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Abstract

The George and Veeramani’s fuzzy metric defined by M∗(x, y, t) = min{x,y}+t
max{x,y}+t on

[0,∞[ (the set of non-negative real numbers) has shown some advantages in front of
classical metrics in the process of filtering images. In this paper we study from the
mathematical point of view this fuzzy metric and other fuzzy metrics related to it.
As a consequence of this study we introduce, throughout the paper, some questions
relative to fuzzy metrics. Also, as another practical application, we show that this
fuzzy metric is useful for measuring perceptual colour differences between colour
samples.
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1 Introduction

Kramosil and Michalek, [25], extended the concept of Menger space, [29], to
the fuzzy context and they defined the notion of fuzzy metric space. Later,
George and Veeramani, [7,9], introduced and studied a notion of fuzzy metric
which constitutes a modification of the one due to Kramosil and Michalek.
From now on, by fuzzy metric we mean a fuzzy metric in the sense of George
and Veeramani. In [8,15] it is proved that the class of topological spaces which
are fuzzy metrizable agrees with the class of metrizable spaces, and in [15]
several properties of classical metrics were extended to the fuzzy context.
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Nevertheless, the theory of fuzzy metric completion is different from the clas-
sical theory of metric spaces or Menger spaces. Indeed, there exist fuzzy metric
spaces which are non-completable, [12,16,18].

The concept of fuzzy metric includes in its definition a parameter, t, that allows
to introduce novel (fuzzy metric) concepts with respect to the classical metric
concepts. For instance, the concepts of principal and strong fuzzy metric were
motivated by the study of the p-convergence, [31], and the generalization of
non-Archimedean fuzzy metrics, [44], respectively. Moreover, recently, fuzzy
metrics have been applied to colour image filtering by replacing classical met-
rics and some improvements have been achieved [2,3,34–39]. In this context,
the presence of the t parameter is indeed a key issue because it allows the fuzzy
metric to perform adaptively which is beneficial to improve performance. In
particular, a fuzzy metric used frequently in the above cited papers has been
the fuzzy metric M∗ defined on [0,∞[ (the set of non-negative real numbers)

by M∗(x, y, t) = min{x,y}+t
max{x,y}+t

.

From the mathematical point of view, the aim of this paper is double. First,
to study some aspects of M∗ and as well as the well-known fuzzy metric M0

given by M0(x, y) = min{x,y}
max{x,y} on ]0,∞[ (the set of positive real numbers).

This study is carried out in such a manner (see Remark 24) that it creates an
appropriate context to introduce five questions in fuzzy metric spaces (relative
to completion, uniform continuity, extension and contractivity) which is the
second aim of the paper. In spite of the risk of this proposal, [6] (Preface), we
do hope that these problems will provide the basis of much future research.
Finally, as practical application, we show that this fuzzy metric is useful for
measuring perceptual colour differences between colour samples.

So, the structure of the paper is as follows. After the preliminary section, in
Section 3 it is proved that (]0,∞[, M0, ·) is complete. Also, we construct the
completion of (]0,∞[,M∗, ·) where M∗ is given by the above expression. In
Section 4 we study some aspects on the continuity of M0. In Section 5 an
extension of M∗ (defined on [0,∞[) to R is constructed. In Section 6 we study
some aspects about contractivity with respect to M0, and, finally, in Section
7 we show a new application of these fuzzy metrics.

2 Preliminaries

Let us recall, [47], that a continuous t-norms is a binary operation ∗ : [0, 1]×
[0, 1] → [0, 1] such that ([0, 1],≤, ∗) is an ordered Abelian topological monoid
with unit 1.

Definition 1 (George and Veeramani [7]). A fuzzy metric space is an ordered
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triple (X, M, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm
and M is a fuzzy set on X ×X×]0,∞[ satisfying the following conditions, for
all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

The continuous t-norms used in this paper are the minimum, denoted by ∧,
the usual product, denoted by ·, and the Lukasievicz t-norm, denoted by L

(xLy = max{0, x + y − 1}).

If (X, M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy metric on
X. Also, if confusion is not possible, we will say that (X,M) is a fuzzy metric
space or M is a fuzzy metric on X. This terminology will be also extended
along the paper in other concepts, as usual, without explicit mention.

The following is a well-known result.

Lemma 2 (Grabiec [10]) The real function M(x, y, ) of Axiom (GV5) is
increasing for all x, y ∈ X.

In the definition of Kramosil and Michalek, [25], M is a fuzzy set on X2×[0,∞[
that satisfies (GV3) and (GV4), and (GV1), (GV2), (GV5) are replaced by
(KM1), (KM2), (KM5), respectively, below:

(KM1) M(x, y, 0) = 0;
(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM5) M(x, y, ) : [0,∞[→ [0, 1] is left continuous.

We will refer to these fuzzy metric spaces as KM fuzzy metric spaces. It is
worth nothing that, by defining the probabilistic metric Fxy(t) = M(x, y, t),
every KM fuzzy metric space (X, M, ∗) becomes a generalized Menger space,
[41], under the continuous t-norm ∗. On the other hand a fuzzy metric space
can be considered a KM fuzzy metric space if we extend M defining M(x, y, 0) =
0 for all x, y ∈ X.

George and Veeramani proved in [7] that every fuzzy metric M on X generates
a topology τM on X which has a base the family of open sets of the form
{BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) = {y ∈ X :
M(x, y, t) > 1− ε} for all x ∈ X, ε ∈]0, 1[ and t > 0.
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Let (X, d) be a metric space and let Md a function on X ×X×]0,∞[ defined
by

Md(x, y, t) =
t

t + d(x, y)

Then (X, Md, ·) is a fuzzy metric space, [7], and Md is called the standard
fuzzy metric induced by d. The topology τMd

coincides with the topology on
X deduced from d.

Definition 3 A fuzzy metric M on X is said to be stationary, [17], if M does
not depend on t, i.e. if for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is
constant. In this case we write M(x, y) instead of M(x, y, t).

Proposition 4 (George and Veeramani [7]). A sequence (xn)n in X converges
to x if and only if limn M(xn, x, t) = 1, for all t > 0.

