∈ M otherwise
δx(M) = 0, then m(f) = f(x).

We say that a net of state-measures {mα} converges weakly to a state-measure m if
m(a) = limαmα(a) for every a ∈ A.
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Proposition 5.4. The state spaces SM(A, u) and SMM(A, u) are compact Hausdorff
topological spaces.

Proof. If SM(A, u) is void, the statement is evident. Thus suppose that (A, u) admits
at least one state-measure. For any state-measure m and any x ∈ A we have by
(2.1): m(u → x) = m(u ∨1 x → x) = m(x) − m(u ∨1 x). But u ≤ u ∨1 x, hence
m(u ∨1 x) ≤ m(u) = 1 so that m(u → x) ≥ m(x) − 1 and

m(x) ≤ m(u → x) + 1.

Therefore,

m(x) ≤ m(u → x) + 1 ≤ m(u →2 x) + 2 ≤ · · · ≤ m(u →n−1 x) + n− 1.

Since u is strong, given x ∈ A, let nx denote an integer nx ≥ 1 such that u →nx x = 1.
Then u ≤ (u →nx−1 x) and m(u →nx−1 x) ≤ m(u) = 1. Consequently, m(x) ≤
m(u →nx−1 x)+nx−1 ≤ nx. Hence, SM(A, u) ⊆

∏
x∈A[0, nx]. By Tychonoff’s Theorem,

the product of closed intervals is compact. The set of state-measures SMM(A, u) can
be expressed as an intersection of closed subsets of [0,∞)A, namely of the following sets
(for x, y ∈ A)

Mx,y = {m ∈ [0,∞)A : m(x → y) = m(x y) = m(y) −m(x)}, x ≤ y,

Mx = {m ∈ [0,∞)A : m(x) ≥ 0}, {m ∈ [0,∞)A : m(u) = 1}.

Therefore, SM(A, u) is a closed subset of the given product of intervals, and hence, it
is compact.

Similarly, the set of state-measure-morphisms SMM(A, u) is a subset of
∏

x∈A[0, nx]
and it can be expressed as an intersection of closed subsets of [0,∞)A, namely of the
following sets (for x, y ∈ A)

Mx,y = {m ∈ [0,∞)A : m(x → y) = m(x y) = max{0, m(y) −m(x)}},

Mx = {m ∈ [0,∞)A : m(x) ≥ 0}, {m ∈ [0,∞)A : m(u) = 1}.

Therefore, SMM(A, u) is a closed subset of the given product of intervals, and hence,
it is compact. �

Proposition 5.5. Let u be a strong unit of a pseudo-BCK algebra A and m let be a
measure on A. Then m vanishes on A if and only if m(u) = 0.

Proof. Assume m(u) = 0. Then m(u → x) = m(u ∨1 x → x) = m(x) −m(u ∨1 x). But
u ≤ u ∨1 x, hence 0 ≤ m(u ∨1 x) ≤ m(u) = 0 so that m(x) = m(u → x) and

m(x) = m(u → x) = m(u →2 x) = · · · = (m →n x) = m(1) = 0

when u →n x = 1 for some integer n ≥ 1.
If now m(u) > 0, then m does not vanish trivially on A.

�

Lemma 5.6. Let m1, m2 be state-measure-morphisms on a unital pseudo-BCK algebra
(A, u). If Ker0(m1) = Ker0(m2), then m1 = m2.

In addition, any state-measure-morphism cannot be expressed as a convex combination
of other state-measure-morphisms.
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Proof. The set m1(A) = {m1(a) | a ∈ A} and m2(A) = {m2(a) | a ∈ A} of real numbers
can be endowed with a total operation ∗R such (m1(A), ∗R, 0) and (m2(A), ∗R, 0) is
a subalgebra of the BCK algebra ([0,∞), ∗R, 0) in the sense of [12, Chap 5], where
s ∗R t = max{0, s − t}, s, t ∈ [0,∞). And the number 1 is a strong unit in all such
algebras (for definition see [12]).

