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Abstract. Sklar’s theorem is an important tool that connects bidimensional

distribution functions with their marginals by means of a copula. When there

is imprecision about the marginals, we can model the available information by
means of p-boxes, that are pairs of ordered distribution functions. Similarly, we

can consider a set of copulas instead of a single one. We study the extension

of Sklar’s theorem under these conditions, and link the obtained results to
stochastic ordering with imprecision.
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1. Introduction

In this paper, we deal with the problem of combining two marginal models
representing the probabilistic information about two random variables X,Y into a
bivariate model of the joint behaviour of (X,Y ). In the classical case, this problem
has a simple solution, by means of Sklar’s well-known theorem [26], that tells us
that any bivariate distribution function can be obtained as the combination of its
marginals by means of a copula [19].

Here we investigate to what extent Sklar’s theorem can be extended in the con-
text of imprecision, both in the marginal distribution functions and in the copula
that links them. The imprecision in marginal distributions shall be modelled by a
probability box [10] (p-box, for short), that summarizes a set of distribution func-
tions by means of its lower and upper envelopes. Regarding the imprecision about
the copula, we shall also consider a set of copulas. This set shall be represented
by means of the newly introduced notion of imprecise copula, that we study in
Section 3.1. This imprecision means that in the bivariate case we end up with a set
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of bivariate distribution functions, that we can summarize by means of a coherent
bivariate p-box, a notion recently studied in [22].

Interestingly, we shall show in Section 3.1 that Sklar’s theorem can be only
partly extended to the imprecise case; although the combination of two marginal
p-boxes by means of a set of copulas (or its associated imprecise copula) always
produces a coherent bivariate p-box, the most important aspect of the theorem
does not hold: not every coherent bivariate p-box can be obtained in this manner.
In Sections 3.2 and 3.3, we consider two particular cases of interest: that where we
have no information about the copula that links the two variables together, and
that where we assume that the two variables are independent. In those cases, we
use Walley’s notions of natural extension [28] and (epistemic) independent products
[4, 28] to derive the joint model.

In Section 4, we connect our results to decision making by applying the notion of
stochastic dominance in this setting, and we establish a number of cases in which
the order existing on the marginals is preserved by their respective joints. We
conclude the paper with some additional comments and remarks in Section 5.

2. Preliminary concepts

2.1. Coherent lower previsions. Let us introduce the basic notions from the
theory of coherent lower previsions that we shall use later on in this paper. For a
more detailed exposition of the theory and for a behavioural interpretation of the
concepts below in terms of betting rates, we refer to [28].

Let Ω be a possibility space. A gamble is a bounded real-valued function f :
Ω→ R. We shall denote by L(Ω) the set of all gambles on Ω, and by L+(Ω) the set
of non-negative gambles. It includes in particular the indicator functions of subsets
B of Ω, i.e., the gambles that take value 1 on the elements of B and 0 elsewhere.
In this paper, we shall use the same symbol for an event B and for its indicator
function.

A lower prevision is a functional P : K → R defined on some set of gambles
K ⊆ L(Ω). Here we are interested in lower previsions satisfying the property of
coherence:

Definition 1 (Coherent lower previsions). A lower prevision P : L(Ω) → R is
called coherent when it satisfies the following conditions for every pair of gambles
f, g ∈ L(Ω) and every λ > 0:

(C1) P (f) ≥ infω∈Ω f(ω).
(C2) P (λf) = λP (f).
(C3) P (f + g) ≥ P (f) + P (g).

The restriction to events of a coherent lower prevision is called a coherent lower
probability, and more generally a lower prevision P on K is said to be coherent
whenever it can be extended to a coherent lower prevision on L(Ω). On the other
hand, if P is a coherent lower prevision on L(Ω) and it satisfies (C3) with equality
for every f and g in L(Ω), then it is called a linear prevision, and its restriction to
events is a finitely additive probability. In fact, coherent lower previsions can be
given the following sensitivity analysis interpretation: a lower prevision P on K is
coherent if and only if it is the lower envelope of its associated credal set,

(1) M(P ) := {P : L(Ω)→ R linear prevision : P (f) ≥ P (f) ∀f ∈ K},
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and as a consequence the lower envelope of a set of linear previsions is always a
coherent lower prevision [28, Section 3.3.3(b)].

One particular instance of coherent lower probabilities are those associated with
p-boxes.

Definition 2. [10] A (univariate) p-box is a pair (F , F ) where F , F : R → [0, 1]
are cumulative distribution functions (i.e., monotone and such that F (−∞) =
F (−∞) = 0, F (+∞) = F (+∞) = 1) satisfying F (x) ≤ F (x) for every x ∈ R.

Define the set Ax = [−∞, x] for every x ∈ R, and let

E0 := {Ax : x ∈ R} ∪ {Ac
x : x ∈ R}.

Then [27] a p-box (F , F ) induces a coherent lower probability P (F,F ) : E0 → [0, 1]

by

(2) P (F,F )(Ax) = F (x) and P (F,F )(A
c
x) = 1− F (x) ∀x ∈ R.

2.2. Bivariate p-boxes. In [22], the notion of p-box from Definition 2 has been
extended to the bivariate case, to describe couples of random variables (X,Y ) in
presence of imprecision.

Definition 3. [22] A map F : R × R → [0, 1] is called standardized when it is
component-wise increasing, that is, F (t1, z) ≤ F (t2, z) and F (z, t1) ≤ F (z, t2) for
all t1 ≤ t2 and z, and satisfies

F (−∞, y) = F (x,−∞) = 0 ∀x, y ∈ R, F (+∞,+∞) = 1.

It is called a distribution function for (X,Y ) when it is standardized and satisfies

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0

for all x1, x2, y1, y2 ∈ R such that x1 ≤ x2, y1 ≤ y2 (with equality holding whenever
(x1 ≤ X < x2) ∧ (y1 ≤ Y < y2) is impossible). Given two standardized functions
F , F : R×R→ [0, 1] satisfying F (x, y) ≤ F (x, y) for every x, y ∈ R, the pair (F , F )
is called a bivariate p-box.

Bivariate p-boxes are introduced as a model for the imprecise knowledge of a
bivariate distribution function. The reason why the lower and upper functions in a
bivariate p-box are not required to be distribution functions is that the lower and
upper envelopes of a set of bivariate distribution functions need not be distribution
functions themselves, as showed in [22].

Let (F , F ) be a bivariate p-box on R×R. Define A(x,y) = [−∞, x]× [−∞, y] for

every x, y ∈ R, and consider the sets

D := {A(x,y) : x, y ∈ R},Dc := {Ac
(x,y) : x, y ∈ R}, E := D ∪Dc.

Note that A(+∞,+∞) = R×R, whence both R×R and ∅ belong to E . Similarly to

Eq. (2), we can define the lower probability induced by a bivariate p-box (F , F ) on
R× R as the map P (F,F ) : E → [0, 1] given by:

(3) P (F,F )(A(x,y)) = F (x, y), P (F,F )(A
c
(x,y)) = 1− F (x, y)

for every x, y ∈ R. Conversely, a lower probability P : E → [0, 1] determines a
couple of functions FP , FP : R× R→ [0, 1] defined by

(4) FP (x, y) = P (A(x,y)) and FP (x, y) = 1− P (Ac
(x,y)) ∀x, y ∈ R.



