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PROBABILISTIC METRIC SPACES AS ENRICHED CATEGORIES

DIRK HOFMANN AND CARLA DAVID REIS

Abstract. In this paper we investigate Cauchy completeness and exponentiablity for quantale

enriched categories, paying particular attention to probabilistic metric spaces.

Introduction

Lawvere’s ground-breaking paper [17] presenting generalised metric spaces as enriched cat-

egories has motivated much work on the reconciliation of order, metric and category theory.

However, the theory of categories enriched in a symmetric monoidal closed category [5, 15] can

become quickly technically very demanding, which prompted many authors to restrict themselves

to the case where the enrichment takes place in a quantale (i.e. a thin symmetric monoidal closed

category) where “all diagrams commute” and therefore all coherence issues disappear. This way

the employed categorical notions and techniques have a very elementary formulation, however

the theory still includes many interesting examples such as ordered sets, metric spaces and prob-

abilistic metric spaces. We refer the reader in particular to the work [16, 6, 7, 9, 8] of Flagg

et al. on continuity spaces and the work [2, 21] of the Amsterdam research group at CWI. An-

other important source of motivation was for us the work [11] on the completion of fuzzy metric

spaces, due to the similarities between the notions of fuzzy metric spaces and probabilistic metric

spaces. In this paper we contribute to this line of research and study Cauchy completeness and

exponentiability in quantale-enriched categories. We interpret our results in probabilistic metric

spaces seen as categories enriched in the quantale of distribution functions, and show that in

many cases categorical and classical notions coincide.

One amazing insight of [17] is a characterisation of the notion of Cauchy completeness for

metric spaces using adjoint modules, giving further evidence to MacLane’s motto “adjoints

occur almost everywhere” [18]. This result was further generalised in [6] to categories enriched

in a value quantale: for such categories, Cauchy completeness can be equivalently described via

modules and via Cauchy nets. Using the conceptual power of adjunction, in the first part of this

paper we show that many results linking adjoint modules and Cauchy sequences (resp. nets)

are valid under much milder assumptions. In the second part we investigate function spaces of

quantale-enriched categories, showing in particular that injective probabilistic metric spaces are

exponentiable.
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2 DIRK HOFMANN AND CARLA DAVID REIS

1. A brief introduction to quantale-enriched categories

1.1. Quantales. Throughout this paper we consider a quantale V = (V,⊗, k), by which we

mean a complete ordered set V equipped with an associative and commutative binary operation

⊗ : V × V → V with neutral element k satisfying

u⊗
∨

i∈I

vi =
∨

i∈I

(u⊗ vi),

for all u, vi ∈ V and i ∈ I. In other words, each function u ⊗ − : V → V (u ∈ V) preserves

suprema and therefore has a right adjoint hom(u,−) : V → V. Consequently, there is a map

hom : V × V → V such that, for all u, v, w ∈ V,

u⊗ v ≤ w ⇐⇒ v ≤ hom(u,w).

Examples 1.1. (1) The two-element Boolean algebra 2 = {false, true} is a quantale with

tensor ⊗ = & and k = true. More general, every frame is a quantale with ⊗ = ∧ and

k = ⊤.

(2) The real half-line [0,∞] ordered by the “greater or equal” relation > is a quantale, with

tensor ⊗ = + (with x+∞ = ∞+ x = ∞) for all x, y ∈ [0,∞]; then k = 0 is obviously

the neutral element for ⊗ = + and one has hom(x, y) = y ⊖ x := max{y − x, 0} (with

y−∞ = 0 and ∞− x = ∞ for x, y ∈ [0,∞], x 6= ∞). Also note that 0 is the top and ∞

is the bottom element with respect to this order, and we have
∨

= inf and
∧

= sup in

[0,∞].

(3) The interval [0, 1] is a quantale, with the usual order ≤ and ⊗ = · multiplication.

The right adjoint is given here by “division” hom(x, y) = y � x where y � 0 = 1 and

y � x = min{ y
x
, 1} for x 6= 0.

Given also a quantale W = (W,⊕, l) and a monotone map F : V → W, we call F a morphism

of quantales whenever
∨

i∈I

F (vi) = F (
∨

i∈I

vi), F (u)⊕ F (v) = F (u⊗ v), l = F (k),

for all u, v, vi ∈ V and i ∈ I. It turns out that for many applications it is enough to have

inequalities above; in this case we say that F is a lax morphism of quantales. That is, a lax

morphism of quantales F : V → W only needs to satisfy, for all u, v ∈ V,

F (u)⊕ F (v) ≤ F (u⊗ v), l ≤ F (k).

Note that the inequality
∨
i∈I F (vi) ≤ F (

∨
i∈I vi) follows from monotonicity of F .

Examples 1.2. The map I : 2 → [0,∞] interpreting false as ∞ and true as 0 is a morphism of

quantales, and note that I is indeed monotone since we consider the “greater or equal” relation

> on [0,∞]. Furthermore, I : 2 → [0,∞] has a left and a right adjoint given by

O : [0,∞] → 2, P : [0,∞] → 2

x 7→

{
true if x <∞

false if x = ∞
x 7→

{
true if x = 0

false if x > 0

respectively. Here O : [0,∞] → 2 is a morphism of quantales as well, but P : [0,∞] → 2 is only

a lax morphism of quantales.

This construction can be generalised to an arbitrary quantale V. Firstly, the map I : 2 → V

interpreting false as ⊥ and true as k is a morphism of quantales. Since I preserves suprema it

has a right adjoint P : V → 2; and I preserves the top element precisely if k = ⊤, and in this
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case I preserves all infima and therefore has a left adjoint O. Furthermore, the left and the right

adjoint of I are given by

O : V → 2 P : V → 2

x 7→

{
true if x 6= ⊥

false if x = ⊥
x 7→

{
true if x ≥ k

false else

respectively. Being left adjoint, O : V → 2 preserves suprema, and one also verifies easily

that O(k) = true; but O is in general not a lax morphism of quantales since one only has

O(u ⊗ v) ≤ O(u)&O(v), with equality if and only if u ⊗ v = ⊥ ⇒ u = ⊥ or v = ⊥, for all

u, v ∈ V. Finally, the right adjoint P : V → 2 is a lax morphism of quantales.

The bijection

E : [0,∞] → [0, 1], x 7→ exp(−x)

(where exp(−∞) = 0) is a morphism of quantales, and so is its inverse

L : [0, 1] → [0,∞], x 7→ − ln(x)

(where − ln(0) = ∞).

In the sequel we will occasionally assume that V is completely distributive [20]. This amounts

to saying that suprema commute with infima in our complete lattice V, which can be expressed

by saying that the monotone map
∨

: 2V
op

→ V preserves infima. Since 2V
op

is complete,

preservation of infima is equivalent to the existence of a left adjoint A : V → 2V
op

of
∨

which

can be described as follows. For u, x ∈ V, one says that u is totally below x, written as u ≪ x,

if, for every S ⊆ V, x ≤
∨
S entails u ∈ ↓S. Then V is completely distributive if and only if, for

every x ∈ V, x =
∨
{u ∈ V | u ≪ x}; and in this case one has A(x) = {u ∈ V | u ≪ x}. Note

that the totally-below relation ≪ is defined for every (complete) ordered set X, and enjoys the

following properties (see [25], for instance):

(1) if x≪ y, then x ≤ y,

(2) x ≤ y ≪ z implies x≪ z and x≪ y ≤ z implies x≪ z,

(3) if x≪ z, then there exists some y ∈ X with x≪ y ≪ z.

1.2. V-categories. A V-category X = (X, a) is a set X together with a map a : X ×X → V

satisfying

k ≤ a(x, x), a(x, y)⊗ a(y, z) ≤ a(x, z)

for all x, y, z ∈ X. A V-functor f : (X, a) → (Y, b) is a map f : X → Y such that

a(x, y) ≤ b(f(x), f(y))

for all x, y ∈ X. We call a V-functor f : (X, a) → (Y, b) fully faithful if a(x, y) = b(f(x), f(y))

for all x, y ∈ X. The resulting category of V-categories and V-functors will be denoted by V-Cat.

We note that the quantale V gives rise to the V-category V = (V,hom).

