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Abstract

The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(FE) and the set of hypermeager elements HM(E) in the setting
of homogeneous effect algebras E. Second, we study the property (W+) and
the maximality property introduced by Tkadlec as common generalizations of
orthocomplete and lattice effect algebras. We show that every block of an
Archimedean homogeneous effect algebra satisfying the property (W+) is lattice
ordered. Hence such effect algebras can be covered by ranges of observables.
As a corollary, this yields that every block of a homogeneous orthocomplete
effect algebra is lattice ordered. Therefore finite homogeneous effect algebras
are covered by MV-algebras.
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Introduction

The history of quantum structures started at the beginning of the 20th
century. Observable events constitute a Boolean algebra in a classical physical
system. Because event structures in quantum mechanics cannot be described by
Boolean algebras, Birkhoff and von Neumann introduced orthomodular lattices
which were considered as the standard quantum logic. Later on, orthoalge-
bras were introduced as the generalizations of orthomodular posets, which were
considered as "sharp” quantum logic.

In the nineties of the twentieth century, two equivalent quantum structures,
D-posets and effect algebras were extensively studied, which were considered as
”unsharp” generalizations of the structures which arise in quantum mechanics,
in particular, of orthomodular lattices and MV-algebras.
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Effect algebras are fundamental in investigations of fuzzy probability theory.
In the fuzzy probability frame, the elements of an effect algebra represent fuzzy
events which are used to construct fuzzy random variables.

In the present paper, we continue the study of homogeneous effect algebras
started in ﬂg] This class of effect algebras includes orthoalgebras, lattice ordered
effect algebras and effect algebras satisfying the Riesz decomposition property.

In E] it was proved that every homogeneous effect algebra is a union of its
blocks, which are defined as maximal sub-effect algebras satisfying the Riesz
decomposition property. In @] Tkadlec introduced the property (W+) as a
common generalization of orthocomplete and lattice effect algebras.

Riecanova in HE] proved one of the most important results in the theory of
effect algebras that each lattice ordered effect algebra can be covered by MV-
subalgebras which form blocks. Dvurecenskij extended in E] this result for effect
algebras with the Riesz interpolation property and with the decomposition-meet
property. Pulmannova ] proved that every homogeneous effect algebra E
such that every block B of E satisfies the decomposition-meet property can be
covered by MV-algebras.

The aim of our paper is to show that every block of an Archimedean homo-
geneous effect algebra satisfying the property (W+) is lattice ordered. Hence
Archimedean homogeneous effect algebras fulfilling the condition (W+) can be
covered by ranges of observables. As a corollary, this yields that every block of
a homogeneous orthocomplete effect algebra is lattice ordered. Therefore finite
homogeneous effect algebras are covered by MV-algebras which form blocks.

As a by-product of our study we extend the results on sharp and meager
elements of m] into the realm of Archimedean homogeneous effect algebras
satisfying the property (W+). We also thoroughly study the set of meager
elements M(FE) and the set of hypermeager elements HM(E) in the setting of
homogeneous effect algebras F.

1. Preliminaries and basic facts

Effect algebras were introduced by Foulis and Bennett (see @]) for modelling
unsharp measurements in a Hilbert space. In this case the set E(H) of effects
is the set of all self-adjoint operators A on a Hilbert space H between the null
operator 0 and the identity operator 1 and endowed with the partial operation
+ defined iff A+ B is in E(H), where + is the usual operator sum.

In general form, an effect algebra is in fact a partial algebra with one partial
binary operation and two unary operations satisfying the following axioms due
to Foulis and Bennett.

The basic reference for the present text is the classic book by Dvurecenskij
and Pulmannova E], where the interested reader can find unexplained terms
and notation concerning the subject.

Definition 1.1. M, @] A partial algebra (E;®,0, 1) is called an effect algebra
if 0, 1 are two distinct elements, called the zero and the unit element, and @
is a partially defined binary operation called the orthosummation on E which
satisfy the following conditions for any x,y, 2z € E:



(Ei) 2@y=y@axif @y is defined,
(Eil) (x®y)®z=2® (y® z) if one side is defined,

(Eiii) for every x € F there exists a unique y € F such that x @ y = 1 (we put
z’ =y),

(Eiv) if 1@ x is defined then z = 0.