4 IGNACIO MONTES, ENRIQUE MIRANDA, RENATO PELESSONI, AND PAOLO VICIG

Then (FP , FP ) is a bivariate p-box as soon as the lower probability P is 2-coherent

[22]. 2-coherence is a weak rationality condition implied by coherence [28, Appen-
dix B], which in the context of this paper, where the domain E is closed under
complementation, is equivalent [22] to P (F,F ) being monotone, normalised, and

such that P (F,F )(E) + P (F,F )(E
c) ≤ 1 for every E ∈ E .

The correspondence between bivariate p-boxes and lower probabilities in terms
of precise models is given by the following lemma:1

Lemma 1. [22] Let (F , F ) be a p-box and P (F,F ) the lower probability it induces

on E by means of Eq. (3).

(a) Let P be (the restriction to E of) a linear prevision on L(R × R), and let
FP be its associated distribution function given by FP (x, y) = P (A(x,y)) for

every x, y ∈ R. Then

P (A) ≥ P (F,F )(A) ∀A ∈ E ⇐⇒ F ≤ FP ≤ F .

(b) Conversely, let F be a distribution function on R×R, and let PF : E → [0, 1]
be the functional given by PF (A(x,y)) = F (x, y), PF (Ac

(x,y)) = 1 − F (x, y)

for every x, y ∈ R. Then

F ≤ F ≤ F ⇐⇒ PF (A) ≥ P (F,F )(A) ∀A ∈ E .

Given a bivariate p-box (F , F ), Lemma 1 implies that the coherence of its asso-
ciated lower probability P (F,F ) can be characterised through a set of distribution

functions:

Proposition 1. [22] The lower probability P (F,F ) induced by the bivariate p-box

(F , F ) by means of Eq. (3) is coherent if and only if F (resp., F ) is the lower (resp.,
upper) envelope of the set

(5) F = {F : R× R→ [0, 1] distribution function : F ≤ F ≤ F}.

If P (F,F ) is coherent, the following conditions hold for every x1 ≤ x2 ∈ R and

y1 ≤ y2 ∈ R:

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.(I-RI1)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.(I-RI2)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.(I-RI3)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.(I-RI4)

Definition 4. A bivariate p-box (F , F ) is coherent whenever the lower probability
P (F,F ) it induces on E by means of Eq. (3) is coherent.

2.3. Copulas. In this paper, we are going to study to what extent bivariate p-
boxes can be expressed as a function of their marginals. In the precise case (that
is, when we have only one bivariate distribution function), this is done through the
notion of copula.

1We give a brief sketch of the proof: it suffices to establish the equivalences P (A(x,y)) ≥
P (F,F )(A(x,y)) ⇐⇒ FP (x, y) ≥ F (x, y) and P (Ac

(x,y)
) ≥ P (F,F )(A

c
(x,y)

) ⇐⇒ FP (x, y) ≤
F (x, y) for every x, y ∈ R. These follow easily from Eqs. (3) and (4).
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Definition 5. [19] A function C : [0, 1] × [0, 1] → [0, 1] is called a copula when it
satisfies the following conditions:

C(0, u) = C(u, 0) = 0 ∀u ∈ [0, 1].

(COP1)

C(1, u) = C(u, 1) = u ∀u ∈ [0, 1].

(COP2)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0 ∀u1 ≤ u2, v1 ≤ v2 ∈ [0, 1].

(COP3)

It follows from the definition above that a copula is component-wise monotone
increasing. One of the main features of copulas lies in Sklar’s theorem:

Theorem 1 ([26], Sklar’s Theorem). Let F(X,Y) : R × R → [0, 1] be a bivariate

distribution function with marginals FX : R→ [0, 1] and FY : R→ [0, 1], defined by
FX(x) = F(X,Y)(x,+∞) and FY(y) = F(X,Y)(+∞, y) for any x and y in R. Then
there is a copula C such that

F(X,Y)(x, y) = C(FX(x), FY(y)) for all (x, y) ∈ R× R.

Conversely, any transformation of marginal distribution functions by means of a
copula produces a bivariate distribution function.

Any copula C must satisfy the Fréchet-Hoeffding bounds (see [11, 29]):

(6) CL(u, v) := max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v} := CM(u, v)

for every u, v ∈ [0, 1]. CL is called the  Lukasiewicz copula and CM the minimum
copula. Eq. (6) applies in particular to one instance of copulas that shall be of
interest in this paper: the product copula CP, given by CP(u, v) = u · v for every
u, v ∈ [0, 1]. It holds that two random variables X,Y are stochastically independent
if and only if their distribution functions are coupled by the product copula.

For an in-depth review on copulas we refer to [19].

3. Combining marginal p-boxes into a bivariate one

One particular context where bivariate p-boxes can arise is in the joint extension
of two marginal p-boxes. In this section, we explore this case in detail, studying
in particular the properties of some bivariate p-boxes with given marginals: the
largest one, that shall be obtained by means of the Fréchet bounds and the notion of
natural extension, and the one modelling the notion of independence. In both cases,
we shall see that the bivariate model can be derived by means of an appropriate
extension of the notion of copula.

Related results can be found in [27, Section 7], with one fundamental difference:
in [27], the authors use the existence of a total preorder on the product space (in
the case of this paper, R × R) that is compatible with the orders in the marginal
spaces, and reduce the multivariate p-box to a univariate one. Here we do no such
reduction, and we consider only a partial order: the product order, given by

(x1, y1) ≤ (x2, y2)⇔ x1 ≤ x2 and y1 ≤ y2.

Another related study was made by Yager in [30], considering the case in which
the marginal distributions are not precisely described and are defined by means of
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Dempster-Shafer belief structures instead. He modelled this situation by consider-
ing copulas whose arguments are intervals (the ones determined by the Demspter-
Shafer models) instead of crisp numbers, and whose images are also intervals. He
showed then that the lower (resp., upper) bound of the interval of images corre-
sponds to the copula evaluated in the lower (resp., upper) bounds of the intervals.
This can be seen as a particular case of our subsequent Proposition 4.

3.1. A generalization of Sklar’s theorem. Let us study to which extent Sklar’s
theorem can be generalised to a context of imprecision, both in the marginal dis-
tribution functions to be combined and in the copula that links them. In order to
tackle this problem, we introduce the notion of imprecise copula:

Definition 6. A pair (C,C) of functions C,C : [0, 1] × [0, 1] → [0, 1] is called an
imprecise copula if:

• C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u ∀u ∈ [0, 1].
• C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u ∀u ∈ [0, 1].
• For any u1 ≤ u2, v1 ≤ v2:

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.(CI-1)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.(CI-2)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.(CI-3)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.(CI-4)

We are using the terminology imprecise copula in the definition above because
we intend it as a mathematical model for the imprecise knowledge of a copula; note
however that the lower and upper functions C,C need not be copulas themselves,
because they may not satisfy the 2-increasing property (COP3).

(CI-1)÷(CI-4) are useful in establishing the following properties of imprecise
copulas.

Proposition 2. Let (C,C) be an imprecise copula.