If we set m̂1 and m̂2 the state-measure-morphisms on the quotient pseudo-BCK alge-
bras A/Ker0(m1) and A/Ker0(m2) defined by m̂i(a/Ker0(mi)) = mi(a), we have again
m̂i(A/Ker0(mi)) = mi(A) for i = 1, 2.

Define a mapping φ : m1(A) → m2(A) by φ(m1(a)) = m2(a) (a ∈ A). It is possible
to show that this is a BCK algebra injective homomorphism. Due to [12, Lem 6.1.22],
this means that m1(A) = m2(A) and m1(a) = m2(a) for all a ∈ A.

Suppose now that m = λm1+(1−λ)m2, where m,m1, m2 are state-measure-morphisms
and λ ∈ (0, 1). Then Ker0(m) ⊆ Ker0(m1)∩Ker0(m2). Due to Proposition 4.10, all ker-
nels Ker0(m),Ker0(m1),Ker0(m2) are maximal filters so that Ker0(m) = Ker0(m1) =
Ker0(m2) and by the first part of the present proof, m = m1 = m2. �

Proposition 5.7. Let u be a strong unit of a pseudo-BCK algebra A and let J be a filter
of A, J0 := J∩[u, 1]. Then J0 is a filter of the pseudo BCK-algebra ([u, 1],≤,→, , u, 1).
If F (J0) is the filter of A generated by J0, then

F (J0) = F. (5.2)

Moreover, J0 is maximal in [u, 1] if and only if so is J in A.

Proof. Suppose that J is a filter of A. Then J0 := J ∩ [u, 1] is evidently a filter of [u, 1].
It is clear that F (J0) ⊆ F.
On the other hand, take x ∈ J. Since u is a strong unit, by (2.3), there is an integer

n ≥ 1 such that u →n x = 1 = u → (· · · → (u → x) · · · ). Set xn = u ∨1 x and
xn−i = u ∨1 (u →i x) for i = 1, . . . , n− 1. An easy calculus shows that xi ∈ J0 for any
i = 1, . . . , n. Moreover, u → (u → (· · · → (u → x) · · · )) = x1 → (x2 → (· · · → (xn →
x) · · · )) = 1 which by (2.2) proves x ∈ F (J0).

Let now J be a maximal filter of A. Assume that F is a filter of [u, 1] containing J0

with F 6= [u, 1], and let F̂ (F ) be the filter of A generated by F. Then F ⊆ F̂ (F )∩[u, 1]. If

now x ∈ F̂ (F )∩ [u, 1], there are f1, . . . , fn ∈ F such that f1 → (· · · → (fn → x) · · · ) = 1

giving x ∈ F. Hence, F = F̂ (F ) ∩ [u, 1].

We assert that F̂ (F ) is a filter of A containing J, and F̂ (F ) 6= A. If not, then

u ∈ F̂ (F ) and therefore by (2.2), there are x1, . . . , xn ∈ F such that x1 → (· · · → (xn →
u) · · · ) = 1. If we set zn = xn ∨1 u and zn−i = xn−i ∨1 (xi → (· · · → (xn → u) · · · )), for
i = 1, . . . , n − 1, then each zi belongs to F and z1 → (· · · → (zn → u) · · · ) = 1 which
implies u ∈ F that is a contradiction.

The maximality of J entails J = F̂ (F ). Since J0 ⊆ F = F̂ (F )∩ [u, 1] = J∩ [0, 1] = J0.
That is, J0 a maximal filter of [u, 1] as it was claimed.

Assume now that J0 is a maximal filter of [u, 1] and let G 6= A be a filter of A
containing J. Then G0 := G ∩ [u, 1] is a filter of [u, 1] containing J0, and by (5.2),
G = F (G0). We assert u /∈ G0. Suppose the converse. Then x ∈ G and for any x ∈ A,
there is an integer n ≥ 1 such that u →n x = u → (· · · (u → x) · · · ) = 1 proving x ∈ G,
so that A ⊆ G that is absurd.

