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Autocontinuity and convergence

theorems for the Choquet integral

Yann Rébillé ∗

LEMNA, Institute of Economics and Management of Nantes-IAE,

chemin la Censive du Tertre, BP 62232, 44322 Nantes Cedex 3, France.

Abstract

Our aim is to provide some convergence theorems for the Choquet integral with
respect to various notions of convergence. For instance, the dominated conver-
gence theorem for almost uniform convergence is related to autocontinuous set
functions. Autocontinuity can also be related to convergence in measure, strict
convergence or mean convergence. Whereas the monotone convergence theorem
for almost uniform convergence is related to monotone autocontinuity, a weaker
version than autocontinuity.

Keywords: Choquet integral, null-additive set functions, autocontinuity.

1 Introduction

Convergence theorem for sequences of measurable functions play a central role in
classical measure theory. Convergence in mean or in measure for instance are tra-
ditionally related to the sigma-additivity of a measure, a continuity condition.
Generalizations of classical measure theory can be pursued in the direction of
non-additive set functions such as fuzzy measures. A key property of additivity
is null additivity (Pap [1]), whereas sigma-additivity can be associated to strong
continuity. An intermediate notion introduced by Wang [2] is the one of autocon-
tinuity. Autocontinuity guarantees null-additivity and contains some regularity
conditions related to continuity but does not necessarily entail strong continuity.
Wang’s article explores the validity of classical convergence theorem for sequences
of measurable functions in term of their fuzzy integrals. A similar approach is
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pursued with respect to non-additive integration in term of Choquet integrals, a
generalization of the standard Lebesgue integral ([3]). Classical theorems such
as the monotone or the dominated convergence theorem are established therein.
Our aim is to identify which properties a set function might possess when we
consider different types of convergence: - convergence in measure (µ), almost ev-
erywhere convergence (a.e.), almost uniform (a.u.) convergence or convergence
in mean (m), and different modes of convergence: -monotone, dominated. As it
turns out, dominated convergence theorems with a.u. convergence are unsurpris-
ingly related to autocontinuity. Still, autocontinuity can also be characterized
through µ convergence, m convergence and in a more direct way through strict
convergence. Whereas dominated convergence theorems with a.e. convergence
are related to strong continuity. As for the monotone convergence theorems with
a.u. convergence, they are related to a weaker version of autocontinuity, namely:
autocontinuity from below or above. These properties trace back to [2].
Next section introduces the relevant material for our study. In section 3 we
present various types of convergence theorems whether we consider a.u., a.e. or
µ convergence. Section 4 restates our results by duality. Finally, we illustrate
through examples that autocontinuity, order continuity and monotone autocon-
tinuity are independent properties.

2 Preliminaries

Let (Ω,A) be a measurable space and µ a set function, µ : A → IR. From now
on we will assume that µ(∅) = 0.
µ is monotone if for all A,B ∈ A, µ(A) ≤ µ(B) whenever A ⊂ B.
We define the conjugate set function µ by µ(A) = µ(Ω)− µ(Ac).
A sequence {fn}n of finite-valued measurable functions converges almost every-
where to f if there is a set E with µ(E) = 0 such that the sequence {fn1lEc}n

converges to f1lEc . The sequence {fn}n converges almost uniformly to f if for all
ǫ > 0 there is a set Eǫ with µ(Eǫ) < ǫ such that the sequence {fn1lEc

ǫ
}n converges

uniformly to f1lEc
ǫ
. We shall write as usual fn

a.e.
−→ f and fn

a.u.
−→ f respectively,

and ↓, ↑ if the convergence is monotonically non-increasing, non-decreasing.

Let f be a measurable bounded function and µ a monotone set function. The
Choquet integral of f ([4]) with respect to µ is given by

∫

fdµ =
∫ ∞

0
µ({f ≥ t}) dt +

∫ 0

−∞
µ({f ≥ t})− µ(Ω) dt

In the integrand, the large inequalities may be replaced by strict ones since µ is
monotone. The computation with respect to the conjugate set function is given
by

∫

fdµ = −
∫

−fdµ.
We will focus our study to bounded measurable functions, a set large enough
to deal with usual applications where the existence of the Choquet integral is
always guaranteed. We denote by B∞(Ω) (B∞(Ω)+) the set of (non-negative)
bounded and measurable functions defined on Ω.
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Two functions f, g are said to be comonotonic or compatible if for all ω, ω′ ∈
Ω, f(ω) > f(ω′)⇒ g(ω) ≥ g(ω′) ([5, 6, 7]). In that case,

∫

f + g dµ =
∫

f dµ +
∫

g dµ.

Let us recall three properties that link continuity condition of a set function
to the convergence of a sequence of functions and their Choquet integrals.

Property 2.1 Let µ be a set function. Then, µ is monotone if and only if for
all {fn}n ∪ {f} ⊂ B∞(Ω) if fn ↓u. (↑u.)f then1

∫

fndµ ↓ (↑)
∫

fdµ.

In order to extend Property 2.1 to everywhere convergence some further conti-
nuity conditions on the set function are introduced.

µ is said to be order continuous if µ(An) ↓ 0 whenever An ↓ ∅.
µ is be continuous from above if for all An ↓ A then µ(An) ↓ µ(A). By definition
a continuous from above set function is monotone (take A1 = A,An = B for
n ≥ 2) and order continuous. µ is said to be continuous from below if for all
An ↑ A then µ(An) ↑ µ(A).