Examples 1.3. For V = 2, a V-category is just a set equipped with a reflexive and transitive

relation, and a V-functor is a monotone map. Hence, V-Cat is the category Ord of (pre)ordered

sets and monotone maps. For V = [0,∞], a V-category structure is a distance function a :

X ×X → [0,∞] which satisfies the conditions

0 > a(x, x) and a(x, y) + a(y, z) > a(x, z),

for all x, y, z ∈ X; and a V-functor is a non-expansive map. Hence, V-Cat is the category Met of

(pre)metric spaces and non-expansive maps. However, in the sequel we follow the nomenclature
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of [17] and call the objects of Met simply metric spaces, then a “classical” metric space becomes

a separated (d(x, y) = 0 = d(y, x) implies x = y), symmetric (d(x, y) = d(y, x)) and finitary

(d(x, y) < ∞) metric space. In a similar manner, we do not assume an ordered set to be anti-

symmetric, and therefore we call the objects of Ord simply ordered sets. Consequently, many

notions of order theory such as suprema or infima are only unique up to equivalence ≃, where

x ≃ x′ if x ≤ x′ and x′ ≤ x. However, we stress that our quantale V (being part of the syntax)

is assumed to be anti-symmetric.

Every lax morphism of quantales F : V → W induces a functor F : V-Cat → W-Cat which

sends a V-category X = (X, a) to the W-category FX with the same underlying set X and with

the W-categorical structure given by the composite

X ×X
a
−→ V

F
−−→ W;

and a V-functor f : (X, a) → (Y, b) is sent to theW-functor Ff := f : (X,F ·a) → (Y, F ·b). If the

monotone map F : V → W happens to have an adjoint G : W → V which is also a lax morphism

of quantales, then the induced functor G : W-Cat → V-Cat is adjoint to F : V-Cat → W-Cat.

In particular, when F : V → W and G : W → V are inverse to each other, then they induce an

isomorphism between V-Cat and W-Cat.

Examples 1.4. For the (lax) morphisms of quantales considered in Examples 1.2, the functor

I : Ord → Met interprets an order relation ≤ on a set X as the metric

d(x, y) =

{
0 if x ≤ y,

∞ else.

The functor I : Ord → Met has a left adjoint O : Met → Ord which takes a metric d on X to the

order relation

x ≤ y whenever d(x, y) <∞,

and a right adjoint P : Met → Ord which sends a metric d on X to the order relation

x ≤ y whenever 0 > d(x, y).

Finally, we find that Met ≃ [0,∞]-Cat and [0, 1]-Cat are isomorphic.

To every V-category X = (X, a) one associates its dual Xop = (X, a◦) where a◦(x, y) = a(y, x),

for all x, y ∈ X. Since a V-functor f : (X, a) → (Y, b) can also be seen as a V-functor of type

(X, a◦) → (Y, b◦), we actually obtain a functor (−)op : V-Cat → V-Cat. A V-category X = (X, a)

is called symmetric whenever X = Xop, which amounts to saying that a(x, y) = a(y, x) for all

x, y ∈ X.

There is a canonical forgetful functor V-Cat → Ord which sends a V-category X = (X, a) to

the ordered set (X,≤) where

x ≤ x′ : ⇐⇒ k ≤ a(x, x′), (x, x′ ∈ X).

A V-category X = (X, a) is called separated if the underlying order is anti-symmetric, that is,

if x ≃ y implies x = y, for all x, y ∈ X. Note that for V = [0,∞] the notions of symmetry and

separatedness coincide with the usual ones for metric spaces.

The order relation on V-categories can be extended point-wise to V-functors f, g : (X, a) →

(Y, b): one defines f ≤ g whenever f(x) ≤ g(x) for all x ∈ X; and composition from either side

preserves this order. One fundamental consequence of the fact that V-Cat has ordered hom-sets

is the possibility to talk about adjunction. Here a pair of V-functors f : (X, a) → (Y, b) and
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g : (Y, b) → (X, a) forms an adjunction f ⊣ g whenever 1X ≤ g · f and f · g ≤ 1Y . Equivalently,

f ⊣ g if and only if, for all x ∈ X and y ∈ Y ,

b(f(x), y) = a(x, g(y));

and the formula above explains why one calls f left adjoint and g right adjoint. We also recall

that a left adjoint f has at most one right adjoint since f ⊣ g and f ⊣ g′ imply g ≃ g′; and

dually, f ⊣ g and f ′ ⊣ g imply f ≃ f ′.

The canonical forgetful functor V-Cat → Set, (X, a) 7→ X is topological (see [1]) where the

initial structure on X with respect to the family fi : X → (Xi, ai) (i ∈ I) is given by

a(x, x′) :=
∧

i∈I

ai(fi(x), fi(x
′)),

for all x, x′ ∈ X. Hence, V-Cat admits all limits and all colimits which are, moreover, preserved

by V-Cat → Set. In particular, the product X×Y of V-categories X = (X, a) and Y = (Y, b) can

be constructed by taking the Cartesian product X × Y of the sets X and Y , and then turning

this into a V-category by putting

d((x, y), (x′, y′)) = a(x, x′) ∧ b(y, y′),

for all (x, y), (x′, y′) ∈ X × Y .

More important to us is, however, the structure

(a⊗ b)((x, y), (x′, y′)) = a(x, x′)⊗ b(y, y′)

on the set X × Y , defining the V-category X ⊗ Y = (X × Y, a ⊗ b). This tensor product ⊗

on V-Cat is associative and commutative, and has E = (1, k) (with a singleton set 1 = {⋆}

and k(⋆, ⋆) = k) as neutral object. Note that in general E = (1, k) must be distinguished from

the terminal object 1 = (1,⊤) in V-Cat. What makes this structure more interesting is the

fact that, unlike X × −, the functor X ⊗ − : V-Cat → V-Cat has a right adjoint [X,−], for

every V-category X = (X, a). Here, given also Y = (Y, b) in V-Cat, [X,Y ] can be taken as

[X,Y ] = (V-Cat(X,Y ), [a, b]) where

[a, b](f, g) =
∧

x∈X

b(f(x), g(x)).

In the sequel we will pay particular attention to the V-category [Xop,V] where V = (V,hom).

To simplify notation, we write [h, h′] instead of [a◦,hom](h, h′) in this case.

1.3. V-modules. Besides V-functors, there is another important type of morphisms between

V-categories, namely V-modules (also called distributors or profunctors). For V-categories X =

(X, a) and Y = (Y, b), a V-module ϕ : X−→◦ Y is a map ϕ : X × Y → V with a “left a-action”

and a “right b-action” in the sense that, for all x, x′ ∈ X and y, y′ ∈ Y ,

a(x, x′)⊗ ϕ(x′, y′) ≤ ϕ(x, y′), ϕ(x, y) ⊗ b(y, y′) ≤ ϕ(x, y′).

Given also ψ : (Y, b)−→◦ (Z, c), we can calculate its composite ψ · ϕ with ϕ as

ψ · ϕ(x, z) =
∨

y∈Y

ϕ(x, y) ⊗ ψ(y, z),

and ψ · ϕ is indeed a V-module ψ · ϕ : (X, a)−→◦ (Z, c). By definition of a V-category (X, a),

a : (X, a)−→◦ (X, a) is a V-module and one has ϕ · a = ϕ = b · ϕ. Hence, in the category V-Mod

of V-categories and V-modules, a : (X, a)−→◦ (X, a) is the identity V-module on X = (X, a)

with respect to composition of V-modules. The set V-Mod(X,Y ) of V-modules from X to Y is

actually a complete ordered set where the supremum of a family ϕi : X−→◦ Y (i ∈ I) is calculated

point-wise. Since composition from either side preserves suprema, both monotone maps − · ϕ
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and ϕ · − (where ϕ : X−→◦ Y ) have a right adjoint in Ord. A right adjoint − •− ϕ of − · ϕ

must give, for each ψ : X−→◦ Z, the largest module of type Y−→◦ Z whose composite with ϕ is

contained in ψ,

X ◦
ψ

//

◦ϕ

��

Z

Y

◦
⊆

>>

and we call ψ •− ϕ the extension of ψ along ϕ. Explicitly,

ψ •− ϕ(y, z) =
∧

x∈X

hom(ϕ(x, y), ψ(x, z)).

Similarly, a right adjoint ϕ −• − of ϕ · − must give, for each ψ : Z−→◦ Y , the largest module of

type Z−→◦ X whose composite with ϕ is contained in ψ.