(E;,0,1) is called an orthoalgebra if © @ x exists implies that @ = 0 (see

We often denote the effect algebra (E;@®,0,1) briefly by E. On every effect
algebra E a partial order < and a partial binary operation © can be introduced
as follows:

r<y and ySr=z iff t® 2z isdefined and x® z=1y.

If £ with the defined partial order is a lattice (a complete lattice) then
(E;,0,1) is called a lattice effect algebra (a complete lattice effect algebra).

Mappings from one effect algebra to another one that preserve units and
orthosums are called morphisms of effect algebras, and bijective morphisms of
effect algebras having inverses that are morphisms of effect algebras are called
isomorphisms of effect algebras.

Definition 1.2. Let E be an effect algebra. Then Q C F is called a sub-effect
algebra of F if

(i)1e@
(ii) if out of elements z,y,z € F with x &y = z two are in Q, then z,y,z € Q.

If E is a lattice effect algebra and @ is a sub-lattice and a sub-effect algebra of
E, then Q is called a sub-lattice effect algebra of E.

Note that a sub-effect algebra @ (sub-lattice effect algebra @) of an effect
algebra E (of a lattice effect algebra E) with inherited operation @ is an effect
algebra (lattice effect algebra) in its own right.

For an element x of an effect algebra E we write ord(z) = co if ne = 2@ @
-+ @z (n-times) exists for every positive integer n and we write ord(z) = n, if
n. is the greatest positive integer such that n,z exists in . An effect algebra
E is Archimedean if ord(z) < oo for all z € E.

A minimal nonzero element of an effect algebra F is called an atom and E
is called atomic if under every nonzero element of F there is an atom.

Definition 1.3. We say that a finite system F = (zx)}_; of not necessarily
different elements of an effect algebra E is orthogonal if ©1 & xo & --- & z,

n
(written @ x or @ F) exists in E. Here we define 1 @22 @ -+ @z = (21 B
k=1

n—1 n—1
To @@ Tp_1) D xy, supposing that € xj is defined and (P zx) Oy, exists.
k=1 k=1



We also define @@ = 0. An arbitrary system G = (z)xen of not necessarily
different elements of F is called orthogonal if @ K exists for every finite K C G.
We say that for a orthogonal system G = (x,).cp the element @ G exists iff
V{P K | K C G is finite} exists in E and then weput @G =\V{PK | K C G
is finite}. We say that @ G is the orthogonal sum of G and G is orthosummable.
(Here we write G; C G iff there is H; C H such that G1 = (2)kem, ). We
denote G := {P K | K C G is finite}.

Definition 1.4. E is called orthocomplete if every orthogonal system is ortho-
summable.

Every orthocomplete effect algebra is Archimedean.
Definition 1.5. An element x of an effect algebra F is called

(i) sharp if x Aa’ = 0. The set S(E) = {z € E |z Az’ =0} is called a set of
all sharp elements of E (see [1T]).

(ii) principal, if y ® z < x for every y,z € E such that y,z < z and y ® z
exists.

(iii) central, if x and 2’ are principal and, for every y € E there are y1,y2 € E
such that y; < 2,y < 2/, and y = y; @ o (sce [6]). The center C(E) of
E is the set of all central elements of E.

If 2 € F is a principal element, then x is sharp and the interval [0, 2] is an
effect algebra with the greatest element x and the partial operation given by
restriction of & to [0, z].

Observation 1.6. Clearly, E is an orthoalgebra if and only if S(E) = E.

Statement 1.7. [d, Theorem 5.4] The center C(E) of an effect algebra E is a
sub-effect algebra of E and forms a Boolean algebra. For every central element
xof E,y=wyAhz)®(yAa') forally € E. If z,y € C(E) are orthogonal, we
have xVy=x®dy and x Ay = 0.

Statement 1.8. , Lemma 3.1.] Let E be an effect algebra, x,y € E and
¢,d € C(E). Then:

(i) If x ®y exists then cA (z @ y) = (cAz) D (cAy).
(ii) If c®d d exists then x A (c @ d) = (x Ae) ® (x Ad).

