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Abstract

Considering two different metrics on the space of two-dimensional copulas C we prove
some Baire category results for important subclasses of copulas, including the families of
exchangeable, associative, and Archimedean copulas. From the point of view of Baire
categories, with respect to the uniform metric d∞, a typical copula is not symmetric
and a typical symmetric copula is not associative, whereas a typical associative copula
is Archimedean and a typical Archimedean copula is strict. The results in particular ans-
wer the open question posed in [1] whether the family of associative copulas is of first
category in (C , d∞).
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1. Introduction

Copulas are (the restriction to [0, 1]d of) distribution functions of probability measures
on [0, 1]d (d ≥ 2) whose one–dimensional marginals are uniformly distributed on [0, 1].
Considering that, according to Sklar’s theorem [6, 7, 16, 17], every distribution function of
a random vector can be expressed as composition of a suitable copula and the correspond-
ing marginal distribution functions, copulas are the natural building blocks of modern
multivariate analysis. Having a variety of copulas at one’s disposal may help in building
different stochastic models that possibly differ in features being of essential importance
in applications (e.g. tail behavior). Nevertheless, taking into account numerical and ana-
lytic aspects, in practice copulas are chosen from few well–studied standard (parametric or
semi–parametric) families and it is arguable whether they actually form “small” or “large”
families of copulas.
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In order characterize the relative size of subclasses of copulas, we will use a topological
approach (as also suggested in [15]) and work with Baire categories (see, e.g. [14]). Doing
so we consider the topologies induced by two different metrics on the space C of two-
dimensional copulas: the standard uniform metric d∞ as well as the stronger metric D1

introduced and studied in [9, 18]. In both cases the resulting metric spaces are complete
(in case of d∞ even compact). A subset N of a metric space (Ω, d) is called nowhere dense
if it is not dense in any non-degenerate open ball B(x, r) of radius r > 0 (equivalently, if
its closure has empty interior). A set A ⊆ Ω is called meager or of first category in (Ω, d)
if it can be expressed as (or covered by) a countable union of nowhere dense sets. A is
called of second category if it is not meager. Finally, A is called co-meager (or residual) if
Ac = Ω \ A is meager. Following [3], in complete metric spaces, first category sets are the
“small” sets, co-meager sets are the “large” sets and second-category sets are merely “not
small”. Loosely speaking (and following conventions in the literature), we will therefore
refer to the elements of a co-meager set as (topologically) typical and to the elements of a
meager set as (topologically) atypical in Ω.

In the sequel Ce will denote the family of all exchangeable (i.e. symmetric) copulas, Ca

the family of all associative copulas, Car the family of all Archimedean copulas, and C s
ar

the family of all strict Archimedean copulas, i.e. Archimedean copulas whose generator φ
fulfills φ(0) = ∞ (see [13]). It is well known that we have Car ⊂ Ca ⊂ Ce and that Ca

and Ce are closed in (C , d∞) (see, for instance, [10]). Since convergence w.r.t. D1 implies
convergence w.r.t. d∞ (see again [18]) the families Ca and Ce are also closed in (C , D1).

We will prove the following results:

• The family of exchangeable copulas Ce is nowhere dense (hence of first category) in
(C , d∞) as well as in (C , D1).

• The family Ca of associative copulas is nowhere dense in (Ce, d∞) as well as in
(Ce, D1).

• The family Car of Archimedean copulas is co-meager (hence of second category) in
(Ca, d∞).

• The family C s
ar of all strict Archimedean copulas is co-meager in (Car, d∞).

As a byproduct, we give an affirmative answer to the open problem posed in [1, Problem
10] (also see [2]) asking whether the family of associative copulas is of first category in
(C , d∞).

Remark 1.1. The results presented in this paper are not intended to suggest any families
of copulas to be used in practice but merely to give a purely topological characterization of
some well-known classes. In fact, as pointed out before, (in complete metric spaces) Baire
categories establish a rough classification of subsets as “small”, “large”, or “not small” but
do not allow for a more accurate quantification of size, implying that Baire categories are
not useful for deciding which parametric classes of copulas should (or should not) be used
in practice.
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2. The results

For basic definitions and properties of copulas we refer to [8, 13], for the metric D1 to
[18], and directly start with the following result.