Y Z◦
ψ

oo

◦
⊇

~~
X

◦ϕ

OO

The V-module ϕ −• ψ is called the lifting of ψ along ϕ, and can be calculated as

ϕ −• ψ(z, x) =
∧

y∈Y

hom(ϕ(x, y), ψ(z, y)).

Every V-functor f : (X, a) → (Y, b) gives rise to a V-module f∗ : (X, a)−→◦ (Y, b) defined by

f∗(x, y) = b(f(x), y),

for all x ∈ X and y ∈ Y . Then, (1X)∗ = a and, with g : (Y, b) → (Z, c), (gf)∗ = g∗ · f∗, which

tells us that (−)∗ is actually a functor

(−)∗ : V-Cat → V-Mod

which leaves objects unchanged. The module f∗ : (X, a)−→◦ (Y, b) has a right adjoint f∗ :

(Y, b)−→◦ (X, a) in the ordered category V-Mod, meaning that a ≤ f∗ · f∗ and f∗ · f
∗ ≤ b, and f∗

is defined by

f∗(y, x) = b(y, f(x)).

Since (1X)
∗ = a and (gf)∗ = f∗ · g∗, this construction defines a functor

(−)∗ : V-Catop → V-Mod.

For later use we record the calculation rules

f∗ · ϕ(z, x) = ϕ(z, f(x)), ψ · f∗(x, z) = ψ(f(x), z);

for V-modules ϕ : Z−→◦ Y and ψ : Y−→◦ Z. It follows that f is fully faithful if and only if

a = f∗ · f∗, and we call f fully dense if f∗ · f
∗ = b.

In general, V-modules ϕ : X−→◦ Y and ψ : Y−→◦ X form an adjunction ϕ ⊣ ψ if a ≤ ψ · ϕ

and ϕ · ψ ≤ b. As before, adjoints determine each other meaning that ϕ ⊣ ψ and ϕ ⊣ ψ′ imply

ψ = ψ′ as well as ϕ ⊣ ψ and ϕ′ ⊣ ψ imply ϕ = ϕ′. Furthermore, one says that ϕ is left adjoint

whenever ϕ ⊣ ψ for some (unique) ψ, and that ψ is right adjoint if ϕ ⊣ ψ for some (unique) ϕ.

The following result will be extremely useful for calculating with adjoints.

Lemma 1.5. Let ϕ,ϕ′ : X−→◦ Y and ψ,ψ′ : Y−→◦ X be V-modules with ϕ ⊣ ψ, ϕ′ ⊣ ψ′, ϕ ≤ ϕ′

and ψ ≤ ψ′. Then ϕ = ϕ′ and ψ = ψ′.
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Proof. By unicity of adjoints, it is enough to show ϕ = ϕ′, that is, ϕ′ ≤ ϕ. To this end, we

calculate ϕ ≥ ϕ′ · ψ′ · ϕ ≥ ϕ′ · ψ · ϕ ≥ ϕ′. �

Another connection between V-modules and V-functors is given by the fact that a map ϕ :

X × Y → V is a V-module precisely when ϕ is a V-functor of type Xop ⊗ Y → V. By passing

to its exponential mate, we can view a V-module ϕ : (X, a)−→◦ (Y, b) as a V-functor pϕq : Y →

[Xop,V]. In particular, the V-module a : (X, a)−→◦ (X, a) corresponds to the Yoneda embedding

y
X

:= paq : X → [Xop,V], which is indeed a fully faithful V-functor thanks to the Yoneda

Lemma which states that

[y
X
(x), ψ] = ψ(x)

for all x ∈ X and ψ ∈ [Xop,V]. We also note that the set [Xop,V] can be identified with

V-Mod(X, 1), and under this identification one has [ψ,ψ′] = ψ′
•− ψ and y

X
(x) = x∗ (here we

think of x ∈ X as x : 1 → X). If ψ has a left adjoint ϕ, then − · ψ ⊣ − · ϕ and therefore

[ψ,ψ′] = ψ′ · ϕ, for all ψ′ : X−→◦ 1. In particular, for ψ′ = x∗ we obtain [ψ, x∗] = ϕ(x).

Another way to read the Yoneda Lemma goes as it follows: for any V-module ψ : X−→◦ 1,

seen also as an element of [Xop,V], one has ψ∗ · (y
X
)∗ = ψ. If, moreover, ψ has a left adjoint ϕ,

then also y
∗
X
·ψ∗ = [ψ, (−)∗] = ϕ, and therefore ψ∗ ≥ ψ · y

∗
X

and ψ∗ ≥ (y
X
)∗ · ϕ. Hence, Lemma

1.5 implies

Lemma 1.6. For every adjunction (ϕ : 1−→◦ X) ⊣ (ψ : X−→◦ 1), ψ∗ = ψ ·y∗
X

and ψ∗ = (y
X
)∗ ·ϕ.

Finally, we note that every morphism of quantales F : V → W induces also a functor F :

V-Mod → W-Mod which extends F : V-Cat → W-Cat in the sense that both diagrams

V-Mod
F // W-Mod

V-Cat

(−)∗

OO

F
// W-Cat

(−)∗

OO V-Mod
F // W-Mod

V-Catop

(−)∗

OO

F op
// W-Catop

(−)∗

OO(∗)

commute. Here, for a V-module ϕ : (X, a)−→◦ (Y, b), Fϕ is defined as the W-module of type

F (X, a)−→◦ F (Y, b) given by the composite

X × Y
ϕ
−→ V

F
−−→ W.

Furthermore, F is even locally monotone meaning here that ϕ ≤ ϕ′ implies Fϕ ≤ Fϕ′, and

therefore one has Fϕ ⊣ Fψ in W-Mod for every adjunction ϕ ⊣ ψ in V-Mod.

2. Probabilistic metric spaces

2.1. The quantale ∆ of distribution functions. In this paper we are particularly interested

in

∆ = {f : [0,∞] → [0, 1] | f is monotone and f(x) =
∨

y<x

f(y)},

which is a complete lattice with the point-wise order. To see that ∆ is completely distributive,

consider the maps fδ,u ∈ ∆, with 0 ≤ u ≤ 1 and 0 ≤ δ, defined by:

fδ,u(t) =

{
0 if 0 ≤ t ≤ δ,

u if δ < t.

Then for any f ∈ ∆ one has

fδ,u ≪ f ⇐⇒ u < f(δ),

and f =
∨
{fδ,u | fδ,u ≪ f}.
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The complete lattice ∆ becomes a quantale where, for f, g ∈ ∆ and t ∈ [0,∞],

f ⊗ g(t) =
∨

r+s≤t

f(r) · g(s).

One easily verifies that ⊗ is associative and commutative, and that

ε := f0,1 : [0,∞] → [0, 1], t 7→

{
0 if t = 0,

1 else

is a neutral element for ⊗. Furthermore, fδ,u ⊗ fδ′,u′ = fδ+δ′,u·u′.

For any f ∈ ∆, f ⊗ − : ∆ → ∆ preserves suprema since u · − : [0, 1] → [0, 1] does so, for all

u ∈ [0, 1]. Therefore f ⊗− has a right adjoint hom(f,−) : ∆ → ∆, where (with g ∈ ∆)

hom(f, g) =
∨

{h ∈ ∆ | f⊗h ≤ g} =
∨

{h ∈ ∆ | ∀r, s, t ∈ [0,∞] . (r+s ≤ t ⇒ f(r)·h(s) ≤ g(t))}.

If f = fδ,u, then hom(fδ,u, g) is given by the supremum over all those h ∈ ∆ which satisfy, for

all t ∈ [0,∞], u · h(t ⊖ δ) ≤ g(t), which by adjunction is equivalent to h(t ⊖ δ) ≤ g(t) � u.

If, moreover, g = fδ′,u′ , then this supremum is actually obtained for h = fδ′⊖δ,u′�u, that is,

hom(fδ,u, fδ′,u′) = fδ′⊖δ,u′�u.

We call f ∈ ∆ finite if f(∞) = 1. Certainly, if f is finite, then so is every g ∈ ∆ with f ≤ g;

and one also easily verifies that f ⊗ g is finite if both f, g ∈ ∆ are so.