Definition 5 (George and Veeramani [7]), Schweizer and Sklar [48]). A se-
quence (xn)n in a fuzzy metric space (X, M) is said to be M-Cauchy if for
each ε ∈]0, 1[ and each t > 0 there is n0 ∈ N such that M(xn, xm, t) > 1 − ε
for all n,m ≥ n0. Equivalently, (xn)n is M-Cauchy if limn,m M(xn, xm, t) = 1,
where limn,m denotes the double limit as n → ∞, and m → ∞. X is called
M -complete if every Cauchy sequence in X is convergent with respect to τM .
In such a case M is also said to be complete.

If confusion is not possible we will say, simply, that (xn)n is Cauchy.

Definition 6 (Gregori et al. [12]). We say that the fuzzy metric space (X, M, ∗)
is principal (or simply, M is principal) if {BM(x, r, t) : r ∈]0, 1[} is a local
base at x ∈ X, for each x ∈ X and each t > 0.

Definition 7 (Gregori and Romaguera [16]). Let (X,M) and (Y, N) be two
fuzzy metric spaces. A mapping f from X to Y is called an isometry if for each
x, y ∈ X and t > 0, M(x, y, t) = N(f(x), f(y), t) and, in this case, if f is a
bijection, X and Y are called isometric. A fuzzy metric completion of (X, M)
is a complete fuzzy metric space (X∗,M∗) such that (X,M) is isometric to
a dense subspace of X∗. X is called completable if it admits a fuzzy metric
completion.

Proposition 8 (Gregori and Romaguera [16]). If a fuzzy metric space has a
fuzzy metric completion then it is unique up to isometry.

Remark 9 Suppose (X∗,M∗, ¦) is a fuzzy metric completion of (X,M, ∗).
Attending to the last proposition and the construction of the completion, [17],
we can consider that X ⊂ X∗, ¦ is ∗, and that M∗ is defined on X∗ by

M∗(x, y, t) = lim
n

M(xn, yn, t)
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for all x, y ∈ X∗, t > 0, where (xn)n and (yn)n are sequences in X that con-
verges to x and y, respectively.

In [17] is given the following characterization about completion of a fuzzy
metric space.

Theorem 10 Let (X,M, ∗) be a fuzzy metric space, and let (an)n and (bn)n

be two Cauchy sequences in X. Then (X,M, ∗) is completable if and only if it
satisfies the following conditions:

(C1) The function t → limn M(an, bn, t) is a continuous function on ]0,∞[
with values in ]0, 1].

(C2) If limn M(an, bn, s) = 1 for some s > 0 then limn M(an, bn, t) = 1 for all
t > 0.

Remark 11 Cauchy sequences are defined in the same way in fuzzy metric
spaces and KM fuzzy metric spaces. Then it is easy to verify, [43], that a
fuzzy metric space (X, M) is complete if and only if the corresponding KM
fuzzy metric space is also complete. Further if (X, M) admits completion this
completion agrees with the completion of the corresponding KM fuzzy metric
space. Recall that every KM fuzzy metric space has a completion which is
unique up to an isometry, [43,51].

It will be left to the reader to point out the analogies or differences between
the results obtained for fuzzy metric spaces and the corresponding ones for
KM fuzzy metric spaces, in the next sections.

Definition 12 Let (X, M, ∗) be a fuzzy metric space. The fuzzy metric M
(or the fuzzy metric space (X, M, ∗)) is said to be strong if it satisfies for each
x, y, z ∈ X and each t > 0

M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) (GV 4′)

Let (X, M, ∗) be a non-stationary fuzzy metric. Define the family of functions
{Mt : t > 0} where, for each t > 0, Mt : X2 →]0, 1] is given by Mt(x, y) =
M(x, y, t). Then (X,M, ∗) is strong if and only if (X, Mt, ∗) is a stationary
fuzzy metric for each t > 0. In this case we will say that {Mt : t > 0} is
the family of stationary fuzzy metrics associated to M . Clearly, this family
characterizes M in the sense that M(x, y, t) = Mt(x, y) for all x, y ∈ X, t > 0.
If (X,M, ∗) is strong then τM =

∨{τMt : t > 0}.

Moreover, it is easy to verify that the sequence (xn)n in X is M -Cauchy if and
only if (xn)n is Mt-Cauchy for each t > 0.
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Remark 13 (About terminology) If (X,M,∧) is strong then (GV4’) becomes

M(x, z, t) ≥ min{M(x, y, t),M(y, z, t)} (GV 4′′)

and in this case we say that M is a fuzzy ultrametric [13].

Let d be a metric on X. Now, we can consider the standard fuzzy metric Md

on X. Further, if d(x, y) < 1 for all x, y ∈ X then we can also consider the
stationary fuzzy metric (N, L) on X, where N(x, y) = 1−d(x, y). Then d is an
ultrametric (a non-Archimedean metric) if and only if Md is a fuzzy ultramet-
ric, [44], if and only if N is a fuzzy ultrametric [13]. Further, condition (GV4”)
is stronger than (GV4) in the same way that d(x, z) ≤ max{d(x, y), d(y, z)}
is stronger than the usual triangular inequality.

Following terminology of probabilistic metric spaces, [11,22], some authors
call non-Archimedean fuzzy metrics those that also satisfy equation (GV4’).
Notice that in this case there is not any correspondence, in the above sense,
between non-Archimedean metrics and non-Archimedean fuzzy metrics since
Md always satisfies Md(x, z, t) ≥ Md(x, y, t) ·Md(y, z, t) and also because all
stationary fuzzy metrics would be non-Archimedean. Further (GV4’) is not
stronger than (GV4) and it means that if we replace (GV4) by (GV4’) then

M could not be a fuzzy metric on X ( Indeed, M(x, y, t) = 1/t
1/t+d(x,y)

satisfies

(GV1)-(GV3), (GV4’) and (GV5) and it does not satisfies (GV4)).

From now on R and N will denote the sets of real numbers and positive
integers, respectively.

3 Introducing the examples. On completeness and completion.

Throughout the paper (]0,∞[,M0, ·) will be the stationary fuzzy metric space

where M0 is defined by M0(x, y) = min{x,y}
max{x,y} , [7]. It is easy to verify that τM0 is

the usual topology of R restricted to ]0,∞[.

