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Abstract

The aim of our paper is twofold. First, we thoroughly study the set of meager
elements M(E) and the set of hypermeager elements HM(E) in the setting
of homogeneous effect algebras E. Second, we study the property (W+) and
the maximality property introduced by Tkadlec as common generalizations of
orthocomplete and lattice effect algebras. We show that every block of an
Archimedean homogeneous effect algebra satisfying the property (W+) is lattice
ordered. Hence such effect algebras can be covered by ranges of observables.
As a corollary, this yields that every block of a homogeneous orthocomplete
effect algebra is lattice ordered. Therefore finite homogeneous effect algebras
are covered by MV-algebras.

Keywords: homogeneous effect algebra, orthocomplete effect algebra, lattice
effect algebra, center, atom, sharp element, meager element, hypermeager
element, ultrameager element

Introduction

The history of quantum structures started at the beginning of the 20th
century. Observable events constitute a Boolean algebra in a classical physical
system. Because event structures in quantum mechanics cannot be described by
Boolean algebras, Birkhoff and von Neumann introduced orthomodular lattices
which were considered as the standard quantum logic. Later on, orthoalge-
bras were introduced as the generalizations of orthomodular posets, which were
considered as ”sharp” quantum logic.

In the nineties of the twentieth century, two equivalent quantum structures,
D-posets and effect algebras were extensively studied, which were considered as
”unsharp” generalizations of the structures which arise in quantum mechanics,
in particular, of orthomodular lattices and MV-algebras.
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Effect algebras are fundamental in investigations of fuzzy probability theory.
In the fuzzy probability frame, the elements of an effect algebra represent fuzzy
events which are used to construct fuzzy random variables.

In the present paper, we continue the study of homogeneous effect algebras
started in [9]. This class of effect algebras includes orthoalgebras, lattice ordered
effect algebras and effect algebras satisfying the Riesz decomposition property.

In [9] it was proved that every homogeneous effect algebra is a union of its
blocks, which are defined as maximal sub-effect algebras satisfying the Riesz
decomposition property. In [19] Tkadlec introduced the property (W+) as a
common generalization of orthocomplete and lattice effect algebras.

Riečanová in [16] proved one of the most important results in the theory of
effect algebras that each lattice ordered effect algebra can be covered by MV-
subalgebras which form blocks. Dvurečenskij extended in [3] this result for effect
algebras with the Riesz interpolation property and with the decomposition-meet
property. Pulmannová [15] proved that every homogeneous effect algebra E

such that every block B of E satisfies the decomposition-meet property can be
covered by MV-algebras.

The aim of our paper is to show that every block of an Archimedean homo-
geneous effect algebra satisfying the property (W+) is lattice ordered. Hence
Archimedean homogeneous effect algebras fulfilling the condition (W+) can be
covered by ranges of observables. As a corollary, this yields that every block of
a homogeneous orthocomplete effect algebra is lattice ordered. Therefore finite
homogeneous effect algebras are covered by MV-algebras which form blocks.

As a by-product of our study we extend the results on sharp and meager
elements of [10] into the realm of Archimedean homogeneous effect algebras
satisfying the property (W+). We also thoroughly study the set of meager
elements M(E) and the set of hypermeager elements HM(E) in the setting of
homogeneous effect algebras E.

1. Preliminaries and basic facts

Effect algebras were introduced by Foulis and Bennett (see [4]) for modelling
unsharp measurements in a Hilbert space. In this case the set E(H) of effects
is the set of all self-adjoint operators A on a Hilbert space H between the null
operator 0 and the identity operator 1 and endowed with the partial operation
+ defined iff A+B is in E(H), where + is the usual operator sum.

In general form, an effect algebra is in fact a partial algebra with one partial
binary operation and two unary operations satisfying the following axioms due
to Foulis and Bennett.

The basic reference for the present text is the classic book by Dvurečenskij
and Pulmannová [2], where the interested reader can find unexplained terms
and notation concerning the subject.

Definition 1.1. [4, 17] A partial algebra (E;⊕, 0, 1) is called an effect algebra
if 0, 1 are two distinct elements, called the zero and the unit element, and ⊕
is a partially defined binary operation called the orthosummation on E which
satisfy the following conditions for any x, y, z ∈ E:
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(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,

(Eii) (x⊕ y)⊕ z = x⊕ (y ⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that x⊕ y = 1 (we put
x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

(E;⊕, 0, 1) is called an orthoalgebra if x ⊕ x exists implies that x = 0 (see
[5]).

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. On every effect
algebra E a partial order ≤ and a partial binary operation ⊖ can be introduced
as follows:

x ≤ y and y ⊖ x = z iff x⊕ z is defined and x⊕ z = y .

If E with the defined partial order is a lattice (a complete lattice) then
(E;⊕, 0, 1) is called a lattice effect algebra (a complete lattice effect algebra).

Mappings from one effect algebra to another one that preserve units and
orthosums are called morphisms of effect algebras, and bijective morphisms of
effect algebras having inverses that are morphisms of effect algebras are called
isomorphisms of effect algebras.

Definition 1.2. Let E be an effect algebra. Then Q ⊆ E is called a sub-effect
algebra of E if

(i) 1 ∈ Q

(ii) if out of elements x, y, z ∈ E with x⊕y = z two are in Q, then x, y, z ∈ Q.