(a) C ≤ C.
(b) C and C are component-wise increasing.
(c) The Lipschitz condition

(7) |C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| ∀u1, u2, v1, v2 ∈ [0, 1]

is satisfied both by C = C and by C = C.
(d) The pointwise infimum and supremum of a non-empty set of copulas C form

an imprecise copula.

Proof. (a) This follows from inequality (CI-3), with u2 = u1.
(b) Use (CI-1) with, alternatively, v1 = 0 and u1 = 0 to obtain, respectively,

C(u2, v2)− C(u1, v2) ≥ 0 ∀v2, u1, u2 ∈ [0, 1], s.t. u1 ≤ u2

C(u2, v2)− C(u2, v1) ≥ 0 ∀u2, v1, v2 ∈ [0, 1], s.t. v1 ≤ v2

By these inequalities, C is component-wise increasing. Analogously, to
prove that C is component-wise increasing, apply (CI-4) with u1 = 0 and
(CI-3) with v1 = 0.



SKLAR’S THEOREM IN AN IMPRECISE SETTING 7

(c) Applying twice (CI-2) and the boundary conditions in Definition 5, first
with v2 = 1 and then with u2 = 1, we obtain, respectively,

C(u2, v1)− C(u1, v1) ≤ u2 − u1(8)

C(u1, v2)− C(u1, v1) ≤ v2 − v1.(9)

Because they are derived from (CI-2), Eqs. (8) and (9) hold, respectively,
for any v1, u1, u2 ∈ [0, 1] such that u1 ≤ u2, and for any u1, v1, v2 ∈ [0, 1]
such that v1 ≤ v2. In the general case, Eq. (8) is replaced by

|C(u2, v1)− C(u1, v1)| ≤ |u2 − u1|
and similarly for Eq. (9). Therefore, for arbitrary u1, u2, v1 and v2 in [0, 1],
|C(u2, v2)−C(u1, v1)| ≤ |C(u2, v2)−C(u2, v1)|+ |C(u2, v1)−C(u1, v1)| ≤
|u2− u1|+ |v2− v1|, which proves the Lipschitz condition for C. The proof
for C is similar (use (CI-4) with v2 = 1 and (CI-3) with u2 = 1).

(d) The boundary conditions are trivial, so let us prove (CI-1)÷(CI-4). Define
C(x, y) := infC∈C C(x, y), C(x, y) := infC∈C C(x, y). By applying (COP3)
to the copulas in C, we get that, for every C ∈ C and every u1 ≤ u2, v1 ≤
v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1) ≥ C(u1, v2) + C(u2, v1).

From this we deduce that, for every C ∈ C and every u1 ≤ u2, v1 ≤ v2 ∈
[0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

whence (CI-2) and (CI-1) hold.
As for (CI-3) and (CI-4), again from (COP3), we get that for every C ∈ C

and every u1 ≤ u2, v1 ≤ v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1).

This implies that for every C ∈ C and every u1 ≤ u2, v1 ≤ v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

whence (CI-3) and (CI-4) hold. �

According to [20, Corollary 2.3], the pointwise infimum and supremum of a set
of copulas are also quasi-copulas (see [21] for a study on the lattice structure of
copulas). A quasi-copula [19] is a binary operator satisfying conditions (COP1),
(COP2) in Definition 5 and the Lipschitz condition given by Eq. (7).

By Proposition 2 (c), both C and C in an imprecise copula (C,C) are quasi-
copulas. Conversely, given two quasi-copulas C1 and C2 such that C1 ≤ C2, (C1, C2)
may not be an imprecise copula. To see that, it is enough to consider a proper
quasi-copula C, i.e. a quasi-copula which is not a copula (see for instance [19,
Example 6.3]). Then, the pair (C,C) is not an imprecise copula because it does
not satisfy the inequalities in Definition 6: in this case the inequalities all reduce
to (COP3). We may then conclude that an imprecise copula is formed by two
quasi-copulas C1 ≤ C2, for which the additional inequalities (CI-1)÷(CI-4) hold.

The converse of item (d) in this proposition is still an open problem at this
stage; it is formally equivalent to the characterisation of coherent bivariate p-boxes
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studied in detail in [22]. So far, we have only established it under some restrictions
on the domains of the copulas. If it held, then we could regard imprecise copulas as
restrictions of sets of bivariate distribution functions of continuous random variables
with uniform marginals, similar to the situation for precise copulas.

In the particular case when C = C := C, (C,C) is an imprecise copula if and
only if C is a copula. It is also immediate to establish the following:

Proposition 3. Let C1 and C2 be two copulas such that C1 ≤ C2. Then, (C1, C2)
forms an imprecise copula. In particular, (CL, CM) is the largest imprecise copula,
in the sense that, for any imprecise copula (C,C), it holds that CL ≤ C ≤ C ≤ CM.

Proof. It is simple to check that (C1, C2) satisfies Definition 6. The proof of the
remaining part is similar to that of the Fréchet-Hoeffding inequalities. Consider
an imprecise copula (C,C). Since C is component-wise increasing by Proposition
2 (b), and applying the boundary conditions,

C(u, v) ≤ min(C(u, 1), C(1, v)) = min(u, v).

Using (CI-2) we deduce that:

1 + C(u, v) = C(1, 1) + C(u, v) ≥ C(u, 1) + C(1, v) = u+ v.

Then C(u, v) ≥ u + v − 1, and by definition C is also non-negative. Finally, the
inequality C ≤ C follows from Proposition 2 (a). �

Remark 1. Given a copula C : [0, 1]× [0, 1]→ [0, 1], it is immediate to see that its
extension C ′ : R× R→ [0, 1] given by

C ′(x, y) :=


C(x, y) if (x, y) ∈ [0, 1]× [0, 1]

0 if x < 0 or y < 0

min{x, y} if min{x, y} ∈ [0, 1] and max{x, y} ∈ [1,+∞]

1 otherwise

is a distribution function. Taking this into account, given any non-empty set of cop-
ulas C, its infimum C and supremum C form a coherent bivariate p-box. Moreover,
an imprecise copula (C,C) can be extended to R×R in the manner described above,
and then it constitutes a bivariate p-box that satisfies conditions (I-RI1)÷(I-RI4)
(although it is still an open problem whether it is coherent). �

Let us see to what extent an analogue of Sklar’s theorem also holds in an impre-
cise framework. For this aim, we start by considering marginal imprecise distribu-
tions, described by (univariate) p-boxes, and we use imprecise copulas to obtain a
bivariate p-box.

Proposition 4. Let (FX, FX) and (FY, FY) be two marginal p-boxes on R, and
let C be a set of copulas. Consider the imprecise copula (C,C) defined from C
by C(u, v) = infC∈C C(u, v) and C(u, v) = supC∈C C(u, v) for every u, v ∈ [0, 1].

Define the couple (F , F ) by:

(10) F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y))

for any (x, y) ∈ R× R. Then, (F , F ) is a bivariate p-box and it holds that:

(a) P (F,F ) is coherent.
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(b) The credal set M(P (F,F )) associated with the lower probability P (F,F ) by

means of Eq. (1) is given by

M(P (F,F )) = {P linear prevision | C(FX, FY) ≤ FP ≤ C(FX, FY)}.