Also, ([0,∞[,M∗, ·) will be the fuzzy metric space where M∗ is defined by

M∗(x, y, t) = min{x,y}+t
max{x,y}+t

, [56]. Its subspace (]0,∞[,M∗, ·) will take an interest-
ing role in this section.

We omit the proof of the next proposition.

Proposition 14 Consider the fuzzy metric M∗ on [0,∞[ (respectively, on
]0,∞[).

(i) τM∗ is the usual topology of R restricted to [0,∞[ (respectively, to ]0,∞[).
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(ii) M∗ is principal.

(iii) M∗ is strong.

Since M∗ is strong so we can consider its associated family of stationary
fuzzy metrics {M∗

t : t > 0} defined on [0,∞[ (respectively, on ]0,∞[), i.e.
M∗

t (x, y) = M∗(x, y, t), for each t > 0, and by (ii) we have:

(iv) τM∗
t

is the usual topology of R restricted to [0,∞[ (respectively, to ]0,∞[),
for each t > 0.

The infimum (denoted by ∧) of a family of stationary fuzzy metrics associated
to a strong fuzzy metric was studied in [13]. In the case of M∗ we have the
next proposition.

Proposition 15

(i) Consider M∗ on [0,∞[. Then
∧

t>0 M∗
t is not a fuzzy metric on [0,∞[.

(ii) Consider M∗ on ]0,∞[. Then
∧

t>0 M∗
t is the fuzzy metric M0.

Proof. (i) If we take y 6= 0 then
∧

t>0 M∗
t (0, y) = inf

{
t

y+t
: t > 0

}
= 0 and

then
∧

t>0 M∗
t is not a fuzzy metric on [0,∞[.

(ii) For each x, y, t ∈]0,∞[ we have that
∧

t>0 M∗
t (x, y) = inf

{
min{x,y}+t
max{x,y}+t

: t > 0
}

=
min{x,y}
max{x,y} > 0 and so,

∧
t>0 M∗

t is the fuzzy metric M0.

From now on, for simplicity, by a convergent sequence (in reference to τM∗ or
τM0) we mean that it is convergent with respect to the usual topology of R
restricted to the corresponding domain.

Taking into account Remark 11 we could obtain the next theorem using re-
sults of KM fuzzy metric spaces, [41], but we choose to prove it, since it is
illustrative within the context of the paper (see Remark 24).

Theorem 16 (]0,∞[,M0, ·) is complete.

Proof. Recall that τM0 is the usual topology of R restricted to ]0,∞[. We will
characterize the M0-Cauchy sequences.
Firstly, we will see that M0-Cauchy sequences in ]0,∞[ are bounded for the
usual metric of R. Indeed, if (an)n is a non-bounded sequence in ]0,∞[, then
for a given ε ∈]0,∞[ and for any n ∈ N we can find m ∈ N with m > n such
that ε ·am > an and so M0(an, am) = an

am
< ε and thus (an)n is not M0-Cauchy.
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Now we will see that if (an)n is a sequence in ]0,∞[ that converges to 0 then
(an)n is not M0-Cauchy. Indeed, if (an)n converges to 0 then for a fixed ε ∈]0, 1[
and for any n ∈ N we can find m ∈ N with m > n such that am < ε · an and
so M0(an, am) = am

an
< ε and then (an)n is not M0-Cauchy.

Finally, we will see that if (an)n is an M0-Cauchy sequence in ]0,∞[ then
(an)n converges in ]0,∞[. Let (an)n an M0-Cauchy sequence in ]0,∞[ and
hence, as we have seen above, (an)n is bounded. Then there exist a ∈ [0,∞[
and a subsequence (ani

)i of (an)n such that limi ani
= a. Now, (ani

)i is also an
M0-Cauchy sequence and hence, for the last paragraph, a > 0. We will show
that (an)n converges to a.

If (an)n does not converges to a then there exist δ′ > 0 such that infinite terms
of (an)n are in (the compact of R) I = [0, a− δ′] ∪ [a + δ′, K], where K is an
upper bound of (an)n. Then there exist a subsequence (an′j)j of (an)n in I and
b ∈ I such that limj an′j = b, and, as above, b > 0. Suppose that b < a. Let

δ > 0 with δ < min
{
b, a−b

3

}
and let ε = b+δ

a−δ
> 1. Since limi ani

= a and

limj an′j = b then there exists p ∈ N such that ani
∈]a− δ, a + δ[ for each i ≥ p

and an′j ∈]b− δ, b + δ[ for each j ≥ p.

Given n ∈ N we choose qn = max{n, p} and then for i, j ≥ qn we have
M0(ani

, an′j) < b+δ
a−δ

= ε and so (an)n is not M0-Cauchy, a contradiction.

A similar argument can be made if b > a.

In consequence (an)n is M0-Cauchy iff (an)n converges in ]0,∞[.

Since a compact fuzzy metric space is precompact and complete, [15], then we
have the next corollary.

Corollary 17 (]0,∞[,M0, ·) is not precompact.

Proposition 18 (]0,∞[,M∗
t , ·) is not complete for each t > 0.

Proof. Recall that τM∗
t

is the usual topology of R restricted to ]0,∞[, for
each t > 0.

Now, the sequence ( 1
n
)n is not convergent in ]0,∞[ because 0 /∈]0,∞[, but it

is M∗
t -Cauchy for each t > 0. Indeed,

lim
m,n

M∗
t

(
1

n
,

1

m

)
= lim

m,n

min{ 1
n
, 1

m
}+ t

max{ 1
n
, 1

m
}+ t

= 1, for each t > 0.
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In the proof of the last proposition we have just obtained that ( 1
n
)n is Cauchy

in (]0,∞[,M∗, ·) and so the next corollary is immediate.

Corollary 19 (]0,∞[,M∗, ·) is not complete.

Lemma 20 Take t > 0 and consider the fuzzy metric space (]0,∞[,M∗
t , ·).

Let (xn)n be a sequence in ]0,∞[. Then (xn)n is M∗
t -Cauchy if and only if

(xn)n converges in [0,∞[.

Proof. Fix t > 0, and let (xn)n be an M∗
t -Cauchy sequence in ]0,∞[.