Definition 1.9. A subset M of an effect algebra E is called compatible (inter-
nally compatible) if for every finite subset Mg of M there is a finite orthogonal
family (z1,...,2,) of elements in E (in M) such that for every m € Mg there
isaset Ap C{1,... ,lg with m = ;¢ 4, zi- If {z,y} is a compatible set, we
write z <> y (see |10, [13]).

Evidently, x <> y iff there are p,q,r € E such that t = p®q, y = q&r
and p @ q @ r exists iff there are ¢,d € F such that d <z < ¢, d <y < ¢ and
cO©x =y 6 d. Moreover, if z Ay exists then z <> y iff x ® (y© (z Ay)) exists.



Definition 1.10. An effect algebra E satisfies the Riesz decomposition property
(or RDP) if, for all u,v1,v2 € F such that u < vy @ ve, there are uj,us such
that u; < wy,us < vy and u = uy @ us.

An effect algebra F is called homogeneous if, for all u,vy,vs € E such that
u < v; ® vy < o/, there are uq, us such that u; < vy, us < v9 and u = uy P us

(see [d]).

An effect algebra F satisfies the difference-meet property (or DMP) if, for
all z,y,2 € E such that <y, xAz€ Fand yAz € E, then (yox)ANz€ E
(see é])

Statement 1.11. ﬂﬂ, Proposition 2.3] Let E be a homogeneous effect algebra.
Letu,vy,...,v, € E be such that v1®- - -Dv, ezists, u < 11 D---Bv, <u'. Then
there are uy, ..., uy such that, for all 1 <i<n, u; <v; andu=uy B -+ - D Uy,.

Statement 1.12. [10, Proposition 2]
(i) Ewvery orthoalgebra is homogeneous.
(ii) Ewery lattice effect algebra is homogeneous.

(iii) An effect algebra E has the Riesz decomposition property if and only if E
is homogeneous and compatible.
Let E be a homogeneous effect algebra.

(iv) A subset B of E is a mazimal sub-effect algebra of E with the Riesz de-

composition property (such B is called a block of E) if and only if B is a
maximal internally compatible subset of E containing 1.

(v) Every finite compatible subset of E is a subset of some block. This implies
that every homogeneous effect algebra is a union of its blocks.

(vi) S(E) is a sub-effect algebra of E.
(vii) For every block B, C(B) = S(F)N B.
(viii) Letx € B, where B is a block of E. Then{y € E |y <x andy <2’} C B.
Hence the class of homogeneous effect algebras includes orthoalgebras, effect
algebras satisfying the Riesz decomposition property and lattice effect algebras.

Proposition 1.13. Let E be a homogeneous effect algebra and v € E. The
following conditions are equivalent.

(i) veS(E);
(ii) y < z whenever w,y,z € E such that v =w ® z, y < w' and y < w.

Proof. (i) = (ii) Evidently, there is a block, say B, such that it contains
the following orthogonal system {y,w &y, 2,1 © v}. Hence B contains also w,
w' and v € C(B). Since 1 = w @ w’ we obtain by Statement [[.8 (ii) that
v=vApwdvAgpw =w®dvAgw'. Subtracting w we obtain z = v Ag w'.
Hence y < w < v and y < v’ yields that y < z.

(i) = (i) Let y € [0,0]N[0,v']. Put w = v and z = 0. Immediately, y < 0. O



An important class of effect algebras was introduced by Gudder in ﬂﬂ] and
B] Fundamental example is the standard Hilbert spaces effect algebra E(H).
For an element x of an effect algebra E we denote

=Vgel{seSE)|s<x} if it exists and belongs to S(E)
=Npl{s€eSE)|s>ux} if it exists and belongs to S(E).

8]) |

Definition 1.14. ([7], [§].) An effect algebra (E, ®,0,1) is called sharply dom-
inating if for every x € E there exists Z.

Obviously, 7 is the smallest sharp element such that © < Z. That is z € S(E)
and if y € S(F) satisfies x <y then z < y.
Recall that the following conditions are equivalent in any effect algebra E.

e [/ is sharply dominating;

e for every x € E there exists ¥ € S(E) such that T < z and if u € S(E)
satisfies u < x then u < 7;

e for every x € F there exist a smallest sharp element Z over 2 and a greatest
sharp element Z below x.