If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect algebra of
E, then Q is called a sub-lattice effect algebra of E.

Note that a sub-effect algebra Q (sub-lattice effect algebra Q) of an effect
algebra E (of a lattice effect algebra E) with inherited operation ⊕ is an effect
algebra (lattice effect algebra) in its own right.

For an element x of an effect algebra E we write ord(x) = ∞ if nx = x⊕x⊕
· · · ⊕ x (n-times) exists for every positive integer n and we write ord(x) = nx if
nx is the greatest positive integer such that nxx exists in E. An effect algebra
E is Archimedean if ord(x) < ∞ for all x ∈ E.

A minimal nonzero element of an effect algebra E is called an atom and E

is called atomic if under every nonzero element of E there is an atom.

Definition 1.3. We say that a finite system F = (xk)
n
k=1 of not necessarily

different elements of an effect algebra E is orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn

(written
n⊕

k=1

xk or
⊕

F ) exists in E. Here we define x1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕

x2 ⊕ · · · ⊕ xn−1)⊕ xn supposing that
n−1⊕
k=1

xk is defined and (
n−1⊕
k=1

xk)⊕ xn exists.
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We also define
⊕

∅ = 0. An arbitrary system G = (xκ)κ∈H of not necessarily
different elements of E is called orthogonal if

⊕
K exists for every finite K ⊆ G.

We say that for a orthogonal system G = (xκ)κ∈H the element
⊕

G exists iff∨
{
⊕

K | K ⊆ G is finite} exists in E and then we put
⊕

G =
∨
{
⊕

K | K ⊆ G

is finite}. We say that
⊕

G is the orthogonal sum of G and G is orthosummable.
(Here we write G1 ⊆ G iff there is H1 ⊆ H such that G1 = (xκ)κ∈H1

). We
denote G⊕ := {

⊕
K | K ⊆ G is finite}.

Definition 1.4. E is called orthocomplete if every orthogonal system is ortho-
summable.

Every orthocomplete effect algebra is Archimedean.

Definition 1.5. An element x of an effect algebra E is called

(i) sharp if x ∧ x′ = 0. The set S(E) = {x ∈ E | x ∧ x′ = 0} is called a set of
all sharp elements of E (see [7]).

(ii) principal, if y ⊕ z ≤ x for every y, z ∈ E such that y, z ≤ x and y ⊕ z

exists.

(iii) central, if x and x′ are principal and, for every y ∈ E there are y1, y2 ∈ E

such that y1 ≤ x, y2 ≤ x′, and y = y1 ⊕ y2 (see [6]). The center C(E) of
E is the set of all central elements of E.

If x ∈ E is a principal element, then x is sharp and the interval [0, x] is an
effect algebra with the greatest element x and the partial operation given by
restriction of ⊕ to [0, x].

Observation 1.6. Clearly, E is an orthoalgebra if and only if S(E) = E.

Statement 1.7. [6, Theorem 5.4] The center C(E) of an effect algebra E is a
sub-effect algebra of E and forms a Boolean algebra. For every central element
x of E, y = (y ∧ x) ⊕ (y ∧ x′) for all y ∈ E. If x, y ∈ C(E) are orthogonal, we
have x ∨ y = x⊕ y and x ∧ y = 0.

Statement 1.8. [11, Lemma 3.1.] Let E be an effect algebra, x, y ∈ E and
c, d ∈ C(E). Then:

(i) If x⊕ y exists then c ∧ (x⊕ y) = (c ∧ x)⊕ (c ∧ y).

(ii) If c⊕ d exists then x ∧ (c⊕ d) = (x ∧ c)⊕ (x ∧ d).

Definition 1.9. A subset M of an effect algebra E is called compatible (inter-
nally compatible) if for every finite subset MF of M there is a finite orthogonal
family (x1, . . . , xn) of elements in E (in M) such that for every m ∈ MF there
is a set AF ⊆ {1, . . . , n} with m =

⊕
i∈AF

xi. If {x, y} is a compatible set, we
write x ↔ y (see [10, 13]).

Evidently, x ↔ y iff there are p, q, r ∈ E such that x = p ⊕ q, y = q ⊕ r

and p ⊕ q ⊕ r exists iff there are c, d ∈ E such that d ≤ x ≤ c, d ≤ y ≤ c and
c⊖ x = y ⊖ d. Moreover, if x ∧ y exists then x ↔ y iff x⊕ (y ⊖ (x ∧ y)) exists.
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Definition 1.10. An effect algebra E satisfies the Riesz decomposition property
(or RDP) if, for all u, v1, v2 ∈ E such that u ≤ v1 ⊕ v2, there are u1, u2 such
that u1 ≤ v1, u2 ≤ v2 and u = u1 ⊕ u2.

An effect algebra E is called homogeneous if, for all u, v1, v2 ∈ E such that
u ≤ v1 ⊕ v2 ≤ u′, there are u1, u2 such that u1 ≤ v1, u2 ≤ v2 and u = u1 ⊕ u2

(see [9]).
An effect algebra E satisfies the difference-meet property (or DMP) if, for

all x, y, z ∈ E such that x ≤ y, x ∧ z ∈ E and y ∧ z ∈ E, then (y ⊖ x) ∧ z ∈ E

(see [3]).