The maximality of J0 entails J0 = G0 and in view of (5.2), we have J = F (J0) =
F (G0) = G, thus J is a maximal filter of A. �
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Proposition 5.8. Let m be a state-measure on a unital pseudo-BCK algebra (A, u),
and let mu be the restriction of m onto the interval [u, 1]. Then mu is a state-measure-
morphism on ([u, 1],≤,→, ).

Let us have the following conditions:
(a) m is a state-measure-morphism on (A, u).
(b) mu is a state-morphism on [u, 1].
(c) Ker0(m) is a maximal filter of (A, u).
(d) Ker0(mu) is a maximal filter of [u, 1].

Then (b), (c), (d) are mutually equivalent and (a) implies each of the conditions (b), (c),
and (d).

Proof. Let mu be the restriction of m onto [u, 1]. Then mu is a state-measure on [u, 1]
and we define Ker0(mu) and Ker0(m). Then Ker0(mu) = Ker0(m) ∩ [u, 1] and due to
(5.2) we have

F (Ker0(mu)) = Ker0(m). (5.3)

(a) ⇒ (b). It is evident.
(b) ⇔ (d) : It follows from Theorem 3.26(d)-(e).
(b) ⇔ (c) : We have Ker0(mu) = Ker0(m) ∩ [u, 1]. Then by Proposition 5.7, we have

the equivalence in question. �

Theorem 5.9. Let (A, u) be an unbounded pseudo-BCK algebra that is downwards-
directed and let m be a state-measure on (A, u). Then there is a unique (up to iso-
morphism) abelian and archimedean ℓ-group G with strong unit uG > 0 such that the
unbounded unital pseudo-BCK algebra (A/Ker0(m), u/Ker0(m)) is isomorphic with the
unbounded unital pseudo-BCK algebra (G−,−uG).

Proof. We define mu, the restriction of m onto the interval [u, 1]. Due to Theorem
4.7 and Theorem 3.20, the quotient [u, 1]/Ker0(mu) can be converted into an MV-
algebra, and in view of Ker0(mu) = Ker0(m) ∩ [u, 1] we have that [u, 1]/Ker0(mu) is
isomorphic with [u/Ker0(m), 1/Ker0(m)] = [u, 1]/Ker0(m), so that both can be viewed
as isomorphic MV-algebras. Let G be an ℓ-group guaranteed by Theorem 4.9 that is
generated by A/Ker0(m). Therefore, uG := −(u/Ker0(m)) is a strong unit for G and
0G := 1/Ker0(m) is the neutral element of G. By the Mundici famous theorem [2],
the unital ℓ-group (G, uG) is the same for [u, 1]/Ker0(mu) and [u, 1]/Ker0(m). If now
g ∈ G−, then g = g1 + · · · + gn, where g1, . . . , gn ∈ [u, 1]/Ker0(m). The set of elements
g ∈ G− such that g ∈ A/Ker0(m) is a pseudo-BCK algebra containing A/Ker0(m). And
because A/Ker0(m) generates G, this implies that the pseudo-BCK algebra (G−,−uG)
is isomorphic with the unital pseudo-BCK algebra (A/Ker0(m), u/Ker0(m)). �

Theorem 5.10. Let m be a state-measure on a unital pseudo-BCK algebra (A, u) that
is downwards-directed and let mu be the restriction of m onto the pseudo-BCK algebra
[u, 1]. The following statements are equivalent:
(a) m is a state-measure-morphism on (A, u).
(b) mu is a state-morphism on [u, 1].
(c) Ker0(m) is a maximal filter of (A, u).
(d) Ker0(mu) is a maximal filter of [u, 1].
(e) m is an extremal state-measure on (A, u).
(f) mu is an extremal state-measure on [u, 1].
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Proof. By Theorem 5.8, (b), (c), (d) are mutually equivalent and (a) implies each of the
conditions (b), (c), (d). Theorem 4.11 entails that (c) implies (a). From Theorem 3.26
we see that (b) and (f) are equivalent. Proposition 4.12 gives (a) implies (e).