As proved in @], S(F) is always a sub-effect algebra in a sharply dominating
effect algebra F.

Statement 1.15. m, Proposition 15] Let E be a sharply dominating effect
algebra. Then every x € E has a unique decomposition v = xs & xar, where
xs € S(E) and xpr € M(E), namely x =2 @ (x © ).

Lemma 1.16. Let E be a sharply dominating effect algebra and let x € E.

TOT=T0Tr=TOT.
Proof. Clearly x ©Z < Zox € S(E) and Tox <6 Z € S(E). Therefore

ro0r <767 and /E’é\x <76 z. Now, by adding Z, we obtain

r=r®207)<rPro0T <2

which yields T & 107 = Z, and similarly

F=io(@or) <icicr<ic@ex) =g

which yields =267 © x. O

Lemma 1.17. Let E be a sharply dominating effect algebra and let x € E.

Tox=2"0@) =40 )

and
ror=2)or=>u)or
Proof. Transparent. O
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Figure 1: Example 22]

2. Meager, hypermeager and ultrameager elements
In what follows set (see [10, [18])
M(E) ={z € E| if v € S(E) satisfies v < x then v = 0}.

An element z € M(F) is called meager. Moreover, x € M(E) iff z = 0.
Recall that € M(E), y € F, y < = implies y € M(F) and x © y € M(E).
We also define

Definition 2.1.
HM(E) = {z € E | thereis y € E such that z <y and = < ¢’}
and
UM(E) = {xz € E| for every y € S(F) such that x <y it holds x <y © x}.

An element x € HM(FE) is called hypermeager, an element = € UM(E) is called
ultrameager.
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Figure 2: Example 23]

Example 2.2. In the non-homogeneous non-sharply dominating effect algebra
depictured in Figure[ll M(F) = HM(E) # UM(E). Sharp elements are denoted
in black. One can easily check that E is a sub-effect algebra of the MV-effect
algebra [0,1] x [0,1] such that a — (2,0),b — (4,1),¢ — (0,3). Moreover,
since a @ ¢ ¢ S(F) we obtain that S(F) is not a sub-effect algebra of E.
Example 2.3. In the non-homogeneous non-sharply dominating effect algebra
depictured in Figure 2l M(FE) # HM(FE) # UM(E).

Sharp elements are denoted in black. One can easily check that F is a sub-
effect algebra of the MV-effect algebra [0,1] x [0, 1] such that a — (2,0),b
(3,%).¢ = (0,2). Moreover, since a @ ¢ ¢ S(E) we obtain that S(E) is not a
sub-effect algebra of E.



Lemma 2.4. Let E be an effect algebra. Then HM(E) C M(E). Moreover, for
al z € E, x € HM(E) iff x ® x exists and, for all y € M(E), y # 0 there is
h € HM(E), h # 0 such that h < y.

Proof. Let x € HM(FE). Then there is y € E such that x < y and = < y/'.
Therefore also < y < a/, i.e. © @ x exists. Let v € S(E), v <z < y. Then
v<xz <y <v'. Hencev=vAv =0, ie., z e ME).

Now, let x € E such that x ® x exists. Then z < 2’ and evidently z < x.
Hence x € HM(E).

Assume that y € M(FE), y # 0. Since y is meager there is a non-zero
element h such that h < y and h < 3’ (otherwise we would have y € S(E), a
contradiction). This invokes that h is hypermeager. O

Lemma 2.5. Every ultrameager element is hypermeager.

Proof. Let x be an ultrameager element of an effect algebra E. Because 1 €
S(E), z <16z =2a', and by Lemma [24] = is hypermeager. O

Lemma 2.6. Let E be a sharply dominating effect algebra and let y € E. Then
y is ultrameager if and only if y < ySy.

Proof. For every s € S(E) for which y < s, it holds §¥ < s and y € S(E). O
Lemma 2.7. In every homogeneous effect algebra E, UM(E) = HM(E).