2.2. Probabilistic metric spaces. A probabilistic metric space [19, 22] is classically defined

relative to a so-called t-norm, which is nothing but a quantale structure ∗ : [0, 1]× [0, 1] → [0, 1]

on [0, 1] with neutral element 1. Given a t-norm ∗, a probabilistic metric space is a set X

equipped with a distance function d : X ×X × [0,∞] → [0, 1] subject to

(1) d(x, y,−) : [0,∞] → [0, 1] is left continuous (that is, d(x, y, t) =
∨
s<t d(x, y, s)),

(2) d(x, x, t) = 1 for t > 0,

(3) d(x, y, r) ∗ d(y, z, s) ≤ d(x, z, r + s),

(4) d(x, y, t) = 1 = d(y, x, t) for all t > 0 implies x = y,

(5) d(x, y, t) = d(y, x, t) for all t,

(6) d(x, y,∞) = 1,

for all x, y ∈ X and r, s ∈ [0,∞]. The intended meaning of d(x, y, t) = u is that u is the

“probability of the distance from x to y is less then t”. For the sake of simplicity, in the sequel

we will only consider the case of ∗ being the usual multiplication “·” on [0, 1]. Clearly, (1) just

states that the exponential mate a := pdq : X ×X → [0, 1][0,∞] of d takes values in ∆. Then (2)

and (3) are indeed equivalent to the defining properties

ε ≤ a(x, y), a(x, y)⊗ a(y, z) ≤ a(x, z)

of a ∆-category. In the sequel we will use the term “probabilistic metric space” as a synonym

for ∆-category, hence we do not insist on the conditions (4), (5) and (6). However, we note that

a ∆-category X = (X, a) satisfies (4) if and only if X is separated, and X satisfies (5) if and

only if X is symmetric. Similarly to the nomenclature for metric spaces, we call a ∆-category

X = (X, a) finitary if X satisfies (6), i.e. if a(x, y) ∈ ∆ is finite for all x, y ∈ X. Intuitively, (6)

states that the affirmation “the distance from x to y is finite” has probability 1.

Finally, a ∆-functor f : (X, a) → (Y, b) is a map satisfying

(†) a(x, y)(t) ≤ b(f(x), f(y))(t)

for all x, y ∈ X and t ∈ [0,∞]. In other words, the “probability of the distance from x to y is

less than t” is less or equal than the “probability of the distance from f(x) to f(y) is less than
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t”. We write ProbMet for the category of probabilistic metric spaces and maps satisfying (†),

that is, ProbMet ≃ ∆-Cat.

Remark 2.1. The notion of probabilistic metric spaces is closely related to the one of fuzzy

metric space as defined in [10]. The main difference appears in condition (1): in [10], the

mapping d(x, y,−) is even required to be continuous. However, with this modification the set

of all distribution functions is not any more complete in the pointwise order. As a consequence,

many nice properties of probabilistic metric spaces are not shared by fuzzy metric spaces, for

instance, there exist fuzzy metric spaces which do not admit a Cauchy completion (see [11]).

2.3. Comparison with metric spaces. The quantale [0,∞] embeds canonically into ∆ via

I∞ : [0,∞] → ∆, x 7→ fx,1.

Moreover, for all x, y ∈ [0,∞],

f0,1 = ε, fx+y,1 = fx,1 ⊗ fy,1,

and I∞ preserves suprema since it has a right adjoint

P∞ : ∆ → [0,∞], f 7→ inf{x ∈ [0,∞] | f(x) = 1}.

Consequently, I∞ is a morphism of quantales. The right adjoint P∞ satisfies

P∞(ε) = 0, P∞(f ⊗ g) = P∞(f) + P∞(g),

for all f, g ∈ ∆; however, P∞ does not preserve suprema and therefore is only a lax morphism

of quantales. Furthermore, I∞ has also a left adjoint

O∞ : ∆ → [0,∞], f 7→ sup{x ∈ [0,∞] | f(x) = 0},

which – being left adjoint – preserves suprema and also satisfies

O∞(ε) = 0, O∞(f ⊗ g) = O∞(f) +O∞(g),

for all f, g ∈ ∆. Therefore O∞ is a morphism of quantales. Finally, from

[0,∞] I∞ // ∆
⊥

P∞

ff

⊥

O∞

xx

one obtains the chain of functors

Met I∞ // ProbMet.
⊥

P∞

ff

⊥

O∞

ww

3. Cauchy completeness

3.1. Cauchy complete V-categories. In Subsection 1.3 we mentioned already that each V-

functor f : (X, a) → (Y, b) induces an adjoint pair f∗ ⊣ f∗ of V-modules. One of the amazing

discoveries of [17] is that the reverse affirmation (every adjoint pair of V-modules is induced by

a V-functor) is ultimately linked to Cauchy completeness. In fact, in [17] it is shown that

Theorem 3.1. A metric space X (viewed as a [0,∞]-category) is Cauchy complete if and only

if every adjunction ϕ ⊣ ψ, ϕ : Y−→◦ X, ψ : X−→◦ Y in [0,∞]-Mod is of the form f∗ ⊣ f∗, for a

non-expansive map f : Y → X.
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It is not hard to see that it is enough to consider Y = 1 the one-point space in the theorem

above. By definition ϕ : 1−→◦ X is left adjoint to ψ : X−→◦ 1 precisely when

0 > inf
x∈X

ϕ(x) + ψ(x), ψ(x) + ϕ(y) > d(x, y)

for all x, y ∈ X, where d denotes the metric of X. The main observation here is that there is a

bijection between adjunctions ϕ ⊣ ψ and equivalence classes of Cauchy sequences, realised by

(xn)N Cauchy sequence in X 7→





ϕ : 1−→◦ X, ϕ(x) = sup
n∈N

inf
k>n

d(xn, x)

ψ : X−→◦ 1, ψ(x) = sup
n∈N

inf
k>n

d(x, xn)

ϕ ⊣ ψ

ϕ ⊣ ψ 7→ (xn)N with xn such that ϕ(xn) + ψ(xn) 6
1

n
.

Furthermore, a Cauchy sequence (xn)N converges to x if and only if the corresponding adjunction

ϕ ⊣ ψ is of the form x∗ ⊣ x
∗.

In general, one says that a V-category X is Cauchy complete whenever every adjunction

(ϕ : Y−→◦ X) ⊣ (ψ : X−→◦ Y )

is representable by some V-functor f : Y → X in the sense that ϕ = f∗ and ψ = f∗. As above, it

is enough to consider the case Y = E = (1, k). Since adjoints determine each other, X is Cauchy

complete whenever every left adjoint V-module ϕ : E−→◦ X is of the form ϕ = x∗, equivalently,

whenever every right adjoint V-module ψ : X−→◦ E is of the form ψ = x∗.

For any V-category X, [Xop,V] is Cauchy complete where a right adjoint V-module ψ :

[Xop,V]−→◦ E is represented by ψ · (y
X
)∗ ∈ [Xop,V]. Furthermore, when writing

X̃ = {ψ : X−→◦ E | ψ is right adjoint}

for the V-subcategory of [Xop,V] defined by all right adjoint V-modules, X is Cauchy complete

if and only if the restriction y
X

: X → X̃ of the Yoneda embedding to X̃ is surjective. In

fact, y
X

: X → X̃ provides a Cauchy completion of the V-category X as we recall in the next

Subsection.

Finally, we study briefly how functors induced by morphisms of quantales interact with Cauchy

completeness. To this end, let F : V → W be a morphism of quantales V = (V,⊗, k) and

W = (W,⊕, l) and let X be a V-category. Recall that F induces functors F : V-Cat → W-Cat

and F : V-Mod → W-Mod, and the latter one sends adjunctions to adjunctions. Therefore one

obtains a commutative diagram

{ϕ : E−→◦ X | ϕ is left adjoint}
Φ // {ϕ′ : E = FE−→◦ FX | ϕ′ is left adjoint}

|X| = |FX|,

(−)∗

jj❯❯
❯❯
❯❯
❯❯
❯❯
❯❯
❯❯
❯❯ (−)∗

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

where Φϕ = Fϕ and |Y | denotes the underlying set of a V-category Y . Since X (respectively

FX) is Cauchy complete if and only if the map (−)∗ is surjective, we find

Proposition 3.2. (1) If FX is Cauchy complete and Φ is injective, then X is Cauchy

complete.

