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Abstract

We try to provide a tentative assessment of the role of fuzzy sets in decision
analysis. We discuss membership functions, aggregation operations, linguistic
variables, fuzzy intervals and the valued preference relations they induce. The
importance of the notion of bipolarity and the potential of qualitative evalua-
tion methods are also pointed out. We take a critical standpoint on where we
stand, in order to highlight the actual achievements and question what is often
considered debatable by decision scientists observing the fuzzy decision analysis
literature.
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1. Introduction

The idea of using fuzzy sets in decision sciences is not surprizing since de-
cision analysis is a field where human-originated information is pervasive. The
seminal paper in this area was written by Bellman and Zadeh [1] in 1970, high-
lighting the role of fuzzy set connectives in criteria aggregation. That pioneering
paper makes three main points:

1. Membership functions can be viewed as a variant of utility functions or
rescaled objective functions, and optimized as such.

2. Combining membership functions, especially using the minimum, can be
one approach to criteria aggregation.

3. Multiple-stage decision-making problems based on the minimum aggre-
gation connective can then been stated and solved by means of dynamic
programming.
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This view was taken over by Zimmermann[2] who developed popular multicrite-
ria linear optimisation techniques in the seventies. The idea is that constraints
are soft and can be viewed as critieria. Then any linear programming problem
becomes a max-min fuzzy linear programming problem.

Other ingredients of fuzzy set theory like fuzzy ordering relations, linguistic
variables and fuzzy intervals have played a major role in the diffusion of fuzzy
set ideas in decision sciences. We can especially point out the following:

1. Gradual or valued preference relations (stemming from Zadeh’s fuzzy or-
derings [3]) further studied by Orlowski [4], Fodor and Roubens [5], and
others [6].

2. Many other aggregation operations are used so as to refine the multicrite-
ria aggregation technique of Belman and Zadeh: t-norms symmetric sums,
uninorms, leximin, Sugeno and Choquet integrals etc. This trend is tes-
tified by three recent books (Beliakov et al. [7], Torra and Narukawa [8],
Grabisch et al.[9]).

3. Fuzzy interval computations so as to cope with uncertainty in numerical
aggregation schemes. Especially, extensions of the weighted average with
uncertain weights [10].

4. Fuzzy interval comparison techniques enable the best option in a set of
alternatives with fuzzy interval ratings to be selected [11]

5. Linguistic variables [12] are supposed to model human originated infor-
mation , so as to get decision methods closer to the user cognition [13].

What has been the contribution of fuzzy sets to decision analysis? Following
the terminology of the original Bellman-Zadeh paper, fuzzy decision analysis
(FDA) is supposed to take place in a “fuzzy environment”, in contrast with
probabilistic decision analysis, taking place “under uncertainty”. But, what is a
fuzzy environment ? I seems that many authors take it an environment where
the major source of information is linguistic, so that linguistic variables are
used, which does not correspond to Bellman and Zadeh’s proposal. One should
nevertheless not oppose "fuzzy environment" to "uncertain environment": the
former in fact often means "using fuzzy sets", while the latter refers to an actual
decision situation: there is epistemic uncertainty due to missing information, not
always related to linguistic imprecision.

Actually, for many decision theory specialists, it is not clear that fuzzy sets
have ever led to a new decision paradigm. Indeed, one may argue that either
some techniques already existed under a different terminology, or that fuzzy
decision methods are fuzzifications of standard decision techniques. More pre-
cisely,

• Fuzzy optimization following Bellman and Zadeh and Zimmermann comes
down to max-min bottleneck optimization. But bottleneck optimisation
and maximin decisions already existed independently of fuzzy sets.

• In many cases, fuzzy sets have just been added to existing techniques
(fuzzy AHP methods, fuzzy weighted averages, fuzzy extensions of Electre-
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style MCDM methods) with no clear benefits (especially when fuzzy in-
formation is changed into precise at the preprocessing level, which can be
observed sometimes).

• Fuzzy preference modelling is an extension of standard preference mod-
elling and must be compared to probabilistic or measurement-based pref-
erence modeling.

In fact, contrary to what is often claimed in FDA papers, it is not always the
case that adding fuzzy sets to an existing method improves it in a significant
way. That it does needs to be articulated by convincing arguments, based on
sufficient knowledge of state-of-the-art existing techniques.

To make a real contribution one must show that the new technique

• addresses in a correct way an issue not previously handled by previous
methods: e.g. criterion dependence using Choquet integral.

• proposes a new setting for expressing decision problems more in line with
the information provided by users: for instance using qualitative informa-
tion instead of numerical.

• possesses a convincing rationale (e.g. why such an aggregation method?
why model uncertainty by a fuzzy set ?) and a sound formal setting liable
to some axiomatization.

Unfortunately, it is not always clear that any such contribution appears in
many proposals and published papers on FDA. This position paper takes a
skeptical viewpoint on the fuzzy decision literature, so as to help laying bare
what is its actual contribution. Given the large literature available there is no
point to providing a complete survey. However we shall try to study various ways
fuzzy sets were instilled in decision methods, and provide a tentative assessment
of the cogency of such proposals.

2. Membership functions in decision-making

First we discuss the role played by membership functions in decision tech-
niques. Then we consider the use of membership grades and linguistic terms for
rating the worth of decisions.

2.1. Membership functions and truth sets in decision analysis
A membership function is an abstract notion, a mathematical tool just like

a set in general. It just introduce grades in the abstract Boolean notion of set-
membership. So, using the terminology of membership functions in a decision
problem does not necessarily enrich its significance. In order to figure out the
contribution of fuzzy sets, one must always declare what a given membership
function accounts for in a given problem or context. Indeed, there is not a single
semantic interpretation of membership functions. Several ones have been laid
bare [14] and can be found in the literature
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• A measure of similarity to prototypes of a linguistic concept (then mem-
bership degrees are related to distance); this is used when linguistic terms
are modeled by membership functions, and in fuzzy clustering as well
(Ruspini [15]).

• A possibility distribution [16] representing our incomplete knowledge of
a parameter, state of nature, etc. that we cannot control. Possibility
distributions can be numerical or qualitiative [17]. In the numerical case,
such a membership function can encode a family of probability functions
(see [18] for a survey)

• A numerical encoding of a preference relation over feasible options, sim-
ilar to a utility or an objective function. This is really the idea in the
Bellman-Zadeh paradigm of decision-making in a fuzzy environment. In
decision problems, membership functions introduce grades in the tradi-
tionally Boolean notion of feasibility. A degree of feasibility differs from
the degree of attainment of a goal. In the former case, a membership
function models a fuzzy constraint [19, 20].

In the scope of decision under uncertainty, membership functions offer an
alternative to both probability distributions and utility functions, especially
when only qualitative value scales are used. But both types of membership
functions should not be confused not used one for the other in problems involving
both fuzzy constraints and uncertainty [20].

Then the originality of the fuzzy approach may lie

• either in its capacity to translate linguistic terms into quantitative ones
in a flexible way

• or to explicitly account for the lack of information, avoiding the question-
able use of unique, often uniform probability distributions [18]

• or in its set-theoretic view of numerical functions. Viewing a utility func-
tion as a fuzzy set, a wider range of aggregation operations becomes avail-
able, some of which generalize the standard weighted average, some of
which generalize logical connectives.

However, not only must a membership function be interpreted in the practi-
cal context under concern, the scale in which membership degrees lie must also
be well-understood and its expressive power made clear.

2.2. Truth-sets as value scales: the meaning of end-points
The often totally ordered set of truth-values, we shall denote by (L,≥), is

also an abstract construct. Interpretive assumptions must be laid bare if it is
used as a value scale for a decision problem: The first issue concerns the meaning
of the end-points of the scale; and whether a mid-point in the scale exists or has
any meaning ? Let us denote by 0 the least element in L and by 1 the greatest
element. Let us define a mid-point of L as an element e ∈ L such that
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1. ∃λ−, λ+ ∈ L, λ− < e < λ+

2. There is an order-reversing bijection n : L→ L such that n(1) = 0;n(e) =
e (n is a strong negation function)

Three kinds of scales can be considered depending on the existence and the
meaning of these landmark points [21]:

• Negative unipolar scales: when 0 has a totally negative flavor while 1 has
a neutral flavor. For instance, a possibility distribution, a measure of loss.

• Positive unipolar scales: 0 has a neutral flavor. For instance degrees of
necessity, a measure of gain.

• Bipolar scales: when 1 has a totally positive flavor while 0 has a totally
negative flavor. Then the scale contains a mid-point e that has has a
neutral flavor and that plays the role of a boundary between positive and
negative values.

For instance, the unit interval viewed as a probability scale is bipolar since
0 means impossible, 1 means certain and 1/2 indicates a balance between the
probable and the improbable. A membership scale of a fuzzy set is in the
principle bipolar, insofar as 1/2 represents the cross-over point between mem-
bership and non-membership. However if a membership function is used as a
possibility distribution as suggested by Zadeh [16], the scale becomes negative
unipolar since then while 0 means impossible, 1 means only possible, which is
neutral. The dual scale of necessity degrees in possibility theory [17] is on the
contrary positive unipolar since the top value of L expresses full certainty while
the bottom represents full uncertainty, hence neutral. In these latter cases, the
midpoint even if it exists, plays no role in the representation.

Finally, if membership grades express preference, the degree of satisfaction
of a goal is ofter bipolar (in order to express satisfaction, indifference and dis-
satisfaction) [22]. However, another approach is to use two separate unipolar
scales, one to express the degree of feasibility of a solution (it is a negative
unipolar scale ranging from not feasible to feasible) one to express the attrac-
tiveness of solutions (a positive unipolar scale ranging from indifference to full
satisfaction). More generally, loss functions map to a negative unipolar scale,
while gain functions map to positive unipolar scales. Gains and losses can be
separately handled as in cumulative prospect theory[23].

This information about landmark points in the scale captures ideas of good
or bad in the absolute. A simple preference relation cannot express this kind of
knowledge: ranking solutions to a decision problem from the best to the worst
without making the meaning of the value scale explicit, nothing prevents the
best solution found from being judged rather bad, or on the contrary the worst
solution from being somewhat good.