Statement 1.11. [9, Proposition 2.3] Let E be a homogeneous effect algebra.
Let u, v1, . . . , vn ∈ E be such that v1⊕· · ·⊕vn exists, u ≤ v1⊕· · ·⊕vn ≤ u′. Then
there are u1, . . . , un such that, for all 1 ≤ i ≤ n, ui ≤ vi and u = u1 ⊕ · · · ⊕ un.

Statement 1.12. [10, Proposition 2]

(i) Every orthoalgebra is homogeneous.

(ii) Every lattice effect algebra is homogeneous.

(iii) An effect algebra E has the Riesz decomposition property if and only if E
is homogeneous and compatible.

Let E be a homogeneous effect algebra.

(iv) A subset B of E is a maximal sub-effect algebra of E with the Riesz de-
composition property (such B is called a block of E) if and only if B is a
maximal internally compatible subset of E containing 1.

(v) Every finite compatible subset of E is a subset of some block. This implies
that every homogeneous effect algebra is a union of its blocks.

(vi) S(E) is a sub-effect algebra of E.

(vii) For every block B, C(B) = S(E) ∩B.

(viii) Let x ∈ B, where B is a block of E. Then {y ∈ E | y ≤ x and y ≤ x′} ⊆ B.

Hence the class of homogeneous effect algebras includes orthoalgebras, effect
algebras satisfying the Riesz decomposition property and lattice effect algebras.

Proposition 1.13. Let E be a homogeneous effect algebra and v ∈ E. The
following conditions are equivalent.

(i) v ∈ S(E);

(ii) y ≤ z whenever w, y, z ∈ E such that v = w ⊕ z, y ≤ w′ and y ≤ w.

Proof. (i) =⇒ (ii) Evidently, there is a block, say B, such that it contains
the following orthogonal system {y, w ⊖ y, z, 1 ⊖ v}. Hence B contains also w,
w′ and v ∈ C(B). Since 1 = w ⊕ w′ we obtain by Statement 1.8, (ii) that
v = v ∧B w ⊕ v ∧B w′ = w ⊕ v ∧B w′. Subtracting w we obtain z = v ∧B w′.
Hence y ≤ w ≤ v and y ≤ w′ yields that y ≤ z.
(ii) =⇒ (i) Let y ∈ [0, v]∩[0, v′]. Put w = v and z = 0. Immediately, y ≤ 0.
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An important class of effect algebras was introduced by Gudder in [7] and
[8]. Fundamental example is the standard Hilbert spaces effect algebra E(H).

For an element x of an effect algebra E we denote

x̃ =
∨

E{s ∈ S(E) | s ≤ x} if it exists and belongs to S(E)
x̂ =

∧
E{s ∈ S(E) | s ≥ x} if it exists and belongs to S(E).

Definition 1.14. ([7], [8].) An effect algebra (E,⊕, 0, 1) is called sharply dom-
inating if for every x ∈ E there exists x̂.

Obviously, x̂ is the smallest sharp element such that x ≤ x̂. That is x̂ ∈ S(E)
and if y ∈ S(E) satisfies x ≤ y then x̂ ≤ y.

Recall that the following conditions are equivalent in any effect algebra E.

• E is sharply dominating;

• for every x ∈ E there exists x̃ ∈ S(E) such that x̃ ≤ x and if u ∈ S(E)
satisfies u ≤ x then u ≤ x̃;

• for every x ∈ E there exist a smallest sharp element x̂ over x and a greatest
sharp element x̃ below x.

As proved in [1], S(E) is always a sub-effect algebra in a sharply dominating
effect algebra E.

Statement 1.15. [10, Proposition 15] Let E be a sharply dominating effect
algebra. Then every x ∈ E has a unique decomposition x = xS ⊕ xM , where
xS ∈ S(E) and xM ∈ M(E), namely x = x̃⊕ (x ⊖ x̃).

Lemma 1.16. Let E be a sharply dominating effect algebra and let x ∈ E.

x⊖ x̃ = x̂⊖ x = x̂⊖ x̃.

Proof. Clearly x ⊖ x̃ ≤ x̂ ⊖ x̃ ∈ S(E) and x̂ ⊖ x ≤ x̂ ⊖ x̃ ∈ S(E). Therefore

x⊖ x̃ ≤ x̂⊖ x̃ and x̂⊖ x ≤ x̂⊖ x̃. Now, by adding x̃, we obtain

x = x̃⊕ (x⊖ x̃) ≤ x̃⊕ x⊖ x̃ ≤ x̂

which yields x̃⊕ x⊖ x̃ = x̂, and similarly

x̃ = x̂⊖ (x̂⊖ x̃) ≤ x̂⊖ x̂⊖ x ≤ x̂⊖ (x̂⊖ x) = x

which yields x̃ = x̂⊖ x̂⊖ x.

Lemma 1.17. Let E be a sharply dominating effect algebra and let x ∈ E.

x̂⊖ x = x′ ⊖ (x̂)′ = x′ ⊖ (̃x′)

and
x⊖ x̃ = (x̃)′ ⊖ x′ = (x′)⊖ x′

Proof. Transparent.
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a

a⊕ b

a

0

b

2b

3b = a⊕ c

1 = 4b = a⊕ b⊕ c

c

b⊕ c

✛ M(E) = HM(E)

UM(E)

Figure 1: Example 2.2

2. Meager, hypermeager and ultrameager elements

In what follows set (see [10, 18])

M(E) = {x ∈ E | if v ∈ S(E) satisfies v ≤ x then v = 0}.