Then limm,n M∗
t (xn, xm) = limm,n

min{xn,xm}+t
max{xn,xm}+t

= 1, but this expression is

equivalent to limm,n
min{xn+t,xm+t}
max{xn+t,xm+t} = 1 and so (xn + t)n is an M0-Cauchy

sequence in ]0,∞[, so by Theorem 16 (xn + t)n converges in ]0,∞[, then (xn)n

is convergent and clearly (xn)n converges in [0,∞[.

Conversely, if (xn)n converges in ]0,∞[, then clearly it is M∗
t -Cauchy for each

t > 0. Now, suppose (xn)n is a sequence in ]0,∞[ that converges to 0. Then,
limm,n min{xn, xm} = limm,n max{xn, xm} = 0 and therefore, for a fixed t > 0

we have that limm,n M∗
t (xn, xm) = limm,n

min{xn,xm}+t
max{xn,xm}+t

= 1, and so (xn)n is
M∗

t -Cauchy.

Since M∗ is strong by the above lemma we have the next corollary.

Corollary 21 Consider the fuzzy metric space (]0,∞[,M∗, ·). Then a se-
quence (xn)n in ]0,∞[ is M∗-Cauchy if and only if (xn)n converges in [0,∞[.

Theorem 22 (]0,∞[,M∗, ·) is completable.

Proof. Let (an)n and (bn)n be two M∗-Cauchy sequences in (]0,∞[,M∗, ·).
First we will prove that (C1) of Theorem 10 is satisfied.

From [45,13] (an)n and (bn)n are M∗
t -Cauchy sequences in ]0,∞[ for all t > 0

and so, by the previous lemma, (an)n and (bn)n converge to a and b, respec-
tively, in [0,∞[.

Suppose, without lost of generality, that a ≤ b. Then, it is an easy exercise to
prove that limn(min{an, bn}) = a and limn(max{an, bn}) = b.

Thus, for t > 0 we have that

lim
n

M∗(an, bn, t) = lim
n

min{an, bn}+ t

max{an, bn}+ t
=

a + t

b + t
> 0.
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We have just obtained that the function t −→ limn M∗(an, bn, t) is a continuous
function on ]0,∞[ with values in ]0, 1], and (C1) of Theorem 10 is satisfied.

Next we will prove that (C2) of Theorem 10 is also satisfied.

Suppose that for some t0 > 0 limn M∗(an, bn, t0) = limn
min{an,bn}+t0
max{an,bn}+t0

= 1.
Then, as we have seen in the first part of the proof, we can assert that there
exist limn(min{an, bn}) and limn(max{an, bn}) and obviously, in this case,
limn(min{an, bn}) = limn(max{an, bn}). Consequently

lim
n

M∗(an, bn, t) = lim
n

min{an, bn}+ t

max{an, bn}+ t
= 1, for all t > 0

and (C2) of Theorem 10 is satisfied. So (]0,∞[,M∗, ·) is completable.

The completion of (]0,∞[,M∗, ·).

Denote by (X̃, M̃ , ·) the completion of (]0,∞[,M∗, ·). By Corollary 21 M∗-
Cauchy sequences in ]0,∞[ are the convergent sequences in [0,∞[, then at-
tending to [17] we can identify the equivalent class of M∗-Cauchy sequences
in ]0,∞[ that converge to p ∈ [0,∞[ with p and so X̃ is identified with [0,∞[.

Now, attending to Remark 9 the fuzzy completion M̃ of M∗ is defined in a
such manner that if (an)n is a convergent sequence to 0 and b ∈]0,∞[ then

for t > 0, M̃(0, b, t) = M̃(b, 0, t) = limn
min{an,b}+t
max{an,b}+t

= t
b+t

. On the other hand

M̃(0, 0, t) = 1 for all t > 0 and then M̃ is given by M̃(a, b, t) = min{a,b}+t
max{a,b}+t

for

each a, b ∈ [0,∞[, t > 0 and therefore M̃ is the fuzzy metric M∗ on [0,∞[
defined at the beginning of this section.

From [13] Theorem 40, the following corollary is immediate.

Corollary 23 ([0,∞[,M∗
t , ·) is the completion of (]0,∞[,M∗

t , ·) for each t >
0.

Remark 24 Using similar arguments to the above ones in Theorem 16 one
can shows that ([0,∞[,M∗, ·) is complete. Now, the mapping i : (]0,∞[,M∗, ·) →
([0,∞[,M∗, ·) given by i(x) = x for each x ∈]0,∞[, is an isometry and by (i)
of Proposition 14 ]0,∞[ is dense in ([0,∞[, τM∗), and since the completion of
a fuzzy metric space is unique, up to isometry [16], then ([0,∞[,M∗, ·) is the
completion of (]0,∞[,M∗, ·).

For obtaining the completion of (]0,∞[, M∗, ·) we have preferred the above
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constructive method because it allows us to introduce in its appropriate context
the following open question.

Problem 25 To find a fuzzy metric space (X, M, ∗) where for two M-Cauchy
sequences (an)n and (bn)n in X the assignment f(t) = limn M(an, bn, t) for all
t > 0, does not define a continuous function on t.

It is known that the completion of a strong fuzzy metric is strong, [13] Lemma
39. On the other hand we have just obtained above that the completion of
the principal fuzzy metric space (]0,∞[, M∗, ·) is ([0,∞[,M∗, ·), which is also
principal. Now, the next is an open question.

Problem 26 If the principal fuzzy metric space (X, M, ∗) admits completion
(X̃, M̃ , ∗), is it also principal?

4 On continuity and uniform continuity

We have just seen above that the fuzzy metric M∗ on ]0,∞[ can be extended
to [0,∞[ by means of the fuzzy metric M̃ in such a manner that ]0,∞[ is dense
in ([0,∞[, τM̃). Now, this situation is not possible for (]0,∞[, M0) as shows the
next proposition.

Proposition 27 Consider the fuzzy metric space (]0,∞[,M0, ·) and let M̃0

an extension of M0 to [0,∞[. Then {0} is τM̃0
-open.

Proof. ]0,∞[ is M̃0-complete and then it is τM̃0
-closed.

Consequently, we cannot find an extension M̃0 of M0 such that τM̃0
coincides

with the usual topology of R restricted to [0,∞[.