Property 2.2 Let µ be a set function. Then, µ is monotone and order con-
tinuous if and only if for all {fn}n ⊂ B∞(Ω), α ∈ IR if fn ↓e. α.1lΩ then
∫

fndµ ↓ αµ(Ω).

Property 2.3 Let µ be a monotone set function. Then, µ is monotone continu-
ous from above (below) if and only if for all {fn}n∪{f} ⊂ B∞(Ω) if fn ↓e. (↑e.)f
then

∫

fndµ ↓ (↑)
∫

fdµ.

Our aim is to extend Properties 2.1 and 2.3 to a.u. and a.e. convergence.
To deal with these types of convergence we must recall some facts about null-
additivity.
A set E is said to be null if for all F, µ(E ∪ F ) = µ(F ).
µ is said to be null-additive if µ(E ∪F ) = µ(F ) for all F whenever µ(E) = 0, or
equivalently µ(F ) = µ(F \ E) for all F whenever µ(E) = 0.
This way a set function µ is null-additive if and only if for all E, E is null as soon
as µ(E) = 0. The following proposition characterizes null-additivity in terms of
Choquet integrals ([1, 8]),

Proposition 2.1 Let µ be a monotone set function. Then,
µ is null-additive

⇐⇒

if µ(E) = 0 then for all f ∈ B∞(Ω)+,
∫

fdµ =
∫

f1lEcdµ

⇐⇒

if µ(E) = 0 then for all f, g ∈ B∞(Ω)+, f1lEc = g1lEc ⇒
∫

fdµ =
∫

gdµ.

1(if). We can observe that the Choquet integral is always defined for indicator functions,
∫

1lC dµ = µ(C) for all C ∈ A. Thus A ⊂ B ⇐⇒ 1lA ≤ 1lB ⇒ µ(A) ≤ µ(B), so µ is monotone.
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Proof: For the first equivalence, (⇐) is straightforward with f = 1lF +1lE with
E ∩ F = ∅.
(⇒) Let t > 0. Then,

{f ≥ t} = {f ≥ t} ∩ E + {f ≥ t} ∩ Ec = {f1lE ≥ t}+ {f1lEc ≥ t}.

Now since µ(E) = 0 we have also have µ({f1lE ≥ t}) = 0 for all t > 0. And this
gives by null-additivity,

µ({f1lEc ≥ t}) = µ({f ≥ t})

and we conclude by integrating on [0,∞),
∫

fdµ =
∫

f1lEcdµ.
For the second equivalence, (⇐) is straightforward with g = f1lEc . For (⇒) we
have,

∫

fdµ =
∫

f1lEcdµ =
∫

g1lEcdµ =
∫

gdµ. ⊓⊔

The relationship between order continuity, null-additivity is thoroughly stud-
ied in [9] among other properties such as strong order continuity, exhaustivity or
null-continuity.

3 Convergence theorems

3.1 Almost everywhere convergence

We will now focus on Property 2.3 and extend it to monotone a.e. convergence.

µ is said to be strongly continuous from above if for all E,Fn such that µ(E) = 0
and Fn ↓ F with Fn ∩ E = ∅ then µ(E ∪ Fn) ↓ µ(F ).
In particular µ is strongly order continuous i.e., for all An ↓ A with µ(A) = 0
then µ(An) ↓ 0 (let Fn = An\A and E = A). By definition a strongly continuous
from above set function is monotone (take E = ∅, F1 = A,Fn = B for n ≥ 2).

Proposition 3.1 Let µ be a set function. Then, µ is strongly continuous from
above ⇐⇒ µ is continuous from above and null-additive.

Proof: (⇒) From the definition of strong continuity from above with E = ∅
we obtain continuity from above.
With Fn = F we obtain null-additivity.
(⇐) Let E,Fn be such that µ(E) = 0 and Fn ↓ F with Fn ∩ E = ∅. We have
µ(E ∪Fn) ↓ µ(E ∪F ) by continuity and µ(E ∪F ) = µ(F ) by null-additivity. ⊓⊔

Theorem 3.1 Let µ be a set function. Then, µ is strongly continuous from
above

⇐⇒ ∀fn, f ∈ B∞(Ω), fn ↓a.e. f ⇒
∫

fndµ ↓
∫

fdµ
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Proof: Monotonicity is immediate.
(⇐) Let µ(E) = 0 and Fn ↓ F with Fn ∩ E = ∅. Then 1lE∪Fn

↓a.e. 1lF , thus
µ(E ∪ Fn) ↓ µ(F ).
(⇒) Since µ is finite, by constant additivity it suffices to prove the statement for
fn, f ∈ B+

∞(Ω).
Let fn ↓a.e. f . There exists E with µ(E) = 0 such thatfn1lEc ↓e. f1lEc . By the
monotone convergence theorem for continuous from above set functions (see e.g.
[10]) we have

∫

fn1lEcdµ ↓
∫

f1lEcdµ.
Since µ(E) = 0 null-additivity entails

∫

gdµ =
∫

g1lEcdµ for g = fn, f . We get
∫

fndµ ↓
∫

fdµ. ⊓⊔

A way to construct strongly continuous from above set functions is to take:
µ = foP with P a (non-atomic) σ-additive probability and f : [0, 1] −→ [0, 1],
non-decreasing, f right-continuous with f(p) > 0 for p > 0.