(2) If X is Cauchy complete and Φ is surjective, then FX is Cauchy complete.
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Certainly, if F : V → W is injective, then Φ is injective for every V-category X. In order to

obtain surjectivity of Φ, we also assume that there is a morphism of quantales G : W → V. Hence,

(ϕ′ : E−→◦ FX) ⊣ (ψ′ : FX−→◦ E) in W-Mod gives (Gϕ′ : E−→◦ GFX) ⊣ (Gψ′ : GFX−→◦ E)

in V-Mod, and Gϕ′ is of type E−→◦ X provided that GF = 1V. Moreover, if either FG ≤ 1W
or FG ≥ 1W, then FGϕ′ ≤ ϕ′ and FGψ′ ≤ ψ′ or FGϕ′ ≥ ϕ′ and FGψ′ ≥ ψ′, and either way

Lemma 1.5 implies FGϕ′ = ϕ′. A similar argument can be used if GF ≤ 1V and FG ≥ 1W
(that is, G ⊣ F ), since in this case the identity map on X is a V-functor of type γ : GFX → X,

and (Gϕ′ : E−→◦ GFX) ⊣ (Gψ′ : GFX−→◦ E) can be composed with γ∗ ⊣ γ∗ to yield (γ∗ ·Gϕ
′ :

E−→◦ X) ⊣ (Gψ′ · γ∗ : X−→◦ E). Furthermore, Fγ is the identity on FX since FGF = F , and

Φ(γ∗ ·Gϕ
′) = ϕ′ follows again from Lemma 1.5.

Corollary 3.3. Let F : V → W and G : W → V be morphisms of quantales and assume that

either G ⊣ F or that F ⊣ G and F is injective. Then FX is Cauchy complete provided that X

is Cauchy complete.

3.2. Topology in a V-category. To every metric on a set X one associates a topology by

putting

x ∈M : ⇐⇒ there is some (Cauchy) sequence (xn)N in M with (xn)N → x,

for all M ⊆ X and x ∈ X. Rephrased in the language of V-modules, x is in the closure of M if

and only if x represents an adjoint pair of V-modules on M , and this amounts to saying that

(i∗ · x∗ : E−→◦ M) ⊣ (x∗ · i∗) :M−→◦ E,

where we consider M as a sub-V-category of X and i :M → X denotes the inclusion V-functor.

This latter formulation defines indeed a closure operator (not just for a metric space but) for any

V-category X which was studied in [13]. Below we recall some key facts; if not stated otherwise,

their proofs can be found in [13].

Proposition 3.4. Let X = (X, a) be a V-category, M ⊆ X and x ∈ X. Then

x ∈M ⇐⇒ k ≤
∨

y∈M

a(x, y) ⊗ a(y, x).

By the proposition above, for x, x′ ∈M one has

a(x, x′) ≤
∨

y∈M

a(x, y)⊗ a(y, x)⊗ a(x, x′) ≤
∨

y∈M

a(x, y)⊗ a(y, x′) ≤ a(x, x′),

hence a(x, x′) =
∨
y∈M a(x, y)⊗ a(y, x′).

Proposition 3.5. Let f : X → Y be a V-functor, M,M ′ ⊆ X and N ⊆ Y . Then

(1) M ⊆M ,

(2) M ⊆M ′ implies M ⊆M ′,

(3) ∅ = ∅ and M =M ,

(4) f(M) ⊆ f(M) and f−1(N) ⊆ f−1(N),

(5) M ∪M ′ =M ∪M ′ provided that k ≤ u ∨ v implies k ≤ u or k ≤ v for all u, v ∈ V.

Furthermore, (−) is hereditary, that is, forM ⊆ Z ⊆ X where we consider Z as a sub-V-category

of X, M calculated in the V-category Z is equal to M ∩ Z with M calculated in the V-category

X.

Although this closure operator is in general not topological, it still allows us to introduce a

notion of convergence. For an ultrafilter x on X and a point x ∈ X, one says that x converges

to x, written as x → x, whenever x ∈ A for all A ∈ x. Then a filter f converges to x, f → x, if
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every ultrafilter x with f ⊆ x converges to x. In particular, for a sequence s = (xn)n∈N and a

point x ∈ X, we find that

s→ x ⇐⇒ x ∈ {xn | n ∈M}, for all M ⊆ N infinite.

One also has the expected results linking closed subsets M ⊆ X (i.e. M = M) with Cauchy

completeness: every closed subset of a Cauchy complete V-category is Cauchy complete, and

every Cauchy complete V-subcategory of a separated V-category is closed. We also note that

the inclusion V-functor i : M → X is fully dense (i.e. i∗ · i
∗ = a where X = (X, a)) if and only

if M = X.

An important example is provided by the Yoneda embedding y
X

: X → [Xop,V], since

y
X
(X) = X̃ = {ψ : X−→◦ 1 | ψ is right adjoint}.

Hence, X̃ is Cauchy complete and y
X

: X → X̃ is (fully faithful and) fully dense. This makes

(y
X
)∗ : X−→◦ X̃ an isomorphism in V-Mod with inverse y

∗
X

: X̃−→◦ X, and from that it follows

at once that y
X

: X → X̃ has the desired universal property: for every V-functor f : X → Y

where Y is separated and Cauchy complete, there exists a unique V-functor g : X̃ → Y with

g · y
X

= f . In fact, g can be taken as the V-functor X̃ → Y which represents the left adjoint

V-module f∗ · y
∗
X
, such a V-functor exists since Y is Cauchy complete and is unique since Y is

separated.

Theorem 3.6. The full subcategory of separated and Cauchy complete V-categories is reflective

in V-Cat, where the reflection map for a V-category X can be chosen as y
X

: X → X̃.

The discussion preceding Theorem 3.6 applies actually to any fully faithful and fully dense

V-functor in lieu of the Yoneda embedding, which gives

Proposition 3.7. A V-category X is Cauchy complete if and only if X is injective with respect

to fully faithful and fully dense V-functors.

Here a V-category X is injective with respect to fully faithful and fully dense V-functors

whenever, for every fully faithful and fully dense i : A → B and every V-functor f : A → X,

there exists a V-functor g : B → X with g · i ≃ f . The proposition above provides us with an

alternative way to prove preservation of Cauchy completeness by functors.

Corollary 3.8. Let G : V-Cat → W-Cat be a locally monotone functor with left adjoint F :

W-Cat → V-Cat. If F sends fully faithful and fully dense W-functors to fully faithful and fully

dense V-functors, then G sends Cauchy complete V-categories to Cauchy complete W-categories.

Proof. We write η : 1 → FG and ε : FG→ 1 for the units of the adjunction F ⊣ G. Let X be a

Cauchy complete V-category, i : A→ B be a fully dense embedding in W-Cat and f : A→ GX

be a V-functor. By hypothesis, Fi is a fully dense embedding, hence there exists some V-functor

g : FB → X with g · Fi ≃ εX · Ff . Then

Gg · ηB · i = Gg ·GFi · ηA ≃ GεX ·GFf · ηA = Gε · ηGX · f = f. �

Lemma 3.9. Let F : W → V be a morphism of quantales. Then F : W-Cat → V-Cat sends fully

faithful and fully dense W-functors to fully faithful and fully dense V-functors.

Proof. This follows immediately from the commutativity of the diagrams (∗) in Subsection

1.3. �
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3.3. Cauchy sequences in a V-category. For a sequence s = (xn)n∈N in a V-category X =

(X, a), one defines (see [24])

CauchyX(s) =
∨

N∈N

∧

n,m≥N

a(xn, xm),

which should be seen as a measure of “Cauchyness” of s. Note that CauchyX(s) = CauchyXop(s),

and CauchyX(s) = CauchyY (s) for every V-category Y having X as a sub-V-category. More gen-

erally, for a V-functor f : X → Y and a sequence (xn)n∈N, one has CauchyX(s) ≤ CauchyY (f(s))

where f(s) denotes the sequence (f(xn))n∈N in Y , and this inequality is even an equality if f is

fully faithful.

In the sequel we will simply write Cauchy(s) if it is understood from the context which V-

category we consider. Furthermore, one says that s is Cauchy in X if k ≤ Cauchy(s). By the

considerations above, every V-functor sends Cauchy sequences to Cauchy sequences.

Lemma 3.10. If s′ is a subsequence of s in a V-category X, then Cauchy(s′) ≥ Cauchy(s). In

particular, every subsequence of a Cauchy sequence is Cauchy.