Proof. Note that F ≤ F , since F = C(FX , FY ) ≤ C(FX , FY ) ≤ C(FX , FY ) = F .
It is easy to check that both F , F are standardized and as a consequence (F , F ) is
a bivariate p-box.

(a) Let F be the set of distribution functions associated with the bivariate
p-box (F , F ) by means of Eq. (5). Since FX, FX, FY, FY are marginal
distribution functions, Sklar’s theorem implies that C(FX(x), FY(y)) and
C(FX(x), FY(y)) are bivariate distribution functions for any C ∈ C. More-
over, they necessarily belong to F by Eq. (10). From this we deduce that

F (x, y) ≤ inf
F∈F

F (x, y) ≤ C(FX(x), FY(y)) = F (x, y),

and therefore F (x, y) = infF∈F F (x, y). Similarly, we can prove that
F (x, y) = supF∈F F (x, y). Applying now Proposition 1, we deduce that
P (F,F ) is coherent.

(b) This follows from the first statement and Lemma 1. �

In particular, when the available information about the marginal distributions
is precise, and it is given by the distribution functions FX and FY, the bivariate
p-box in the proposition above is given by

F (x, y) = inf
C∈C

C(FX(x), FY(y)) and F (x, y) = sup
C∈C

C(FX(x), FY(y))

for every (x, y) ∈ R × R. As a consequence, the result above generalizes [20,
Theorem 2.4], where the authors only focused on the functions F and F , show-
ing that F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y)). Instead, in
Proposition 4 we are also allowing for the existence of imprecision in the marginal
distributions, that we model by means of p-boxes. Note that we have also estab-
lished the coherence of the joint lower probability P (F,F ) and therefore of the p-box

(F , F ).
Proposition 4 generalizes to the imprecise case one of the implications in Sklar’s

theorem: if we combine two marginal p-boxes by means of a set of copulas, we obtain
a coherent bivariate p-box, which is thus equivalent to a set of bivariate distribution
functions. We focus now on the other implication: whether any bivariate p-box can
be obtained as a function of its marginals.2

A partial result in this sense has been established in [23, Theorem 9]. In our
language, it ensures that if the restriction on D of P (F,F ) is (a restriction of) a

2-monotone lower probability, then there exists a function C : [0, 1]× [0, 1]→ [0, 1],
which is component-wise increasing and satisfies (COP1) and (COP2), such that
F (x, y) = C(FX(x), FY(y)) for every (x, y) in R × R. This has been used in the
context of random sets in [1, 24].

2A similar study was made in [9, Theorem 2.4] in terms of capacities and semi-copulas, showing
that the survival functions induced by a capacity can always be expressed as a semi-copula of their
marginals. Here we investigate when the combination can be made in terms of an imprecise copula.

Note moreover that our focus is on coherent bivariate p-boxes, which produces capacities that are
most restrictive than those considered in [9] (they are closer to the precise case, so to speak). This
is why we also consider the particular case where the semi-copulas constitute an imprecise copula.
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Somewhat surprisingly, we show next that this result cannot be generalized to
arbitrary p-boxes.

Example 1. Let P1, P2 be the discrete probability measures associated with the
following masses on X × Y = {1, 2, 3} × {1, 2}:

(1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (3, 2)
P1 0.2 0 0.3 0 0 0.5
P2 0.1 0.2 0.5 0.1 0 0.1

Let P be the lower envelope of {P1, P2}. Then, P is a coherent lower probability,
and its associated p-box (F , F ) satisfies

FX(1) = FX(2) = 0.5, FY(1) = 0.2, F (1, 1) = 0.1 < F (2, 1) = 0.2.

If there was a function C such that F (x, y) = C(FX(x), FY(y)) for every (x, y) ∈
R× R, then we should have

F (1, 1) = C(FX(1), FY(1)) = C(FX(2), FY(1)) = F (2, 1).

This is a contradiction. As a consequence, the lower distribution in the bivariate
p-box cannot be expressed as a function of its marginals. �

This shows that the direct implication of Sklar’s theorem does not hold in the
bivariate case: given a coherent bivariate p-box (F , F ), there is not in general an
imprecise copula (C,C) determining it by means of Eq. (10). The key point here
is that the lower and upper distribution functions of a coherent bivariate p-box
may not be distribution functions themselves, as showed in [22]; they need only be
standardized functions. Indeed, if F , F were distribution functions we could always
apply Sklar’s theorem to them, and we could express each of them as a copula of
its marginals. What Example 1 shows is that this is no longer possible when F , F
are just standardized functions, nor in general when (F , F ) is coherent. We can
thus summarize the results of this section in the following theorem:

Theorem 2 (Imprecise Sklar’s Theorem). The following statements hold:

(a) Given two marginal p-boxes (FX, FX) and (FY, FY) on R and a set of
copulas C, the functions F , F given by Eq. (10) determine a bivariate p-box
on R× R, whose associated lower probability is coherent.

(b) Not every bivariate p-box can be expressed by means of its marginals and a
set of copulas by Eq. (10), not even when its associated lower probability is
coherent.

3.2. Natural extension of marginal p-boxes. Next we consider two particular
combinations of the marginal p-boxes into the bivariate one. First of all, we consider
the case where there is no information about the copula that links the marginal
distribution functions.

Lemma 2. Consider the univariate p-boxes (FX, FX) and (FY, FY) on R, and let
P be the lower probability defined on

A∗ := {A(x,+∞), A
c
(x,+∞), A(+∞,y), A

c
(+∞,y) : x, y ∈ R} ⊆ E

by

P (A(x,+∞)) = FX(x) P (Ac
(x,+∞)) = 1− FX(x) ∀x ∈ R,(11)

P (A(+∞,y)) = FY(y) P (Ac
(+∞,y)) = 1− FY(y) ∀y ∈ R.(12)
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Then:

(1) P is a coherent lower probability.
(2) M(P ) =M(CL, CM), where CL, CM are the copulas given by Eq. (6) and

M(CL, CM) = {P linear prevision : CL(FX, FY) ≤ FP ≤ CM(FX, FY)}.

Proof. (1) We use C∗ to denote the set of all copulas. By Propositions 3 and 4
and Eq. (6),

F (x, y) = C(FX(x), FY(y)) = inf
C∈C∗

C(FX(x), FY(y))

= CL(FX(x), FY(y)),

and similarly F (x, y) = C(FX(x), FY(y)) = CM(FX(x), FY(y)). Let P (F,F )

the coherent lower probability induced by (F , F ) by Eq. (3). Then

P (F,F )(A(x,+∞)) = F (x,+∞) = CL(FX(x), FY(+∞))

= max{FX(x) + FY(+∞)− 1, 0}
= max{FX(x), 0} = FX(x) = P (A(x,+∞))

and also

P (F,F )(A
c
(x,+∞)) = 1− F (x,+∞) = 1− CM(FX(x), FY(+∞))

= 1−min{FX(x), FY(+∞)} = 1−min{FX(x), 1}
= 1− FX(x) = P (Ac

(x,+∞)).

With an analogous reasoning, we obtain P (F,F )(A(+∞,y)) = P (A(+∞,y))

and P (F,F )(A
c
(+∞,y)) = P (Ac

(+∞,y)). Therefore, P coincides with P (F,F ) in

A∗, and consequently P is coherent.
(2) Let P ∈ M(CL, CM). Then, P ≥ P (F,F ) on E by Lemma 1. Since P

coincides with P (F,F ) on A∗, P ∈M(P ).