The choice of landmark points also has strong impact on the proper choice
of aggregation operations (t-norms, co-norms, uninorms..)[24]. Especially land-
mark points in the scale are either neutral or absorbing elements of such aggre-
gation operations.
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2.3. Truth-sets as value scales: quantitative or qualitative ?
The second issue pertains to the expressive power of grades in a scale L

and has to do with its algebraic richness. One can first decide if a infinite
scale makes sense or not. It clearly makes sense when representing preference
about a continuous measurable attribute. Then, the reader is referred to the
important literature on measurement theory (see [25] and Chapter 16 in [26])
whose aim is to represent preference relations by means of numerical value
functions. According to this literature, there are three well-known kinds of
continuous value scales

• Ordinal scales: The numerical values are defined up to a monotone in-
creasing transformation. Only the ordering on L matters. It makes no
sense to add degrees in such scales.

• Interval scales: The numerical values are defined up to a positive affine
transformation (λ ∈ L 7→ aλ + b, a > 0). Interestingly, in decision theory
the most popular kind of value scales are interval scales. But they can-
not express the idea of good and bad (they are neither bipolar nor even
unipolar) since the value 0 plays no specific role, and these scales can be
unbounded.

• Ratio scales: The numerical values are defined up to a positive linear
transformation aλ, a > 0. This kind of scale is often unipolar positive as
the bottom value 0 plays a major role.

Another option is to go for a finite scale: L = {0 < λ1 < λ2 < · · · < λm = 1}
where elements of the scale are not numerical. In the following we shall speak of
a qualitative scale. It underlies the assumption that the values of the scale are
significantly distinct from one another (hence they cannot be too numerous):
in particular, the value λi is significantly better that λi−1. This case is often
neglected both in usual measurement theory and in fuzzy set theory. Yet a
qualitative scale is more expressive than a simple ordering relation because of
the presence of absolute landmarks that can have a positive, negative or neutral
flavor.

Clearly the nature of the scale also affects the kind of aggregation function
that can be used to merge degrees. An aggregation operation ∗ on an ordinal
scale must satisfy an ordinal invariance property such as the following:

a ∗ b > c ∗ d ⇐⇒ ϕ(a) ∗ ϕ(b) > ϕ(c) ∗ ϕ(d)

for all monotonic increasing transformations ϕ of an ordinal scale L. See [9],
chap. 8, on this problem. Basically only operations based on maximum and
minimum remain meaningful. Averaging operations make no sense on such
scales.

More often than not in decision problems, people are asked to express their
preferences by ticking a value on a continuous line segment. Then such val-
ues are handled as if they were genuine real numbers, computing averages or
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variances. This kind of technique is nearly as debatable as asking someone to
explicitly provide an real number expressing preference. All we can assume
is that the corresponding scale is an ordinal scale. In particular, there is a
problem of commensurateness between scales used by several individuals: the
same numerical value provided by two individuals may fail to bear the same
meaning. On the other hand qualitative scales can better handle this problem:
some landmark values can be identically understood by several individuals and
may be compared across several criteria. A small qualitative scale is cognitively
easier to grasp than a continuous value scale and has thus more chance to be
consensual.

In summary there is a whole literature on numerical utility theory that
should be exploited if fuzzy set decision researchers wish to justify the use of
numerical membership grades in decision techniques. From this point of view,
calling a utility function a membership function is not a contribution. Yet,
f uzzy set theory offers a framework to think of aggregation connectives in a
broader way than the usual weighted averaging schemes. But there is no reason
to move away from the measurement tradition of standard decision analysis.
Fuzzy set tools should essentially enrich it.

2.4. From numerical to fuzzy value scales
Being aware that precise numerical techniques in decision evaluation prob-

lems are questionable, because they assume more information than can actually
been supplied by individuals, many works have been published that claim to
circumvent this difficulty by means of fuzzy set-related tools. The rationally
often goes as follows: If a precise value in the real line provided by an expert is
often ill-known, it can be more faithfully represented by an interval or a fuzzy
interval. Moreover, the elements in a qualitative scale may encode linguistic
value judgments, which can be modeled via linguistic variables.

2.4.1. Evaluations by pairs of values
When an individual ticks a value in a value scale or expresses a subjective

opinion by means of a number x, it sounds natural to admit that this value
has limited precision. The unit interval is far too refined to faithfully interpret
subjective value judgments. It is tempting to use an interval [a, b] in order to
describe this imprecision. However, it is not clear that this approach takes into
account the ordinal nature of the numerical encoding of the value judgment. It
is natural to think that the width of an interval reflects the amount of impre-
cision of this interval. However in an ordinal scale, width of intervals make no
sense: if [a, b] = [c, d], in general [ϕ(a), ϕ(b)] 6= [ϕ(c), ϕ(d)] for a monotonic scale
transformation ϕ. So the use of interval-valued ratings presupposes an assump-
tion on the nature of the value scale, which must be more expressive than an
ordinal scale. It must be equipped with some kind of metric, again resorting
to suitable (e.g. preference difference) measurement techniques. Moving from
an interval to a fuzzy interval with a view to cope with the uncertainty of the
interval boundaries, one is not better off, since on an ordinal scale, the shape of
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the membership function is meaningless: there is no such thing as a triangular
fuzzy number on an ordinal scale.

Some authors use pairs of values (µ, ν) ∈ [0, 1]2 with µ + ν ≤ 1 following
Atanassov’s convention[27]. Not only the latter encoding looks problematic in
the light of the above considerations2, this representation technique is more-
over ambiguous: it is not clear that this pair of values corresponds to more
information or less information than a single value[28].

1. Using an uncertainty semantics, it expresses less information than point
values because it encodes an ill-known value λ ∈ [µ, 1 − ν]. Then the
uncertainty interval representation is more explicit. Moreover, the aggre-
gation operations proposed by Atanassov are fully compatible with the
interval-extension of pointwise aggregation operations [29].

2. Or it expresses more information that point values: then µ is the strength
in favour of a decision, ν in disfavour of this decision. This is a unipo-
lar bivariate convention that fits argumentation semantics, and departs
from the Savagean utility theory tradition. However it is not clear that
researchers adopting Atanassov convention refer to pioneering works, like
cumulative prospect theory, adopting this kind bipolar view. This setting
is even more information demanding than using single evaluations so that
it does not address at all the concerned raised by the debatable richness
assumptionof numerical ratings.

The proper choice of a semantics of Atanassov style value pairs affects the
way information will be processed [28]:

1. The standard injection L→ L2 is not the same: λ 7→ (λ, 1−λ) in the inter-
val case, λ 7→ (λ, 0) for a positive unipolar scale in the bipolar case (then
the genuine pairs add negative information to single positive evaluations).

2. Under the uncertainty semantics, you need to apply interval analysis meth-
ods to see the impact of uncertainty on the global evaluation (insofar as
the numerical scale is meaningful).

3. Under the argumentation semantics, you may first separately aggregate
positive and negative information by appropriate (possibly distinct) meth-
ods and then aggregate the results as done in CPT.

2.4.2. Linguistic vs. Numerical Scales
Quite a number of papers on FDA have been published in the last 15 years or

so, with the aim of exploiting linguistic information provided by decision-makers.
Namely a criterion is viewed as a mapping decisions on a finite linguistic term
set forming a qualitative scale. A number of authors then consider a criterion
as a linguistic variable after Zadeh [12], namely they represent fuzzy terms as
fuzzy intervals, that form a fuzzy partition of the unit interval. Contrary to the

2Indeed, the addition µ+ν is questionable on an ordinal scale. One may replace µ+ν ≤ 1
by µ ≤ n(ν), for a strong negation on L, but then µ ≤ n(ν) implies ϕ(µ) ≤ ϕ(n(ν)) while we
need ϕ(µ) ≤ n(ϕ(ν).
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free use of any value on a numerical scale surrounded by imprecision in the form
of a fuzzy interval, the linguistic approach only uses a finite set prescribed fuzzy
intervals, and the decision-maker picks ratings among them. More often than
not the unit interval, taken as a value scale, is shared into overlapping intervals
of equal length that form the supports of the fuzzy intervals. It corresponds
here to what Zadeh calls a granulation of the unit interval [30]. One advantage
of this framework is that criteria aggregations can be modelled by means of
fuzzy if-then rules that can be processed using any fuzzy inference method (like
in fuzzy control). However this approach is debatable for a number of reasons

• It is not clear that the granular scale thus used is qualitative any more
since each linguistic term is viewed as a fuzzy interval on some numerical
scale. If the scale is in fact ordinal, sharing this scale into fuzzy intervals
with the same shape clearly makes no sense. Such linguistic scales are
thus not qualitative.

• Arithmetic aggregation operations that do not make sense on the under-
lying numerical scale will not make more sense when applied to fuzzy
intervals.

• Combining fuzzy intervals from a partition (crisp or fuzzy) generally does
not yield elements of the partition. One has to resort to some form of
linguistic approximation in order to construct a closed operation on the
linguistic scale. But if this operation is abstracted from a numerical one,
properties of the latter (for instance associativity) will be often lost (see
[31]).

• If moreover one applies fuzzy control interpolation methods to build an
aggregation function (using the standard Mamdani fuzzification-inference
-defuzzification scheme), what is constructed is a numerical function which
highly depends, for instance, on the choice of a defuzzification method.

In fact, linguistic variables proposed by Zadeh are meaningful if the underlying
numerical scale corresponds to an objective measurable attribute, like height,
temperature, etc. A linguistic variable on an abstract numerical scale is all
the more meaningless because, prior to the membership function measurement
problems that are already present on measurable attributes, the question of
how to make sense of ratings on this abstract scale is to be solved first. So this
trend leads to debatable techniques that are neither more meaningful nor more
robust to a change of numerical encoding (of the linguistic values) than purely
numerical techniques (see the last chapter of [33] for a detailed critique of this
line of works.

Besides, due to the above difficulties, there have been some attempts at
directly using linguistic labels, like the 2-tuple linguistic representation [32]. The
2-tuple method handles pairs (i, σ) where i denotes the rank of label λi ∈ L in
a finite qualitative scale and σ ∈ [−0.5, 0.5). The purpose is to easily go from a
numerical value x lying between 0 and n to a symbolic one in L by means of the
integer closest to x, representing λi ∈ L : x = i+σ ∈ [0, n]. Then any numerical
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aggregation function ∗ can be applied the qualitative scale L: λi∗λj = λk where
i ∗ j = k+σ. In this view, σ is a numerical value expressing the precision of the
translation from the original result to the linguistic scale.

This kind of so-called linguistic approaches are as quantitative as any stan-
dard number-crunching method It just uses a standard rounding technique as a
linguistic approximation tool, for the sake of practical convenience. It no longer
accounts for the imprecision of linguistic evaluations. Moreover the idea that a
qualitative scale should be mapped to a sequence of adjacent integers is debat-
able. First one must justify the choice of equally distributed integers. Then,
one must study how the ranking of decisions obtained by aggregation of partial
ratings on the integer scale depends on the choice of the monotonic mapping
L→ N encoding the linguistic values.