Example 28 The fuzzy metric M̃0 on [0,∞[ given by

M̃0(y, x) = M̃0(x, y) =





M0(x, y), x, y ∈]0,∞[

1
2y

, x = 0, y ≥ 1

y
2
, x = 0, y < 1

1, x = y = 0

is an extension of M0 to [0,∞[ and {0} is clearly open of τM̃0
.

11



From [42] we know that M0(x, y) is continuous on ]0,∞[2 (endowed with the
producto topology). Now, the continuous function M0 does not admit any con-
tinuous extension N to [0,∞[2 endowed with the usual topology of R. Indeed,
if N were so, then since ( 1

n
)n and ( 1

n2 )n converge to 0 it should be N(0, 0) =

limn M0(1/n, 1/n) = 1 and also N(0, 0) = limn M0(1/n, 1/n2) = limn
1/n2

1/n
= 0,

a contradiction.

Definition 29 We will say that the fuzzy metrics M1 and M2 on X are
uniformly equivalent if the identity mappings i : (X, M1) → (X, M2) and
i : (X, M2) → (X, M1) are uniformly continuous [8]. In that case, obviously
(xn)n is an M1-Cauchy sequence if and only if (xn)n is an M2-Cauchy se-
quence.

Now the fuzzy metrics M∗ and M0 on ]0,∞[ are topologically equivalent on
]0,∞[, i.e. τM∗ = τM0 on ]0,∞[, but they are not uniformly equivalent on ]0,∞[
because (]0,∞[,M0) is complete but (]0,∞[,M∗) is not complete (Notice that
the identity mapping i : (]0,∞[,M0) → (]0,∞[,M∗) is uniformly continuous
since M0(x, y) ≤ M∗(x, y, t) for each x, y ∈]0,∞[, t > 0, but i : (]0,∞[, M∗) →
(]0,∞[,M0) is not uniformly continuous since ( 1

n
)n is a Cauchy sequence in

(]0,∞[,M∗) but it is not M0-Cauchy).

Definition 30 (Gregori, Romaguera and Sapena [19]) Let (X, M, ∗) be a
fuzzy metric space. A mapping f : X → R is called R-uniformly continu-
ous if given ε > 0 we can find s > 0, δ ∈]0, 1[ such that M(x, y, s) > 1 − δ
implies |f(x)− f(y)| < ε.

Proposition 31 Consider the fuzzy metric space (]0,∞[,M0). For a fixed

y > 0 the mapping My
0 :]0,∞[→]0,∞[ given by My

0 (x) = min{x,y}
max{x,y} for all

x ∈]0,∞[ is R-uniformly continuous.

Proof. Let ε > 0. We distinguish three cases: (a) x, x′ ≤ y, (b) x, x′ ≥ y, (c)
x ≤ y, x′ > y (or x′ ≤ y, x > y).

(a) Choose δ ∈]0, 1[ with δ < ε. Suppose that x, x′ ∈]0,∞[ satisfy M0(x, x′) >
1 − δ. Without lost of generality we can suppose x ≤ x′. Then we have that
x
x′ > 1− δ and hence

|My
0 (x′)−My

0 (x)| = x′

y
− x

y
=

1

y
(x′ − x) <

1

y
(x′ − x′(1− δ)) =

x′

y
δ ≤ δ < ε

With similar arguments the other cases can be proved, and then My
0 is R-

uniformly continuous.

The next is an open question.

12



Problem 32 Let (X, N, ∗) be a stationary fuzzy metric space. Is the real func-
tion Ny(x) = N(x, y) for each x ∈ X, R-uniformly continuous for all y ∈ X?

5 Extending fuzzy metrics

5.1 A related fuzzy pseudo-metric

Consider the fuzzy set N on R2×]0,∞[ given by

N(x, y, t) =
min{|x|, |y|}+ t

max{|x|, |y|}+ t
(1)

It is easy to verify that N satisfies axioms (GV1),(GV3) and (GV5). Also, N
satisfies the triangular inequality. Indeed, for x, y, z ∈ R, t > 0 we have

N(x, z, t + s) =
min{|x|, |z|}+ t + s

max{|x|, |z|}+ t + s
= M∗(|x|, |z|, t + s) ≥

≥ M∗(|x|, |y|, t) ·M∗(|y|, |z|, s) =
min{|x|, |y|}+ t

max{|x|, |y|}+ t
· min{|y|, |z|}+ s

max{|y|, |z|}+ s
=

= N(x, y, t) ·N(y, z, s)

Also, for x = y we have that N(x, y, t) = 1 for all t > 0 but the converse is,
in general, false since for x 6= 0 we have that N(x,−x, t) = 1 but x 6= −x.
Consequently (R, N, ·) is a fuzzy pseudo-metric space, [18], but it is not a
fuzzy metric space.

The mapping j :] − ∞, 0] → [0,∞[ defined by j(x) = −x is a bijection
and then (] −∞, 0],M ′, ·) and ([0,∞[,M∗, ·) are two fuzzy isometric spaces
[16], where M ′ is given by M ′(x, y, t) = M∗(j(x), j(y), t) = M∗(−x,−y, t) =
M∗(|x|, |y|, t) for all x, y ∈] − ∞, 0], t > 0. So M ′ is, obviously, strong and
principal.

Notice that M∗ and M ′ can be defined both two in their corresponding do-
mains by the expresion (1), i.e. N |[0,∞[ = M∗ and N |]−∞,0] = M ′.

Remark 33 Section 5.1 admits the following easy generalization. Let (M, ∗)
be a fuzzy metric on a set of non-negative real numbers A. Put −A = {x ∈
R : −x ∈ A}. Define N(x, y, t) = M(|x|, |y|, t) for all x, y ∈ −A ∪ A, t > 0.
Then, (N, ∗) is a fuzzy pseudo-metric on −A ∪ A.

13



5.2 A fuzzy metric extension of M∗

We have just seen that the fuzzy pseudometric N on R satisfies

N |[0,∞[ = M∗ and N |]−∞,0] = M ′ (2)

Now we will construct a fuzzy metric M̄ on R such that M̄ |[0,∞[ = M∗ and
M̄ |]−∞,0] = M ′. For it we consider the family {M∗

t : t > 0} of stationary fuzzy
metrics on [0,∞[ associated to M∗, and the family {M ′

t : t > 0} of stationary
fuzzy metrics on ]−∞, 0] associated to M ′.