An element x ∈ M(E) is called meager. Moreover, x ∈ M(E) iff x̃ = 0.
Recall that x ∈ M(E), y ∈ E, y ≤ x implies y ∈ M(E) and x⊖ y ∈ M(E).

We also define

Definition 2.1.

HM(E) = {x ∈ E | there is y ∈ E such that x ≤ y and x ≤ y′}

and

UM(E) = {x ∈ E | for every y ∈ S(E) such that x ≤ y it holds x ≤ y ⊖ x}.

An element x ∈ HM(E) is called hypermeager, an element x ∈ UM(E) is called
ultrameager.
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a

a⊕ b

a

0

b

2b

3b

4b

5b = a⊕ c

1 = 6b = a⊕ b⊕ c

c

b⊕ c

✛

✛

M(E)

HM(E)

UM(E)

Figure 2: Example 2.3

Example 2.2. In the non-homogeneous non-sharply dominating effect algebra
depictured in Figure 1, M(E) = HM(E) 6= UM(E). Sharp elements are denoted
in black. One can easily check that E is a sub-effect algebra of the MV-effect
algebra [0, 1] × [0, 1] such that a 7→ (34 , 0), b 7→ (14 ,

1
4 ), c 7→ (0, 3

4 ). Moreover,
since a⊕ c 6∈ S(E) we obtain that S(E) is not a sub-effect algebra of E.

Example 2.3. In the non-homogeneous non-sharply dominating effect algebra
depictured in Figure 2, M(E) 6= HM(E) 6= UM(E).

Sharp elements are denoted in black. One can easily check that E is a sub-
effect algebra of the MV-effect algebra [0, 1] × [0, 1] such that a 7→ (56 , 0), b 7→
(16 ,

1
6 ), c 7→ (0, 5

6 ). Moreover, since a ⊕ c 6∈ S(E) we obtain that S(E) is not a
sub-effect algebra of E.
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Lemma 2.4. Let E be an effect algebra. Then HM(E) ⊆ M(E). Moreover, for
all x ∈ E, x ∈ HM(E) iff x ⊕ x exists and, for all y ∈ M(E), y 6= 0 there is
h ∈ HM(E), h 6= 0 such that h ≤ y.

Proof. Let x ∈ HM(E). Then there is y ∈ E such that x ≤ y and x ≤ y′.
Therefore also x ≤ y ≤ x′, i.e. x ⊕ x exists. Let v ∈ S(E), v ≤ x ≤ y. Then
v ≤ x ≤ y′ ≤ v′. Hence v = v ∧ v′ = 0, i.e., x ∈ M(E).

Now, let x ∈ E such that x ⊕ x exists. Then x ≤ x′ and evidently x ≤ x.
Hence x ∈ HM(E).

Assume that y ∈ M(E), y 6= 0. Since y is meager there is a non-zero
element h such that h ≤ y and h ≤ y′ (otherwise we would have y ∈ S(E), a
contradiction). This invokes that h is hypermeager.

Lemma 2.5. Every ultrameager element is hypermeager.

Proof. Let x be an ultrameager element of an effect algebra E. Because 1 ∈
S(E), x ≤ 1⊖ x = x′, and by Lemma 2.4 x is hypermeager.

Lemma 2.6. Let E be a sharply dominating effect algebra and let y ∈ E. Then
y is ultrameager if and only if y ≤ ŷ ⊖ y.

Proof. For every s ∈ S(E) for which y ≤ s, it holds ŷ ≤ s and ŷ ∈ S(E).

Lemma 2.7. In every homogeneous effect algebra E, UM(E) = HM(E).

Proof. Let E be a homogeneous effect algebra. By Lemma 2.5, UM(E) ⊆
HM(E). Let conversely x ∈ HM(E) and y ∈ S(E) such that x ≤ y. There exists
a block B for which x, y, x⊕ x, y ⊖ x ∈ B. By Statement 1.12 (vii), y is central
in B. Therefore x⊕ x ≤ y and consequently x ≤ y ⊖ x.

Lemma 2.8. In every sharply dominating homogeneous effect algebra E,

UM(E) =
⋃

y∈UM(E)

↓y ∩ ↓(ŷ ⊖ y) =
⋃

y∈HM(E)

↓y ∩ ↓(ŷ ⊖ y) =

⋃

y∈M(E)

↓y ∩ ↓(ŷ ⊖ y) =
⋃

y∈E

↓y ∩ ↓(ŷ ⊖ y) = HM(E).