2.5. The two meanings of fuzzy preference relations
There is an important stream of works triggered by the book by Fodor and

Roubens [5], that extend preference modelling to the gradual situation. In
classical preference modelling, an outranking relation provided by a decision-
maker is decomposed into strict preference, indifference and incomparability
components in order to be used. Fuzzy preference relations are valued extension
of relations expressing preference, i.e. of variants of ordering or preordering
relations ([26], Chap. 2). There is no point discussing the current state of
this literature in detail here (see Fodor and De Baets [34] for a recent survey).
However most existing works in this vein develop mathematical aspects of fuzzy
relations, not so much its connection to actual preference data. This is probably
due to the fact that the meaning of membership grades to fuzzy relations is not
so often discussed.

The notion of fuzzy ordering originated in Zadeh’s early paper [3] has been
improved and extensively studied in recent years (Bodenhofer et al. [6]). A
fuzzy relation on a set S is just a mapping R : S × S → [0, 1] (or to any totally
ordered scale). One assumption that pervades the fuzzy relational setting is
not often emphasized: a fuzzy relation makes sense only if it is meaningful to
compare R(x, y) to R(z, w) for 4-tuples of acts (x, y, z, z), that is, in the scope
of preference modelling, to decide whether x is more preferred (or not) to y in
the same way as z is more preferred to w. A fuzzy preference relation should
thus be viewed as the result of a measurement procedure reflecting the expected
or observed properties of crisp quaternary relations Q(x, y, z, w) that should be
specified by the decision-maker (see Fodor[35] for preliminary investigations).

In this case one may argue that R(x, y) reflects the intensity of the preference
of x over y. Nevertheless, the mathematical properties of R will again be dic-
tated by the meaning of the extreme values of the preference scale, namely when
R(x, y) = 0 or 1. If the unit interval is viewed as a bipolar scale, then R(x, y) = 1
means full strict preference of x over y, and is equivalent to R(y, x) = 0, which
expresses full negative preference, and suggests indifference be modelled by
R(x, y) = R(x, y) = 1/2, and more generally the property

R(x, y) +R(y, x) = 1

10



is naturally assumed. This property generalizes completeness, and R(x, y) > 1/2
expresses a degree of strict preference. Antisymmetry then reads R(x, y) =
1/2 =⇒ x = y. These are tournament relations that do not fit with the
usual encoding reflexive crisp relations, and exclude incomparability. Indeed,
in the usual convention of the crisp case, reflexivity reads R(x, x) = 1, while
incomparability reads R(x, y) = R(y, x) = 0.

In order to stick to the latter convention, the unit interval must then be
viewed as a negative unipolar scale, with neutral upper end, and the pref-
erence status between x and y cannot be judged without checking the pair
(R(x, y), R(y, x)). In this case, R(x, y) evaluates weak preference, completeness
means

max(R(x, y), R(y, x)) = 1,

and indifference is when R(x, y) = R(y, x) = 1. On the contrary, R(x, y) =
R(y, x) = 0 captures incomparability. In other words, this convention allows
the direct extension of usual preference relations to valued ones on a unipolar
scale where 1 has a neutral flavor. Conventions of usual outranking relations are
retrieved when restricting to Boolean values. The expression of antisymmetry
must be handled with care in connection to the underlying similarity relation
on the preference scale, as shown by Bodenhofer [36].

The above type of fuzzy relations presupposes that objects to be compared
are known precisely enough to allow for a precise quantification of preference
intensity. However there is another possible explanation of why preference rela-
tions should be valued, and this is when the objects to be compared are ill-known
even if the preference between them remains crisp. Then R(x, y) reflects the
likelihood of a crisp weak preference x � y. Under this interpretation, some val-
ued relations directly refer to probability. Probability of preference is naturally
encoded by valued tournament relations [37], letting

R(x, y) = Prob(x � y) +
1
2
Prob(x ∼ y),

where x ∼ y ⇐⇒ x � y and x � y, which implies R(x, y) + R(y, x) = 1.
Uncertainty about preference can be defined by a probability distribution P
over possible preference relations, i.e. Ti ⊂ S × S with x �i y ⇐⇒ (x, y) ∈ Ti
and P (Ti) = pi, i = 1, . . . , N . Then

R(x, y) =
∑
i:x�iy

pi +
∑
i:x∼iy

1
2
pi.

This comes close to the setting of voting theory, historically the first suggested
framework for interpreting (what people thought could be understood as) fuzzy
relations [38].

This approach also applies when the merit of alternatives x and y can be
quantified on a numerical scale and represented by a probability distribution
on this scale. Then, R(x, y) = P (u(x) > u(y)), where u : S → R is a utility
function. Calling such valued tournament relations fuzzy can be misleading in
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the probabilistic setting, unless one considers that fuzzy just means gradual.
However, what is gradual here is the likelihood of preference, the latter remain-
ing a crisp notion, as opposed to the case when shades of preference are taken
into account. Only when modelling preference intensity does a valued relation
fully deserve to be called fuzzy.

Other uncertainty theories can be used as well to quantify uncertain pref-
erence, including possibility theory, i.e. R(x, y) = Π(x � y) is the degree
of possibility of preference. It is such that max(R(x, y), R(y, x)) = 1 since
max(Π(x � y),Π(y � x)) = 1 in possibility theory. In this case again, the
underlying scale for R(x, y) is negative unipolar, which does correspond to simi-
lar conventions as the gradual extension of outranking relations outlined above.
However, in the possibilistic uncertainty setting, 1 − R(x, y) = N(y � x) cor-
responds to the degree of certainty of a strict preference. This kind of valued
relations is closely akin to interval orderings [39] and the comparison of fuzzy
intervals discussed later on in this paper.

3. Fuzzy connectives for decision evaluation in the qualitative setting

Fuzzy sets connectives have triggered a considerable development of aggre-
gation operators for decision evaluation [7, 9, 8]. It was the pioneering Bellman-
Zadeh’s paper that popularized a non-compensatory operation (the minimum),
in place of averaging, for aggregation processes in multi-objective problems. Yet,
this mode of aggregation had been already extensively used since the 1940’s in
non-cooperative game theory, and more recently in bottleneck optimisation.
However, Bellman-Zadeh’s proposal has sometimes been misunderstood, as to
its actual role. In fact this non-compensatory approach pioneered later develop-
ments in the literature on soft constraint satisfaction methods [20]. In particular,
the non-compensatory maxmin approach and its refinements stands in opposi-
tion to the traditional optimisation literature where constraints are crisp.as well
as to the systematic use of averages and their extensions for aggregating criteria
[? ? ]. The framework of aggregation operations takes a very general view that
subsumes the two traditions. Rather than providing another survey of aggre-
gation operations that are already documented in the above-cited recent books,
we discuss the issue of qualitative approaches that can be developed in the light
of current developments so as to overcome the above critique of linguistic scales.

3.1. Aggregation operations: qualitative or quantitative
The nature of the value scale employed for rating the worth of decisions

dictates whether an aggregation operation is legitimate or not. Should we use a
qualitative or a quantitative approach? There are pros and cons. We are faced
with a modeling dilemma.

Using quantitative scales, we dispose of a very rich framework:

• we can account for very refined aggregation attitudes, especially trade-off,
compensation and dependence between criteria
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• A very fine-grained ranking of alternatives can be obtained.

• The aggregation technique can be learned from data.

• However, numerical preference data are not typically what decision-makers
provide.

Qualitative approaches (ordinal or qualitative scales) may look more anthro-
pomorphic. Indeed, contrary to what classical decision theory suggests, people
can make decisions in the face of several criteria, sometimes without numerical
utility nor criteria importance assessments (see the works by Gigerenzer [40],
for instance). More precisely, in a qualitative setting:

• We are closer to the information human can actually supply

• We can nevertheless model preference dependence structures (see the re-
cent literature on CP-nets [41])

• Making small qualitative scales commensurate with each other is easier.

• But the choice of aggregation operations is very limited (it ranges from
impossibility theorems in ordinal case, to only min and max and their
combination in the qualitative case).

• Finite value scales induce a strong lack of discrimination: the set of poten-
tial decisions can be sorted into as many groups of indifferent alternatives
as the number of levels in the absolute scale. It is well-known people make
little sense of refined absolute value scales (not more 7 levels).

• It is not clear how to handle bipolar information (pros and cons) ?

In fact there are discrete t-norms other than minimum on finite scales. The main
alternative is Lukasiewicz discrete t-norm, that is a truncated sum. This choice
underlies assumptions on the meaning of a qualitative scale L = {λ0, λ1, . . . , λn},

1. Like with 2-tuple method, L is mapped to the integers: λi = i. In partic-
ular, λi is understood as being i times stronger λ1

2. There is a saturation effect that create counterintuitive ties when aggre-
gating objective functions in this setting.

So this approach is not really qualitative, and not very attractive altogether at
the practical level. In fact it is important to better lay bare the meaning of a
qualitative value scale, and point out the assumptions motivating the restriction
of aggregation operations to operations min and max. Using a qualitative scale,
two effects can be observed

1. Negligibility Effect: Steps in the evaluation scale are far away from each
other. It implies a strong focus on the most likely states of nature, on the
most important criteria. This is what implies a lack of compensation be-
tween attributes. For instance, aggregating five ratings by the minimum,
min(5, 5, 5, 5, 1) < min(2, 2, 2, 2, 2): many 5’s cannot compensate for a 1
and beat several 2’s.
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2. Drowning effect: There is no comparison of the number of equally
satisfied attributes. The rating vector (5, 5, 5, 5, 1) is worth the same as
(1, 1, 1, 1, 1) if compared by means of the min operation. It means that we
refrain from counting.

It is clear that focusing on important criteria is something expected from hu-
man behavior [40]. However the equivalence between (5, 5, 5, 5, 1) and (1, 1, 1, 1, 1)
is much more debatable and conflicts with the intuition, be it because the latter
Pareto-dominates the former. The main idea to improve the efficiency of quali-
tative aggregation operations is to preserve the negligibility effect, but allow for
counting. Note that if we build a preference relation on the set of alternatives
rated on an absolute scale L on the basis of pairwise comparison made by the
decision-maker, one may get chains of strictly preferred alternatives with length
m >| L |. So, humans discriminate better on pairwise comparisons than using
absolute value scales.