Conversely, let P ∈ M(P ), and let FP be its associated distribution
function. Then, Sklar’s Theorem assures that there is C ∈ C∗ such that
FP(x, y) = C(FP(x,+∞), FP(+∞, y)) for every (x, y) ∈ R× R. Hence,

CL(FX(x), FY (y)) ≤ CL(FP(x,+∞), FP(+∞, y))
≤ C(FP(x,+∞), FP(+∞, y))
≤ C(FX(x), FY (y)) ≤ CM(FX(x), FY (y)),

taking into account that any copula is component-wise increasing and lies
between CL and CM. Therefore, P ∈ M(CL, CM) and as a consequence
M(P ) =M(CL, CM). �

From this result we can immediately derive the expression of the natural ex-
tension [28] of two marginal p-boxes, that is the least-committal (i.e., the most
imprecise) coherent lower probability that extends P to a larger domain:

Proposition 5. Let (FX, FX) and (FY, FY) be two univariate p-boxes. Let P be
the lower probability defined on the set A∗ by means of Eqs. (11) and (12). The
natural extension E of P to E is given by

E(A(x,y)) = CL(FX(x), FY(y)) and E(Ac
(x,y)) = 1− CM(FX(x), FY(y)),
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for every x, y ∈ R. As a consequence, the bivariate p-box (F , F ) associated with E
is given by:

F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM(FX(x), FY(y)).

Proof. The lower probability P is coherent from the previous lemma, and in addi-
tion its associated credal set is M(P ) =M(CL, CM). The natural extension of P
to the set E is given by:

E(A(x,y)) = infP∈M(P ) FP(x, y)
= infP∈M(CL,CM) FP(x, y) = CL(FX(x), FY(y)).

E(Ac
(x,y)) = infP∈M(P )(1− P (A(x,y))) = 1− supP∈M(P ) FP(x, y)

= 1− supP∈M(CL,CM) FP(x, y) = 1− CM(FX(x), FY(y)).

The second part is an immediate consequence of the first. �

The intuition of this result is clear: if we want to build the joint p-box (F , F ) from
two given marginals (FX, FX), (FY, FY), and we have no information about the
interaction between the underlying variables X, Y , we should consider the largest,
or most conservative, imprecise copula: (CL, CM). This corresponds to combining
the compatible univariate distribution functions by means of all possible copulas,
and then taking the envelopes of the resulting set of bivariate distribution functions.
What Proposition 5 shows is that this procedure is equivalent to considering the
natural extension of the associated coherent lower probabilities, and then take its
associated bivariate p-box. In other words, the following diagram commutes:

PX, PY E = P (F,F )

(FX, FX), (FY, FY) (F , F )

Eq. (3)Eqs. (11), (12)

6 6

-

-

Natural extension

(CL, CM)

3.3. Independent products of random variables. Next, we consider another
case of interest: that where the variables X,Y are assumed to be independent.
Under imprecise information, there is more than one way to model the notion of
independence; see [2] for a survey on this topic. Because of this, there is more than
one manner in which we can say that a coherent lower prevision P on the product
space is an independent product of its marginals PX, PY. Since the formalism con-
sidered in this paper can be embedded into the theory of coherent lower previsions,
here we shall consider the notions of epistemic irrelevance and independence, which
seem to be more sound under the behavioural interpretation that is at the core of
this theory.

The study of independence under imprecision suffers from a number of drawbacks
when the underlying possibility spaces are infinite [13]. Because of this fact, we shall
consider that the variables X,Y under study take values in respective finite spaces
X ,Y. Then the available information about these variables is given by a coherent
lower prevision P on L(X ×Y). We shall denote by PX, PY its respective marginals
on L(X ),L(Y). Note that, similarly to Eq. (4), we can consider the bivariate p-box



SKLAR’S THEOREM IN AN IMPRECISE SETTING 13

(F , F ) induced by P on X ×Y, and also the univariate p-boxes (FX, FX), (FY, FY)
induced by PX, PY on X ,Y.

We say then that the random variable Y is epistemically irrelevant to X when

PX(f |y) := PX(f(·, y)) ∀f ∈ L(X × Y), y ∈ Y.
The variables X,Y are said to be epistemically independent when each of them is
epistemically irrelevant to the other:

(13) PX(f |y) := PX(f(·, y)) and PY(f |x) := PY(f(x, ·))
for every f ∈ L(X × Y), x ∈ X , y ∈ Y.

Here a conditional lower prevision P (·|X ) on X × Y is a collection of coherent
lower previsions {P (·|x) : x ∈ X}, so that P (·|x) models the available information
about the outcome of (X,Y ) when we know that X takes the value x.3 Note that
given f ∈ L(X × Y), P (f |X ) is the gamble on X × Y that takes the value P (f |x)
on the set {x} × Y. Analogous comments can be made with respect to P (·|Y).

If we have a coherent lower prevision P and conditional lower previsions P (·|X ), P (·|Y),
we should check if the information they encompass is globally consistent. This can
be done by means of the notion of (joint) coherence in [28, Def 7.1.4], and from
this we can establish the following definition:

Definition 7. Let P be a coherent lower prevision on L(X × Y) with marginals
PX, PY. We say that P is an independent product when it is coherent with the
conditional lower previsions PX(·|Y), PY(·|X ) derived from PX, PY by means of
Eq. (13).

Given PY and PY, one example of independent product is the strong product,
given by

(14) PX � PY := inf{PX × PY : PX ≥ PX, PY ≥ PY},
where PX × PY refers to the linear prevision uniquely determined by4 the finitely
additive probability such that (PX × PY)(x, y) = PX(x) · PY(y) ∀x ∈ X , y ∈ Y.
The strong product is the joint model satisfying the notion of strong independence.
However, it is not the only independent product, nor is it the smallest one. In fact,
the smallest independent product of the marginal coherent lower previsions PX, PY

is called their independent natural extension, and it is given, for every gamble f on
X × Y, by

(PX ⊗ PY)(f)

:= sup{µ : f − µ ≥ g − PX(g|Y) + h− PY(h|X ) for some g, h ∈ L(X × Y)}.
One way of building independent products is by means of the following condition:

Definition 8. A coherent lower prevision P on L(X ×Y) is called factorising when

P (fg) = P (fP (g)) ∀f ∈ L+(X ), g ∈ L(Y)

and
P (fg) = P (gP (f)) ∀f ∈ L(X ), g ∈ L+(Y).

3Strictly speaking, P (·|X ) refers to the lower prevision conditional on the partition {{x}×Y :
x ∈ X} of X ×Y, and we use P (f |x) to denote P (f |{x}×Y). The reason for this is that Walley’s

formalism defines lower previsions conditional on partitions of the possibility space [28, Chapter 6].
4Recall that this is possible because we are assuming that the possibility spaces X ,Y are finite;

to see that the procedure above may not work with infinite spaces, we refer to [13].
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Both the independent natural extension and the strong product are factorising.
Indeed, it can be proven [4, Theorem 28] that any factorising P is an independent
product of its marginals, but the converse is not true. Under factorisation, the
following result holds:

Proposition 6. Let (FX, FX), (FY, FY) be marginal p-boxes, and let PX, PY be
their associated coherent lower previsions. Let P be a factorising coherent lower
prevision on L(X × Y) with these marginals. Then it induces the bivariate p-box
(F , F ) given by

F (x, y) = FX(x) · FY(y) and F (x, y) = FX(x) · FY(y) ∀(x, y) ∈ X × Y.