Then, since ]−∞, 0]∩ [0,∞[= {0}, from [14] Proposition 19 we have for each
fixed t > 0 that the function

M̄t(x, y) =





M∗
t (x, y) if x, y ∈ [0,∞[

M ′
t(x, y) if x, y ∈]−∞, 0]

M∗
t (x, 0) ·M ′

t(0, y) if x ∈]0,∞[, y ∈]−∞, 0[

M ′
t(x, 0) ·M∗

t (0, y) if x ∈]−∞, 0[, y ∈]0,∞[

is a stationary fuzzy metric on R, such that M̄t|]−∞,0] = M ′
t and M̄t|[0,∞[ = M∗

t .

Attending (2), we can be written

M̄t(x, y) =





min{|x|,|y|}+t
max{|x|,|y|}+t

x, y ∈ [0,∞[ or x, y ∈]−∞, 0]

t
|x|+t

· t
|y|+t

elsewhere

Obviously {M̄t : t > 0} is an increasing family, i.e. t < t′ implies M̄t ≤ M̄t′ .

Now we define M̄(x, y, t) = M̄t(x, y) for all x, y ∈ R, t > 0. Then, obviously
M̄ satisfies (GV1)-(GV3) and (GV5).

We prove that M̄ satisfies the triangular inequality. Let x, y, z ∈ R, t, s > 0.
Then, since {M̄t : t > 0} is an increasing family we have M̄(x, z, t + s) =
M̄t+s(x, z) ≥ M̄t+s(x, y) · M̄t+s(y, z) ≥ M̄t(x, y) · M̄s(y, z) = M̄(x, y, t) ·
M̄(y, z, s) and so (M̄, ·) is a fuzzy metric on R which obviously satisfy M̄ |[0,∞[ =
M∗ and M̄ |]−∞,0] = M ′.

The following is an open question.

Problem 34 Let H and K be two distinct sets with H ∩K 6= ∅. Let (MH , ∗)
and (MK , ∗) be two non-stationary fuzzy metrics on H and K, respectively,
that agree in H ∩ K. Does it exist a fuzzy metric M on H ∪ K such that
M |H = MH and M |K = MK?

14



6 Contractivity in (]0,∞[,M0, ·)

6.1 On contractivity

Let (X, M) be a fuzzy metric space.

In order to obtain satisfactory results in the fuzzy setting, related to the
classical Banach contraction theorem, several concepts of M -contractivity on
a mapping f : (X, M) → (X, M) have been given, for instance [10,20,21,30–
33,41,49,50,52,54,55] among others.

The weaker contractivity condition on f which makes sense when M is sta-
tionary is given by the formula

M(f(x), f(y)) ≥ M(x, y) for x, y ∈ X

and in fact, it is obtained from the concept of B-contraction, [10,49], given by
the expression M(f(x), f(y), kt) ≥ M(x, y, t) for all x, y ∈ X, t > 0 and some
fixed k ∈]0, 1[. Now, for stationary fuzzy metrics this concept is not really
appropriate (in the same way that the contractivity condition d(f(x), f(y)) ≤
d(x, y) is not appropriate for a metric space (X, d)). Indeed, the identity
mapping i : X → X satisfies M(f(x), f(y)) = M(x, y) for all x, y ∈ X
and all points of X are fixed of i. Further, in the case of the fuzzy metric
space (]0,∞[,M0, ·) the mapping f :]0,∞[→]0,∞[ given by f(x) = ax, where
a ∈ R+ ∼ {1}, also satisfies M(f(x), f(y)) = M(x, y) for all x, y ∈]0,∞[ but
f has not any fixed point. Then, a stronger contractivity condition than the
above one is needed. So, we adopt the next definition.

Definition 35 Let M be a stationary fuzzy metric on X. A mapping f : X →
X is fuzzy M -contractive (a fuzzy contraction) if

M(f(x), f(y)) > M(x, y) for x, y ∈ X, x 6= y (3)

This concept comes from the fuzzy Edelstein contractives notion stated by
Grabiec [10] as M(f(x), f(y), t) > M(x, y, t) for x, y ∈ X, x 6= y, t > 0,
where M is a fuzzy metric on X. The author proved that a fuzzy Edelstein
contractive mapping on a compact KM fuzzy metric space has a unique fixed
point.

Notice that (3) is satisfied by almost all fuzzy M -contractive concepts in the
literature when M is stationary.

We can get a class of fuzzy M0-contractive mappings with a unique fixed point
in ]0,∞[ as follows. Consider the continuous increasing functions f : [0,∞[→
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[0,∞[ with f(0) = 0 such that f ′′(x) < 0 for all x ∈]0,∞[ (f ′′ denotes the
second derivative of f). Using arguments from Analysis one can verify that

for 0 < x < y it is satisfied that f(x)
x

> f(y)
y

, i.e. f(x)
f(y)

> x
y

and hence f is
fuzzy M0-contractive. It is easy to verify that such functions have at most a
unique fixed point in ]0,∞[. Further, f has a (unique) fixed point if and only
if f ′(x) = 1 for some x ∈]0,∞[. Notice that ln(1 + x) satisfies f ′′(x) < 0 for
x ∈]0,∞[ but f ′(x) 6= 1 for x ∈]0,∞[, and clearly ln(1 + x) has not any fixed
point in ]0,∞[. The mappings fλ(x) =

√
x + λ for x ∈]0,∞[, with a fixed

λ > 0, fulfill all conditions of this paragraph and they play an interesting role
in the following.

Mihet [30] pointed out that the mapping f(x) = x + a for x ∈]0,∞[, with a
fixed a > 0, is fuzzy M0-contractive but it has not any fixed point in ]0,∞[.
Then, in order to guarantee the existence of fixed points for such a mappings
Mihet introduced and studied the next concept for KM fuzzy metric spaces
that we rewrite in our context.