Proof. Let s = (xn)n∈N be a sequence in X = (X, a), M ⊆ N be an infinite subset and

s′ = (xm)m∈M . Then

Cauchy(s′) =
∨

N∈M

∧

n,m≥N,
n,m∈M

a(xn, xm) ≥
∨

N∈M

∧

n,m≥N

a(xn, xm) =
∨

N∈N

∧

n,m≥N

a(xn, xm). �

Lemma 3.11. For any sequence s = (xn)n∈N in a V-category X = (X, a) and any x ∈ X:
∨

N∈N

∧

n≥N

a(xn, x) ≥ Cauchy(s)⊗
∧

N∈N

∨

n≥N

a(xn, x)

Proof. We calculate:

Cauchy(s)⊗
∧

N∈N

∨

n≥N

a(xn, x) =


 ∨

N∈N

∧

n,m≥N

a(xn, xm)


⊗


 ∧

N ′∈N

∨

k≥N ′

a(xk, x)




=
∨

N∈N


 ∧

n,m≥N

a(xn, xm)⊗
∧

N ′∈N

∨

k≥N ′

a(xk, x)




≤
∨

N∈N




∧

n,m≥N

a(xn, xm)⊗
∨

k≥N

a(xk, x)




=
∨

N∈N

∨

k≥N


 ∧

n,m≥N

(a(xn, xm)⊗ a(xk, x))




≤
∨

N∈N

∨

k≥N


 ∧

n≥N

(a(xn, xk)⊗ a(xk, x))




≤
∨

N∈N

∧

n≥N

a(xn, x). �

Corollary 3.12. For a Cauchy sequence (xn)n∈N in a V-category X = (X, a) and x ∈ X,
∨

N∈N

∧

n≥N

a(xn, x) =
∧

N∈N

∨

n≥N

a(xn, x) and
∨

N∈N

∧

n≥N

a(x, xn) =
∧

N∈N

∨

n≥N

a(x, xn).
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To any sequence s = (xn)n∈N in a V-category X = (X, a) one can associate V-modules

ϕs : 1−→◦ X and ψs : X−→◦ 1 defined as

ϕs(x) =
∨

N∈N

∧

n≥N

a(xn, x) and ψs(x) =
∨

N∈N

∧

n≥N

a(x, xn),

for all x ∈ X. In fact, one easily verifies that ϕs and ψs are V-modules, moreover, one has

ψs(x)⊗ ϕs(y) =


 ∨

N∈N

∧

n≥N

a(x, xn)


⊗


 ∨

N∈N

∧

n≥N

a(xn, y)




=
∨

N∈N




∧

n≥N

a(x, xn)⊗
∧

m≥N

a(xm, y)




≤
∨

N∈N

a(x, xN )⊗ a(xN , y) ≤ a(x, y)

for all x, y ∈ X, and

∨

x∈X

ϕs(x)⊗ ψs(x) =
∨

x∈X

∨

N∈N


 ∧

m≥N

a(xm, x)⊗
∧

n≥N

a(x, xn)




≥
∨

N∈N


 ∧

m≥N

a(xm, xN )⊗
∧

n≥N

a(xN , xn)




=


 ∨

N∈N

∧

m≥N

a(xm, xN )


⊗


 ∨

N∈N

∧

n≥N

a(xN , xn)




≥ Cauchy(s)⊗Cauchy(s).

Furthermore, for every x ∈ X,




∨

N∈N

∧

n≥N

a(xn, x)


⊗




∨

M∈N

∧

m≥M

a(x, xm)


 =

∨

N∈N




∧

n≥N

a(xn, x)⊗
∧

m≥N

a(x, xm)




≤
∨

N∈N

∧

n,m≥N

a(xn, x)⊗ a(x, xm)

≤
∨

N∈N

∧

n,m≥N

a(xn, xm),

hence
∨

x∈X

ϕs(x)⊗ ψs(x) ≤ Cauchy(s). All told,

Proposition 3.13. Let s be a sequence in a V-category X. Then s is Cauchy if and only if

ϕs ⊣ ψs in V-Mod.

Lemma 3.14. Let f : X → Y be a V-functor, s = (xn)n∈N be a Cauchy sequence in X with

associated adjunction ϕs ⊣ ψs in V-Mod. Then ϕf(s) = f∗ · ϕs and ψf(s) = ψs · f
∗, where f(s)

denotes the sequence (f(xn))n∈N in Y .
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Proof. By Lemma 1.5, it is enough to show that ϕf(s) ≥ f∗ · ϕs and ψf(s) ≥ ψs · f
∗. In fact, for

any y ∈ Y (and with X = (X, a) and Y = (Y, b)),

f∗ · ϕs(y) =
∨

x∈X

ϕs(x)⊗ b(f(x), y) =
∨

x∈X


 ∨

N∈N

∧

n≥N

a(xn, x)


 ⊗ b(f(x), y)

≤
∨

x∈X

∨

N∈N

∧

n≥N

b(f(xn), f(x))⊗ b(f(x), y) ≤ ϕf(s)(y),

and the other inequality follows similarly. �

Lemma 3.15. Let s be a Cauchy sequence in a V-category X and s′ be a subsequence of s.

Then ϕs = ϕs′ and ψs = ψs′, where ϕs, ϕs′ , ψs and ψs′ denote the associated V-modules.

Proof. By Lemma 3.10, s′ is also Cauchy and therefore ϕs′ ⊣ ψs′ . An easy calculation shows

that ϕs ≤ ϕs′ and ψs ≤ ψs′ , and the assertion follows from Lemma 1.5. �

Proposition 3.16. Let s be a Cauchy sequence in a V-category X, and assume that the as-

sociated adjunction ϕs ⊣ ψs is of the form x∗ ⊣ x∗, for some x ∈ X. Then s converges to

x.

Proof. We have to show that x ∈ {xn | n ∈M}, for every M ⊆ N infinite. Since every sub-

sequence of s induces the same adjunction ϕs ⊣ ψs, it is enough to consider M = N. Let

A = {xn | n ∈ N} and i : A →֒ X be the inclusion V-functor. Then i∗ · x∗ : 1−→◦ A and

x∗ · i∗ : A−→◦ 1 are the V-modules induced by the Cauchy sequence s in M , hence i∗ ·x∗ ⊣ x
∗ · i∗,

that is, x ∈ A. �

Hence, representability of the corresponding adjunction ϕs ⊣ ψs guarantees convergence of a

Cauchy sequence s. We investigate now under which conditions the reverse statement is true.

Proposition 3.17. Let X be a V-category and s = (xn)n∈N be a Cauchy sequence in X. Put

s̃ := (x∗n)n∈N. Then s̃ → ψs in [Xop,V]. If, moreover, k = ⊤ is the top-element in V, then

s̃→ ψ implies ψ = ψs, for every V-module ψ ∈ [Xop,V].

Proof. By Lemma 1.6, ψ∗
s = ψs · y

∗
X
, and ψs · y

∗
X

= ψs̃ by Lemma 3.14. Hence, by Proposition

3.16, s̃ → ψs. For the second statement, assume now that k = ⊤ is the top-element in V. First

note that from s̃ → ψ it follows that ψ ∈ y
X
(X), hence the V-module ψ : X−→◦ 1 has a left

adjoint ϕ : 1−→◦ X. Furthermore, for any infinite subset M ⊆ N,

k ≤
∨

m∈M

[ψ, x∗m]⊗ [x∗m, ψ] =
∨

m∈M

ϕ(xm)⊗ ψ(xm).

Hence, for any N ∈ N,

ψ(x) ≥ hom(
∨

n≥N

ϕ(xn)⊗ ψ(xn), ψ(x)) =
∧

n≥N

hom(ϕ(xn)⊗ ψ(xn), ψ(x)) ≥
∧

n≥N

a(x, xn),

where the last inequality follows from

a(x, xn)⊗ ψ(xn)⊗ ϕ(xn) ≤ ψ(x) ⊗ ϕ(xn) ≤ ψ(x).

Therefore ψ ≥ ψs, and similarly one obtains ϕ ≥ ϕs. Lemma 1.5 guarantees now ψ = ψs. �

Corollary 3.18. Assume that k = ⊤ is the top-element of V. Let s be a Cauchy sequence in a

V-category X and x ∈ X with s→ x. Then x∗ = ψs.