Proof. Let x∗, y∗ denote the maximum elements of X ,Y, respectively. Since the
indicator functions of A(x,y∗), A(x∗,y) are non-negative gambles such that A(x,y) =
A(x,y∗) · A(x∗,y) and taking also into account that P is factorising and positively
homogeneous, we get

P (A(x,y)) = P (A(x,y∗) ·A(x∗,y)) = P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y).

Similarly, if P is the conjugate upper prevision of P , given by P (f) = −P (−f) for
every f ∈ L(X × Y), it holds that

P (A(x,y)) = P (A(x,y∗) ·A(x∗,y))

= −P (A(x,y∗) · (−A(x∗,y))) = −P (A(x,y∗) · (P (−A(x∗,y))))

= −P (−A(x,y∗) · (P (A(x∗,y)))) = −P (−A(x,y∗)) · P (A(x∗,y))

= P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y). �

From this it is easy to deduce that the p-box (F , F ) induced by a factorising P
is the envelope of the set of bivariate distribution functions

{F : F (x, y) = FX(x) · FY(y) for FX ∈ (FX, FX), FY ∈ (FY, FY)}.

In other words, the bivariate p-box can be obtained by applying the imprecise
version of Sklar’s theorem (Proposition 4) with the product copula.

Further, it has been showed in [13] that a coherent lower prevision P with
marginals PX, PY is factorising if and only if it lies between the independent natural
extension and the strong product:

(15) PX ⊗ PY ≤ P ≤ PX � PY;

as Walley showed in [28, Section 9.3.4], the independent natural extension and
the strong product do not coincide in general, and this means that there may be
an infinite number of factorising coherent lower previsions with marginals PX, PY.
What Proposition 6 tells us is that all these factorising coherent lower previsions
induce the same bivariate p-box: the one determined by the product copula on the
marginal p-boxes.

Interestingly, this applies to other independence conditions that guarantee the
factorisation, such as the Kuznetsov property [3, 4]. This would mean that any
Kuznetsov product of the marginals PX, PY induces the bivariate p-box given by
the product copula of the marginals.

However, not all independent products are factorising [4, Example 3], and those
that do not may induce different p-boxes, as we show in the following example:
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Example 2. Consider X = Y = {0, 1}. Let P1, P2 be the linear previsions on L(X )
given by

P1(f) = 0.5f(0) + 0.5f(1), P2(f) = f(0) ∀f ∈ L(X )

and let P3, P4 be the linear previsions on L(Y) given by

P3(f) = 0.5f(0) + 0.5f(1), P4(f) = f(0) ∀f ∈ L(Y).

Consider the marginal lower previsions PX := min{P1, P2}, PY := min{P3, P4} on
L(X ),L(Y), respectively. Applying Eq. (14), their strong product is given by

PX � PY = min{P1 × P3, P1 × P4, P2 × P3, P2 × P4}
= min{(0.25, 0.25, 0.25, 0.25), (0.5, 0, 0.5, 0), (0.5, 0.5, 0, 0), (1, 0, 0, 0)},

where in the equation above a vector (a, b, c, d) is used to denote the vector of
probabilities {(P (0, 0), P (0, 1), P (1, 0), P (1, 1))}.

Let P be the coherent lower prevision determined by the mass functions

P : = min{P1 × (0.5P3 + 0.5P4), (0.5P1 + 0.5P2)× P3, P2 × P4}
= min{(0.375, 0.125, 0.375, 0.125), (0.375, 0.375, 0.125, 0.125), (1, 0, 0, 0)},

where (0.5P3 + 0.5P4) denotes the linear prevision on L(Y) given by

(0.5P3 + 0.5P4)(f) = 0.5P3(f) + 0.5P4(f) ∀f ∈ L(Y),

and similarly for (0.5P1 + 0.5P2). Then the marginals of P are also PX, PY.
Moreover, since the extreme points of M(P ) are convex combinations of those
of M(PX � PY), we deduce that P dominates PX � PY. Applying [13, Proposi-
tion 5], we deduce that P is also an independent product of the marginal coherent
lower previsions PX, PY. Since it dominates strictly the strong product, we deduce
from Eq. (15) that P is not factorising.

Now, since

P ({(0, 0)}) = 0.375 > 0.25 = (PX � PY)({(0, 0)}),

we see that the p-boxes associated with P and PX � PY differ. We conclude thus
that not all independent products induce the bivariate p-box that is the product
copula of its marginals. �

Remark 2. Interestingly, we can somehow distinguish between the strong product
and the independent natural extension in terms of bivariate p-boxes, in the following
way: if we consider the set of bivariate distribution functions

F := {FX × FY : FX ∈ (FX, FX), FY ∈ (FY, FY)},

then it follows from Eq. (14) that

(16) PX � PY := inf{P : FP ∈ F}.

This differs from the coherent lower prevision given by

P := min{P : FP ∈ (FX · FY, FX · FY)},

which will be in general more imprecise than the independent natural extension
PX ⊗PY. Moreover, a characterisation similar to Eq. (16) cannot be made for the
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independent natural extension, in the sense that there is no set of copulas C such
that

PX ⊗ PY := inf{P : FP = C(FX, FY)

for some C ∈ C, FX ∈ (FX, FX), FY ∈ (FY, FY)};
indeed, just by considering the precise case we see that C should consist just of the
product copula, and this would give back the definition of the strong product. �

4. Stochastic orders and copulas

Next, we are going to apply the previous results to characterize the preferences
encoded by p-boxes. To this end, let us first of all recall some basic notions on
stochastic orders (see [12, 18, 25] for more information):

Definition 9. Given two univariate random variables X and Y with respective
distribution functions FX and FY, we say that X stochastically dominates Y , and
denote it X �SD Y , when FX(t) ≤ FY(t) for any t.

This is one of the most extensively used methods for the comparison of random
variables. It is also called first order stochastic dominance, so as to distinguish it
from the (weaker) notions of second, third, ..., n-th order stochastic dominance.

An alternative for the comparison of random variables is statistical preference.

Definition 10 ([5, 6]). Given two univariate random variables X and Y , X is said
to be statistically preferred to Y if P (X ≥ Y ) ≥ P (Y ≥ X). This is denoted by
X �SP Y .

This notion is particularly interesting when the variables X,Y take values in a
qualitative scale [8].

In addition to comparing pairs of random variables, or, more generally, couples
of ‘elements’, with a preorder relation, we may be interested in comparing pairs of
sets (of random variables or other ‘elements’) by means of the given order relation.
We can consider several different possibilities:

Definition 11. Let � be a preorder over a set S. Given A,B ⊆ S, we say that:

(1) A �1 B if and only if for every a ∈ A, b ∈ B it holds that a � b.
(2) A �2 B if and only if there exists some a ∈ A such that a � b for every

b ∈ B.
(3) A �3 B if and only if for every b ∈ B there is some a ∈ A such that a � b.
(4) A �4 B if and only if there are a ∈ A, b ∈ B such that a � b.
(5) A �5 B if and only if there is some b ∈ B such that a � b for every a ∈ A.
(6) A �6 B if and only if for every a ∈ A there is b ∈ B such that a � b.