Theorem 2.1. Ce is nowhere dense in (C , d∞) and in (C , D1).

Proof. For every A ∈ C there exists a sequence (An)n∈N of non–exchangeable copulas that
converges to A w.r.t. D1 (hence w.r.t. d∞). In fact, if A itself is not exchangeable we may
choose An = A and if A is exchangeable we may consider An := (1 − 1/n)A + (1/n)E
with E ∈ C being an arbitrary asymmetric copula. As immediate consequence Ce cannot
contain any nonempty open subset of (C , D1) or of (C , d∞).

Having Theorem 2.1 we immediately get that each subclass of Ce (including the family
of all Gaussian copulas, Gumbel copulas, Clayton copulas, symmetric Bernstein copulas,
symmetric checkerboard copulas, and many more) is nowhere dense in (C , d∞) and in
(C , D1) too. Additionally, considering that, according to [5, 19], all idempotent copulas
(idempotent with respect to the star product introduced in [4]) are symmetric, and, letting
Ci the family of all idempotent copulas, we also get that Ci is nowhere dense in (C , d∞)
and in (C , D1). The subsequent corollary serves to gather some important consequences -
in particular it gives a positive answer to Problem 10 in [1] asking whether the family of
associative copulas is of first category in (C , d∞).

Corollary 2.2. Car, Ca and Ci are nowhere dense in (C , d∞) and in (C , D1). In particular,
all three families are of first category in (C , d∞) as well as in (C , D1).

Next we look at the family of associative copulas as subset of the family exchangeable
copulas and prove the following result.

Theorem 2.3. Ca is nowhere dense in (Ce, d∞) and in (Ce, D1).

Proof. For every A ∈ Ce there exists a sequence (An)n∈N of non–associative copulas that
uniformly converges to A. In fact, if A itself is not associative we may choose An = A, and
if A is associative we may consider An being the ordinal sum of (E,A) with respect to the
partition ([0, 1/(n + 1)], [1/(n + 1), 1]), where E ∈ Ce is a non–associative copula. Note
that, by the representation theorem of associative copulas in [12], An is not associative. As
immediate consequence Ca cannot contain any nonempty open subset of (Ce, d∞), which
completes the proof for the metric d∞.
The fact that Ca is nowhere dense in (Ce, D1) follows from the first part of the proof
since the ordinal sum An even converges to A w.r.t. the metric D1, which can be shown
as follows. As first step suppose that A is absolutely continuous with density kA, that
kA is continuous on [0, 1]2 and that we have

∫
[0,1]

kA(x, s)dλ(s) = 1 for every x ∈ [0, 1].

Using Lebesgue’s theorem on dominated convergence it follows that the Markov kernel
KA(x, [0, y]) =

∫
[0,y]

kA(x, s)dλ(s) of A fulfills that (x, y) 7→ KA(x, [0, y]) is continuous on
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[0, 1]2. For the Markov kernel KAn of the ordinal sum An of (E,A) with respect to the
partition ([0, 1/(n+ 1)], [1/(n+ 1), 1]) and x, y ∈ ( 1

n+1
, 1] we obviously have

KAn(x, [0, y]) = KA(ψ
−1
n (x), [0, ψ−1

n (y)]),

where the mapping ψn : [0, 1] → [ 1
n+1

, 1] is given by ψn(x) =
1

n+1
+ x n

n+1
and ψ−1

n denotes

its inverse. Using the notation from [18], for 1
n+1

< y we get

ΦAn,A(y) =

∫
[0,1]

|KAn(x, [0, y])−KA(x, [0, y])|dλ(x)

≤ 1

n+ 1
+

∫
( 1
N+1

,1]

|KA(ψ
−1
n (x), [0, ψ−1

n (y)])−KA(x, [0, y])|dλ(x).