Proof. Let E be a homogeneous effect algebra. By Lemma 23 UM(E) C
HM(E). Let conversely € HM(E) and y € S(E) such that # < y. There exists
a block B for which x,y,x ® z,y © x € B. By Statement (vii), y is central
in B. Therefore z ® x < y and consequently z < y & x. O

Lemma 2.8. In every sharply dominating homogeneous effect algebra F,

UME) = | Wwnlgey= | Wwnl@ey =

yEUM(E) yEHM(E)

U Wwnl@ey = wnl@ey =HM(E).

yEM(E) yeE

Proof. By Lemma 27 UM(FE) = HM(E). Lemma 26 yields

ummE)C | Wwe U wnl@ew,

yeUM(E) yeUM(E)

which implies

HME)=UME) C |J Wwnlgeyc | wnl@ewc

yeUM(E) yeHM(E)
U wnl@ey < |Jlwnl@oy) C HM(E).
yGM(E) yeE

O



Lemma 2.9. In any homogeneous effect algebra F,
YyApz=0 <<= yAz=0
holds for any block B and y,z € C(B).

Proof. = Since y Ap z = 0, it holds y < z’. Therefore w € [0,y] N[0, 2]
implies w € [0,2'] N[0, z] = {0}.
<= Trivial. O

Lemma 2.10. The following conditions are equivalent in any sharply dominat-
ing homogeneous effect algebra E.

(i) for any block B and v,y,z € B, it holds v € B and y A\p 2 = 0 =
YAz =0;

(ii) for any block B and v,y,z € B, it holds v € B, and y A\p 2 = 0 =
U Ap zZ =0 if furthermore y,z € BNM(E);

(iii) for any block B and v,y,z € B, it holds U € B and y A\p z = 0 =
yANZ=0;

(iv) for any block B and v,y,z € B, it holds U € B, and y A\p z = 0 =
YAz =0 if furthermore y,z € BN M(E).

Proof. Clearly (i) <= (iii) and (ii) <= (iv) in virtue of Lemma X0 Further-
more, (i) = (ii) and (iii) = (iv).

(i) = (i) Let B be a block in F and y,z € B. By assumption, y,z € B.
Therefore gy © y,z© z € BNM(FE). By assumption, from Lemma [[.T6 and the
fact that (y©y) Ap (26 2) =0 we get

ey g (zez)=yeyApzez=0.

Further, 0 # w € [0,y] N [0,2] N B implies 0 # @ € [0,y] N [0,z]. Clearly
WA (28 (6 2)) = @w # 0. There exist w1 < z,ws < Z & z for which
w wy =w <y. Because WAz =0,w; =0and w =wy; <26z € M(E).
Therefore w = 0, a contradiction.
This yields yAp z2= (YO y) Ap 2 ® (?7/\8 z) = (Z/J\@ 27) ANpz=(y© 37) AB Z.
Applying the above considerations once more we obtain that y Ap z =

WO AsZ=(@Woy) rAs(0Z) =0.

O

Definition 2.11. A sharply dominating homogeneous effect algebra is sober if
it satisfies the equivalent conditions in Lemma 2.10

Lemma 2.12. Let E be a homogeneous effect algebra, and y € E and w € S(E)
for which y < w and ky exists. It holds ky < w.

Proof. The elements y', w, y,2y,...,ky belong to one block B. For k = 1
the statement holds. Suppose 2 < k and the statement holds for £k — 1. By
Statement [[L8 w Ap ky = (w Ap (k—1)y) @y = (k— 1)y ®y = ky. Therefore
ky < w. O

10



Lemma 2.13. Let E be an Archimedean homogeneous effect algebra. For any
a € E~ {0} for which a A (nga) =0, it holds @ exists and @ = nga.

Proof. Let a € E such that a A (nqa)’ = 0. Clearly a £ (nqa)’. Suppose that
there exists an element b € E, b < ng,a and b < (nga)’. By Statement [LT1] we
have that there are b1,...,b,, such that b =b; & --- @ b,, and b; < a for all
1 <4< n, Henceb; <aA(nea) =0forall 1 <i<n,ie b=0. Therefore
nea € S(E) and by Lemma 212 the statement follows. O

Let us recall the following statement.