(e) ⇒ (a). Let m an extremal state-measure on (A, u). Define Ker0(m), A/Ker0(m),
and m̂(a/Ker0(m)) := m(a) (a ∈ A). We assert that m̂ is extremal on the unital pseudo-
BCK algebra (A/Ker0(m), u/Ker0(m)). Indeed, if m̂ = λµ1+(1−λ)µ2, 0 < λ < 1, where
µ1 and µ2 are two state-measures on (A/Ker0(m), u/Ker0(m)), then there are two state-
measures m1, m2 on (A, u) such that m̂1 = µ1 and m̂2 = µ2. Hence, m = λm1+(1−λ)m2

yielding m1 = m2 and µ1 = µ2.
Due to Theorem 5.9, A/Ker0(m) is isomorphic with the pseudo-BCK algebra (G−, uG),

where G− is the negative cone of an abelian and archimedean ℓ-group G that is generated
by A/Ker0(m) and the element uG := −(u/Ker0(m)) is a strong unit for G.

Similarly as in the proof of Theorem 4.11, m̂ can be extended to a state-measure
on (G−, u/Ker0(m)) so that s can be extended to an additive function s on the whole
unital ℓ-group (G,−(u/Ker0(m))) that is positive on G− and s(u/Ker0(m)) = 1. More-
over, s is extremal on (G,−(u/Ker0(m))) which by [19, Thm 12.18] is possible if and
only if Ker0(m̂) = {1/Ker0(m)} is a maximal filter of the unital pseudo-BCK algebra
(A/Ker0(m), u/Ker0(m)). Since the mapping a 7→ a/Ker0(m) is surjective, we have that
this implies that Ker0(m) is a maximal filter of (A, u). By the equivalence of (c) and
(a) we have that m is a measure-morphism. �

As a direct consequence of Theorem 5.10 and the Krein–Mil’man theorem we have:

Corollary 5.11. Let (A, u) be a unital pseudo-BCK algebra that is downwards-directed.
Then

∂eSM(A, u) = SMM(A, u) (5.4)

and every state-measure on (A, u) is a weak limit of a net of convex combinations of
states-measure-morphisms.

6. Coherence, de Finetti Maps and Borel States

In this section, we will generalize to pseudo-BCK algebras the identity between de
Finetti maps and Bosbach states, following the results proved by Kühr and Mundici
in [28] who showed that de Finetti’s coherence principle that has an origin in Dutch
book making, has a strong relationship with MV-states on MV-algebras. Then we gen-
eralize this also for state-measures on unital pseudo-BCK algebras that are downwards-
directed.

Finally we present some open questions.
We recall the following definition and notations used in [28]. Let A be a nonempty

set, [0, 1]A the set of all functions V : A → [0, 1] endowed with the product topology. If
X ⊆ [0, 1]A, by convX , clX we denote the convex hull and respectively the closure of
X . Also, if X is convex, ∂eX will denote the set of all extremal points of X . We note
that the weak topology of Bosbach states is in fact the relativized product topology on
[0, 1]A.

Definition 6.1. ([28]) Let A′ = {a1, a2, . . . , an} be a finite subset of A. Then a map
β : A′ −→ [0, 1] is said to be coherent over A′ if,

for all σ1, σ2, . . . , σn ∈ R, there is V ∈ W s.t.

n∑
i=1

σi(β(ai) − V (ai)) ≥ 0. (6.1)
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By a de Finetti map on A we mean a function β : A −→ [0, 1] which is coherent over
every finite subset of A. We denote by FW the set of all de Finetti maps on A.