The relations �i in Definition 11 have been discussed in [17] in the case that
� is the stochastic dominance relation �SD and in [16] in the case of statistical
preference, showing that several of them are related to decision criteria explored in
the literature of imprecise probabilities.

Figure 1 illustrates some of these extensions. In Figure 1a, A �1 B because all
the alternatives in A are better than all the alternatives in B; in Figure 1b, A �2 B
because there is an optimal element in A, a1, that is preferred to all the alternatives
in B; Figure 1c shows an example of A �4 B because there are alternatives a1 ∈ A
and b2 ∈ B such that a1 � b2; finally, Figure 1d shows an example of A �5 B
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(a) A �1 B (b) A �2 B (c) A �4 B

(d) A �5 B

Figure 1. Examples of the extensions of �i. In this picture ai →
bj means ai � bj .

because there is a worst element in B, b1 that is dominated by all the elements
in A. The difference between the second and the third extensions (resp., fifth and
sixth) lies in the existence of a maximum (resp., minimum) or a supremum (resp.,
infimum) element in A (resp., B).

4.1. Univariate orders. Although stochastic dominance does not imply statistical
preference in general5, in the univariate case a number of sufficient conditions have
been established for the implication, in terms of the copula that determines the
joint distribution from the marginal ones. This is for instance the case when:

(SD-SP1): X and Y are stochastically independent random variables, i.e.,
they are linked by the product copula (see [5, 7, 15]);

(SD-SP2): X and Y are absolutely continuous random variables and they
are coupled by an Archimedean copula (see [14]).

(SD-SP3): X,Y are either comonotonic or countercomonotonic, and they
are both either simple or absolutely continuous.

In such cases, the implication transfers to the relations comparing sets of random
variables, by means of the following lemma. Its proof is immediate and therefore
omitted.

Lemma 3. Let � be a preorder in a set S and A,B ⊆ S. Let also w be a preorder
that extends �, i.e. x � y ⇒ x w y ∀x, y ∈ S. Then, A �i B ⇒ A wi B for all
i = 1, . . . , 6.

Here A, B are sets of random variables, denoted VX, VY. The following special
case of Lemma 3 is an instance.

5Consider for instance the case where the joint distribution is given by P (X = 0, Y = 0.5) =

0.2, P (X = 0.5, Y = 0) = P (X = 1, Y = 0) = P (X = 0.5, Y = 1) = 0.1 and P (X = 1, Y = 1) =
0.5. Then X and Y are equivalent with respect to stochastic dominance because their cumulative

distribution functions coincide; however, Y is strictly statistically preferred to X.
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Proposition 7. Consider two sets of random variables VX,VY. Assume that any
X ∈ VX, Y ∈ VY satisfy one of the conditions (SD-SP1)÷(SD-SP3) above. Then,
for all i = 1, . . . , 6:

VX �SDi
VY ⇒ VX �SPi

VY.

Proof. As we have remarked, conditions (SD-SP1)÷(SD-SP3) above ensure that the
statistical preference relation is an extension of stochastic dominance. The result
follows from Lemma 3. �

4.2. Bivariate orders. Next we consider the following extension of stochastic
dominance to the bivariate case:

Definition 12. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with
respective bivariate distribution functions FX1,X2 and FY1,Y2 . We say that (X1, X2)
stochastically dominates (Y1, Y2), and denote it (X1, X2) �SD (Y1, Y2), if FX1,X2(s, t) ≤
FY1,Y2

(s, t) for all (s, t) ∈ R2.

This definition establishes a way of comparing two bivariate vectorsX = (X1, X2),
Y = (Y1, Y2) in case their associated distribution functions are precisely known.
However, it is not uncommon to have uncertain information about these distri-
bution functions, that we can model by means of respective sets of distribution
functions FX,FY. If we now take Definition 11 into account, we can propose a
generalisation of Definition 12 to the imprecise case:

Definition 13. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with
respective sets of bivariate distribution functions FX,FY. We say that (X1, X2) i-
stochastically dominates (Y1, Y2), and denote it (X1, X2) �SDi

(Y1, Y2), if FX ≤i FY.

Since by Remark 1 copulas can be interpreted as bivariate distribution functions,
the extensions ≤i are also applicable to them.

Note that the sets of distribution functions FX,FY may be obtained by combin-
ing two respective marginal p-boxes by means of a set of copulas. In that case, we
may study to which extent the relationships between the sets FX,FY can be de-
termined by means of the relationships between their marginal univariate p-boxes.
In other words, if we have information stating that X1 stochastically dominates
Y1 and X2 stochastically dominates Y2, we may wonder in which cases the pair
(X1, X2) i-stochastically dominates (Y1, Y2). The following result gives an answer
to this question:

Proposition 8. Given two random vectors X = (X1, X2), Y = (Y1, Y2), let
(FX1

, FX1
), (FX2

, FX2
), (FY1

, FY1
), (FY2

, FY2
) be the marginal p-boxes associated

with X1, X2, Y1, Y2 respectively. Let CX and CY be two sets of copulas. Define the
following sets of bivariate distribution functions FX,FY:

FX := {C(FX1
, FX2

) : C ∈ CX, FX1
∈ (FX1

, FX1
), FX2

∈ (FX2
, FX2

)},
FY := {C(FY1

, FY2
) : C ∈ CY, FY1

∈ (FY1
, FY1

), FY2
∈ (FY2

, FY2
)}.

Consider i ∈ {1, . . . , 6} and assume that (FXj
, FXj) ≤i (FYj

, FYj) for j = 1, 2.
Then:

CX ≤i CY ⇒ (X1, X2) �SDi
(Y1, Y2).
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Proof. (i = 1) We know that:

∀FXj
∈ (FXj

, FXj
), FYj

∈ (FYj
, FYj

), FXj
≤ FYj

, (j = 1, 2);

∀CX ∈ CX, CY ∈ CY, CX ≤ CY,

Consider FX ∈ FX and FY ∈ FY . They can be expressed in the following
way: FX(x, y) = CX(FX1(x), FX2(y)) and FY(x, y) = CY(FY1(x), FY2(y)),
where CX ≤ CY. Then:

FX(x, y) = CX(FX1(x), FX2(y)) ≤ CX(FY1(x), FY2(y))
≤ CY(FY1

(x), FY2
(y)) = FY(x, y),

where the inequalities hold because copulas are component-wise increasing.
(i = 2) We know that:

∃F ∗Xj
∈ (FXj

, FXj
) s.t. F ∗Xj

≤ FYj
∀FYj

∈ (FYj
, FYj

), (j = 1, 2).

∃C∗X ∈ CX s.t. C∗X ≤ CY ∀CY ∈ CY.
Consider FX(x, y) := C∗X(F ∗X1

(x), F ∗X2
(y)), and let us see that FX ≤ FY for

any FY = CY(FY1
, FY2

) in FY :

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(FY1
(x), FX2

(y))
≤ CY(FY1

(x), FX2
(y)) = FY(x, y).