Analogously we can provide some theorem with continuity from below.
µ is said to be strongly continuous from below if for all E,Fn such that µ(F ) = 0
and Fn ↓ F with Fn ⊂ E then µ(E \ Fn) ↑ µ(E).

Proposition 3.2 Let µ be a set function. µ is strongly continuous from below
⇐⇒ µ is continuous from below and null-additive.

Proof: (⇒) To prove continuity from above, let An ↑ A. Set E = A,Fn =
A \An. We get A \An ↓ ∅ thus µ(An) = µ(E \ Fn) ↑ µ(E) = µ(A).
For Fn = F we get null-additivity.
(⇐) Let E,Fn be such that µ(F ) = 0 and Fn ↓ F with Fn ⊂ E. We have
µ(E \ Fn) ↑ µ(E \ F ) by continuity and µ(E \ F ) = µ(F ) by null-additivity. ⊓⊔

Theorem 3.2 Let µ be a set function. Then, µ is strongly continuous from
below ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↑a.e. f ⇒
∫

fndµ ↑
∫

fdµ

Proof: Monotonicity is immediate.
(⇐) Let µ(F ) = 0 and Fn ↓ F with Fn ⊂ E. Then 1lE\Fn

↑a.e. 1lE , thus µ(E\Fn) ↑
µ(E).
(⇒) Since µ is finite, by constant additivity it suffices to prove the statement for
fn, f ∈ B+

∞(Ω).
Let fn ↑a.e. f . There exists E with µ(E) = 0 such thatfn1lEc ↑e. f1lEc . By the
monotone convergence theorem for continuous from below set functions (see e.g.
[10]) we have

∫

fn1lEcdµ ↑
∫

f1lEcdµ.
Since µ(E) = 0 null-additivity entails

∫

gdµ =
∫

g1lEcdµ for g = fn, f . We get
∫

fndµ ↑
∫

fdµ. ⊓⊔

A combination of the previous theorems provides a Lebesgue’s dominated con-
vergence theorem.
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Theorem 3.3 Let µ be a set function.
Then µ is strongly continuous from below and above ⇐⇒

∀fn, f, g ∈ B∞(Ω), |fn| ≤ g a.e., fn
a.e.
−→ f ⇒

∫

fndµ →
∫

fdµ,
∫

fdµ ≤
∫

gdµ

Proof: (⇒). We have µ({|fn| > g}) = 0 for all n. Thus by null-additivity
µ(∪n

i=1{|fi| > g}) = 0, and continuity from below entails µ(∪n{|fn| > g}) = 0.
Let N = ∪n{|fn| > g}. Consider the bounded measurable functions

gn = sup
k:k≥n

fk1lNc, hn = inf
k:k≥n

fk1lNc ,

we have gn ↓a.e. f1lNc , hn ↑a.e. f1lNc, applying Theorem 3.1, 3.2 gives us the
conclusion.
(⇐). We only check that µ is monotone. Take fn = f = 1lA and g = 1lB with
A ⊂ B. Then, µ(A) =

∫

f dµ ≤
∫

g dµ = µ(B). ⊓⊔

Remark 1 Since we deal with bounded measurable functions the condition of
domination [∀n, |fn| ≤ g] can be restated as

∃M > 0 / ∀n, |fn| ≤M.1lΩ.

3.2 Almost uniform convergence

We will now extend Property 2.1 to monotone a.u. convergence. This type
of convergence is related to the notion of autocontinuity which originates in
Wang’s 1984 founding article ([2]). As it will turn out, autocontinuity is related
to a.u. convergence in the same manner than strong continuity is related to a.e.
convergence.

Definition 3.1 µ is autocontinuous from above if for all E,Fn, E ∩ Fn = ∅,
µ(Fn) −→ 0 ⇒ µ(E ∪ Fn) −→ µ(E).
µ is autocontinuous from below if for all E,Fn, Fn ⊂ E, µ(Fn) −→ 0 ⇒ µ(E \
Fn) −→ µ(E).

3.2.1 Monotone autocontinuity from above

For our purpose we investigate a monotone version of autocontinuity one can
guess already in Theorem 1 and 2 in [2] (see also [11]) and which is weaker than
autocontinuity (see section 5),

Definition 3.2 µ is monotone autocontinuous from above if for all E,Fn ↓, E ∩
Fn = ∅, µ(Fn) ↓ 0 ⇒ µ(E ∪ Fn) ↓ µ(E).
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By definition a monotone autocontinuous from above set function is monotone
(take E = B,F1 = A \B,Fn = ∅ for n ≥ 2) and null-additive (take Fn = F and
µ(F ) = 0).

We use the terminology of monotone autocontinuity from above, since we require
that the sequence of Fn’s must be non-increasing. This is a weaker version of
strong continuity from above, for instance take µ additive but not σ-additive.
The relation between monotone autocontinuity from above and strong continuity
from above can be made more precise (see also Proposition 5 in [2], Theorem 5.8
in [12], Theorem 3.2 in [13]),

Proposition 3.3 Let µ be a set function. Then,
µ is monotone autocontinuous from above and order continuous

⇐⇒

µ is strongly continuous from above.