Statement 2.14. m, Theorem 2.10] Let E be an atomic Archimedean lattice
effect algebra and let x € M(FE). Let us denote A, = {a | a an atom of E,
a <z} and, for any a € A,, we shall put kX = maz{k € N | ka < z}. Then

(i) For any a € A, we have k¥ < ng,.

(ii) The set Fy = {k¥a| a € Ay} is orthogonal and
x:@{kicﬂa an atom of E, agx}:\/Fm_

Moreover, for all B C A, and all natural numbers l, < ny,b € B such that
x=@{lb| b e B} we have that B = A, and l, =k for all a € A, i.e.,
F, is the unique set of multiples of atoms from A, such that its orthogonal
Sum s x.

(iil) If T ewists then

—

T=70x = @P{n.a|aan atom of E, a < x}
V{nea| a€ Ay}

and
Tox = P{(ne—kdal| ac Ay}
= V{(na—ka| ac A}

Statement 2.15. ﬂﬂ, Theorem 2.1] Let E be a lattice effect algebra. Assume
be E, ACFE are such that \| A exists in E and b+ a for alla € A. Then

(a) b+ \ A
(b) V{bAa:ae A} exists in E and equals b A (\ A).

Proposition 2.16. Fvery atomic Archimedean sharply dominating lattice effect
algebra is sober.

Proof. Let us check the condition (ii) from Lemma Let B be a block of
E and assume that v,y,z € B. Thenv =v® z, x € M(E). If x = 0 we are
finished. Assume that x # 0. We shall use the same notation as in Statement
214 Recall that 7&x =06 v € M(E). Moreover, let a € A,. Thena < <w
and a <zZ6x =000 <. Hence a € B by Statement [[T2 (viii). This

11



yields that (n, — k¥)a € B for all a € A,. Since T © x = P{(n, — k¥)a |
a an atom of E, a < z} we have by Statement 2ZTH that & v =T 6 2 € B.
Hence also v = (06 v) v € B.

Assume now that y € M(E) and y Az = 0. Let us put A, = {a | a an
atom of E, a < y}. Evidently, a A 2 =0, nqaAz € Band z <a for all a € A,.
Therefore by Statement [LITn,a Az < nga =a® ---® a yields that nga A z =
b1®...by, by <ngaAzAa=0forall a € A,. Then Statements 2T (iii) and
210 (ii) yield that Az = \{n.a| a€ Ay} Az=\V{n.aNz| a€ Ay} =0.

Assume now that y,z € M(F) and y A z = 0. Applying the same considera-
tions as above once more we get that y A Z = 0. O

3. Meager elements in orthocomplete homogeneous effect algebras

By definition and preceding results, orthocomplete homogeneous effect alge-
bras are always homogeneous, Archimedean, sharply dominating and fulfill the
following condition (W+).

Definition 3.1. [19] An effect algebra E fulfills the condition (W+) if for each
orthogonal subset A C E and each two upper bounds u, v of A® there exists an
upper bound w of A® below u, v.

An effect algebra E has the maximality property if {u,v} has a maximal
lower bound w for every u,v € E.

It is easy to see that an effect algebra F has the maximality property if and
only if {u, v} has a maximal lower bound w, w > t for every u,v,t € E such that
t is a lower bound of {u,v}. As noted in [19] E has the maximality property if
and only if {u, v} has a minimal upper bound w for every u,v € E.

Statement 3.2. HE, Theorem 2.2 Lattice effect algebras and orthocomplete
effect algebras fulfill both the condition (W+) and the mazimality property.

Statement 3.3. ﬂﬁ, Theorem 3.1] Let E be an Archimedean effect algebra
fulfilling the condition (W+), and let y,z € E. FEvery lower bound of y,z is
below a mazimal one and every upper bound of y,z is above a minimal one.
Then E has the maximality property.

Proposition 3.4. Let E be an Archimedean effect algebra fulfilling the condi-
tion (W+). Then every meager element of E is the orthosum of a system of
hypermeager elements.