(i = 3) We know that:

∀FYj ∈ (FYj
, FYj),∃F ∗Xj

∈ (FXj
, FXj) s.t. F ∗Xj

≤ FYj , (j = 1, 2).

∀CY ∈ CY ∃C∗X ∈ CX s.t. C∗X ≤ CY.

Let FY ∈ FY . Then, there are CY ∈ CY , FY1 ∈ (FY1
, FY1) and FY2 ∈

(FY2
, FY2

) such that FY(x, y) = CY(FY1
(x), FY2

(y)). Let us check that
there is FX in FX such that FX ≤ FY. Let FX(x, y) = C∗X(F ∗X1

(x), F ∗X2
(y)).

Then:

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(FY1
(x), FY2

(y))
≤ CY(FY1

(x), FY2
(y)) = FY(x, y).

(i = 4) We know that:

∃F ∗Xj
∈ (FXj

, FXj
), F ∗Yj

∈ (FYj
, FYj

) s.t. F ∗Xj
≤ F ∗Yj

, (j = 1, 2).

∃C∗X ∈ CX, C∗Y ∈ CY s.t. C∗X ≤ C∗Y.
Let us consider the distribution functions FX(x, y) = C∗X(F ∗X1

(x), F ∗X2
(y))

and FY(x, y) = C∗Y(F ∗Y1
(x), F ∗Y2

(y)). It holds that FX ≤ FY:

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(F ∗Y1
(x), F ∗Y2

(y))
≤ C∗Y(F ∗Y1

(x), F ∗Y2
(y)) = FY(x, y).

(i = 5, i = 6) The proof of these two cases is analogous to that of i = 2 and i = 3,
respectively. �

4.3. Natural extension and independent products. To conclude this section,
we consider the particular cases discussed in Sections 3.2 and 3.3: those where the
bivariate p-box is the natural extension or a factorising product.

By Proposition 5, the natural extension of two marginal p-boxes (FX, FX) and
(FY, FY) is given by:

(17) F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM(FX(x), FY(y)).

This allows us to prove the following result:
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Corollary 1. Consider marginal p-boxes (FX1
, FX1

), (FX2
, FX2

), (FY1
, FY1

) and

(FY2
, FY2). Let (FX, FX) (resp., (FY, FY)) be the natural extension of the p-boxes

(FX1
, FX1

), (FX2
, FX2

) (resp., (FY1
, FY1

), (FY2
, FY2

)) by means of Eq. (17). Then
for i = 2, . . . , 6,

(FXj
, FXj

) ≤i (FYj
, FYj

), j = 1, 2⇒ (X1, X2) �SDi
(Y1, Y2).

Proof. Take CX = CY = {CL, CM} in Proposition 8. Since CL ≤ CL, CM ≤ CM and
CL ≤ CM, we get CX ≤i CY, i = 2, . . . , 6. Then, Proposition 8 ensures {FX, FX} ≤i

{FY, FY} (i = 2, . . . , 6). It is not difficult to check then that this implies also
(FX, FX) ≤i (FY, FY) (i = 2, . . . , 6), because of the special form of CX, CY. �

To see that the result does not hold for ≤1, consider the following example:

Example 3. For j = 1, 2, let FXj
= FXj

= FYj
= FYj

be the distribution function

associated with the uniform probability distribution on [0, 1], given by F (x) = x
for every x ∈ [0, 1]. Then trivially

F = (FXj
, FXj

) ≤1 (FYj
, FYj

) = F ∀j = 1, 2.

However, (FX, FX) �1 (FY, FY), since CM(F, F ) ∈ (FX, FX), CL(F, F ) ∈ (FY, FY)
and

CM(F, F )(0.5, 0.5) = CM(F (0.5), F (0.5)) = CM(0.5, 0.5) = 0.5 > 0

= CL(0.5, 0.5) = CL(F (0.5), F (0.5)) = CL(F, F )(0.5, 0.5).�

On the other hand, Proposition 6 implies that, given two finite spaces X ,Y, any
factorising coherent lower prevision P on L(X × Y) determines a bivariate p-box
that is the product of its marginal p-boxes by means of the product copula. Taking
this property into account, we can compare two factorising independent products in
terms of the relationships between their marginals. From Proposition 8, we deduce
the following:

Corollary 2. Consider marginal p-boxes (FX1
, FX1

), (FY1
, FY1

), (FX2
, FX2

) and

(FY2
, FY2), and let us define the following sets of bivariate distribution functions

FX ,FY by

FX := {FX1
· FX2

: FX1
∈ (FX1

, FX1
), FX2

∈ (FX2
, FX2

)},
FY := {FY1

· FY2
: FY1

∈ (FY1
, FY1

), FY2
∈ (FY2

, FY2
)}.

Then, for i = 1, . . . , 6,

(FXj
, FXj) ≤i (FYj

, FYj), j = 1, 2⇒ (X1, X2) �SDi (Y1, Y2).

Proof. The result is the particular case of Proposition 8 where CX = CY = {CP}.
�

5. Conclusions and open problems

In this work we have studied the extension of Sklar’s theorem to an imprecise
framework, where instead of random variables precisely described by their distribu-
tion functions, we have considered the case when they are imprecisely described by
p-boxes. For this aim, we have introduced the notion of imprecise copula, and have
proven that if we link two marginal p-boxes by means of a set of copulas we obtain
a bivariate p-box whose associated lower probability is coherent. Unfortunately,
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the main implication of Sklar’s theorem does not hold in the imprecise framework:
there exist coherent bivariate p-boxes that are not uniquely determined by their
marginals.

We have investigated two particular cases: on the one hand, we considered the
absence of information about the copula that links the marginals. In that case, we
end up with the natural extension of the marginal p-boxes, that can be expressed in
terms of the  Lukasiewicz and the minimum copulas. On the other hand, we looked
upon the case where the marginal distributions satisfy the condition of epistemic
independence, and showed that the joint p-box can be obtained in most, but not
all cases, by means of the product copula.

There are a few open problems that arise from our work in this paper: on the
one hand, we should deepen the study of the properties of imprecise copulas from
the point of view of aggregation operators. With respect to Sklar’s theorem, we
intend to look for sufficient conditions for a bivariate p-box to be determined as an
imprecise copula of its marginals. A third open problem would be the study in the
imprecise case of the other extensions of stochastic dominance to the bivariate case,
based on the comparisons of survival functions or expectations. Finally, it would
be interesting to generalize our results to the n-variate case. An interesting work
in this respect was carried out by Durante and Spizzichino in [9].
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M. D. Taylor, editors, Distributions with Fixed Marginals and Related Topics, volume 28 of

IMS Lecture Notes- Monograph Series, pages 307–318. Institute of Mathematical Statistics,
1996.

[24] B. Schmelzer. Joint distributions of random sets and their relation to copulas. In V.N. Huynh

et al., editor, Modeling dependence in Econometrics, volume 251 of Advances in Intelligent
Systems and Computing, pages 155–168. Springer, 2014.

[25] M. Shaked and J. G. Shanthikumar. Stochastic Orders and their applications. Springer, 2006.
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