Quasi-copulas and signed measures

Roger B. Nelsen
Department of Mathematical Sciences, Lewis \& Clark College, Portland (USA)
José Juan Quesada-Molina
Department of Applied Mathematics, University of Granada (Spain)

José Antonio Rodríguez-Lallena Manuel Úbeda-Flores

Department of Statistics and Applied Mathematics, University of Almería (Spain)
Main goals:

- Study of (bivariate) quasi-copulas with fractal mass distributions.
- Study of the mass distribution of W^{n}-the point-wise best-possible lower bound for the set of n-quasi-copulas (and n-copulas).
- As a consequence, not every multivariate quasi-copula induces a signed measure on $[0,1]^{n}$.

1. Copulas and Quasi-copulas

- The importance of copulas: Sklar's Theorem [6, 8]. The joint distribution function H of a random vector $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ with respective univariate margins $F_{1}, F_{2}, \cdots, F_{n}$, can be expressed in terms of an n-copula C that is uniquely determined on $\times_{i=1}^{n}$ Range F_{i} in the form

$$
H(\mathbf{x})=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \cdots, F_{n}\left(x_{n}\right)\right), \quad \mathbf{x} \in[-\infty, \infty]^{n} .
$$

- The notion of quasi-copula was introduced [1] in order to characterize operations on distribution functions that can, or cannot, be derived from operations on random variables defined on the same probability space.

Theorem 1 [2] An n-dimensional quasi-copula (or n-quasi-copula) is a function $Q:[0,1]^{n} \rightarrow[0,1]$ that satisfies:
(Q1) $Q\left(u_{1}, \cdots, u_{i-1}, 0, u_{i+1}, \cdots, u_{n}\right)=0$ and $Q\left(1, \cdots, 1, u_{i}, 1, \cdots, 1\right)=u_{i}$ for all $\mathbf{u} \in[0,1]^{n}$ and for every $i \in\{1,2, \cdots, n\} ;$
(Q2) Q is nondecreasing in each variable; and
(Q3) the Lipschitz condition: $|Q(\mathbf{u})-Q(\mathbf{v})| \leq \sum_{i=1}^{n}\left|u_{i}-v_{i}\right| \quad \forall \mathbf{u}, \mathbf{v} \in[0,1]^{n}$.

- Every n-copula is an n-quasi-copula; and when Q is an n-quasi-copula but not an n-copula, it is said that Q is a proper n-quasi-copula.
- Every n-quasi-copula Q satisfies that, for every $\mathbf{u} \in[0,1]^{n}$,

$$
W^{n}(\mathbf{u})=\max \left(0, \sum_{i=1}^{n} u_{i}-n+1\right) \leq Q(\mathbf{u}) \leq \min (\mathbf{u})=M^{n}(\mathbf{u})
$$

- M^{n} is an n-copula for all $n \geq 2, W^{2}$ is a 2-copula, and $W^{n}(n \geq 3)$ is a proper n-quasi-copula.
- For an n-quasi-copula Q and an n-box $B=\times_{i=1}^{n}\left[a_{i}, b_{i}\right]$ in $[0,1]^{n}$, the Q-volume of B is defined similarly than for n-copulas, i.e.,

$$
V_{Q}(B)=\sum \operatorname{sgn}(\mathbf{c}) \cdot Q(\mathbf{c})
$$

We refer to V_{Q} as the mass distribution of Q, and $V_{Q}(B)$ the mass accumulated by Q on B.

The importance of quasi-copulas:

- Quasi-copulas (and copulas) are a special type of aggregation operators.
- The set of quasi-copulas is a complete lattice.

2. Signed measures

- Every n-copula C induces a positive measure μ_{C} defined on the Lebesgue σ algebra for $[0,1]^{n}$.
- Let λ_{n} denote the Lebesgue measure in \mathbb{R}^{n}. The measure μ_{C} is stochastic, i.e., for every Lebesgue measurable (L-m) set A in $[0,1]$

$$
\mu_{C}\left([0,1]^{i-1} \times A \times[0,1]^{n-i}\right)=\lambda_{1}(A) .
$$

- μ_{C} is characterized by the fact that $\mu_{C}(B)=V_{C}(B)$ for every n-box B.

Definition 1 [5] A signed measure μ on a measurable space (S, \mathcal{A}) is an extended real valued, countably additive set function on the σ-algebra \mathcal{A} such that $\mu(\emptyset)=$ 0 , and such that μ assumes at most one of the values $+\infty$ and $-\infty$.