Proof. Let y € M(FE). Consider the set A of all orthogonal systems, precisely
multisets, A of hypermeager elements for which y is an upper bound of A®.
Since the multiset union of any chain in A belongs to A, there exists a maximal
element Z in A. Since E is Archimedean any element of Z is contained in Z
only finitely many times. If y is not the supremum of Z®, there exists by the
condition (W+) an upper bound z of Z% for which z < y. Since y is meager,
y © z # 0 is meager too, and therefore there exists a non-zero hypermeager
element h such that h <y & z. Obviously the multiset sum Z W {h} belongs to
A, which contradicts the assumption of maximality of Z. |

12



The following statement generalizes m, Theorem 13].

Corollary 3.5. Let E be an Archimedean sharply dominating effect algebra
fulfilling the condition (W+). Then every element x € E is the sum of T and
of the orthosum of a system of hypermeager elements.

Lemma 3.6. Let E be an effect algebra having the maximality property, let
u,v € E, and let a,b be two mazimal lower bounds of w,v. There exist elements
y, 2 for which y < u, z < v, a,b are maximal lower bounds of y,z and y,z are
minimal upper bounds of a,b.

Proof. Straightforward. O

Lemma 3.7 (Shifting lemma). Let E be an effect algebra having the maximality
property, let u,v € E, and let ay, by be two maximal lower bounds of u,v. There
exist elements y, z and two mazimal lower bounds a,b of y,z for which y < u,
z<w,a<a;,b<b,arNb=0, ab are maximal lower bounds of y,z and
Y,z are minimal upper bounds of a,b. Furthermore, (y © a) A (z © a) = 0,
(YOb)A(zeb)=0,yoa)A(yob)=0,(z0a)A(z60b) =0.

Proof. Let ¢ be a maximal lower bound of aq, by. Let us put y; = uSe¢, 21 = vS¢,
a=a;Scand b=b; ©c Evidently, aAb=0,y; <wu, 21 <v,a<a;,b<b
and a, b are maximal lower bounds of y, z. By Lemma [3.6] there exist elements
y, z for which y < y1, 2 < 21, a,b are maximal lower bounds of y, z and y, z are
minimal upper bounds of a, b. |

The Shifting lemma provides the following minimax structure.

U v

) z

a b
0

Proposition 3.8. Let E be a homogeneous effect algebra having the maximality
property. Every two hypermeager elements u,v possess u A v.

Proof. Consider the minimax structure obtained by the Shifting lemma.

a’ b

Y’ 2/

o /

u v

Y z

a b
0
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Hence a and b are hypermeager and we have the following implications:
a<(yodb)db<d = (Ba1 <yob)(Jaz<b)a=a ®as L0 4y = 0,0 =
a1 <yoband
a<(zob)®b<d = (Fa1 <z26b)(Jaz <b) a=a1 ®a 220 4y =0,a =
a1 < zOb.

Since (y ©b) A (z©b) =0, it follows a = 0. O

Proposition 3.9. Let E be a homogeneous effect algebra having the maximality
property. For every orthogonal elements u,v, u A v and u Vi g v exist and
[0,u Av] C B for every block B containing u or v.

Proof. Consider the minimax structure obtained by the Shifting lemma.

a’ b’
2" !
,U/ i
U v
Y Z
a b

Then a and b are hypermeager and we have the following implications:
a<(yodb)®b<d = (Fa1 <yob)(Jaz<b)a=a ®as L0 4y = 0,0 =
a1 <yoband

a<(z0b)®b<d = (Fa1 <z6b)(Jaz <b) a=a1 ®a L0 4y = 0,0 =
a1 < zOb.

Since (y ©b) A (z©b) =0, it follows a = 0. Clearly (u ® v) © (u A v) is the
supremum of w, v in [0, u @ v].
The remaining part of the Proposition follows by Statement [[T2] (viii). O

Corollary 3.10. Let E be a homogeneous effect algebra having the mazximality
property. For every element u, u Au' and uV ' exist and [0,u A u'] C B for
every block B containing u.

Corollary 3.11. Let E be a homogeneous effect algebra having the mazximality
property. For any block B and every elements u,v € B for which u Ap v = 0,
uAv=0.

Proof. Since uApv = 0, elements u, v are orthogonal. By Proposition B9}, u A v
exists and [0, u A v] C B. Therefore u A v = 0. O

Theorem 3.12. Let E be a homogeneous effect algebra having the mazimal-
ity property. Then every block B in E is a lattice, and therefore satisfies the
difference-meet property.