Proof. By Lemma 2.7, UM(E) = HM(E). Lemma 2.6 yields

UM(E) ⊆
⋃

y∈UM(E)

↓y ⊆
⋃

y∈UM(E)

↓y ∩ ↓(ŷ ⊖ y),

which implies

HM(E) = UM(E) ⊆
⋃

y∈UM(E)

↓y ∩ ↓(ŷ ⊖ y) ⊆
⋃

y∈HM(E)

↓y ∩ ↓(ŷ ⊖ y) ⊆

⋃

y∈M(E)

↓y ∩ ↓(ŷ ⊖ y) ⊆
⋃

y∈E

↓y ∩ ↓(ŷ ⊖ y) ⊆ HM(E).
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Lemma 2.9. In any homogeneous effect algebra E,

y ∧B z = 0 ⇐⇒ y ∧ z = 0

holds for any block B and y, z ∈ C(B).

Proof. =⇒ Since y ∧B z = 0, it holds y ≤ z′. Therefore w ∈ [0, y] ∩ [0, z]
implies w ∈ [0, z′] ∩ [0, z] = {0}.
⇐= Trivial.

Lemma 2.10. The following conditions are equivalent in any sharply dominat-
ing homogeneous effect algebra E.

(i) for any block B and v, y, z ∈ B, it holds v̂ ∈ B and y ∧B z = 0 =⇒
ŷ ∧B ẑ = 0;

(ii) for any block B and v, y, z ∈ B, it holds v̂ ∈ B, and y ∧B z = 0 =⇒
ŷ ∧B ẑ = 0 if furthermore y, z ∈ B ∩M(E);

(iii) for any block B and v, y, z ∈ B, it holds v̂ ∈ B and y ∧B z = 0 =⇒
ŷ ∧ ẑ = 0;

(iv) for any block B and v, y, z ∈ B, it holds v̂ ∈ B, and y ∧B z = 0 =⇒
ŷ ∧ ẑ = 0 if furthermore y, z ∈ B ∩M(E).

Proof. Clearly (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) in virtue of Lemma 2.9. Further-
more, (i) =⇒ (ii) and (iii) =⇒ (iv).
(ii) =⇒ (i) Let B be a block in E and y, z ∈ B. By assumption, ŷ, ẑ ∈ B.
Therefore ŷ ⊖ y, ẑ ⊖ z ∈ B ∩M(E). By assumption, from Lemma 1.16 and the
fact that (y ⊖ ỹ) ∧B (z ⊖ z̃) = 0 we get

(ŷ ⊖ ỹ) ∧B (ẑ ⊖ z̃) = y ⊖ ỹ ∧B z ⊖ z̃ = 0.

Further, 0 6= w ∈ [0, ỹ] ∩ [0, ẑ] ∩ B implies 0 6= ŵ ∈ [0, ỹ] ∩ [0, ẑ]. Clearly
ŵ ∧B (z ⊕ (ẑ ⊖ z)) = ŵ 6= 0. There exist w1 ≤ z, w2 ≤ ẑ ⊖ z for which
w1 ⊕ w2 = ŵ ≤ y. Because ŵ ∧B z = 0, w1 = 0 and ŵ = w2 ≤ ẑ ⊖ z ∈ M(E).
Therefore ŵ = 0, a contradiction.

This yields ŷ ∧B ẑ = (ŷ ⊖ ỹ) ∧B ẑ ⊕ (ỹ ∧B ẑ) = (ŷ ⊖ ỹ) ∧B ẑ = (y ⊖ ỹ) ∧B ẑ.
Applying the above considerations once more we obtain that ŷ ∧B ẑ =

(y ⊖ ỹ) ∧B ẑ = (y ⊖ ỹ) ∧B (ẑ ⊖ z̃) = 0.

Definition 2.11. A sharply dominating homogeneous effect algebra is sober if
it satisfies the equivalent conditions in Lemma 2.10.

Lemma 2.12. Let E be a homogeneous effect algebra, and y ∈ E and w ∈ S(E)
for which y ≤ w and ky exists. It holds ky ≤ w.

Proof. The elements y′, w, y, 2y, . . . , ky belong to one block B. For k = 1
the statement holds. Suppose 2 ≤ k and the statement holds for k − 1. By
Statement 1.8, w ∧B ky = (w ∧B (k − 1)y)⊕ y = (k − 1)y ⊕ y = ky. Therefore
ky ≤ w.
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Lemma 2.13. Let E be an Archimedean homogeneous effect algebra. For any
a ∈ E r {0} for which a ∧ (naa)

′ = 0, it holds â exists and â = naa.

Proof. Let a ∈ E such that a ∧ (naa)
′ = 0. Clearly a � (naa)

′. Suppose that
there exists an element b ∈ E, b ≤ naa and b ≤ (naa)

′. By Statement 1.11 we
have that there are b1, . . . , bna

such that b = b1 ⊕ · · · ⊕ bna
and bi ≤ a for all

1 ≤ i ≤ na. Hence bi ≤ a ∧ (naa)
′ = 0 for all 1 ≤ i ≤ n, i.e. b = 0. Therefore

naa ∈ S(E) and by Lemma 2.12, the statement follows.

Let us recall the following statement.

Statement 2.14. [14, Theorem 2.10] Let E be an atomic Archimedean lattice
effect algebra and let x ∈ M(E). Let us denote Ax = {a | a an atom of E,

a ≤ x} and, for any a ∈ Ax, we shall put kxa = max{k ∈ N | ka ≤ x}. Then

(i) For any a ∈ Ax we have kxa < na.

(ii) The set Fx = {kxaa | a ∈ Ax} is orthogonal and

x =
⊕

{kxaa | a an atom of E, a ≤ x} =
∨

Fx.