An interpretation of (6.1) is as follows, [28]: Two players, the bookmaker and the
bettor, wager money on the possible occurrence of elementary events a1, . . . , an ∈ M.
The bookmaker sets a betting odd β(ai) ∈ [0, 1], and the bettor chooses stakes σi ∈ R.
The bettor pays the bookmaker σiβ(ai), and will receive σiV (ai) from the bookmaker’s
possible world V. As scholars, we can assume that σi could be also positive as well as
negative. If the orientation of money transfer is given via bettor-to-bookmaker, then
(6.1) means that bookmaker’s book should be coherent in the sense that the bettor
cannot choose stakes σ1, . . . , σn ensuring him to win money in every V ∈ W.

Now let A be a bounded pseudo-BCK algebra and denote by BS(A) the set of Bosbach
states on A and by W the set of state-morphisms on A. Note that, according to
Theorem 3.26, W coincides with the set of extremal Bosbach states, and due to the
Krein-Milman’theorem,

BS(A) = cl conv∂eBS(A) = cl convSM(A). (6.2)

Theorem 6.2. Let A be a bounded pseudo-BCK algebra and let W = SM(A) 6= ∅.
Then

FW = BS(A).

Proof. According to Theorem 3.26 and (3.1), W is closed. Now we can apply [28, Prop
3.1] since we have W ⊆ S, ∂eS = W(⊆ W), W closed. So we get S = FW . �

Theorem 6.2 has an important consequence, namely that every Bosbach state (if it
exists) on a bounded pseudo-BCK algebra is a de Finetti map coming from the set
of [0, 1]-valued functions on A generated by the set of state-morphisms, and applying
(6.2) we have that this de Finetti maps is exactly the weak limit of a net of convex
combinations of state-morphisms.

There is also another relationship concerning the representability of Bosbach states
via integrals. We introduce the following notions, see e.g. [19, Sec 5]. Let Ω be a
nonempty compact Hausdorff topological space. Let B(Ω) be the Borel σ-algebra of Ω
generated by all open subsets of Ω and any elements of B(Ω) is said to be a Borel set,
and any σ-additive (signed) measure is said to be a Borel measure.

Let P(Ω) denote all probability measures, that is, all positive regular Borel measures
µ ∈ M(Ω) such that µ(Ω) = 1. We recall that a Borel measure µ is called regular if

inf{µ(O) : Y ⊆ O, O open} = µ(Y ) = sup{µ(C) : C ⊆ Y, C closed}

for any Y ∈ B(Ω).
Let now A be a bounded pseudo-BCK algebra and let W = SM(A). Every element

a ∈ A determines a (continuous) function fa : W → [0, 1] via

fa(V ) = V (a), V ∈ W.

We say that a mapping s : A → [0, 1] is a Borel state (of W) if there is a (σ-
additive) probability measure µ defined on the Borel σ-algebra of the topological space
W generated by all open subsets of W such that

s(a) =

∫
W

fa(V ) dµ(V ).

Let BW be the set of all Borel states of W.
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Theorem 6.3. Let A be a bounded pseudo-BCK algebra. For any Bosbach state s on
A there is a Borel probability measure µ on B(W) such that

s(a) =

∫
W

fa(V ) dµ(V ). (6.3)

Proof. Since W = SM(A) is closed, see (3.1), by [28, Thm 4.2] we have W ⊆ BW ,
∂eBW ⊆ W and FW = BW . Therefore, by Theorem 6.2, BS(A) = BW , i.e. every
Bosbach state is a Borel state on A. �

We note that if we set Ω = BS(A), then for any a ∈ A, the function ã : BS(A) → [0, 1]
defined by ã(s) = s(a), s ∈ SB(A), is continuous. Therefore, we can strength Theorem
6.3 as follows.