Proof: (⇒). Let E,Fn ↓ F with E ∩ Fn = ∅ and µ(E) = 0.
Since Fn \F ↓ ∅ we have µ(Fn \F ) ↓ 0 by order continuity. Monotone autoconti-
nuity from above entails µ(Fn) = µ(Fn \ F ∪ F ) ↓ µ(F ). Now by null-additivity,
µ(E ∪ Fn) = µ(Fn) for all n, thus µ(E ∪ Fn) ↓ µ(F ).
(⇐).
To obtain order continuity take E = F = ∅ and Fn ↓ ∅.
To obtain monotone autocontinuity from above take E,Fn ↓, E ∩ Fn = ∅, with
µ(Fn) ↓ 0. Put F = ∩nFn. We have µ(F ) = 0 and so by continuity from above
and null-additivity we get µ(E ∪ Fn) ↓ µ(E ∪ F ) = µ(E). ⊓⊔

We may state now Property 2.1 for monotone a.u. convergence.

Theorem 3.4 Let µ be a set function.
Then µ is monotone autocontinuous from above ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↓a.u. f ⇒
∫

fndµ ↓
∫

fdµ

Proof: Monotonicity is immediate.
(⇐) Let E,Fn ↓, µ(Fn) ↓ 0 and ǫ > 0. There exists Nǫ such that µ(FNǫ

) < ǫ.
We have also for n ≥ Nǫ,

1lE∪Fn\FNǫ
= 1lE\FNǫ

= 1lE∪F\FNǫ

so
1lE∪Fn

↓a.u. 1lE

and by hypothesis µ(E ∪ Fn) =
∫

1lE∪Fn
dµ ↓

∫

1lE dµ = µ(E).
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(⇒) Let fn ↓a.u. f . Without loss of generality we may assume that 0 ≤ fn ≤ 1
and that there exists a non-increasing sequence Em ⊃ Em+1 with µ(Em) < 1

m

such that fn1lEc
m
↓u f1lEc

m
.

Let ǫ > 0 and m a positive integer. We have,
∫

fndµ ≤
∫

fn1lEc
m

+ 1lEm
dµ ≤

∫

f1lEc
m

+ 1lEm
+ ǫ1lΩ dµ

for n large enough since fn1lEc
m

+ 1lEm
↓u f1lEc

m
+ 1lEm

. So,

lim
n

∫

fndµ ≤
∫

f1lEc
m

+ 1lEm
+ ǫ1lΩ dµ

The right hand side gives,

∫

f1lEc
m

+ 1lEm
+ ǫ1lΩ dµ

=
∫ 1
0 µ({f1lEc

m
+ 1lEm

> t}) dt + ǫµ(Ω)

=
∫ 1
0 µ({f > t} ∩ Ec

m ∪ Em) dt + ǫµ(Ω)

=
∫ 1
0 µ({f > t} ∪ Em) dt + ǫµ(Ω)

and since µ({f > t} ∪ Em) ↓ µ({f > t}) for all t ∈ (0, 1) and µ({f > t} ∪ E1) ≤
µ(Ω) the monotone convergence theorem concludes that

lim
n

∫

fndµ ≤
∫

fdµ + ǫµ(Ω).

⊓⊔

Analogously we can provide a theorem with continuity from below.

3.2.2 Monotone autocontinuity from below

Definition 3.3 µ is monotone autocontinuous from below if for all E,Fn ↓, Fn ⊂
E, µ(Fn) ↓ 0 ⇒ µ(E \ Fn) ↑ µ(E).

The relation between monotone autocontinuity from below and strong continuity
from below can be made more precise (see Proposition 5 in [2], Theorem 3.3 in
[13]),

Proposition 3.4 Let µ be a set function. If µ is strongly continuous from below
then µ is monotone autocontinuous from below. The converse holds if µ is order
continuous.

Proof: Let Fn ↓ F , Fn ⊂ E with µ(Fn) ↓ 0. Hence µ(F ) = 0, thus µ(E \ Fn) ↑
µ(E).
For the converse. Let Fn ↓ F , Fn ⊂ E with µ(F ) = 0. By order continuity we
have µ(Fn \F ) ↓ 0. And monotone autocontinuity from below entails µ((E \F )\
(Fn \ F )) ↑ µ(E \ F ) = µ(E), by null-additivity. ⊓⊔
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We can note that the converse can hold if we do not assume order continuity.

Example 1 ([14]) Let P be a non-atomic σ-additive probability and consider
the distortion function f defined by f(p) = 1 for p ∈ (0, 1], f(0) = 0. Let
µ = foP . We have

∫

fdµ = essP supf = inf{M : M ∈ IR such that P ({f > M}) = 0}.

This set function is strongly continuous from below, monotone autocontinuous
from above, but is not order continuous.

Theorem 3.5 Let µ be a set function. Then, µ is monotone autocontinuous
from below ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↑a.u. f ⇒
∫

fndµ ↑
∫

fdµ

Proof: Monotonicity is immediate.
(⇐) Let E,Fn ↓, µ(Fn) ↓ 0 and ǫ > 0. There exists Nǫ such that µ(FNǫ

) < ǫ.
We have also for n ≥ Nǫ,

1l(E\Fn)\FNǫ
= 1lE\FNǫ

so
1lE\Fn

↑a.u. 1lE

and by hypothesis µ(E \ Fn) =
∫

1lE\Fn
dµ ↑

∫

1lE dµ = µ(E).

(⇒) Let fn ↑a.u. f . Without loss of generality we may assume that 0 ≤ fn ≤ 1
and that there exists a non-increasing sequence Em ⊃ Em+1 with µ(Em) < 1

m

such that fn1lEc
m
↑u f1lEc

m
.