Having that, again using Lebesgue’s theorem on dominated convergence, limn→∞ ΦAn,A(y) =
0 for every y ∈ (0, 1] follows, which implies limn→∞D1(An, A) = 0 (see [18]).
As second step we prove the assertion for arbitrary associative A by considering Bernstein
approximations of A. For every copula A and every m ∈ N the Bernstein approximation
Bm(A) of A with bandwidth (or degree) m ∈ N is defined by (see [11])

Bm(A)(x, y) =
m∑

i,j=0

A
( i

m
,
j

m

)
bi,m(x) bj,m(y) (1)

where for j ∈ {0, 1, . . . ,m} and x ∈ [0, 1] the Bernstein polynomial bj,m : [0, 1] → [0, 1]
is defined by bj,m(x) =

(
m
j

)
xj(1 − x)m−j. Combining the results from [11] and [18] we

have limm→∞D1(Bm(A), A) = 0. Now, the Bernstein approximation Bm(A) is, firstly,
absolutely continuous with continuous density kBm(A) on [0, 1]2 and, secondly, symmetric
provided that A is symmetric. Thus it follows that every associative copula A can be
approximated arbitrary well with respect to the metric D1 by copulas fulfilling the regu-
larity condition used in the first step. Letting Bm

n denote the ordinal sum of (E,Bm(A))
w.r.t. the same partition ([0, 1/(n + 1)], [1/(n + 1), 1]), using the triangle inequality and
the contractivity results in [18, Section 6] we finally get

D1(An, A) ≤ D1(An, B
m
n ) +D1(B

m
n ,Bm(A)) +D1(Bm(A), A)

≤ D1(B
m
n ,Bm(A)) + 2D1(Bm(A), A),

from which the desired limn→∞D1(An, A) = 0 follows immediately.

Interestingly, the situation changes when we consider the class of Archimedean copulas
as subset of Ca.

Theorem 2.4. Car is co–meager (hence of second category) in (Ca, d∞).

Proof. We show that the set Ca \ Car is of first category in (Ca, d∞). For every n ∈ N,
n ≥ 2, let An be the subset of Ca given by

An = {C ∈ Ca : C(x, x) = x for some x ∈ [1/n, 1− 1/n] }.
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Every An is closed in Ca. In fact, if (Cj)j∈N is a sequence of copulas in An converging to
a copula C with respect to d∞, then we have C ∈ Ca and there exists a sequence (xj)j in
[1/n, 1 − 1/n] with Cj(xj, xj) = xj. By compactness we can find a subsequence (xjl)l∈N
that converges to some x ∈ [1/n, 1 − 1/n] as l → ∞. Thus, using the triangle inequality
we get C(x, x) = x ∈ [1/n, 1− 1/n].

Since Car is dense in Ca (see [10]) it follows in the same way as in the previous proofs that
An cannot contain any non-degenerate open ball in (Ca, d∞), implying that An is nowhere
dense in (Ca, d∞). The result now follows from the fact that ∪n≥2An = Ca \ Car.

Theorem 2.5. C s
ar is co–meager in (Car, d∞).

Proof. In order to achieve a one-to-one correspondence between Archimedean copulas and
their generators we will only consider normalized generators, i.e. generators φ : [0, 1] →
[0,∞] fulfilling φ(1/2) = 1. It suffices to prove that the family C n

ar of all non-strict
Archimedean copulas is of first category in (Car, d∞), which can be done in the following
two steps.
(i) We show that for every Archimedean copula Aφ whose generator φ fulfills φ(0) = b ∈
[2,∞) the following inequality holds for every x ∈ [0, 1

2
]:

Aφ(x, x) ≤ max
{
x
(
1− 2− 2x

b+ 2x− 2

)
, 0
}

(2)

Let x ∈ [0, 1
2
] be arbitrary but fixed. Note that convexity of φ and the normalization

φ(1/2) = 1 imply 2 − 2x ≤ φ(x). In fact, in case φ(x0) < 2 − 2x0 holds for some
x0 ∈ [0, 1