Theorem 6.4. Let A be a bounded pseudo-BCK algebra. For any Bosbach state s on
A there is a unique Borel probability measure µ on B(BS(A)) such that

s(a) =

∫
SM(A)

ã(x) dµ(x). (6.4)

Proof. Suppose that the set of all Bosbach states on A is non empty. Due to the Krein-
Mil’man theorem, (6.2), the set of extremal Bosbach state is also nonempty and it
coincides with the set of state-morphisms. Denote by F0 :=

⋂
{Ker(s) : s ∈ SM(A)}.

In view of Propositions 3.20–3.22, F0 is a normal ideal, and similarly as in Theorem
3.20, we can show that A/F0 is an archimedean MV-algebra, and for any Bosbach state
s on A, the mapping ŝ(a/F0) = s(a) (a ∈ A) is an MV-state (= Bosbach state) on
A/F0; we set ā := a/F0 (a ∈ A). Moreover, the state spaces BS(A) and BS(A/F0)
are affinely homeomorphic compact nonempty Hausdorff topological spaces under the
mapping s ∈ BS(A) 7→ ŝ ∈ SB(A/F0) (i.e. they are homeomorphic in the weak
topologies of states preserving convex combinations of states). In addition, the compact
subsets of extremal Bosbach space are also homeomorphic under this mapping. Due to
[25], on the Borel σ-algebra B(BS(A)), there is a unique Borel probability measure µ
such that

s(a) = ŝ(a/F0) =

∫
SM(A/F0)

˜̄a dµ.

This integral can be rewritten identifying the compact spaces and Borel σ-algebras into
the form

s(a) =

∫
SM(A)

ã(x) dµ(x).

�

It is interesting to note that de Finetti was a great propagator only of probabilities as
finitely additive measures. The result of [25] and formula (6.4) say that whenever s is a
Bosbach state, it generates a σ-additive probability such that s is in fact an integral over
this Borel probability measure. Thus formula (6.4) joins de Finetti’s “finitely additive
probabilities” with σ-additive measures on an appropriate Borel σ-algebra.

We now generalize Theorem 6.2 and Theorem 6.3 also for unbounded pseudo-BCK
algebras that are downwards-directed.

Theorem 6.5. Let (A, u) be a pseudo-BCK algebra that is downwards-directed and let
W = SMM(A, u) 6= ∅. Then

FW = SM(A, u).
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Proof. It follows from Theorem 5.10 and using the same steps as those in Theorem
6.2. �

Theorem 6.6. Let (A, u) be a pseudo-BCK algebra that is downwards-directed. For any
state-measure m on (A, u), where W = SMM(A, u) 6= ∅, there is a Borel probability
measure µ on B(W) such that

m(a) =

∫
W

fa(V ) dµ(V ).

Proof. It follows from Theorem 5.10 and it follows the analogous steps as those in
Theorem 6.3. �

During our study we have found that the following questions remained open:
(1) Do arrows → /Ker0(m) and  /Ker0(m) on A/Ker0(m) coincide always in The-

orem 4.8 ?
(2) Is Theorem 4.9 true without the assumption on downwards-directness ?
(3) If (A, u) is a unital pseudo-BCK algebra is then A downwards-directed ?
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[28] J. Kühr, D. Mundici, De Finetti theorem and Borel states in [0, 1]-valued algebraic logic, Inter. J.

Approx. Reason. 46 (2007), 605–616.
[29] J. Meng, Y.B. Jun, ”BCK-Algebras”, Kyung Moon Sa Co., Seoul, 1994.
[30] D. Mundici, Averaging the truth-value in  Lukasiewicz logic, Studia Logica 55 (1995), 113–127.

Lavinia Corina Ciungu

Polytechnical University of Bucharest Splaiul Independenţei 113, Bucharest, Ro-
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Bratislava, Slovakia

E–mail address: dvurecen@mat.savba.sk


	1. Introduction
	2. Preliminaries on Pseudo-BCK Algebras
	3. States on Pseudo-BCK Algebras
	4. Measures on Pseudo-BCK Algebras
	5. Pseudo-BCK Algebras with Strong Unit
	6. Coherence, de Finetti Maps and Borel States
	References