Assume there exists c > 0 such that c ≤ f1(ω) for all ω ∈ Ω.
Let ǫ ∈ (0, c) and m a positive integer. We have,

∫

fndµ ≥
∫

fn1lEc
m
dµ ≥

∫

f1lEc
m
− ǫ1lEc

m
dµ

for n large enough since fn1lEc
m
↑u f1lEc

m
. So,

lim
n

∫

fndµ ≥
∫

f1lEc
m
− ǫ1lEc

m
dµ.

The right hand side gives,

∫

f1lEc
m
− ǫ1lEc

m
dµ

=
∫

f1lEc
m

dµ− ǫµ(Ec
m), by comonotonicity

≥
∫

f1lEc
m

dµ− ǫµ(Ω)

=
∫ 1
0 µ({f > t} \ Em) dt− ǫµ(Ω)
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and since µ({f > t} \ Em) ↑ µ({f > t}) for all t ∈ (0, 1) the monotone conver-
gence theorem concludes that

lim
n

∫

fndµ ≥
∫

fdµ− ǫµ(Ω).

Now if inf f1 = 0. Set ĝ = 1
2
(g + 1lΩ) for g = f, fn. We have 1

2
1lΩ ≤ f̂n ≤ 1lΩ

and f̂n ↑a.u. f̂ . So limn

∫

f̂ndµ ↑
∫

f̂dµ and by comonotonic additivity we get
limn

∫

fndµ ↑
∫

fdµ. ⊓⊔

3.2.3 Monotone autocontinuity

A combination of the previous theorems gives us a Lebesgue’s type dominated
convergence theorem without sequential continuity.

Theorem 3.6 Let µ be a set function. Then, µ is monotone autocontinuous
⇐⇒

∀fn, f, g ∈ B∞(Ω), |fn| ≤ g, fn
a.u.
−→ f ⇒

∫

fndµ →
∫

fdµ,
∫

fdµ ≤
∫

gdµ

Proof: The same as in the classical case. Consider the bounded measurable
functions

gn = sup
k:k≥n

fk, hn = inf
k:k≥n

fk.

We can check that gn, hn are ↓a.u., ↑a.u. f and −g ≤ hn ≤ gn ≤ g.
Since fn

a.u.
−→ f there are Em ⊃ Em+1 with µ(Em) < 1

m
such that fn1lEc

m

u.
−→

f1lEc
m
. Let p be a positive integer. There exists Np such that for all n ≥ Np and

for all ω ∈ Ec
m,

f(ω)− ǫ ≤ fn(ω) ≤ f(ω) + ǫ

thus

f(ω) − ǫ ≤ hNp
(ω) ≤ gNp

(ω) ≤ f(ω) + ǫ.

So hNp
↑a.u. f , gNp

↓a.u. f and hn ↑a.u. f , gn ↓a.u. f follow. ⊓⊔

Remark 2 The domination condition in Theorem 3.6 can be stated in a more
general manner as, [ ∀n, |fn| ≤ g ] almost everywhere, i.e.,

µ(∪n{|fn| > g}) = 0.

If µ is σ-null-additive the domination condition reduces to for all n, [ |fn| ≤ g ]
almost everywhere, i.e.,

∀n, µ({|fn| > g}) = 0.
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We can state a sufficient condition for an Egoroff’s theorem ([15, 16], see also
[17] for a Lebesgue’s Theorem).

Corollary 3.1 Let µ be a monotone autocontinuous set function. Then, µ is
order continuous ⇐⇒

∀fn, f ∈ B∞(Ω), fn
a.e.
−→ f ⇒ fn

a.u.
−→ f

Proof: (⇒) From Propositions 3.3, 3.4 and Corollary 6.4 in [12].
(⇐) Since µ is monotone autocontinuous, for any sequence {fn}n with fn

a.e.
−→ f

and |fn|, |f | ≤ |g| we have
∫

fndµ →
∫

fdµ, hence the sufficient part in Theorem
3.3 entails order continuity. ⊓⊔

3.3 Convergence in measure

A sequence {fn}n of bounded functions is said to converge strictly in measure to

f denoted by fn
s−µ
−→ f if limn µ({|fn − f | > 0}) = 0. The s − µ convergence is

stronger than convergence in measure which is defined as follows

fn
µ
−→ f if ∀ǫ > 0, lim

n
µ({|fn − f | ≥ ǫ}) = 0

Similarly convergence in measure is stronger than mean-convergence (see Theo-
rem 2 in [3]), i.e.,

fn
m
−→ f if lim

n

∫

|fn − f | µ = 0.

If we assume that the domination condition holds i.e. |fn|, |f | ≤ g,∈ B∞(Ω,A)

then fn
µ
−→ f ⇒ fn

m
−→ f and a fortiori fn

s−µ
−→ f ⇒ fn

m
−→ f .

These s − µ,m, µ convergences fully characterize autocontinuity. In particular,
the equivalence (i) ⇐⇒ (ii) with s − µ convergence can be an alternative to
Theorem 3.6 with a.u. convergence.

Theorem 3.7 Let µ be a monotone set function. The following assertions are
equivalent,
(i) µ is autocontinuous,

(ii) ∀fn, f, g ∈ B∞(Ω), |fn|, |f | ≤ g, fn
s−µ
−→ f ⇒

∫

fndµ −→
∫

fdµ,

(iii) ∀fn, f, g ∈ B∞(Ω), |fn|, |f | ≤ g, fn
µ
−→ f ⇒

∫

fndµ −→
∫

fdµ,
(iv) ∀fn, f, g ∈ B∞(Ω), |fn|, |f | ≤ g, fn

m
−→ f ⇒

∫

fndµ −→
∫

fdµ.