Definition 36 Let (X, M, ∗) be a fuzzy metric space and let ϕ be a decreasing
continuous mapping ϕ : [0, 1] → [0, 1] such that ϕ(t) > t for all t ∈]0, 1[. A
mapping f : X → X is called ϕ-contractive if M(f(x), f(y), t) ≥ ϕ(M(x, y, t))
for all x, y ∈ X, t > 0. Obviously in this case f satisfies (3).

The author proved, [32], that a fuzzy ϕ-contractive mapping in a strong com-
plete fuzzy metric space has a unique fixed point.

As a consequence, since the above commented mappings f(x) = x + a and
ln(1+x) satisfy (3) and they have not any fixed point in ]0,∞[, these mappings
are fuzzy M0-contractive but they are not ϕ-contractive in (]0,∞[,M0).

We see that the mappings fλ :]0,∞[→]0,∞[, with λ > 0, defined by fλ(x) =√
x + λ are ϕ-contractive. Indeed, if x < y we have M(fλ(x), fλ(y)) =

√
x+λ√
y+λ

≥
√

x
y

= ϕ(M(x, y)) where ϕ(t) =
√

t, independently of λ > 0.

Then each mapping fλ has a unique fixed point aλ ∈]0,∞[.

Now we can define the mapping g :]0,∞[→]0,∞[ by g(λ) = aλ. So, g(λ) =
1+
√

1+4λ
2

and thus g is a continuous function on ]0,∞[. Then it arises the
following question.

Problem 37 Let (X, M, ∗) be a strong complete fuzzy metric space and let
fλ : X → X be a family of ϕ-contractive mappings for the same function ϕ,
for all λ > 0. Write aλ the unique fixed point of fλ for each λ > 0. Is the
mapping g :]0,∞[→ X defined by g(λ) = aλ continuous?

Remark 38 This problem has been formulated according to the previous re-
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sults but obviously it admits other versions. We notice that the analogous prob-
lem formulated in metric spaces has positive answered [46].

7 Application of the fuzzy metric M0 to measure perceptual colour
differences

Apart from the interesting theoretical properties of the fuzzy metrics studied
in previous sections, it is interesting as well to note that they have application
in a variety of practical problems. Indeed, they have been previously used to
filter colour images and to measure the degree of consistency of elements in a
dataset [3,34,35,40].

Here we focus on a different application of the fuzzy metric M0 that takes ad-
vantage of the homotetique invariant property that this fuzzy metric satisfies.
Indeed, M0 fulfills that, for any λ ∈ R:

(I) M0(λx, λy) = M0(x, y)

Also, if z > 0,

(II) M0(x + z, y + z) > M0(x, y) if x 6= y

As we will see later on, there exist practical problems where these properties
are pretty interesting. However, in practical applications it is more appropriate
to use the M∗ fuzzy metric (which also satisfies (II)), instead of the M0,
because the presence of the t parameter makes this fuzzy metric more adaptive
to the particular problem. On the other hand, M0 is in fact M∗ when t = 0.
Notice that both M0 and M∗ are suitable only for scalar values and that for
vector values the combination of several fuzzy metrics needs to be considered.

In particular, one application that matches the behaviour of these two fuzzy
metrics regards the modeling of the perception of physical magnitudes such
as colours, sounds or weights. It is known that the perception threshold of
changes in these magnitudes increases as the magnitudes themselves increase
[4,5,53]. That is to say, the perceived difference between two magnitude values
x, y is different that for the values x + k, y + k, whenever k > 0. In particular,
the perceived difference will be larger in the former case than in the latter,
which agrees with (II). This situation can be observed in the case of perceptual
colour differences and, since the M∗ fuzzy metric behaves accordingly to this
situation, M∗ can be used to appropriately devise colour difference formulas
as explained in the following.
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A colour sample is usually represented as a tern in a particular colour space.
Among the different colour spaces, a well-known one, specially in computer
graphics, is the Hue-Chroma-Lightness (HCL) colour space [23], where a colour
sample s is represented as a tern s = (Hs, Cs, Ls). In such a tern: Hue, Hs,
is usually represented as an angle in [0o, 360o] where 0o, 90o, 180o, and 270o

correspond to approximately pure red, yellow, green and blue, respectively.
Cs ∈ [0, 100] represents the Chroma of the colour, where 0 is associated with
neutral gray, black or white; and Ls ∈ [0, 100] represents the Lightness of
the sample, where 0 represents no lightness (absolute black colour) and 100
represents the maximum lightness (absolute white colour).

A series of experimental datasets: BFD-P, Leeds, RIT-Dupont, and Witt,
which are combined to form the COM dataset, have been obtained in or-
der to characterize the perceptual difference between pairs of colour samples
[1,24,26,27,57,58]. In these datasets each pair of colour samples is associated
with a value ∆V which represents the experimental perceptual difference be-
tween them. On the other hand, colour difference formulas are used to obtain,
from two terns representing a pair of colour samples, the computed percep-
tual difference between them, usually denoted by ∆E. Since the objective
of colour difference formulas is to model human perception, all formulas try
to obtain ∆E values as close (or correlated) as possible to the ∆V values.
One well-known colour difference formula is the CIELAB formula [59], that
corresponds with the Euclidean distance in the CIELAB colour space.

The performance of a colour difference formula is assessed by measuring how
close the ∆E values computed for the experimental datasets are to the ∆V
values. A well established figure of merit for this closeness is the STRESS
coefficient [28], which provides values in the interval [0, 1], where lower values
indicate a higher closeness. In Table 1, we can see that the value of STRESS
for the CIELAB formula over the COM dataset is 0.428.

By analysing the experimental datasets, it has been observed that the sen-
sitivity to differences in Chroma decreases as the value of Chroma increases.
Notice that this fact is related to the Weber-Frechner and Stevens observa-
tions [4,5,53]. According to this, we propose to use the M∗ fuzzy metric to
model the similarity between two Chroma values Cs, Cr as

M∗(Cs, Cr) =
min{(Cs, Cr)}+ kC

max{(Cs, Cr)}+ kC

,

where kC is a parameter to adjust the behaviour as desired.

An analogous observation can be made with respect to Lightness. So we pro-
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Fig. 1. Values of STRESS obtained by different colour difference formulas for the
COM dataset.