Moreover, for all B ⊆ Ax and all natural numbers lb < nb, b ∈ B such that
x =

⊕
{lbb | b ∈ B} we have that B = Ax and la = kxa for all a ∈ Ax i.e.,

Fx is the unique set of multiples of atoms from Ax such that its orthogonal
sum is x.

(iii) If x̂ exists then

x̂ = ̂̂x⊖ x =
⊕

{naa | a an atom of E, a ≤ x}
=

∨
{naa | a ∈ Ax}

and
x̂⊖ x =

⊕
{(na − kxa)a | a ∈ Ax}

=
∨
{(na − kxa)a | a ∈ Ax}.

Statement 2.15. [12, Theorem 2.1] Let E be a lattice effect algebra. Assume
b ∈ E, A ⊆ E are such that

∨
A exists in E and b ↔ a for all a ∈ A. Then

(a) b ↔
∨
A.

(b)
∨
{b ∧ a : a ∈ A} exists in E and equals b ∧ (

∨
A).

Proposition 2.16. Every atomic Archimedean sharply dominating lattice effect
algebra is sober.

Proof. Let us check the condition (ii) from Lemma 2.10. Let B be a block of
E and assume that v, y, z ∈ B. Then v = ṽ ⊕ x, x ∈ M(E). If x = 0 we are
finished. Assume that x 6= 0. We shall use the same notation as in Statement
2.14. Recall that x̂⊖ x = v̂⊖ v ∈ M(E). Moreover, let a ∈ Ax. Then a ≤ x ≤ v

and a ≤ x̂ ⊖ x = v̂ ⊖ v ≤ v′. Hence a ∈ B by Statement 1.12, (viii). This
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yields that (na − kxa)a ∈ B for all a ∈ Ax. Since x̂ ⊖ x =
⊕

{(na − kxa)a |
a an atom of E, a ≤ x} we have by Statement 2.15 that v̂ ⊖ v = x̂ ⊖ x ∈ B.
Hence also v̂ = (v̂ ⊖ v)⊕ v ∈ B.

Assume now that y ∈ M(E) and y ∧ z = 0. Let us put Ay = {a | a an
atom of E, a ≤ y}. Evidently, a∧ z = 0, naa∧ z ∈ B and z ≤ a′ for all a ∈ Ay.
Therefore by Statement 1.11 naa ∧ z ≤ naa = a⊕ · · · ⊕ a yields that naa ∧ z =
b1 ⊕ . . . bn, bi ≤ naa ∧ z ∧ a = 0 for all a ∈ Ay . Then Statements 2.14, (iii) and
2.15, (ii) yield that ŷ ∧ z =

∨
{naa | a ∈ Ay} ∧ z =

∨
{naa ∧ z | a ∈ Ay} = 0.

Assume now that y, z ∈ M(E) and y ∧ z = 0. Applying the same considera-
tions as above once more we get that ŷ ∧ ẑ = 0.

3. Meager elements in orthocomplete homogeneous effect algebras

By definition and preceding results, orthocomplete homogeneous effect alge-
bras are always homogeneous, Archimedean, sharply dominating and fulfill the
following condition (W+).

Definition 3.1. [19] An effect algebra E fulfills the condition (W+) if for each
orthogonal subset A ⊆ E and each two upper bounds u, v of A⊕ there exists an
upper bound w of A⊕ below u, v.

An effect algebra E has the maximality property if {u, v} has a maximal
lower bound w for every u, v ∈ E.

It is easy to see that an effect algebra E has the maximality property if and
only if {u, v} has a maximal lower bound w, w ≥ t for every u, v, t ∈ E such that
t is a lower bound of {u, v}. As noted in [19] E has the maximality property if
and only if {u, v} has a minimal upper bound w for every u, v ∈ E.

Statement 3.2. [19, Theorem 2.2] Lattice effect algebras and orthocomplete
effect algebras fulfill both the condition (W+) and the maximality property.

Statement 3.3. [19, Theorem 3.1] Let E be an Archimedean effect algebra
fulfilling the condition (W+), and let y, z ∈ E. Every lower bound of y, z is
below a maximal one and every upper bound of y, z is above a minimal one.
Then E has the maximality property.

Proposition 3.4. Let E be an Archimedean effect algebra fulfilling the condi-
tion (W+). Then every meager element of E is the orthosum of a system of
hypermeager elements.

Proof. Let y ∈ M(E). Consider the set A of all orthogonal systems, precisely
multisets, A of hypermeager elements for which y is an upper bound of A⊕.
Since the multiset union of any chain in A belongs to A, there exists a maximal
element Z in A. Since E is Archimedean any element of Z is contained in Z

only finitely many times. If y is not the supremum of Z⊕, there exists by the
condition (W+) an upper bound z of Z⊕ for which z < y. Since y is meager,
y ⊖ z 6= 0 is meager too, and therefore there exists a non-zero hypermeager
element h such that h ≤ y ⊖ z. Obviously the multiset sum Z ⊎ {h} belongs to
A, which contradicts the assumption of maximality of Z.

12



The following statement generalizes [10, Theorem 13].

Corollary 3.5. Let E be an Archimedean sharply dominating effect algebra
fulfilling the condition (W+). Then every element x ∈ E is the sum of x̃ and
of the orthosum of a system of hypermeager elements.