3.2. Refinements of qualitative aggregation operations
Let V be a set of alternatives, and assume a unique finite value scale L for

rating n criteria, L being small enough to ensure commensurability. At one
extreme, one may consider the smallest possible value scale L = {0, 1} So each
alternative is modelled by a Boolean vector ~u = (u1, u2, . . . , un) ∈ {0, 1}n. Let
� denote the overall preference relation over {0, 1}n, supposed to be a weak
order. Suppose without loss of generality that criteria are ranked in the order of
their relative importance (criterion i as at least as important as criterion i+ 1.)
Three principles for a qualitative aggregation operations should be respected for
the aggregation to be rational

1. Focus Effect: If an alternative satisfies the most important criterion
where the ratings differ then it should be preferred. Formally it reads as
follows: given two vectors of ratings ~u and ~v, if ui = vi, i = 1, . . . , k − 1,
and uk = 1, vk = 0, where criterion k is strictly more important than
criterion k + 1, then ~u � ~v

2. Compatibility with strict Pareto-dominance (CSPD): If an alterna-
tive satisfies only a subset of criteria satisfied by another then the latter
should be preferred.

3. Restricted compensation: If an alternative satisfies a number of equally
important criteria greater than the number of criteria of the same im-
portance satisfied by another alternative, on the most important criteria
where some ratings differ, the former alternative should be preferred.

Strict Pareto-Dominance is defined for any value scale as ~u >P ~v iff ∀i =
1, . . . n, ui ≥ vi and ∃j, uj > vj . Then the CSPD principle reads:

~u >P ~v implies ~u � ~v.

Clearly, the basic aggregation operations min and max violate Pareto-Dominance.
Indeed we may have mini=1,...,n ui = mini=1,...,n vi while ~u >P ~v. In fact, there
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is no strictly increasing function f : Ln → L. So any aggregation function on
a finite scale will violate strict Pareto-Dominance. But just applying the latter
to Ln, the obtained partial order on V contains chains ~v1 >P ~v2 >P · · · >P ~vm
much longer that the numbers of elements in the value scale. Given that we
take the negligibility effect for granted, the approach to mend these basic oper-
ations is thus not to change, but to refine them. Two known methods recover
Pareto-dominance by refining the min-ordering (see [42] for a bibliography):

• Discrimin: ~u >dmin ~v iff mini:ui 6=vi ui = mini:ui 6=vi vi

• Leximin: Rank ~u and ~v in increasing order: let ~uσ = (uσ(1) ≤ uσ(2) ≤
. . . , uσ(n)) and ~vτ = (vτ(1) ≤ vτ(2) ≤ . . . , vτ(n)) ∈ Ln, then
~u >lmin ~v iff ∃k, ∀i < k, uσ(i) = vσ(j) and uσ(k) > vσ(k)

The Discrimin method deletes vector positions that bear equal values in ~u and
~v prior to comparing the remaining components. The leximin method is similar
but it cancel pairs of equal entries, one from each vector, regardless of their
positions. Similar refinements of the maximum operation, say Discrimax and
leximax can be defined.

Clearly, ~u >P ~v implies ~u >dmin ~v which implies ~u >lmin ~v. So by con-
structing a preference relation that refines a qualitative aggregation operation,
we recover a good behavior of the aggregation process without needing a more
refined absolute scale.

The minimum and the maximum aggregation operations can be extended
so as to account for criteria importance. Consider a weight distribution ~π that
evaluates the priority of criteria, with maxπi = 1. Consider the order-reversing
map ν(λi) = λm−i on a scale with m+ 1 steps. The following extensions of the
minimum and the maximum are now well-known:

• Prioritized Maximum: P max(~u) = maxi=1,...n min(πi, ui)
Here P max(~u) is high as soon as there is an important criterion with high
satisfaction rating.

• Prioritized Minimum: P min(~u) = mini=1,...n max(ν(πi), ui)
Here P min(~u) is high as soon as all important important criterion get
high satisfaction ratings.

• Sugeno Integral: Sγ,u(f) = maxλi∈L min(λi, γ(Uλi))
where Uλi = {i, ui ≥ λi} and γ : 2S 7→ L ranks groups of criteria.

In the last aggregation scheme, γ(A) is the priority degree of the group of
criteria A ⊆ {1, . . . , n}. It is a capacity, i.e. If A ⊆ B then γ(A) ≤ γ(B).
When γ is a possibility (resp. necessity) measure, i.e. γ(A) = maxi∈A γ({i})
(resp. mini 6∈A ν(γ({i})) then the Prioritized Maximum P max (resp. Minimum
P min) operation is retrieved. These operations have been used in decision under
uncertainty (as a substitute to expected utility [44]) and for criteria aggregation
with finite value scales [43]

The leximin and leximax operations can be extended in order to refine P max
and P min. The idea is as follows (Fargier, Sabbadin [45]). Given a totally
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ordered set (Ω,D) the leximin and leximax relations >lmin and >lmax compare
vectors in Ωn, based on comparing values using the relation D. Call these
techniques Leximax(D), Leximin(D). For the leximin and leximax comparison
of vectors of utility we use Ω = L and D =≥.

Iterating this scheme allows for a comparison of matrices with entries in L.
Namely let H = [hi,j ] be such a matrix, Ω = Ln. The Leximax(�lmin) relation
(where D =�lmin) can be used for comparing the rows Hj· of the matrix:

F �lmax(lmin) G⇔
{
∀j, F(j)· ∼lmin G(j)· or
∃i t.q. ∀j > i, F(j)· ∼lmin G(j)· and F(i)· �lmin G(i)·

where H(i)· = ith row of H, reordered increasingly. It takes the minimum
on elements inside the rows, and the leximax across rows. To compute this
ordering, we must shuffle the entries of each matrix so that to rank values on
each line in increasing order, and rows top-down in decreasing lexicographic
order. Then compare the two matrices lexicographically, first the top rows,
then, if equal, the second top rows, etc..

Example: Consider the comparison of the two matrices.

F =
7 3 4 8 5
6 3 7 4 9
5 6 3 7 7

G =
8 3 3 5 9
3 7 3 8 4
7 3 8 5 5

It is clear that maxi minj fi,j = maxi minj gi,j . Reordering increasingly
inside lines:

F ′ =
3 4 5 7 8
3 4 6 7 9
3 5 6 7 7

G′ =
3 3 5 8 9
3 3 4 7 8
3 5 5 7 8

Then rows are rearranged reordered top down in the sense of leximax. It is
clear that (see bold face entries):

3 5 6 7 7
3 4 6 7 9
3 4 5 7 8

�lmax(lmin)

3 5 5 7 8
3 3 5 8 9
3 3 4 7 8

The Leximax(�lmin) relation is a (very discriminative) complete and tran-
sitive relation. Two matrices are equally preferred if and only if they have the
same coefficients up to a reshuffling (possibly in different positions). It refines
the maximin comparison of matrices based on computing maxi minj hi,j . Like-
wise we can define Leximin(�lmin), Leximax(�lmax); Leximin(�lmax).

These notions are instrumental to refine the prioritized maximum and min-
imum. In the prioritized case, alternatives ~u are encoded in the form of n × 2
matrices Fu = [fij ] with fi1 = πi and fi2 = ui, i = 1, . . . , n: It is then
clear that P max(~u) = maxi=1,n minj=1,2 fij . Hence P max is refined by the
Leximax(Leximin(≥)) procedure:

P max(~u) > P max(~v) =⇒ Fu �lmax(�lmin) F
v.
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The prioritized minimum can be similarly refined applying Leximin(�lmax) to
matrices Fu = [fij ] with fi1 = n(πi) and fi2 = ui. It is easy to verify that the
Leximin(�lmax) and Leximax(�lmin) obey the three principles of focus effect,
strict Pareto-dominance, and restricted compensation.

The same kind of trick can be applied to refine the ordering induced by
Sugeno integrals. But the choice of the matrix encoding alternatives depend on
the form chosen for expressing this aggregation operation. For instance, using
the form proposed above, you can choose fi1 = λi, fi2 = γ(Uλi). This choice is
not the best one, as shown in [46]. Moreover, part of the lack of discrimination
is due to the capacity γ itself that estimates the importance of groups of criteria.
In order to refine the capacity γ one idea is to generalize the leximax refinement
of possibility measures [47]. To this end, it is useful to consider the so-called
“Qualitative” Moebius transform [48] of γ:

γ#(A) = γ(A) if γ(A) > max
B(A

γ(B)

= 0 otherwise.

It is such that γ(A) = maxE⊆A γ#(E), that is γ# contain the minimal amount
of information to recover γ. It is clear that if γ is a possibility measure, then
γ#(E) > 0 only if E is a singleton, i.e. γ# is a possibility distribution. The
leximax refinement of γ# is then just obtained by comparing for two groups of
criteria A and B the sets {γ#(E), E ⊆ A} and {γ#(E), E ⊆ B} using leximax.
More details on these issues can be found in [46, 49]

An interesting question is to define counterparts of discrimin and leximin
procedures to any (monotonic) aggregation operation f : L2 → L on qualitative
scales. The question also makes sense for continuous scales (see[50]).

3.3. Numerical encoding of qualitative aggregation functions
Additive encoding of the leximax and leximin procedures exist for a long

time when the number of alternatives to be compared or the evaluation scale
is finite. (such an encoding is not possible in the continuous case). A mapping
φ : L → [0, 1], where L = {0 < λ1 < λ2 < · · · < λm = 1}, is said to be
n-super-increasing if and only if φ(λi) > nφ(λi−1),∀i = 2, ..m. We also assume
φ(0) = 0 and φ(λm) = 1. Mapping φ is also called big-stepped. It is clear that
for any such mapping,

max
i=1,...n

ui > max
i=1,...n

vi implies
∑

i=1,...n

φ(ui) >
∑

i=1,...n

φ(vi)

e.g. φ(λi) = ki−m for k > n achieves this goal.The worst case is when
max(0, 0, . . . , 0, λi) > max(λi−1, . . . , λi−1).
This is a numerical representation of the leximax ordering:

Property: ~u �lmax ~v if and only if
∑
i=1,...n φ(ui) >

∑
i=1,...n φ(vi).
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Now consider the big-stepped mapping ψ(λi) = 1−k−i
1−k−m , k > n. Again it

holds that:

min
i=1,...n

ui > min
i=1,...n

vi implies
∑

i=1,...n

ψ(ui) >
∑

i=1,...n

ψ(vi)

And it offers a numerical representation of the leximin ordering.

Property: ~u �lmin ~v if and only if
∑
i=1,...n ψ(ui) >

∑
i=1,...n ψ(vi).