Proof. From s→ x it follows that s̃→ x∗ in [Xop,V], where s̃ := (x∗n)n∈N and s = (xn)n∈N, and

therefore x∗ = ψs by the proposition above. �
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Hence, under the assumption that k = ⊤ in V, for a Cauchy sequence s = (xn)n∈N in a

V-category X and x ∈ X one has:

s→ x ⇐⇒ x∗ = ϕs ⇐⇒ x∗ = ψs

⇐⇒ x∗ ≤ ϕs & x∗ ≤ ψs

⇐⇒ ∀y ∈ X .




a(x, y) ≤

∨

N∈N

∧

n≥N

a(xn, y)


 &


a(y, x) ≤

∨

N∈N

∧

n≥N

a(y, xn)






⇐⇒


k ≤

∨

N∈N

∧

n≥N

a(xn, x)


 &


k ≤

∨

N∈N

∧

n≥N

a(x, xn)




(if, moreover, k =
∨
{u ∈ V | u≪ k})

⇐⇒ ∀u≪ k ∃N ∈ N ∀n ≥ N . (u ≤ a(xn, x) & u ≤ a(x, xn)).

Theorem 3.19. Assume that k = ⊤ in V and that there is a sequence (un)n∈N in V satisfying

(1)
∨

n∈N

un = k,

(2) for all n ∈ N, un ≪ k,

(3) for all n ∈ N, un ≤ un+1.

Then every adjunction (ϕ : 1−→◦ X) ⊣ (ψ : X−→◦ 1) in V-Mod is of the form ϕs ⊣ ψs, for some

Cauchy sequence s in X. Hence, under these conditions, a V-category X is Cauchy complete if

and only if every Cauchy sequence converges.

Proof. We set up a sequence s = (xn)n∈N in X putting, for each n ∈ N, xn so that un ≤

ϕ(xn)⊗ ψ(xn). Then (xn)n∈N is Cauchy since

∨

N∈N

∧

n,m≥N

a(xn, xm) ≥
∨

N∈N

∧

n,m≥N

ψ(xn)⊗ ϕ(xm) ≥
∨

N∈N

∧

n,m≥N

un ⊗ um ≥
∨

N∈N

uN ⊗ uN ≥ k.

Furthermore, for every x ∈ X and N ∈ N,
∧

n≥N

a(xn, x) ≤
∧

n≥N

hom(ϕ(xn), ϕ(x)) ≤ hom(
∨

n≥N

un, ϕ(x)) = ϕ(x),

hence ϕs ≤ ϕ. Similarly, ψs ≤ ψ, and Lemma 1.5 implies ϕs = ϕ and ψs = ψ. �

Corollary 3.20. Under the assumptions of Theorem 3.19, if X is a symmetric V-category and

(ϕ : 1−→◦ X) ⊣ (ψ : X−→◦ 1), then ϕ(x) = ψ(x) for all x ∈ X. Consequently, for a V-subcategory

M of a V-category Y , if M is symmetric, then M is symmetric too. In particular, the Cauchy-

completion of a symmetric V-category is again symmetric.

Proof. If X = (X, a) is symmetric and ϕ ⊣ ψ, then

ϕ(x) =
∨

N∈N

∧

n≥N

a(xn, x) =
∨

N∈N

∧

n≥N

a(x, xn) = ψ(x),

for all x ∈ X. Hence, if y ∈ M and M ⊆ Y is a symmetric sub-V-category of Y = (Y, b), then

b(y, x) = b(x, y) for all x ∈M . If also y′ ∈M , then

b(y, y′) =
∨

x∈M

b(y, x)⊗ b(x, y′) =
∨

x∈M

b(y′, x)⊗ b(x, y) = b(y′, y). �
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Remark 3.21. We also note that, assuming that A = {x ∈ V | x≪ k} is directed and k =
∨
A,

then V satifies the condition

k ≤ u ∨w ⇒ k ≤ u or k ≤ v,

for all u, v ∈ V, as well as k =
∨

x≪k

x⊗ x (for the latter, see [6, Theorem 1.12]). For the former,

note that A = Au ∪ Av where Au = {x ∈ A | x ≤ u} and Av = {x ∈ A | x ≤ v}, and also

that directedness of A implies that k =
∨
{x ∈ A | x ≥ y}, for any y ∈ A. Hence, if k =

∨
Au,

then k ≤ u, otherwise there is some y ∈ A with y /∈ Au. Therefore {x ∈ A | x ≥ y} ⊆ Av, and

we conclude k ≤
∨
Av ≤ v. Consequently, if A is directed, then the closure (−) is topological

(see Proposition 3.5). Under the conditions of Theorem 3.19, this topology is determined by its

convergent (Cauchy) sequences in the sense that

x ∈M ⇐⇒ there is some sequence s in M with s→ x

⇐⇒ ∀u≪ k ∃y ∈M .u ≤ a(x, y) & u ≤ a(y, x)

⇐⇒ ∀u≪ k ∃y ∈M .u≪ a(x, y) & u≪ a(y, x)

⇐⇒ M ∩B(x, u) ∩B(u, x) 6= ∅,

where B(x, u) = {y ∈ X | u ≪ a(x, y)} and B(u, x) = {y ∈ X | u ≪ a(y, x)}. In fact, the

collection of all sets Bu(x) = B(x, u)∩B(u, x) (x ∈ X, u≪ k) is a basis for the topology on X.

Hence, under these assumptions, the topology considered here coincides with the one in [6].

3.4. Example: probabilistic metric spaces. We show now that the notions (and results) of

Cauchy completeness for a generic V-category specialise to established concepts for probabilistic

metric spaces. Recall from Subsection 2.1 that the quantale ∆ is completely distributive, the

neutral element ε is the top element of ∆ and one has

fδ,u ≪ ε for all δ > 0, u < 1, ε =
∨

{fδ,u | δ > 0, u < 1} =
∨

n∈N

f 1
n
,1− 1

n

,

hence ∆ satisfies the conditions of Theorem 3.19. By definition, a sequence s = (xn)n∈N in a

probabilistic metric space X = (X, a) is Cauchy if and only if

∀δ > 0∀u < 1∃N ∈ N ∀n,m ≥ N ∀t > δ . a(xn, xm)(t) ≥ u,

which is equivalent to

∀δ > 0∀u < 1∃N ∈ N ∀n,m ≥ N . a(xn, xm)(δ) ≥ u.

Similarly, s converges to x ∈ X precisely when

∀δ > 0∀u < 1∃N ∈ N ∀n ≥ N . a(xn, x)(δ) ≥ u & a(x, xn)(δ) ≥ u,

equivalently, whenever

lim
n→∞

a(xn, x)(δ) → 1 and lim
n→∞

a(x, xn)(δ) → 1

for all δ > 0. The induced topology on X has the sets

Bδ,u(x) = {y ∈ X | a(x, y)(δ) > u & a(y, x)(δ) > u}

has basic open sets.

As for metric spaces, a probabilistic metric space X is Cauchy complete (in the sense that

every adjoint pair of ∆-modules is representable) if and only if every Cauchy sequence converges,

and a Cauchy completion of X is given by y
X

: X → X̃ , where X̃ is the subspace of ∆Xop

defined

by all right adjoint ∆-modules. Furthermore, by Proposition 3.2 and Corollary 3.3, a metric
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space X is Cauchy complete in Met if and only if I∞X is Cauchy complete in ProbMet, and

Corollary 3.8 and Lemma 3.9 imply that P∞ : ProbMet → Met preserves Cauchy completeness.

Finally, we remark that the Cauchy completion X̃ of a symmetric and finitary probabilistic

metric space X = (X, a) is symmetric and finitary as well. In fact, symmetry of X̃ follows from

Corollary 3.20. To see that X̃ is also finitary, we show first that ψ(x) ∈ ∆ is finite, for every

x ∈ X and every right adjoint ∆-module ψ : X−→◦ 1. Let x ∈ X, and put v = ψ(x)(∞). Since

ε =
∨
x′∈X ψ(x

′), for every u < 1 there is some x′ ∈ X with f1,u ≤ ψ(x′). Hence,

1 = a(x, x′)(∞) = hom(ψ(x′), ψ(x))(∞) ≤ hom(f1,u, f0,v) = f0,v�u(∞) = v � u

for all u < 1, which implies v = 1. Given now also ψ : X−→◦ 1 in X̃, then the distance

[ψ,ψ′] =
∨

x∈X

[ψ, x∗]⊗ [x∗, ψ′] =
∨

x∈X

ψ(x) ⊗ ψ′(x)

is finite.