14



Proof. Let B be a block and y, z € B. There exist elements a, b, ¢ € B for which
y=adb, z=a®cand a®b® c is defined. Hence b A c exists and bAc € B in
virtue of Proposition B9 Clearly, a ® (b A ¢) is a maximal lower bound of y, z.
Consequently, without loss of generality we may assume b A ¢ = 0. Suppose v
is a lower bound of y, z in B. Hence v < a & b and therefore there exist a1 < a
and by < b in B for which a1 © b1 = v. Now v©S a1 = by < b. Further v < a®ec.
Therefore v © a1 < (a © a1) ® ¢. There exist elements as < a© aq and ¢3 < ¢
in B for which v © a1 = a2 ® c2. To sum up, (v S a1) Sas = ca < ¢ and
(V& a1) Sas <bOas < b, which together yields (v© a1) S as =ca <bAc=0.
Consequently, v = a1 ® a2 < a1 ® (a © a1) = a, and a is the infimum of y, z.
This yields that B is a lattice. O

The preceding theorem immediately yields the following statements.

Corollary 3.13. Let E be a homogeneous effect algebra having the mazximality
property. Then E can be covered by MV-algebras which form blocks.

Corollary 3.14. Let E be an Archimedean homogeneous effect algebra fulfilling
the condition (W+). Then E can be covered by Archimedean MV-algebras which
form blocks.

Note that as in ﬂﬁ] we obtain that Archimedean homogeneous effect algebras
fulfilling the condition (W+) (in particular orthocomplete homogeneous effect
algebras) can be covered by ranges of observables.

Proposition 3.15. Let E be an orthocomplete homogeneous effect algebra.
Then every block in E is a lattice.

Corollary 3.16. Finite homogeneous effect algebras are covered by MV-algebras.

Corollary 3.17. Let E be a sharply dominating homogeneous effect algebra
having the mazimality property. For any y € M(E), y A (§ S y) exists and
yANGoy)=yny.

Proof. The meets exist in virtue of Proposition3.9l Since y < 7/, there is a block
B for whichy,y € B. Now, y = (y®y') Ay = (yABY)®(Y' ABY) = y& (Y ABY),
which implies yoy = ¢y’ Apy. Consequently, yAy' = (YAy)AY' = (YABY )ABY) =

oy ABy=(ySy) Ay because J © y,y are orthogonal. O

Example 3.18. In the finite orthoalgebra E = {0,a,b,¢,d, e, f,a’, 0, ¢/, d', ¢,
f’,1} depictured in Figure Bl which is such that F = S(F) (hence E is homoge-
neous, Archimedean and orthocomplete), finite joins in blocks do not coincide
with finite joins in E. One can easily check that E is a sub-effect algebra of the

15



Figure 3: Example B8

MV-effect algebra [0, 1] x [0, 1] x [0, 1] such that

0 (0,0,0), 1 (1,1,1),

a H(%?%’%)7 b H(%?%’%)7 C H(%7%50)7

d — (32.2.0) (0,0, %) [ (s, 5, )
2002007 € U 10/ 10° 107 10 />

alH(%?%?%)? blH(%?%?%)? CIH(;—E7%,1)7

d—(5,50.1), €= (1,1,%), (% 5,2

Moreover 1 = (1,1,1) =a®b® f =adcDe =bDdde. This yields that E has
only the following blocks: By = {0,a,b, f,a® b= fa® f=V,b&® f =d, 1},
By ={0,a,c,e,a®c=¢,ade=c,c®e=ad,1} and Bs = {0,b,d,e,b D d =
ebde=d,dde ="V, 1} which are lattice ordered. Hence a ¢ d, b 4 c,
crd, ey f,dsS f,ess foIn particular, a and b have two different minimal
upper bounds, a & b and a @ c.

Open problem 3.19. One question still unanswered is whether, if A, B are two
blocks of E with x,y € AN B, then xtVay = xVpy; here E is an Archimedean
sharply dominating homogeneous effect algebra fulfilling the condition (W+).
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