Lemma 3.6. Let E be an effect algebra having the maximality property, let
u, v ∈ E, and let a, b be two maximal lower bounds of u, v. There exist elements
y, z for which y ≤ u, z ≤ v, a, b are maximal lower bounds of y, z and y, z are
minimal upper bounds of a, b.

Proof. Straightforward.

Lemma 3.7 (Shifting lemma). Let E be an effect algebra having the maximality
property, let u, v ∈ E, and let a1, b1 be two maximal lower bounds of u, v. There
exist elements y, z and two maximal lower bounds a, b of y, z for which y ≤ u,
z ≤ v, a ≤ a1, b ≤ b1, a ∧ b = 0, a, b are maximal lower bounds of y, z and
y, z are minimal upper bounds of a, b. Furthermore, (y ⊖ a) ∧ (z ⊖ a) = 0,
(y ⊖ b) ∧ (z ⊖ b) = 0, (y ⊖ a) ∧ (y ⊖ b) = 0, (z ⊖ a) ∧ (z ⊖ b) = 0.

Proof. Let c be a maximal lower bound of a1, b1. Let us put y1 = u⊖c, z1 = v⊖c,
a = a1 ⊖ c and b = b1 ⊖ c. Evidently, a ∧ b = 0, y1 ≤ u, z1 ≤ v, a ≤ a1, b ≤ b1
and a, b are maximal lower bounds of y, z. By Lemma 3.6 there exist elements
y, z for which y ≤ y1, z ≤ z1, a, b are maximal lower bounds of y, z and y, z are
minimal upper bounds of a, b.

The Shifting lemma provides the following minimax structure.

a

y

u

b

z

v

0

Proposition 3.8. Let E be a homogeneous effect algebra having the maximality
property. Every two hypermeager elements u, v possess u ∧ v.

Proof. Consider the minimax structure obtained by the Shifting lemma.

a

y

u

b

z

v

a′

y′

u′

b′

z′

v′

0
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Hence a and b are hypermeager and we have the following implications:

a ≤ (y ⊖ b)⊕ b ≤ a′ =⇒ (∃a1 ≤ y ⊖ b)(∃a2 ≤ b) a = a1 ⊕ a2
a∧b=0
=⇒ a2 = 0, a =

a1 ≤ y ⊖ b and

a ≤ (z ⊖ b)⊕ b ≤ a′ =⇒ (∃a1 ≤ z ⊖ b)(∃a2 ≤ b) a = a1 ⊕ a2
a∧b=0
=⇒ a2 = 0, a =

a1 ≤ z ⊖ b.
Since (y ⊖ b) ∧ (z ⊖ b) = 0, it follows a = 0.

Proposition 3.9. Let E be a homogeneous effect algebra having the maximality
property. For every orthogonal elements u, v, u ∧ v and u ∨[0,u⊕v] v exist and
[0, u ∧ v] ⊆ B for every block B containing u or v.

Proof. Consider the minimax structure obtained by the Shifting lemma.

a

y

u

b

z

v

u′v′

a′

y′

b′

z′

0
Then a and b are hypermeager and we have the following implications:

a ≤ (y ⊖ b)⊕ b ≤ a′ =⇒ (∃a1 ≤ y ⊖ b)(∃a2 ≤ b) a = a1 ⊕ a2
a∧b=0
=⇒ a2 = 0, a =

a1 ≤ y ⊖ b and

a ≤ (z ⊖ b)⊕ b ≤ a′ =⇒ (∃a1 ≤ z ⊖ b)(∃a2 ≤ b) a = a1 ⊕ a2
a∧b=0
=⇒ a2 = 0, a =

a1 ≤ z ⊖ b.

Since (y ⊖ b) ∧ (z ⊖ b) = 0, it follows a = 0. Clearly (u ⊕ v)⊖ (u ∧ v) is the
supremum of u, v in [0, u⊕ v].

The remaining part of the Proposition follows by Statement 1.12, (viii).

Corollary 3.10. Let E be a homogeneous effect algebra having the maximality
property. For every element u, u ∧ u′ and u ∨ u′ exist and [0, u ∧ u′] ⊆ B for
every block B containing u.

Corollary 3.11. Let E be a homogeneous effect algebra having the maximality
property. For any block B and every elements u, v ∈ B for which u ∧B v = 0,
u ∧ v = 0.

Proof. Since u∧B v = 0, elements u, v are orthogonal. By Proposition 3.9, u∧v

exists and [0, u ∧ v] ⊆ B. Therefore u ∧ v = 0.