These representation results have been extended to the above refinements
of the prioritized maximum and minimum [45] by means of weighted averages
involving super increasing sequences of numerical values. Namely, there exists
a weighted average, say AV+(~u), representing �lmax(�lmin) and thus refining
P max. Namely consider a super increasing transformation χ of the scale L
such that:

max
i

min(πi, ui) > max
i

min(πi, vi) =⇒
∑

i=1,...n

χ(πi)·χ(ui) >
∑

i=1,...n

χ(πi)·χ(ui).

The worst case is when:
max(min(λj , λj), 0, . . . , 0) > max(min(λj , λj−1),min(1L, λj−1), . . . ,min(1L, λj−1))
Hence the sufficient condition:

∀j ∈ {0, . . . ,m− 1}, χ(λj)2 > (n+ 1)χ(λj−1) · χ(1L)

The following result then holds:

~u �lmax(lmin) ~v if and only if
∑
i=1,...n χ(ui)χ(πi) >

∑
i=1,...n χ(vi)χ(π).

The values χ(πi), i = 1, . . . , n can be normalized in such a way as to satisfy∑n
i=1 χ(πi) = 1 so that we do use a weighted average to represent �lmax(lmin).

In order to refine Sugeno integral by mapping it to a numerical scale. The idea
is to use a Choquet integral. However, in order to get a minimally redundant
expression of Sugeno integral, it must be put in the form

Sγ(~u) = maxA⊆N min(γ#(A),mini∈A ui)

where γ#(A) is the above defined qualitative Moebius transform. We can
use use a super-increasing transformation of γ# into a mass function m# : 2S 7→
[0, 1] : m#(E) = χ(γ#(E)) in the sense of Shafer [51], such that

∑
E⊆Cm#(E) =

1. The above leximax refinement of the ranking induced by γ can then be
represented by means of the belief function Bel(A) =

∑
E⊆Am#(E) When γ is

a possibility measure, the refining belief function is a probability measure. The
Sugeno integral can then be refined by the Choquet integral of the form (see
[46, 49] for details):

Chlsug# (~u) =
∑
A⊆S

m#(A) ·min
s∈A

χ(ui).
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The lessons drawn from this line of study is that the discrimination power of
qualitative aggregation methods (which in some sense are the off-springs of
the Bellman-Zadeh decision framework) can be drastically increased by lexico-
graphic refinement techniques that respect the qualitative nature of the prefer-
ence information as well as the focus effect on most important issues observed in
human decision behavior. Moreover these refinement techniques bring us back
to standard numerical aggregation methods, that, through the use of super-
increasing transformations, are robust (because qualitative in essence) contrary
to many number crunching-preference aggregation methods.

3.4. Bipolarity in qualitative evaluation processes
Cumulative Prospect Theory, due to Tversky & Kahneman [23] was mo-

tivated by the empirical finding that people, when making decisions, do not
perceive the worth of gains and losses in the same way. This approach assesses
the importance of positive affects and negative affects of decisions separately,
by means of two monotonic set functions g+(A+), g−(A−), which respectively
evaluate the importance of the set of criteria A+ where the alternatives a score
favorably and for the set of criteria A−, where they score unfavorably. For
instance, one can separately compute the expected utility of the losses and of
the gains, using different utility functions. Then they suggest to compute the
so-called net predisposition N(a) = g+(A+) − g−(A−) of each decision a in
order to rank-order them in terms of preference. This view is at odds with
classical decision theory where there is no distinction between gains and losses.
Couched in terms of fuzzy sets, the CPT approach, which relies on the idea
of bipolar information, is akin to a form of independence between membership
and non-membership grades in the spirit of Atanassov [27]. However, decision
works inspired by the misleadingly called intuitionistic fuzzy sets never make
the connection with CPT.

This line of thought, was recently extended to the case where positive and
negative affects are not independent (see [22]):

• Using bi-capacities on a bipolar scale in the form of functions N(a) =
g(A+, A−) monotonic in the first place, antimonotonic with the second
one.

• So-called bipolar capacities N(a) = (g+(A+, A−), g−(A+, A−)) living on
bivariate unipolar scales, keeping the positive and the negative evaluations
separate.

An interesting question is then how to evaluate decisions from qualitative
bipolar information, namely how to extend the min and max rules if there are
both positive and negative arguments? This question was recently discussed by
the author with colleagues [52, 53]. In the proposed simplified setting, a set
of Boolean criteria (C) is used, each of which has a polarity p = + (positive)
or − (negative). Such criterial are called affects. For instance, when buying a
house, the presence of a garden is a positive affect; the location of the house in a
noisy or dangerous environment is a negative affect. Each affect is supposed to
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possess an importance level in a qualitative scale L. The focus effect is assumed
in the sense that the order of magnitude of the importance of a group A of
affects with a prescribed polarity is the one of the most important affect, in the
group (γ(A) = maxx∈A πi is a possibility measure).

Preference between two alternatives a and b is then achieved by comparing
the pairs (Π(A−), Π(A+)) and (Π(B−), Π(B+)), evaluating separately positive
and negative affects of a (respectively A+ = {i, p(i) = +, ui = 1} and A− =
{i, p(i) = −, ui = 1}), based on the relative importance of these affects. The
most natural rule that comes to mind is called the Bipolar Possibility Relation
The principle at work (that plays the role of computing the net predisposition
in the qualitative setting) is:
Comparability of positive and negative affects: When comparing Boolean
vectors ~u and ~v, a negative affect for ~u (resp. against ~v) is a positive argument
pro ~v (resp. pro ~u).
Along with the way group of affects are weighted, the decision-maker is supposed
to focus on the most important affect regardless of its polarity. The following
decision rule follows [53]:

a �Biposs b ⇐⇒ max(Π(A+),Π(B−)) ≥ max(Π(B+),Π(A−))

The relation �Biposs is complete, but only its strict part is transitive. This
relation collapses to the Bellman-Zadeh minimum aggregation rule if all affects
are negative and to the maximum rule if all affects are positive (which also
has something to do with Atanassov connectives).This is similar to the CPT
approach where: a > b ⇐⇒ g+(A+) + g−(B−) > g−(B+) + g−(A−), the
possibilistic rule being obtained by changing + into max. This decision rule
is sound and cognitively plausible but it is too rough as it creates too many
indifference situations.

Refinements of this decision rule can build on top of an idea originally due
to B. Franklin: canceling arguments of equal importance for ~u or against ~v, by
arguments for b or against a until we find a difference on each side. This leads
to a complete and transitive refinement of �Biposs. Let A+

λ = {i ∈ A+, πi = λ}
be the arguments for a with strength λ. (resp. A−λ the arguments against a
with strength λ.).

a �Lexi b ⇐⇒ ∃λ ∈ L such that
{

(∀β > λ, |A+
β | − |A

−
β | = |B+

β | − |B
−
β |)

and (|A+
λ | − |A

−
λ | > |B+

λ | − |B
−
λ |)

This decision rule checks the positive and negative affects for each element
of a pair (a, b) of alternatives top-down in terms of importance. It stops at the
maximal level of importance when there are more arguments for one than for
the other (using the comparability postulate). This rule generalizes Gigerenzer’s
"take the best" heuristic [40] and can be encoded in the cumulative prospect
theory framework using super-increasing transformations. It has been empiri-
cally tested, and proves to be the one people often use when making decisions
according to several criteria [52].
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4. Uncertainty handling in decision evaluation using fuzzy intervals

Fuzzy intervals have been widely used in FDA so as to account for the
fact that many evaluations are imprecise. In many cases, it comes down to
applying the extension principle to existing evaluation tools: weighted averages
or expected utilities using fuzzy interval weights [10], fuzzy extensions of Saaty’s
Analytical Hierarchical Process[54], and other numerical or relational MCDM
techniques (like TOPSIS, PROMETHEE, ELECTRE,..[55]). Many of these
techniques, in their original formulations are ad hoc, or even debatable (see [33]
for a critique of many of them). So their fuzzy-valued extensions are often liable
of the same defects.

The problem with fuzzy set methods extending existing ones is that more
often than not the proposed handling of fuzzy intervals is itself ad hoc or so
approximate that the benefit of the fuzzification is lost. Moreover the thrust
of the fuzzy interval analysis is to provide information about the uncertainty
pervading the results of the decision process. Some authors make an unjustified
use of defuzzification that erases all information of this type. For instance the
decision-maker is asked for some figures in the form of fuzzy intervals so as
to account for the difficulty to provide precise ratings, and then these ratings
are defuzzified right away. Or the fuzzy intervals are propagated through the
decision process but the final results are defuzzified in order to make the final
decision ranking step easier. In such procedures it is not clear why fuzzy intervals
were used in the first stand. The uncertainty pervading the ratings should play
a role in the final decision-making process, namely to warn the decision maker
when information is not sufficient for justifying a clear ranking of alternatives.

In this section we discuss two examples where fuzzy intervals have been
extensively used, but where some intrinsic technical or computational difficulties
need to be properly addressed in decision evaluation techniques: fuzzy weighted
averages and fuzzy AHP methods.

4.1. Fuzzy weighted averages
An obvious way of introducing fuzzy sets in classical aggregation techniques

is to assume that local evaluations are ill-known and represented by fuzzy in-
tervals. The question is then how to aggregate fuzzy evaluations and how to
provide a ranking of alternatives. Fuzzy weighted averages is a good example
of such a problem, that dates back to Baas and Kwakernaak [59]. There have
been numerous papers on fuzzy weighted averages since then (see [56] for a bib-
liography before 2000 and [10] for a recent survey). The key technique involved
here is fuzzy interval analysis [56]. Two important points need to be stressed,
that are not always acknowledged

• Computing arithmetic expressions with fuzzy intervals cannot be always
be done by means of plain fuzzy arithmetics (that is, combining partial
results obtained by means of the four operations).

• Before considering a fuzzy interval approach, one must understand how to
solve the problem with plain intervals.
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The first point is actually a corollary of the second one. In particular the name
“fuzzy number” seems to have misled many authors who seem not to realize
that what is often called a fuzzy number is a generalized (gradual) interval.
For instance some authors have tried to equip fuzzy addition with a group
structure, which is already lost for intervals. Many expect the defuzzification
of fuzzy numbers to yield a precise number, while stripping a fuzzy set from
its fuzziness naturally yields a set. These points are discussed at length in [57]
where a genuine fuzzy extension of a number (a gradual number) is suggested,
such that a fuzzy interval is a standard interval of such gradual numbers. In this
paper we systematically use the name fuzzy interval to remove all ambiguity.