Remark 3.22. The first construction of a Cauchy-completion of a probabilistic metric space was

given by Sherwood [23] by putting an appropriate probabilistic metric on the set of equivalence

classes of Cauchy sequences of a given space.

4. Injective and exponentiable V-categories

4.1. Exponentiable V-categories. We recall that an object X in a category C with finite

products is exponentiable whenever the functor X×− : C → C has a right adjoint (−)X : C → C.

Unwinding the definition, such a right adjoint must produce, for each object Z in C, an object

ZX in C so that, for all objects Y in C, there is a natural bijection

C(X × Y,Z) ≃ C(Y,ZX).

The category C is called Cartesian closed if every object X of C is exponentiable.

We are interested in the case C = V-Cat, where we now also assume that V, seen as a

category, is Cartesian closed. The latter just means that the underlying lattice of our quantale

V is Heyting, that is, for all u,w ∈ V there is u→ w ∈ V satisfying

u ∧ v ≤ w ⇐⇒ v ≤ (u→ w),

for all v ∈ V. Since V is complete, V is Heyting if and only if V satisfies the frame law:

u ∧
∨

i∈I

ui =
∨

i∈I

u ∧ ui,

for all u, ui ∈ V (i ∈ I). Hence, if V is completely distributive, then it is also Heyting.

Let now X = (X, a) be an exponentiable V-category. We can choose Y = E = (1, k) above,

and conclude that the underlying set of the V-category ZX is given by the set of all V-functors of

type X×E → Z. Here we can identify X×E with the V-category X̂ = (X, â) whose underlying

set is X and where

â(x, y) = a(x, y) ∧ k,

for all x, y ∈ X. Hence, if k = ⊤ is the top-element of V, then ZX is indeed given by the set of all

V-functors from X to Z. The V-categorical structure d in ZX is the largest one on V -Cat(X̂, Z)

making the evaluation map

ev : X × V -Cat(X̂, Z) → Z, (x, h) 7→ h(x)

a V-functor, that is,

d(h, l) =
∧

x1,x2∈X

(a(x1, x2) → c(h(x1), l(x2))),
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for all V-functors h, l : X̂ → Z where Z = (Z, c). In fact, an arbitrary V-category X is

exponentiable if and only if the structure d defined above turns V -Cat(X̂, Z) into a V-category.

The following characterisation of exponentiable V-categories can be found in [3] (see also [4]).

Theorem 4.1. If V is Heyting, then a V-category (X, a) is exponentiable in V-Cat if and only

if ∨

x∈X

(a(x0, x) ∧ v0)⊗ (a(x, x2) ∧ v1) ≥ a(x0, x2) ∧ (v0 ⊗ v1),

for all x0, x2 ∈ X and all v0, v1 ∈ V.

As also shown in [3], this condition simplifies considerably for metric spaces.

Corollary 4.2. An object (X, a) of Met is exponentiable in Met if and only if, for all x0, x2 ∈ X

with a(x0, x2) <∞ and all u0, u1 ∈ [0,∞] with u0 + u1 = a(x0, x2),

∀ε > 0 ∃x1 ∈ X : a(x0, x1) < u0 + ε and a(x1, x2) < u1 + ε.

4.2. Injectives are exponentiable. We already observed in [12] that the criterion above im-

plies that every injective metric space is exponentiable. In general, a V-category X is called

injective if, for every fully faithful V-functor i : A → B and every f : A → X in V-Cat, there

exists a V-functor g : B → X with g · i ≃ f . Note that the V-category V is injective in V-Cat,

for any quantale V.

Theorem 4.3. Assume that V is Heyting. Then the following assertions are equivalent.

(i) For all u, v, w ∈ V, w ∧ (u⊗ v) =
∨
{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w}.

(ii) Every injective V-category is exponentiable.

(iii) The V-category V is exponentiable.

Proof. Assume first that V satisfies the condition in (i), and let X = (X, a) be an injective

V-category. We verify that X satisfies the condition of Theorem 4.1. To this end, let x0, x2 ∈ X

and u, v ∈ V, and put w = a(x0, x2). Let u
′ ≤ u, v′ ≤ v with u′⊗v′ ≤ w. We define V-categories

A = (A, c) and B = (B, d) where A = {0, 2}, B = {0, 1, 2} and

c(0, 2) = d(0, 2) = u′ ⊗ v′, d(0, 1) = u′, d(1, 2) = v′,

and c(x, x) = d(x, x) = k and c(x, y) = d(x, y) = ⊥ in all other cases. Since X is injective, there

is an extension g : B → X of the V-functor f : A → X, i 7→ xi along the inclusion V-functor

A →֒ B,

{0
u′⊗w′

−−−−→ 2} �
� //

f
((◗◗

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗

{0
u′
−→ 1

v′
−→ 2}

g

��
X

and for x := g(1) one has a(x0, x) ≥ u′ and a(x, x2) ≥ v′, hence

(a(x0, x) ∧ u)⊗ (a(x, x2) ∧ v) ≥ u′ ⊗ v′.

Consequently,
∨

x∈X

a(x0, x) ∧ u)⊗ (a(x, x2)∧ v) ≥
∨

{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w} = a(x0, x2)∧ (u⊗ v),

that is, X is exponentiable. Certainly, (ii) implies (iii). Assume now that V is exponentiable.

Hence, for u, v, w ∈ V,
∨

{(hom(k, x) ∧ u)⊗ (hom(x,w) ∧ v) | x ∈ V} = hom(k,w) ∧ (u⊗ v) = w ∧ (u⊗ v),
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and the condition of (i) follows since (hom(k, x) ∧ u)⊗ (hom(x,w) ∧ v) ≤ w, hom(k, x) ∧ u ≤ u

and hom(x,w) ∧ v ≤ v. �

Corollary 4.4. Assume that V satisfies w ∧ (u⊗ v) =
∨
{u′ ⊗ v′ | u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w},

for all u, v, w ∈ V. Then the full subcategory of V-Cat defined by the injective V-categories is

Cartesian closed.

Proof. Clearly, any product of injective V-categories is injective. Furthermore, a categorical

standard argument (see [14, Lemma 4.10], or the proof of Corollary 3.8) shows that with Y also

Y X is injective, for every exponentiable V-category X. �

Given u, v, w ∈ [0,∞], there are always u′, v′ ∈ [0,+∞] such that w ∧ (u⊗ v) = u′ ⊗ v′, hence

every injective metric space is exponentiable. More generally, the same argument shows that

every injective V-category is exponentiable, for V being linearly ordered.

4.3. Example: probabilistic metric spaces. The quantale ∆ is completely distributive,

hence in particular Heyting. To verify that w∧ (u⊗ v) =
∨
{u′⊗ v′ | u′ ≤ u, v′ ≤ v, u′⊗ v′ ≤ w},

for all u, v, w ∈ ∆, it is enough to consider u = fδ1,α1
, v = fδ2,α2

and w = fδ3,α3
, then

u⊗ v = fδ1+δ2,α1·α2
. We discuss the various possibilities:

• if δ1 + δ2 ≥ δ3 and α1 · α2 ≤ α3, then w ∧ (u⊗ v) = (u⊗ v);

• if δ1 + δ2 ≥ δ3 and α1 · α2 ≥ α3, then w ∧ (u ⊗ v) = (u′ ⊗ v) where u′ = fδ1,α with

α · α2 = α3, α ≤ α1;

• if δ1 + δ2 ≤ δ3 and α1 · α2 ≤ α3, then w ∧ (u ⊗ v) = (u′ ⊗ v) where u′ = fδ,α1
with

δ + δ2 = δ3, δ1 ≤ δ;

• if δ1 + δ2 ≤ δ3 and α1 · α2 ≥ α3, then w ∧ (u ⊗ v) = (u′ ⊗ v) where u′ = fδ,α with

δ + δ2 = δ3, δ ≥ δ1 and α · α2 = α3, α ≤ α1.

Therefore one has

Theorem 4.5. Every injective probabilistic metric space is exponentiable, in particular, ∆ is

exponentiable in ProbMet. Furthermore, the full subcategory of ProbMet defined by all injective

probabilistic metric spaces is Cartesian closed.
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