The equivalence of (i), (iii) is a restatement of Theorem 6 and 7 in [3] where the
condition of equiintegrability is dropped and the local uniform autocontinuity or
the continuity conditions become too strong. Other formulations can be found
as Theorem 3.5 in [18] and as Theorem 3.3 in [16].
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Proof: (ii) ⇒ (i). Let E,Fn, E ∩ Fn = ∅ and set fn = 1lE∪Fn
, f = 1lE , g = 1lΩ.

Assume µ(Fn) ↓ 0. That is, µ({|fn−f | > 0}) ↓ 0. We get µ(E∪Fn) =
∫

fndµ −→
∫

fdµ = µ(E).
Similarly, let E,Fn, Fn ⊂ E with µ(Fn) ↓ 0 and set fn = 1lE\Fn

, f = 1lE , g = 1lΩ.
(iii)⇒ (i), (iv)⇒ (i). Same as (ii)⇒ (i).
(i) ⇒ (ii). Since µ is assumed to be autocontinuous we can assume that
|fn|, |f | ≤ g. By constant additivity we only consider the case where fn, f ≥ 0.
Let t ∈ [0,M ] where M = sup g. We have,

{fn ≥ t} ⊂ {f ≥ t} ∪ {|fn − f | > 0}

thus
µ({fn ≥ t}) ≤ µ({f ≥ t} ∪ {|fn − f | > 0}) ≤ µ(Ω)

and by integration,
∫

fndµ ≤
∫

[0,M ]
µ({f ≥ t} ∪ {|fn − f | > 0}) dλ(t).

Now since µ is autocontinuous from above we also have

µ({f ≥ t} ∪ {|fn − f | > 0}) −→ µ({f ≥ t}),

thus by the dominated convergence theorem we get

lim
∫

fndµ ≤
∫

[0,M ]
µ({f ≥ t}) dλ(t) =

∫

fdµ.

Similarly, since
{f ≥ t} \ {|fn − f | > 0} ⊂ {fn ≥ t}

thus
µ({f ≥ t} \ {|fn − f | > 0}) ≤ µ({fn ≥ t}) ≤ µ(Ω)

and by integration,
∫

[0,M ]
µ({f ≥ t} \ {|fn − f | > 0}) dλ(t) ≤

∫

fndµ.

Now since µ is autocontinuous from below we also have

µ({f ≥ t} \ {|fn − f | > 0}) −→ µ({f ≥ t}),

thus by the dominated convergence theorem we get
∫

fdµ =
∫

[0,M ]
µ({f ≥ t}) dλ(t) ≤ lim

∫

fndµ.

Since ǫ is arbitrary, we obtain
∫

fdµ = limn

∫

fndµ.

(i)⇒ (iii). The proof is adapted from [3].
Since µ is assumed to be autocontinuous we can assume that |fn|, |f | ≤ g. By
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constant additivity we only consider the case where fn, f ≥ 0.
Let t ∈ [0,M ] where M = sup g and ǫ > 0. We have,

{fn ≥ t + ǫ} ⊂ {f ≥ t} ∪ {|fn − f | ≥ ǫ}

thus
µ({fn ≥ t + ǫ}) ≤ µ({f ≥ t} ∪ {|fn − f | ≥ ǫ}) ≤ µ(Ω)

and by integration,

∫

fndµ−ǫµ(Ω) ≤
∫

[ǫ,M ]
µ({fn ≥ t})dλ(t) ≤

∫

[0,M ]
µ({f ≥ t}∪{|fn−f | ≥ ǫ}) dλ(t).

Now since µ is autocontinuous from above we also have

µ({f ≥ t} ∪ {|fn − f | ≥ ǫ}) −→ µ({f ≥ t}),

thus by the dominated convergence theorem we get

lim
∫

fndµ− ǫµ(Ω) ≤
∫

[0,M ]
µ({f ≥ t}) dλ(t) =

∫

fdµ.

Similarly, since
{f ≥ t} \ {|fn − f | ≥ ǫ} ⊂ {fn ≥ t− ǫ}

thus
µ({f ≥ t} \ {|fn − f | ≥ ǫ}) ≤ µ({fn ≥ t− ǫ}) ≤ µ(Ω)

and by integration,

∫

[0,M ] µ({f ≥ t} \ {|fn − f | ≥ ǫ}) dλ(t)

≤ ǫµ(Ω) +
∫

[ǫ,M ] µ({f ≥ t} \ {|fn − f | ≥ ǫ}) dλ(t)

≤ ǫµ(Ω) +
∫

[ǫ,M ] µ({fn ≥ t− ǫ}) dλ(t)

≤ ǫµ(Ω) +
∫

[0,M ] µ({fn ≥ t}) dλ(t)

= ǫµ(Ω) +
∫

fndµ

Now since µ is autocontinuous from below we also have

µ({f ≥ t} \ {|fn − f | ≥ ǫ}) −→ µ({f ≥ t}),

thus by the dominated convergence theorem we get

∫

fdµ =
∫

[0,M ]
µ({f ≥ t}) dλ(t) ≤ lim

∫

fndµ + ǫµ(Ω).