As a consequence, fuzzy interval analysis inherits all difficulties encountered
when computing with intervals [58]. In particular if a given ill-known quantity
appears several times in some arithmetic expression, one must be very careful to
observe that substituting this quantity with the same interval in several places
does not preserve the constraint stating that behind this interval lies the same
quantity. For instance, if x ∈ [a, b], then [a, b] − [a, b] 6= 0, while x − x =
0 regardless of the value of x. More generally interval analysis, hence fuzzy
interval analysis requires an optimization problem to be solved. Computing
fuzzy weighted averages has more to do with constraint propagation than with
the arithmetics of fuzzy numbers.

The difficulty is already present with imprecise (interval weights). The prob-
lem of computing interval-valued averages can be posed in two ways:

1. Maximise and minimize
Pn
i=1 xi·wiPn
i=1 wi

under the constraints:
wi ∈ [ai, bi] ⊂ [0,+∞), xi ∈ [ci, di], i = 1, . . . , n;

2. Maximise and minimize
∑n
i=1 xi · pi under the constraints:

pi ∈ [ui, vi] ⊆ [0, 1], xi ∈ [ci, di], i = 1, . . . , n,
∑n
i=1 pi = 1.

The two problems yield different results if the same intervals [ui, vi] = [ai, bi]
are used. In both cases, the maximal (resp. minimal) solution is attained for
xi = di (resp. xi = ci). In the second problem, one issue is: what does nor-
malization mean when only intervals ([u1, v1], [u2, v2] . . . , [un, vn]) are available
? It is clear that the sum of these intervals is an interval, hence never equal
to 1. One way out is to view a vector of interval weights as a set of standard
normalized vectors ~p = (p1, p2 . . . , pn).

Specific conditions must be satisfied if all bounds are to be reachable by
such weight vectors, that is ∀i = 1 . . . n,∃(p1, p2 . . . , pn) ∈

∏n
i=1[ui, vi] such that

pi = ui and another such vector such that pi = vi. The question is completely
solved by De Campos et al. [61] in the case of imprecise probability weights.
Necessary and sufficient conditions are (the second one implies the first one)

1.
∑n
i=1 ui ≤ 1 ≤

∑n
i=1 vi (non-emptiness)

2. ui +
∑
j 6=i vj ≥ 1; vi +

∑
j 6=i uj ≤ 1 (attainability).

Attainability is a form of arc-consistency in the terminology of constraint sat-
isfaction. Updating the bounds of the intervals [ui, vi] so that this condition be
satisfied can be viewed as a form of normalization.
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Fast methods exist for the second problem, with explicit expressions whose
computation is linear in the number of arguments [60]. Now the first problem
can be connected to the second one as follows:

{
∑n
i=1 xi · wi∑n
i=1 wi

, wi ∈ [ai, bi]} = {
n∑
i=1

xi · pi, pi =
wi∑n
i=1 wi

, wi ∈ [ai, bi]}

= {
n∑
i=1

xi · pi, pi ∈ [
ai

ai +
∑
j 6=i bj

,
bi

bi +
∑
j 6=i aj

],
n∑
i=1

pi = 1}

That these bounds are attainable for the normalized vectors (p1, p2 . . . , pn) is
established in [62]. Note that the range

{
∑n
i=1 xi · qi∑n
i=1 qi

, qi ∈ [
ai

ai +
∑
j 6=i bj

,
bi

bi +
∑
j 6=i aj

]}

strictly contains the former one since there is no longer any constraint on∑n
i=1 qi.
In the case of fuzzy weight vectors, the above reasoning must be applied to

α-cuts of the fuzzy intervals involved. It should be clear that a fuzzy weight
vector ~̃p = (p̃1, p̃2 . . . , p̃n) should be actually viewed as a fuzzy set of normalized
weight vectors ~p, where attainability conditions are met for all interval weight
vectors ((p̃1)α, (p̃2)α . . . , (p̃n)α) formed by cuts. The degree of membership of ~p
in ~̃p is equal to minni=1 µp̃i(pi).

The above problems are considered by scholars dealing with type 2 fuzzy sets
for calculating (fuzzy-valued) centroids for instance, but these authors do not
seem to rely on existing results in fuzzy interval analysis and sometimes reinvent
their own methods. Extensions of such calculations to Choquet integrals with
fuzzy-valued importance weights for groups of criteria more difficult, as the issue
of ranking intervals [ci, di], let alone fuzzy intervals, must be addressed within
the calculation [63].

4.2. Fuzzy extensions of Analytical Hierarchy Process
A number of multicriteria decision-making methods have been extended so as

to deal with fuzzy data. Here we confine ourself to the case of Saaty’s Analytical
Hierarchy Process [64]. Numerous fuzzy versions of Saaty’s methods have been
proposed (since Van Laaroven and Pedrycz, [65], see the bibliography in [56]).
Many such proposals seem to pose and solve questionable fuzzy equations, as
we shall argue.

The principle of the AHP method relies on the following ideal situation

• The pairwise relative preference of n items (alternatives, criteria) is mod-
elled by a n×n consistent preference matrix A, where each coefficient aij
is supposed to reflect how many times item i is preferred to item j.

• A consistent preference matrix is one that is reciprocal in the sense that
∀i, j, aij = 1/aji and product-transitive (∀i, j, k, aij = aik · akj).
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• Then its largest eigenvalue is λ = n and there exists a corresponding
normalized weight vector p = (p1, p2 . . . , pn) with ∀i, j, aij = pi

pj

Even if widely used, this method is controversial and has been criticised by
MCDM scholars as being ill-founded at the measurement level, and having para-
doxical lacks of intuitive invariance properties (the scale used is absolute, with
no degree of freedom, see [33], for instance). Moreover in practice, pairwise
comparison data do not provide consistent matrices. Typically, the decision-
maker provides, for each pair (i, j), a value vij ∈ {2, . . . 9} if i is preferred to
j vij times, vij = 1 if there is indifference. The matrix A with coefficients
aij = vij , aji = 1/aij if vij ≥ 1 is then built. Generally product transitivity is
not empirically achieved. A preference matrix Ais considered all the more con-
sistent as the largest eigenvalue of A is close to n. Then the derived normalized
weights form the eigenvector of A for this eigenvalue.

Asking for precise values vij is debatable, because these coefficients are ar-
guably imprecisely known. So many researchers have considered fuzzy valued
pairwise comparison data. The fuzzification of Saaty’s AHP has consisted to
extend the computation scheme of Saaty with fuzzy intervals. However this task
turned out to be difficult for several reasons.

• Replacing a consistent preference matrix by a fuzzy-valued preference ma-
trix loses the properties of the former. The reciprocal condition ãij = 1/ãji
no longer implies ãij · ãji = 1, nor can the product transitivity property
hold in the form ãij = ãik · ãkj when ãij are fuzzy intervals.

• Fuzzy eigen-values or vectors of fuzzy-valued matrices are hard to define
in a rigorous way: writing the the usual equation Ap = λp replacing vector
and matrix entries by fuzzy intervals leads to overconstrained equations.

• It is tempting to solve the the problems with each interval-matrix de-
fined from α-cuts (ãij)α = [aij

α
, aijα] of the fuzzy coefficients, as done

by Csutora and Buckley [66] for instance. These authors suggest to solve
the eigenvalue problem for the two extreme preference matrices with re-
spective coefficients aij

α
and aijα, with the view to find an interval-valued

eigenvalue. However these boundary matrices are not even reciprocal since
if ãij = 1/ãji, aij

α
= 1/ajiα, not 1/aji

α
. So the meaning of normalized

weights computed from these boundary matrices is totally unclear.

The bottom-line is that the natural extension of a simple crisp equation
ax = b (let alone an eigenvalue problem) is not necessarily a fuzzy equation
of the form ãx̃ = b̃ where fuzzy intervals are substituted to real numbers and
equality of membership function on each side is required.

• The first equation ax = b refers to a constraint to be satisfied by a model
referring to a certain reality.

• But fuzzy intervals ã, x̃, b̃ only represent knowledge about actual values
a, x, b
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• Even if ax = b is taken for granted, it is not clear why the knowledge
about ax should be equated to the knowledge about b ( ã, and b̃ may
derive from independent sources). The objective constraint ax = b only
enforces a consistency condition ãx̃ ∩ b̃ 6= ∅.

• If indeed a fuzzy set x̃ is found such that ãx̃ = b̃, it does not follows that
the actual quantities a, x, b verify ax = b. Moreover, equation ãx̃ = b̃ may
fail to have solutions.

Recently, Ramik and Korviny [67] proposed to compute the degree of consis-
tency of a fuzzy preference matrix Ã whose entries are triangular fuzzy intervals
ãij and ãji with respective supports and modes:

• for ãij : [aij , aij ] and aMij ;

• for ãji: [1/aij , 1/aij ] and 1/aMij

Their consistency degree is construed as the minimal distance between Ã and
a fuzzy consistent matrix X̃ understood as a so-called ratio matrix with coeffi-
cients of the form x̃ij = x̃i

x̃J
, where x̃i is a triangular fuzzy interval with mode

xMi , and the normalisation condition
∑n
i=1 x

M
i = 1 is assumed. The distance

d(Ã, X̃) used is a scalar distance between the vectors formed by the three pa-
rameters of the triangular fuzzy intervals, chosen such that the solution of the
problem can be analytically obtained in agreement with the geometric mean
method of computation of weights, already used in Van Laaroven and Pedrycz
[65]. Fuzzy weights x̃i are thus obtained.

Let alone the fact that the formulation of the problem is partially ad hoc
due to triangular approximation of inverses of triangular fuzzy intervals, and
due to the choice of the normalisation condition (see the previous subsection),
this approach also suffers from the above epistemological flaw consisting is con-
sidering a fuzzy interval as a simple substitute to a precise number, whereby
a direct extension of the standard method consists just in replacing numbers
by fuzzy intervals and running a similar computation as in the precise case. In
particular the distance d(Ã, X̃) arguably evaluates an informational proximity
between epistemic states (states of knowledge) about preference matrices, and
says little about the scalar distance between the underlying precise ones.

Instead of viewing fuzzy interval preference matrices as fuzzy substitutes
to precise ones, one may on the contrary acknowledge fuzzy pairwise prefer-
ence data as imprecise knowledge about regular preference information. The
fuzzy interval preference matrix is then seen as constraining an ill-known pre-
ciseconsistent comparison matrix. Inconsistencies in comparison data are thus
explicitly explained by the imprecise nature of human-originated information.
Such a constraint-based view of fuzzy AHP has been explained by Ohnishi and
colleagues [68].