- Many proper n-quasi-copulas Q induce signed measures μ_{Q} on $[0,1]^{n}$ in the sense that $\mu_{Q}(B)=V_{Q}(B)$ for every n-box B. Such measures must satisfy:
(a) for every L-m set A in $[0,1], \mu_{Q}\left([0,1]^{i-1} \times A \times[0,1]^{n-i}\right)=\lambda_{1}(A)$,
(b) for every $\mathbf{u} \in[0,1]^{n}$, if $u_{i} \leq v_{i} \leq 1$ for some $i=1,2, \cdots, n$, then

$$
0 \leq \mu_{Q}\left(\left[0, u_{1}\right] \times \cdots \times\left[0, u_{i-1}\right] \times\left[u_{i}, v_{i}\right] \times\left[0, u_{i+1}\right] \times \cdots \times\left[0, u_{n}\right]\right) \leq v_{i}-u_{i} .
$$

Example 1 Let s_{1}, s_{2} and s_{3} be three segments in $[0,1]^{2}$, respectively defined by $f_{1}(x)=x+1 / 3$ if $x \in[0,2 / 3], f_{2}(x)=x$ if $x \in[1 / 3,2 / 3]$, and $f_{3}(x)=$ $x-1 / 3$ if $x \in[1 / 3,1]$. We spread a mass of $2 / 3$ uniformly on each of s_{1} and s_{3}, and a mass of $-1 / 3$ uniformly on s_{2}. Let $(u, v) \in[0,1]^{2}$. If we define $Q(u, v)$ as the net mass in the 2-box $[0, u] \times[0, v]$, then Q is a 2-quasi-copula. To be exact:
$Q(u, v)=\min (u, v, \max (0, u+v-1, u-1 / 3, v-1 / 3)) \quad \forall(u, v) \in[0,1]^{2}$.

Thus, there exists a signed measure μ_{Q} such that $\mu_{Q}(B)=V_{Q}(B)$ for every 2-box B in $[0,1]^{2}$ (the difference between the positive measure μ_{Q}^{+}obtained by spreading a mass of $2 / 3$ uniformly on each of s_{1} and s_{3}, and the positive measure μ_{Q}^{-}obtained by spreading a mass of $1 / 3$ uniformly on s_{2}).

3. Bivariate quasi-copulas with fractal mass distributions

In [4], the authors construct families of 2-copulas whose supports are fractals [3] by using an iterated function system. We now extend some of the results in [4] to the case of quasi-copulas.

Definition 2 A quasi-transformation matrix is a matrix $T=\left(t_{i j}\right), i=$ $1,2, \cdots, m$ and $j=1,2, \cdots, n$, with the column index first and the rows ordered from bottom to top, with entries between $-1 / 3$ and 1 , for which the sum of the entries is 1 , no row or column has every entry zero, the negative entries are not in the first and the last row or column, e.g. $t_{1 j}, t_{m j}, t_{i 1}$, and $t_{i n}$ for all $i=1,2, \cdots, m, j=1,2, \cdots, n$, and the sum of the entries in any submatrix of the form $\left(t_{i j}\right)$ for $i=a, a+1, \cdots, b, j=c, c+1, \cdots, d$ is nonnegative when $a=1$ or $b=1$ or $c=m$ or $d=n$.

Example 2 Let T be the quasi-transformation matrix given by

$$
T=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \tag{1}\\
1 / 3 & -1 / 3 & 1 / 3 \\
0 & 1 / 3 & 0
\end{array}\right) .
$$

Let $R_{i j}=\left[p_{i-1}, p_{i}\right] \times\left[q_{j-1}, q_{j}\right]$ be a 2-box in $[0,1]^{2}$ such that $p_{i}\left(\right.$ respectively, $\left.q_{j}\right)$ denotes the sum of the entries in the first i columns (respectively, j rows) of T. Then, for any 2-quasi-copula Q, let $T(Q)$ be the 2-quasi-copula which, for each (i, j), spreads mass $t_{i j}$ on $R_{i j}$ in the same (but re-scaled) way in which Q spreads mass on $[0,1]^{2}$, i.e.,

$$
\begin{aligned}
T(Q)(u, v)= & \sum_{i^{\prime}<i, j^{\prime}<j} t_{i^{\prime} j^{\prime}}+\frac{u-p_{i-1}}{p_{i}-p_{i-1}} \cdot \sum_{j^{\prime}<j} t_{i j^{\prime}}+\frac{v-q_{j-1}}{q_{j}-q_{j-1}} \cdot \sum_{i^{\prime}<i} t_{i^{\prime} j} \\
& +t_{i j} \cdot Q\left(\frac{u-p_{i-1}}{p_{i}-p_{i-1}}, \frac{v-q_{j-1}}{q_{j}-q_{j-1}}\right),
\end{aligned}
$$

where empty sums are defined to be zero.
Definition 3 Let T be a quasi-transformation matrix. For any 2-quasi-copula Q, we define $T^{m}(Q)=T\left(T^{m-1}(Q)\right), m=1,2, \cdots$, where $T^{0}(Q)=Q$.

Theorem 2 For each quasi-transformation matrix $T \neq(1)$, there is a unique 2-quasi-copula Q_{T} for which $T\left(Q_{T}\right)=Q_{T}$. Moreover, Q_{T} is the limit of the sequence $\left\{Q, T(Q), T^{2}(Q), \cdots\right\}$ for any 2-quasi-copula Q.