2
), setting t := 1

2−2x0
we get

φ
(
tx0 + (1− t)1

)
= φ

(
1
2

)
= 1 = 2−2x0

2−2x0
> φ(x0)

2−2x0
= tφ(x0) + (1− t)φ(1),

which contradicts convexity. Furthermore, in case of φ(x) ≥ b
2
we obviously haveAφ(x, x) =

φ[−1](2φ(x)) = 0. Suppose now that φ(x) ≤ b
2
and that y ∈ [0, x]. Convexity of φ implies

φ(y) ≤ y
x
φ(x) + (1− y

x
)b, implying that for every z ∈ [φ(x), b

2
] we have φ[−1](z) ≤ x z−b

φ(x)−b
.

As direct consequence, if y ∈ [0, x] fulfills φ(y) ≥ b
2
then we get Aφ(y, y) = 0 and if

φ(y) ≤ b
2
then

Aφ(y, y) ≤ φ[−1](2φ(y)) ≤ x
b− 2φ(y)

b− φ(x)
(3)

follows. Since y ∈ [0, x] was arbitrary inequality (3) also holds for y replaced by x, i.e. we
get

Aφ(x, x) ≤ φ[−1](2φ(x)) ≤ x
b− 2φ(x)

b− φ(x)
.

Considering that the function t 7→ b−2t
b−t

is decreasing in t together with φ(x) ≥ 2 − 2x
finally yields the desired inequality (2).
(ii) We can now prove the fact that C n

ar is of first category in (Car, d∞). For every b ≥ 4
define the family Ab ⊂ C n

ar by

Ab =
{
A ∈ Car : φ(0) ≤ b

}
.
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Since we obviously have C n
ar =

∪∞
b=4 Ab it suffices to proof that each Ab is nowhere dense

in (Car, d∞). Assume, on the contrary, that A b contains a non-empty open subset of Car.
Then we can find Aφ ∈ Ab and r > 0 such that the open ball B(Aφ, r) in Car fulfills
B(Aφ, r) ⊆ A b. Since the right hand side of equation (2) is monotonically increasing as a
function of b we must have Aφ(x, x) ≤ x(1− 2−2x

b+2x−2
) for every x ∈ [0, 1

2
]. Using convexity

of φ we can find another generator φr : [0, 1] → [0,∞) that coincides with φ on [ r
2
, 1] and

fulfills

Aφr

(r
2
,
r

2

)
= φ−1

r

(
2φr

(r
2

))
≥ r

2

(
1− 1

2b

)
>
r

2

(
1− 2− r

b+ 2− r

)
.

On the other hand, it follows directly from the construction of φr that we must have
d∞(Aφr , Aφ) ≤ r

2
, which implies Aφr ∈ B(Aφ, r) ⊆ A b. Consequently, the assumption has

to be wrong and we conclude that Ab is nowhere dense in (Car, d∞).

Since (Car, d∞) is not complete, we cannot directly use Theorem 2.5 to deduce that
C s
ar is of second category in (Car, d∞). However, using the fact that (Ca, d∞) is a compact

metric space of second category offers an alternative simple proof.

Theorem 2.6. C s
ar is of second category in (Car, d∞).

Proof. Since every nowhere dense subset T of Car is also nowhere dense in Ca it follows
that C n

ar is of first category in (Ca, d∞). If C s
ar were of first category in (Car, d∞) then it

would also be of first category in (Ca, d∞). As finite union Ca = Ca \ Car ∪ C s
ar ∪ C n

ar of
first category sets Ca would be of first category too, which contradicts the compactness of
(Ca, d∞) and completes the proof.

In short, with respect to d∞, a typical copula is not symmetric and a typical symmetric
copula is not associative but a typical associative copula is Archimedean and a typical
Archimedean copula is strict.

Remark 2.7. It remains an open question if Car is co–meager (hence of second category)
in (Ca, D1) and if C s

ar is co–meager and/or of second category in (Car, D1) .
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[19] W. Trutschnig, On Cesáro convergence of iterates of the Star Product of copulas, Stat.
Probabil. Lett. 83 (2013), 357-365.

8