Namely consider a fuzzy matrix Ã with entries ãij = 1/ãji and ãii = 1 and
denote by µij the membership function of ãij . The relevance of a consistent
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preference matrix A to the user preference data described by Ã can be evaluated
without approximation as

µÃ(A) = min
i,j:i<j

µij(aij).

A given normal weight vector ~p = (p1, p2 . . . , pn) satisfies the fuzzy preference
matrix Ã to degree µ(~p) = mini<j µij( pipj ). The degree of consistency of the
preference data is

Cons(Ã) = supµ(~p) = sup
~p:aii=

pi
pj

µÃ(A).

The best induced weight vectors are the Pareto maximal elements among {~p, µ(~p) =
Cons(Ã). The reader is referred to [68] for details. It is interesting to contrast
this methodology, where the problem can be posed without approximation, and
the otherwise elegant one by Ramik and Korviny [67]. In their method , the
fuzzy matrix X̃ can be viewed as an approximation of the imprecise informa-
tion matrix Ã such that Cons(X̃) = 1 in the sense of Ohnishi et al. (the core
matrix XM is consistent in the sense of Saaty by construction). But the second
approach seems to be more respectful of the original imprecise preference data,
that can be directly exploited.

The constrained-based approach does not solve the difficulties linked to the
critiques addressed to Saaty’s method, but its interpretation is much clearer
than its direct fuzzification, in the sense that it does not require a new theory
of fuzzy eigenvalues, nor does it pose fuzzy interval equations with debatable
meanings. It makes sense if it is taken for granted that human preference can be
ideally modelled by consistent preferences matrices in the sense of Saaty. The
approach outlined above only tries to cope with the problem of inconsistency of
human judgments by acknowledging their lack of precision.

5. Comparing Fuzzy intervals: a Constructive Setting

There is an enormous literature on fuzzy interval ranking methods, but very
few attempts at proposing a rational approach to the definition of ranking cri-
teria. This section tries to suggest one possible approach towards a systematic
classification of ranking indices and fuzzy relations induced by the comparison
of fuzzy intervals. The issue of ranking objects rated by fuzzy intervals should
be discussed in the perspective of decision under uncertainty. The connection
between the ranking of fuzzy intervals and fuzzy preference relations will be out-
lined. There are many ranking methods surveyed elsewhere [11, 56]. Here we
suggest a unifying principle: such ranking methods should be directly based on
probabilistic notions of dominance (see Chapter 8 in [26]) or their possibilistic
counterparts on the one hand, and interval orders [71] on the other hand.

While many ranking methods have been proposed (and still are), most of
the time they are derived on an ad hoc basis: an often clever index is proposed,
sometimes for triangular fuzzy intervals only, and its merits are tested on a
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few examples. Systematic comparison studies are not so numerous (except for
Bortolan and Degani [69], Lee [70], for instance). Moreover these comparison
are based on intuitive feelings of what a good ranking method should do, tested
on a few examples and conterexamples. There is a lack of first principles for
devising well-founded techniques. However Wang and Kerre [11] proposed an
interesting set of axioms that any preference relation � between fuzzy intervals
ã, b̃.. should satisfy. For instance

• Reflexivity : ã � ã,

• Certainty of dominance: If ã ∩ b̃ = ∅ then ã � b̃ or b̃ � ã.

• Consistency with fuzzy interval addition: ã � b̃ implies ã+ c̃ � b̃+ c̃

Dubois, Kerre et al. [56] also classified existing methods distinguishing between

1. scalar indices (based on defuzzification understood by the replacement of
a fuzzy interval by a representative number)

2. goal-based indices: computing the degree of attainment of a fuzzy goal by
each fuzzy interval, which bears some similarity to the expected utility
approach, understanding a fuzzy goal as a utility function

3. relational indices: based on computing to what extent a fuzzy interval
dominates another. In this case, some methods are based on metric con-
siderations (those based on computing possibility and necessity of domi-
nance), and others are based on computing areas limited by the member-
ship functions of the fuzzy intervals to be compared.

Another view of the comparison of fuzzy intervals can exploit links between fuzzy
intervals and other settings: possibility, probability theories and interval orders.
This kind of idea can be found in some previous papers in the literature, but it
has never been systematically explored. Yet, it might provide a systematic way
to produce comparison indices and classifying them. In this section, we outline
such a research program.

5.1. Four views of fuzzy intervals
A fuzzy interval ã, like any fuzzy set is defined by a membership function

µã. This fuzzy set is normalized (∃x ∈ R, µã(x) = 1 and its cuts are bounded
closed intervals. Let us denote by [a, a] its core and [a∗, a∗] its support.

Like any fuzzy set it needs to be cast inside an interpretive setting in order
to be usefully exploited. To our knowledge there are four existing view of fuzzy
intervals understood as a representation of uncertainty

1. Metric possibility distributions: in this case the membership function of
ã is viewed as a possibility distribution πx, following the suggestion of
Zadeh[16]. A fuzzy interval represent gradual incomplete information
about some ill-known precise quantity x: πx(r) is all the greater as r ∈ R
is close to a totally possible value. Moreover, we consider the interval
[0, 1] as a similarity scale and the membership function as a rescaling of
the distance between elements on the real line.
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2. One point-coverage functions of nested random intervals: In this case, a
fuzzy interval ã is induced by the Lebesgue measure ` on [0, 1], and the
cut multi-mapping with range in the set closed intervals of the real line
I(R):

[0, 1]→ R : α 7→ ãα ∈ I(R).

Then πx(u) = `({α, x ∈ ãα}). This view comes from the fact that a
numerical necessity measure is a special case of belief functions and a
possibility distribution s a one-point coverage a random set [72]. In this
case, the membership function of ã is viewed as the contour function of
a consonant continuous belief function. This line has been followed by
Dubois and Prade [73] and Chanas and colleagues [74]. Chanas [74] also
envisaged a more general framework in the form of random intervals lim-
ited by two random variables ẋ ≤ ẍ with disjoint support, such that
πx(u) = Prob(ẋ ≤ u ≤ ẍ). Then the nestedness property is lost and the
possibility distribution thus obtained is no longer equivalent to the knowl-
edge of the two random variables: they lead to a belief function on the
real line in the sense of Smets [75]

3. Families of probability functions: As formally a possibility measure is a
special case of belief function, and a belief function is a special case of
(coherent) lower probability in the sense of Walley [76], a fuzzy interval ã
also encodes a special family of probability measures

Pã = {P : P (ãα) ≥ 1− α, α ∈ [0, 1]}.

Namely it can be shown that for fuzzy intervals ã, Π(A) = sup{P (A), P ∈
Pã} for all measurable subsets A of the real line. This approach proposed
by Dubois and Prade [77] was studied by De Cooman and Aeyels [78]. It
is clear that it allows probabilistic inequalities (like Chebychev’s, see [18])
to be interpreted in terms of fuzzy intervals.

4. Intervals bounded by gradual numbers: This is a more recent view advo-
cated by Fortin et al.[57]. The idea is to view a fuzzy interval as a regular
interval of functions. To this end, the interval component of the fuzzy
interval must be disentangled from its fuzzy (or gradual) component. A
gradual number r̆ is a mapping from the positive unit interval to the reals:
α ∈ (0, 1] 7→ rα ∈ R. For instance, the mid-point of a fuzzy interval ã
with cuts [aα, aα] is a gradual number ăα = aα+aα

2 . It is clear that a fuzzy
interval can be viewed as an interval of gradual numbers lower bounded by
aα and upper-bounded by aα. Gradual numbers inside the fuzzy interval
ã can be generated by selecting a number inside each cut of ã. In fact,
they are the selection functions of the cut-mapping. Although the idea
of using a pair of functions to represent a fuzzy interval is not new (e.g.
the so-called L-R fuzzy numbers, that enable closed forms of arithmetic
operations on fuzzy intervals to be derived in terms of inverses of shape
functions L and R[56]), the key novelty here is to treat a fuzzy interval as
a regular one.
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What is clear from the above classification is that ranking fuzzy intervals should
be related to techniques for ranking intervals or for ranking random quantities.
There are well-known methods for comparing intervals, namely

1. Interval orders: [a, b] >IO [c, d] iff b > c (Fishburn [71]). Note that, in-
terpreting intervals as possibility distributions [a, b] and [c, d], respectively
restricting ill-known quantities x and y, the statement [a, b] >IO [c, d] can
be interpreted as by means of the necessity degree as N(x > y) = 1, given
that (x, y) ∈ [a, b]× [c, d].

2. Interval lattice extension of the usual ordering : If we extend the maximum
and minimum operations on the real line to intervals, it yields

max([a, b], [c, d]) = {z = max(x, y)x ∈ [a, b], y ∈ [c, d]} = [max(a, c),max(b, d)]

and likewise min([a, b], [c, d]) = [min(a, c),min(b, d)]. The set of closed
intervals equipped with min and max forms a lattice, and the canonical
ordering in this lattice is

[a, b] ≥lat [c, d] ⇐⇒ max([a, b], [c, d]) = [a, b]
⇐⇒ min([a, b], [c, d]) = [c, d] ⇐⇒ a ≥ c and b ≥ d.

3. Subjective approach: this is Hurwicz criterion that uses a coefficient of
optimism λ ∈ [0, 1] for describing the attitude of the decision-maker. In-
tervals can be compared via a selection of precise substitutes to intervals:

[a, b] ≥λ [c, d] ⇐⇒ λa+ (1− λ)b ≥ λc+ (1− λ)d.

It is clear that [a, b] >IO [c, d] implies [a, b] ≥lat [c, d], which is equivalent to
∀λ ∈ [0, 1], [a, b] ≥λ [c, d].

There are also well-known methods for comparing random variables
1. 1st Order Stochastic Dominance: x ≥SD y iff ∀θ, P (x ≥ θ) ≥ P (y ≥ θ)

([26] Chap. 8)
2. Probabilistic preference relations: R(x, y) = P (x ≥ y) and exploit them

(e.g. x > y iff R(x, y) > α > 0.5) [37].
3. Scalar substitutes : Comparing x and y by their expectations, more gen-

erally the expectation of their utilities u(x) and u(y).

For independent random variables, P (x ≥ y) = 1 implies x ≥SD y, which is
equivalent to

∫
u(t)dxP (t) ≥

∫
u(t)dPt(x),∀ monotonic increasing utility func-

tions u. For monotonically related random variables with joint distribution
function min(Fx(r), Fy(r′)) it is clear that P (x ≥ y) = 1 corresponds to 1st
order stochastic dominance.