Color difference formula STRESS

CIELAB 0.428

CIE94 0.335

CIEDE2000 0.292

∆EM∗
1

0.347

∆EM∗
1

0.348

pose to measure the similarity between two Lightness values Ls, Lr as

M∗(Ls, Lr) =
min{(Ls, Lr)}+ kL

max{(Ls, Lr)}+ kL

,

where kL is another adjusting parameter.

Using these two expressions we build a more complex expression to obtain a
new colour difference formula. We want also to take into account the CIELAB
colour difference, ∆E∗

ab, so, we employ the standard fuzzy metric deduced from
∆E∗

ab. Given that the product of these fuzzy metrics is as well a fuzzy metric,
[44], we can use a productory to join these three criteria. Finally, to obtain a
difference formula we use the involutive negation as follows:

∆EM∗
1
(s, r) = 1−

(
M∗(Ls, Lr)M

∗(Cs, Cr)
t

t + ∆E∗
ab

)
, (4)

where kL, kC and t are parameters able to tune the importance of each cri-
terion. However, since ∆E∗

ab also includes Lightness and Chroma differences,
alternatively we propose to replace ∆E∗

ab in Eq. (4) with ∆H, which represents

only Hue differences in ∆E∗
ab and is given by ∆H =

√
∆E∗2

ab − |Ls − Lr|2 − |Cs − Cr|2,
and so obtaining

∆EM∗
2
(s, r) = 1−

(
M∗(Ls, Lr)M

∗(Cs, Cr)
t

t + ∆H

)
, (5)

where we have three adjusting parameters, as above.

It is interesting to point out that ∆EM∗
1

can be seen as a modification of the
∆E∗

ab using a correction term inspired in the Weber-Fechner and Stevens laws
which are represented by an appropriate fuzzy metric. On the other hand,
∆EM∗

2
is a color difference formula that corresponds with the representation
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of the Weber-Frechner and Stevens laws by means of fuzzy metrics.

We have performed extensive experimental assessments varying the values of
the adjusting parameters kL, kC and t in the range [0, 100] to obtain the opti-
mal parameter setting for the formulas proposed in Eq. (4)-(5). With optimal
parameter setting, ∆EM∗

1
is able to obtain a STRESS value for the COM

dataset of 0.347 (with kL = 2, kC = 4, t = 11), whereas ∆EM∗
2

obtained
STRESS of 0.348 (with kL = 4, kC = 12, t = 40). Notice that, in both cases, a
significative improvement with respect to ∆E∗

ab is obtained. This means that
M∗ has been successfully used to take into account the facts related to the
Weber-Fechner and Stevens laws. It should be also noted that whereas ∆E∗

ab

does not incorporate these laws, they are considered in more recent colour
difference formulas such as the CIE94 [60] and CIEDE2000 [61] formulas. We
also compare the performance of the proposed formulas with these recent ones
in Table 1, where we can see that the performance of our formulas are pretty
close to the one of the CIE94.

8 Conclusions

In this paper we have studied from the mathematical point of view the fuzzy
metric defined by M∗(x, y, t) = min{x,y}+t

max{x,y}+t
on [0,∞[ (the set of non-negative

real numbers) and other fuzzy metrics related to it. As a consequence of this
study, we have introduced five questions in fuzzy metric spaces (relative to
completion, uniform continuity, extension and contractivity) that we think
provide the basis of much future research. Finally, from the practical applica-
tion point of view, we have shown that this fuzzy metric can be used to ap-
proach the problem of measuring perceptual colour differences between colour
samples.
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[42] J. Rodŕıguez-López, S. Romaguera, The Hausdorff fuzzy metric on compact
sets, Fuzzy Sets and Systems 147 (2004), 273-283.

[43] S. Romaguera, The completion of fuzzy metric spaces and of other related
structures, Computational Mathematics: Theory, Methods and Applications,
Peter G. Chareton ed., (2010) Nova Sci. Publ. Inc., New York, 387-403 .

[44] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen.
Topology 2 (2001), 63-76.

[45] A. Sapena, S. Morillas, On strong fuzzy metrics, Proc. Work. App. Topology
WiAT’09, 135-141.

[46] L. Schwartz, Analyse, topologie générale et analyse fonctionnelle, Hermann,
Paris, 1970.

[47] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960),
314-334.

[48] B. Schweizer, A. Sklar, Probabilistic metric spaces, North Holland Series in
Probability and Applied Mathematics, New York, Amsterdam, Oxford, 1983.

[49] V. M. Sehgal, A. T. Bharucha-Reid, Fixed points of contraction mappings on
PM-spaces, Math. Systems Theory 6 (1972), 97-100.

[50] H. Sherwood, Complete probabilistic metric spaces and random variables
generated spaces, Ph. D. Thesis, University of Arizona (1965).

23



[51] H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrschein-
lichkeitstheorie verw. Geb. 6 (1966), 62-64.

[52] H. Sherwood, Complete probabilistic metric spaces and random variables
generated spaces, Ph.D. Thesis, University of Arizona (1965).

[53] S. S. Stevens, To honor Fechner and repeal his law, Science 133 (1961), 80-86.

[54] P. Tirado, Contraction mappings in fuzzy quasi-metric spaces and[0,1]-fuzzy
posets, in: VII Iberoamerican Conf. on Topology and its Applications, Valencia,
Spain, 25-28 June 2008.

[55] R. Vasuki, P Veeramani, Fixed point theorems and Cauchy sequences in fuzzy
metric spaces, Fuzzy Sets and Systems 135 (2003), 415-417.

[56] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzzy Math. 9
(2001), 75-80.

[57] K. Witt, Geometrical relations between scales of small colour differences, Color
Res. Appl. (1999) 24, 78-92.

[58] CIE Publication 142-2001. Improvement to industrial colour-difference
evaluation. CIE Central Bureau, Vienna, 2001.

[59] CIE Publication 15:2004. Colorimetry. 3rd Edition. CIE Central Bureau,
Vienna, 2004.

[60] CIE Publication 116. Industrial colour-difference evaluation (Technical Report).
CIE Central Bureau, Vienna, 1995.

[61] CIE Publication 142. Improvement to industrial colour-difference evaluation
(Technical Report). CIE Central Bureau, Vienna, 2001.

24