Theorem 3.12. Let E be a homogeneous effect algebra having the maximal-
ity property. Then every block B in E is a lattice, and therefore satisfies the
difference-meet property.
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Proof. Let B be a block and y, z ∈ B. There exist elements a, b, c ∈ B for which
y = a⊕ b, z = a⊕ c and a⊕ b⊕ c is defined. Hence b∧ c exists and b∧ c ∈ B in
virtue of Proposition 3.9. Clearly, a⊕ (b ∧ c) is a maximal lower bound of y, z.
Consequently, without loss of generality we may assume b ∧ c = 0. Suppose v

is a lower bound of y, z in B. Hence v ≤ a⊕ b and therefore there exist a1 ≤ a

and b1 ≤ b in B for which a1 ⊕ b1 = v. Now v⊖ a1 = b1 ≤ b. Further v ≤ a⊕ c.
Therefore v ⊖ a1 ≤ (a ⊖ a1) ⊕ c. There exist elements a2 ≤ a ⊖ a1 and c2 ≤ c

in B for which v ⊖ a1 = a2 ⊕ c2. To sum up, (v ⊖ a1) ⊖ a2 = c2 ≤ c and
(v⊖ a1)⊖ a2 ≤ b⊖ a2 ≤ b, which together yields (v⊖ a1)⊖ a2 = c2 ≤ b∧ c = 0.
Consequently, v = a1 ⊕ a2 ≤ a1 ⊕ (a ⊖ a1) = a, and a is the infimum of y, z.
This yields that B is a lattice.

The preceding theorem immediately yields the following statements.

Corollary 3.13. Let E be a homogeneous effect algebra having the maximality
property. Then E can be covered by MV-algebras which form blocks.

Corollary 3.14. Let E be an Archimedean homogeneous effect algebra fulfilling
the condition (W+). Then E can be covered by Archimedean MV-algebras which
form blocks.

Note that as in [15] we obtain that Archimedean homogeneous effect algebras
fulfilling the condition (W+) (in particular orthocomplete homogeneous effect
algebras) can be covered by ranges of observables.

Proposition 3.15. Let E be an orthocomplete homogeneous effect algebra.
Then every block in E is a lattice.

Corollary 3.16. Finite homogeneous effect algebras are covered by MV-algebras.

Corollary 3.17. Let E be a sharply dominating homogeneous effect algebra
having the maximality property. For any y ∈ M(E), y ∧ (ŷ ⊖ y) exists and
y ∧ (ŷ ⊖ y) = y ∧ y′.

Proof. The meets exist in virtue of Proposition 3.9. Since y ≤ ŷ, there is a block
B for which y, ŷ ∈ B. Now, ŷ = (y⊕y′)∧B ŷ = (y∧B ŷ)⊕(y′∧B ŷ) = y⊕(y′∧B ŷ),
which implies ŷ⊖y = y′∧B ŷ. Consequently, y∧y′ = (ŷ∧y)∧y′ = (ŷ∧By

′)∧By) =
(ŷ ⊖ y) ∧B y = (ŷ ⊖ y) ∧ y because ŷ ⊖ y, y are orthogonal.

Example 3.18. In the finite orthoalgebra E = {0, a, b, c, d, e, f, a′, b′, c′, d′, e′,
f ′, 1} depictured in Figure 3 which is such that E = S(E) (hence E is homoge-
neous, Archimedean and orthocomplete), finite joins in blocks do not coincide
with finite joins in E. One can easily check that E is a sub-effect algebra of the
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Figure 3: Example 3.18

MV-effect algebra [0, 1]× [0, 1]× [0, 1] such that

0 7→ (0, 0, 0), 1 7→ (1, 1, 1),

a 7→ (1720 ,
1
20 ,

1
10 ), b 7→ ( 1

20 ,
17
20 ,

1
10 ), c 7→ ( 3

20 ,
19
20 , 0),

d 7→ (1920 ,
3
20 , 0), e 7→ (0, 0, 9

10 ), f 7→ ( 1
10 ,

1
10 ,

8
10 ),

a′ 7→ ( 3
20 ,

19
20 ,

9
10 ), b′ 7→ (1920 ,

3
20 ,

9
10 ), c′ 7→ (1720 ,

1
20 , 1),

d′ 7→ ( 1
20 ,

17
20 , 1), e′ 7→ (1, 1, 1

10 ), f ′ 7→ ( 9
10 ,

9
10 ,

2
10 ).

Moreover 1 = (1, 1, 1) = a⊕ b⊕ f = a⊕ c⊕ e = b⊕d⊕ e. This yields that E has
only the following blocks: B1 = {0, a, b, f, a⊕ b = f ′, a⊕ f = b′, b ⊕ f = a′, 1},
B2 = {0, a, c, e, a⊕ c = e′, a⊕ e = c′, c⊕ e = a′, 1} and B3 = {0, b, d, e, b⊕ d =
e′, b ⊕ e = d′, d ⊕ e = b′, 1} which are lattice ordered. Hence a 6↔ d, b 6↔ c,
c 6↔ d, c 6↔ f , d 6↔ f , e 6↔ f . In particular, a and b have two different minimal
upper bounds, a⊕ b and a⊕ c.

Open problem 3.19. One question still unanswered is whether, if A,B are two
blocks of E with x, y ∈ A∩B, then x∨A y = x∨B y; here E is an Archimedean
sharply dominating homogeneous effect algebra fulfilling the condition (W+).
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Order 12 (1995), 91–106.

[7] S. P. Gudder, Sharply dominating effect algebras, Tatra Mt. Math. Publ.
15 (1998), 23–30.

[8] S. P. Gudder, S-dominating effect algebras, Inter. J. Theor. Phys. 37 (1998),
915–923.
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[10] G. Jenča, Sharp and Meager Elements in Orthocomplete Homogeneous
Effect Algebras, Order 27 (2010), 41-61.
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