Since ǫ is arbitrary, we obtain
∫

fdµ = limn

∫

fndµ.
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(iii)⇒ (iv). Using Markov’s inequality it holds, for all ǫ > 0,

ǫ.µ({|fn − f | ≥ ǫ}) ≤
∫

|fn − f | dµ −→ 0.

We add a direct proof of (iv) ⇒ (iii). Let sup g = T < ∞. Then, for all
t ∈ [0, T ],

µ({|fn − f | ≥ t}) ≤ µ({|fn| ≥ t/2} ∪ {|f | ≥ t/2}) ≤ µ({g ≥ t/2})

and
∫ T
0 µ({g ≥ t/2}) dt = 2

∫

g dµ <∞.

Assume fn
µ
−→ f , then by the dominated convergence theorem applied to the

decumulative function µ({|fn − f | ≥ (.)}) on [0, T ] it comes

∫

|fn − f | dµ =
∫ T

0
µ({|fn − f | ≥ t}) dt −→ 0

that is, fn
m
−→ f . ⊓⊔

Remark 3 The domination condition in Theorem 3.7 can be stated to hold al-
most everywhere (see Remark 2).

We may extract from the proof the following theorems, where s−µ convergence
can either be replaced by µ or m convergence,

Theorem 3.8 Let µ be a monotone set function. Then, µ is autocontinuous
from above ⇐⇒

∀fn, f, g ∈ B∞(Ω), [ |fn|, |f | ≤ g ] a.e., fn
s−µ
−→ f ⇒ lim

∫

fndµ ≤
∫

fdµ.

Theorem 3.9 Let µ be a monotone set function. Then, µ is autocontinuous
from below ⇐⇒

∀fn, f, g ∈ B∞(Ω), [ |fn|, |f | ≤ g ] a.e., fn
s−µ
−→ f ⇒

∫

fdµ ≤ lim
∫

fndµ.

Strict convergence in measure is neither weaker nor stronger than a.e. conver-
gence, a.u. convergence or m convergence. The domination condition is necessary
to prove that µ convergence implies m convergence.

Example 2 Let µ be the Lebesgue measure on Ω = [0, 1) endowed with its Borel
σ-algebra. Define the following sequences,

fn =
1

n
1l[0,1),

gn = 1l[ p

2m ,
p+1

2m ) for n = 1 + . . . + 2m−1 + p, p = 0, . . . , 2m − 1,
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hn = n1l(0, 1

n
).

Then,

fn
a.u.
−→ 1l∅ and fn

s−µ

6→ 1l∅

gn
s−µ
−→ 1l∅ and gn

a.u.

6→ 1l∅, gn

a.e.

6→ 1l∅

hn
s−µ
−→ 1l∅ and hn

m

6→ 1l∅.

4 Dual Results

Our previous results dealing with a.e. and a.u. convergence can be translated
with pseudo convergence. A sequence {fn}n is said to pseudo everywhere converge
to f if there is a set E with µ(E) = µ(Ω) such that {fn1lE}n converges to f1lE
(see [20]). Similarly, {fn}n is said to pseudo converge uniformly to f if for all
ǫ > 0 there is a set Eǫ with µ(Eǫ) > µ(Ω) − ǫ such that {fn1lEǫ

}n converges
uniformly to f1lEǫ

. Otherwise stated pseudo-convergence with respect to µ is
convergence with respect to µ.
For this reason we introduce the converse definition of the various continuity
definition related to the conjugate set functions. A set function µ is said to be,
pseudo strongly continuous from above if for all G,Hn ↑ H,Hn ⊃ G, with µ(H) =
µ(Ω) then µ(G ∪Hc

n) ↓ µ(G),
pseudo strongly continuous from below if for all G,Hn ↑ H,G ∪ Hn = Ω, with
µ(H) = µ(Ω) then µ(G ∩Hn) ↑ µ(G),
pseudo monotone autocontinuous from above if for all G,Hn ↑, Hn ⊃ G, µ(Hn) ↑
µ(Ω) then µ(G ∪Hc

n) ↓ µ(G),
pseudo monotone autocontinuous from below if for all G,Hn ↑, G ∪ Hn = Ω,
µ(Hn) ↑ µ(Ω) then µ(G ∩Hn) ↑ µ(G).

These definitions are simply restating that µ is respectively strongly continu-
ous from below, strongly continuous from above, monotone autocontinuous from
below and monotone autocontinuous from above. We can now formulate the
pseudo-convergence theorems.

Corollary 4.1 Let µ be a set function. Then, µ is pseudo strongly continuous
from above ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↓p.a.e. f ⇒
∫

fndµ ↓
∫

fdµ

Corollary 4.2 Let µ be a set function. Then, µ is pseudo strongly continuous
from below ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↑p.a.e. f ⇒
∫

fndµ ↑
∫

fdµ
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Corollary 4.3 Let µ be a set function. Then, µ is pseudo monotone autocon-
tinuous from above ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↓p.a.u. f ⇒
∫

fndµ ↓
∫

fdµ

Corollary 4.4 Let µ be a set function. Then, µ is pseudo monotone autocon-
tinuous from below ⇐⇒

∀fn, f ∈ B∞(Ω), fn ↑p.a.u. f ⇒
∫

fndµ ↑
∫

fdµ

Proof: The proofs rely on the duality formula, i.e.,
∫

fdµ = −
∫

−fdµ, the fact
that fn ↓p.a. f ⇐⇒ −fn ↑p.a. −f and that pseudo almost convergence with
respect to µ is equivalent to almost convergence with respect to µ. ⊓⊔

Example 3 ([14]) The essential infimum functional, defined as

essP inff = sup{M : M ∈ IR such that P ({f > M}) = 1},

is continuous with respect to pseudo almost uniform convergence but not with
respect to pseudo almost everywhere convergence.