5.2. Constructing fuzzy interval ranking methods
According to the chosen interpretation of fuzzy intervals, the above methods

for comparing intervals and probabilities can be extended, possibly conjointly
and thus define well-founded ranking techniques for fuzzy intervals. So doing,
a number of existing ranking methods can be retrieved, and make sense in a
particular setting.

29



5.2.1. Metric approach
If fuzzy intervals are viewed as mere possibility distributions πx = µã and

πy = µb̃, it is natural to exploit counterparts to probabilistic ranking techniques,
turning probability measures into possibility and necessity measures. One gets
methods that are well-known:

1. Interval lattice extension of stochastic dominance: Clearly there are two
cumulative distributions one can derive from a fuzzy interval:

• the upper distribution F ∗(θ) = Π(x ≤ θ) = µã(θ) if θ ≤ a and 1
otherwise;

• the lower distribution F∗(θ) = N(x ≤ θ) = 1 − µã(θ) if θ ≥ a and 0
otherwise;

Then, we can

• either combine stochastic dominance and interval ordering:

ã ≥IO b̃ ⇐⇒ ∀θ,N(x ≥ θ) ≥ Π(y ≥ θ),

which is a very demanding criterion that basically requires that b ≤ a
and 1− µã(θ) ≥ µb̃(θ),∀θ ∈ [b, a]

• or combine stochastic dominance and the lattice interval ordering:

ã ≥lat b̃ ⇐⇒ ∀θ,Π(x ≥ θ) ≥ Π(y ≥ θ) and N(x ≥ θ) ≥ N(y ≥ θ).

It comes down to comparing cuts of ã and b̃ using the lattice interval
ordering or yet the well-known comparison method via the extended
minimum or maximum ã ≥c̃ b̃ iff m̃ax(ã, b̃) = ã (or m̃in(ã, b̃) = b̃)

2. Counterparts of expected utility : compute the possibility and the necessity
of reaching a fuzzy goal G using possibility and necessity of fuzzy events.
In this case, the membership function µG represents a preference profile
that stands for a utility function, and special cases of Sugeno integrals can
be computed:

• The degree of possibility of reaching the goal:

Πã(G) = sup
θ

min(µã(θ), µG(θ)).

• The degree of necessity of reaching the goal:

Nã(G) = inf
θ

max(1− µã(θ), µG(θ)).

These criteria are possibilistic counterparts of expected utility functions
(optimistic and pessimistic, respectively). They have been axiomatized as
such by Dubois et al. [44]. When µG is an increasing function, one can
compare fuzzy intervals µã and µb̃ by comparing pairs (Nã(G),Πã(G))
and (Nb̃(G),Πb̃(G)) using interval ordering techniques. This approach
systematizes the one of Chen [79].
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3. Possibilistic valued relations: compute valued preference relations ob-
tained as the degrees of possibility or necessity that x, restricted by ã, is
greater than y restricted by b̃. For instance the index of certainty of dom-
inance R(x, y) = N(x ≥ y) = 1 − supv>u min(πx(u), πy(v)). This line of
thought goes back the seventies [59] and was systematized by Dubois and
Prade [80]. It extends interval orderings [39] since N(x ≥ y) = 1− inf{α :
ãα >IO b̃α}.

5.2.2. Random interval approach
One may wish to probabilize interval ranking methods, interpreting a fuzzy

interval as a nested random interval. For instance, one may use the valued
relation approach to comparing random numbers, extended to intervals:

1. The random interval order yields a valued relation of the form : RIO(ã, b̃) =
Prob(ãα ≥IO b̃β) ; this kind of approach has been especially proposed by
Chanas and colleagues [81, 82]. The randomized form of the canonical
lattice interval extension of the usual order of reals > reads: RC(ã, b̃) =
Prob(ãα ≥lat b̃β); both expressions presuppose some assumption be made
regarding the dependence structure between the parameters α and β
viewed as random variables on the unit interval.

2. The probabilistic version of the subjective approach leads to the following
valued relation that depends on the coefficient of optimism: Rλ(ã, b̃) =
Prob(λaα + (1− λ)aα ≥ λaα + (1− λ)bα)

One may also generalize stochastic dominance to random intervals. To this
end, we must notice that Prob(aα ≤ θ) = Πã(x ≤ θ) and Prob(aα ≤ θ) =
Nã(x ≤ θ). Hence we get the same approach as in the ordinal case when we
compare any among Prob(aα ≤ θ) or Prob(aα ≤ θ) to any of Prob(bα ≤ θ) or
Prob(bα ≤ θ). One gets a special case of stochastic dominance between belief
functions studied by Denoeux [83].

Finally one may also compute the average interval using the Aumann inte-
gral: E(ã) =

∫ 1

0
ãα [87], and compare E(ã) and E(b̃) using interval comparison

methods. For instance, the Hurwicz method then coincides with the subjective
approach of Campos and Gonzales [84] and subsumes Yager’s [85] and Fortemps
and Roubens [86] techniques.

5.2.3. Imprecise probability approach
Viewing fuzzy intervals as families of probability measures yields techniques

close to the random set approach

• The extension of 1st Order Stochastic Dominance to fuzzy intervals re-
mains the same since Πã(x ≤ θ) (resp. Nã(x ≤ θ) is also the upper (resp.
lower) probability of the event “x ≤ θ” in the sense of the probability
family Pα.

• Comparing upper and lower expected values of x and y, namely E∗(ã) =∫ 1

0
aαdα and E∗(ã) =

∫ 1

0
aαdα comes down to comparing mean intervals

since E(ã) = [E∗(ã), E∗(ã)] [73].
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• One may also construct interval- valued preference relations obtained as

upper and lower probabilities of dominance:

{
R∗(x, y) = P ∗(x ≥ y),
R∗(x, y) = P∗(x ≥ y).

and exploit them. A different interval-valued quantity that is relevant
in this context is [E∗(ã − b̃), E∗(ã − b̃)] to be compared to 0. In impre-
cise probability theory, comparing lower expectations of x and y is not
equivalent to comparing the lower expectation to x− y to 0, generally.

5.2.4. Gradual number approach
Viewing fuzzy intervals as intervals of gradual numbers, we first need a

method for comparing gradual numbers: again three natural techniques come
to mind. They extend the comparison of random variables to some extent,
because the inverse of a cumulative distribution function is a special case of
gradual number:

1. Levelwise comparison: r̆ ≥ s̆ iff ∀α, rα ≥ sα. It is clear that this definition
reduces to 1st order stochastic dominance when the gradual number is the
inverse of a distribution function.

2. Area comparison method :

r̆ >S s̆⇐⇒
∫ 1

0

max(0, rα − sα)dα >
∫ 1

0

max(0, sα − rα)dα.

3. Comparing defuzzified values: the natural way of defuzzifying a gradual
number is to compute the number m(r̆) =

∫ 1

0
rαdα. This expression re-

duces to standard expectation using inverses of distribution functions.
And clearly r̆ >S s̆⇐⇒ m(r̆) > m(s̆).

The connection between gradual numbers and the dominance index P (x > y)
is worth exploring. In fact, under suitable dependence assumptions between,
P (x > y) is related to the Lebesgue measure `({α, rα ≥ sα}).

On this ground one can compare fuzzy intervals ã and b̃, viewed as genuine
intervals of functions [ă, ă] and [b̆, b̆] limited by gradual numbers, where ăα = aα
and ăα = aα, so that ã = {r̆ : ă ≤ r̆ ≤ ă.} One retrieves some ranking methods
already found by the above previous approaches:

• Lattice interval extension of >: ã ≥lat b̃ iff ã ≥ b̃ and ã ≥ b̃.

• Stochastic dominance with subjective approach : ã ≥λ b̃ iff λă+(1−λ)ă ≥
λb̆+ (1− λ)b̆.

• Subjective approach by comparing expectations: ã ≥λ b̃ iff
∫ 1

0
(λaα + (1−

λ)aα)dα ≥
∫ 1

0
(λbα + (1− λ)bα)dα.

Note that ã ≥IO b̃ reads ă ≥ b̆, which is equivalent to the comparison of the
interval supports of the corresponding fuzzy numbers.
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This typology only aims at emphasizing the impact of attaching a interpre-
tation to fuzzy numbers on the search for ranking methods. It can serve as a
tool for constructing well-founded ranking methods for fuzzy intervals and to
study their properties.

6. Conclusion

The use of fuzzy sets in decision analysis remains somewhat debatable so long
as proposals for using fuzzy intervals, fuzzy preference relations, linguistic value
scales are not better positioned in the stream of current research in measurement
theory [25] and decision sciences [26, 55]. There does not seem to exist a niche
for an isolated theory of fuzzy decision-making. However the use of fuzzy sets
may focus the attention of scholars of traditional decision theory on some issues
they were not otherwise considered, like going beyond averaging for criteria
aggregation, the idea of gradual preference in relational approaches, a refined
handling of incomplete information, and a well-founded basis for qualitative
approaches to evaluation.

Several messages are the result of the above analysis of the literature:

• Fuzzy set theory offers a bridge between numerical approaches and quali-
tative approaches to decision analysis, but:

1. The use of linguistic variables encoded by fuzzy intervals does not
always make a numerical method more qualitative or meaningful.

2. Replacing numerical values by fuzzy intervals rather corresponds to
a kind of sensitivity analysis, not to a move toward the qualitative.

3. The right question is: how to faithfully encode qualitative techniques
on numerical scales, rather than using linguistic terms to extend al-
ready existing ad hoc numerical techniques.

• There is a strong need to develop original fuzzy set-based approaches to
multicriteria decision analysis that are not a rehashing of existing tech-
niques with ad hoc fuzzy interval computations.

• Fuzzy set theory and its mathematical environment (aggregation opera-
tions, graded preference modeling, and fuzzy interval analysis) provide a
general framework to pose decision problems in a more open-minded way,
towards a unification of existing techniques.

Open questions remain, such as:

• Refine any qualitative aggregation function using discri-schemes or lexi-
schemes

• Computational methods for finding discrimin-leximin solutions to fuzzy
optimization problems.

• Devise a behavioral axiomatization of new aggregation operations in the
scope of MCDM, decision under uncertainty and fuzzy voting methods
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• Develop a general axiomatic framework for ranking fuzzy intervals based
on first principles.

• Study the impact of semantics of fuzzy preference relations (probabilis-
tic, probabilistic, distance-based,..) on how they should be exploited for
ranking purposes

• Provide a unified framework for fuzzy choice functions.
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