Let T be the quasi-transformation matrix given by (1), i.e.,

$$
T=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \\
1 / 3 & -1 / 3 & 1 / 3 \\
0 & 1 / 3 & 0
\end{array}\right),
$$

and let Π^{2} be the copula of independent random variables, i.e., $\Pi^{2}(u, v)=u v$ for all $(u, v) \in[0,1]^{2}$. The mass distributions of $T\left(\Pi^{2}\right)$ and $T^{2}\left(\Pi^{2}\right)$:

For each iteration $m \geq 1$:

- $R_{m}^{+}=3^{m}+\sum_{i=0}^{m-1} 3^{i} \cdot 5^{m-i-1}$ (number of 2-boxes with $(+)$ mass).
- $R_{m}^{-}=5^{m}-3^{m}-\sum_{i=0}^{m-1} 3^{i} \cdot 5^{m-i-1}$ (number of 2-boxes with (-) mass).
- Total (+) mass $T^{m}\left(\Pi^{2}\right): 1+(1 / 5) \sum_{i=0}^{m-1}(5 / 3)^{m-i}$.
- Total (-) mass $T^{m}\left(\Pi^{2}\right):-(1 / 5) \sum_{i=0}^{m-1}(5 / 3)^{m-i}$.
- $V_{T^{m}\left(\Pi^{2}\right)}\left([1 / 3,2 / 3]^{2}\right)=-1 / 3 \Rightarrow T^{m}\left(\Pi^{2}\right)$ is a proper 2-quasi-copula.

Let $\Pi_{T}^{2}=\lim _{m \rightarrow \infty} T^{m}\left(\Pi^{2}\right)$.

- $V_{\Pi_{T}^{2}}\left([1 / 3,2 / 3]^{2}\right)=-1 / 3 \Rightarrow \Pi_{T}^{2}$ is a proper 2-quasi-copula.
- Total $(+)$ mass of $\Pi_{T}^{2}:+\infty$.
- Total (-) mass of $\Pi_{T}^{2}:-\infty$.
- $\lim _{m \rightarrow \infty} \lambda_{2}\left(R_{m}^{+}\right)=\lim _{m \rightarrow \infty} \lambda_{2}\left(R_{m}^{-}\right)=0$.

4. The mass distribution of W^{n}

For any integer $k \geq 2$, let $T_{k}=\{1,2, \cdots, k\}$. We divide $[0,1]^{n}$ in the k^{n} following n-boxes:

$$
R\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\prod_{j=1}^{n}\left[\frac{i_{j}-1}{k}, \frac{i_{j}}{k}\right],\left(i_{1}, i_{2}, \cdots, i_{n}\right) \in T_{k}^{n}
$$

Theorem 3 Let n and k be two integers such that $k \geq n-1 \geq 1$. Let $m=$ $\sum_{j=1}^{n} i_{j}-k(n-1)$. Then

$$
V_{W^{n}}\left(R\left(i_{1}, i_{2}, \cdots, i_{n}\right)\right)= \begin{cases}\frac{(-1)^{m-1}}{k} \cdot\binom{n-2}{m-1}, & 1 \leq m \leq n-1 \\ 0, & \text { otherwise } .\end{cases}
$$

Moreover, for each m, with $1 \leq m \leq n-1$, the number of n-boxes $R\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ satisfying that $\bar{V}_{W^{n}}\left(R\left(i_{1}, i_{2}, \cdots, i_{n}\right)\right)=\frac{(-1)^{m-1}}{k}\binom{n-2}{m-1}$ is $\binom{n-1+k-m}{n-1}$.

Theorem 4 Let n be an integer such that $n \geq 3$, and let M be any positive real number. Then, there exists a finite set of n-boxes $\left\{J_{1}, J_{2}, \cdots, J_{p}\right\}$ in $[0,1]^{n}$ whose interiors are pairwise disjoint and such that
(a) $\sum_{i=1}^{p} V_{W^{n}}\left(J_{i}\right)>M$, and
(b) $\sum_{i=1}^{p} \lambda_{n}\left(J_{i}\right)<1 / M$;
similarly, we can also find a finite set of n-boxes $\left\{J_{1}^{\prime}, J_{2}^{\prime}, \cdots, J_{q}^{\prime}\right\}$ in $[0,1]^{n}$ with pairwise disjoint interiors such that
(c) $\sum_{i=1}^{q} V_{W^{n}}\left(J_{i}^{\prime}\right)<-M$, and
(d) $\sum_{i=1}^{q} \lambda_{n}\left(J_{i}^{\prime}\right)<1 / M$.

Corollary 5 For every $n \geq 3, W^{n}$ does not induce a signed measure on $[0,1]^{n}$.

References

[1] Alsina, C., Nelsen, R.B., Schweizer, B. (1993) On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17, 85-89.
[2] Cuculescu, I., Theodorescu, R. (2001) Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46, 731-742.
[3] Edgar, G.A. (1990) Measure, Topology, and Fractal Geometry. Springer, New York.
[4] Fredricks, G.A., Nelsen, R.B., Rodríguez-Lallena, J.A. (2005) Copulas with fractal supports. Insurance Math. Economics 37, 42-48.
[5] Halmos, P.R. (1974) Measure Theory. Springer, New York.
[6] Nelsen, R.B. (2006) An Introduction to Copulas. Second Edition. Springer, New York.
[7] Sklar, A. (1959) Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229-231.