5 Counterexamples

We shall present four examples of set functions which clarify the relationship be-
tween autocontinuity from above (below), monotone autocontinuity from above
(below) and order continuity (see also [9, 11, 21]).
Examples 4 and 5 show that monotone autocontinuity and order continuity are
independent properties. Example 5 show that monotone autocontinuity from
above (below) is weaker than autocontinuity from above (below) even under or-
der continuity. Examples 6 and 7 show that monotone autocontinuity from above
and from below are independent even under order continuity.
These examples are given on IN = {1, 2, 3, . . .} the set of positive integers. On
IN, order continuity can be characterized 2 in a simple way by the necessary
condition

lim
n−→∞

µ([n,∞)) = 0.

Example 4 Let Ω = IN and A = 2IN. Define,

µ(A) =











1/(4n) , if A = {n} for some n
1

2min A
, if |A| > 1

0 , if A = ∅.

Then, µ is neiher monotone autocontinuous from above nor from below but µ is
order continuous.

2Indeed, let An ↓ ∅. Then, minAn ↑ ∞. Thus, µ(An) ≤ µ([minAn,∞)) ↓ 0.
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Proof: Let n > 1. We have, µ([n,∞)) = 1/(2n) −→ 0 so µ is order continuous.
But,

µ({1} ∪ [n,∞)) = 1/2 6−→ 1/4 = µ({1})

and
µ([1, n− 1]) = 1/2 6−→ 1 = µ(IN)

so µ is not monotone autocontinuous from above and not monotone autocontin-
uous from below. ⊓⊔

Example 5 Let Ω = IN and A = 2IN. Define,

µ(A) =











1/(4n) , if A = {n} for some n
1/2 , if |A| > 1
0 , if A = ∅.

Then, µ is monotone autocontinuous from above and below but µ is not order
continuous and is neither autocontinuous from above nor from below.

Proof: µ is not order continuous since for all n, µ([n,∞)) = 1/2.
We check now that µ is monotone autocontinuous from above and below. Let
{Fn}n be a decreasing sequence. Since each must Fn is infinite, it holds for all
n, µ(Fn) ≥ 1/2. Hence µ(Fn) 6−→ 0, thus µ is monotone autocontinuous.
However, µ is not autocontinuous from above neither from below. Let n > 1.
We have,

µ({n}) = 1/(2n) −→ 0

but
µ({1, n}) = 1/2 6−→ 1/4 = µ({1})

and
µ(IN \ {n}) = 1/2 6−→ 1 = µ(IN).

⊓⊔

Example 6 Let Ω = IN and A = 2IN. Define,

µ(A) =











1/(2n) , if A = {n} for some n
1/min A , if |A| > 1
0 , if A = ∅.

Then, µ is not monotone autocontinuous from above but is monotone autocon-
tinuous from below and order continuous.

Proof: Let n > 1. We have,

µ([n,∞)) = 1/n −→ 0
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so µ is order continuous but µ is not monotone autocontinuous from above since

µ({1} ∪ [n,∞)) = 1 6−→ 1/2 = µ({1})

In order to prove monotone autocontinuity from below we shall prove the even
stronger statement that µ is strongly continuous from below.
By Proposition 3.2, it suffices to prove that µ is null-additive and continuous
from below. Since µ(A) > 0, whenever A 6= ∅, µ is null-additive.
Let us prove now that µ is continuous from below. Let {An}n be an increasing
sequence to A. We may assume that A is infinite. Put α = minA. Since {An}n

is increasing to A and α ∈ A thus there exists some n(A) such that α ∈ An(A),
hence

min An(A) ≤ α.

But An ⊂ A, so
minAn ≥ α.

For n = α we obtain, min An(A) = α. It follows that for n ≥ n(A),

α = min An(A) ≥ min An ≥ α

thus µ(An) = µ(A). ⊓⊔

Example 7 Let Ω = IN and A = 2IN. Define,

µ(A) =











1/min A , if |A| =∞
1/(2 min A) , if |A| <∞
0 , if A = ∅.

Then, µ is monotone autocontinuous from above and order continuous but is not
monotone autocontinuous from below and is not autocontinuous from above.

Proof: Let n > 1. We have, µ([n,∞)) = 1/n −→ 0 so µ is order continuous.
But µ is not monotone autocontinuous from below since

µ([1, n]) = 1/2 6−→ 1 = µ(IN).

And µ is not autocontinuous from above, since

µ({1} ∪ [n,∞)) = 1 6−→ 1/2 = µ({1}).

Let us prove that µ is monotone autocontinuous from above. Let E,Fn ⊂ IN
with Fn ↓, µ(Fn) ↓ 0 and Fn ⊂ E. Since Fn is decreasing, each Fn is infinite. As
µ(Fn) ↓ 0, we have minFn ↑ ∞, thus Fn ↓ ∅.
Put e = min E. Since Fn ↓ ∅ there exists nE such that for n ≥ nE,

Fn ∩ [1, e] = ∅,

thus
min Fn > e.

So we have for n ≥ nE ,

minE ∪ Fn = min{minE,min Fn} = e

thus µ(E ∪ Fn) = µ(E). ⊓⊔
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