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Abstract. Following the idea of Even and Lehrer [3], we discuss a general ap-
proach to integration based on decomposition of the integrated function. We dis-
tinguish sub-decomposition based integrals (in economicslinked with optimiza-
tion problems to maximize the possible profit) and super-decomposition based
integrals (linked with costs minimization). We provide several examples (both
theoretical and realistic) to stress that our approach generalizes that of Even and
Lehrer [3] and also covers problems of linear programming and combinatorial
optimization. Finally, we introduce some new types of integrals related to opti-
mization tasks.

1 Introduction

The idea of decomposition of the integrated functionf for the integration purposes is a
basic feature of constructions / definitions of integrals since ever. Recall, e.g., Eudoxus
of Cnidus (408-355 BC) exhaustion principle, Riemann and Lebesgue integrals (lower
and upper integral sums), etc.. Integration always merges two sources of information,
the integrated function and weights of special functions used for decomposition pur-
poses (e.g., measures assigning weights to sets, i.e., to characterize functions of sets),
into a single representative value. In this contribution, we will deal with non-negative
(measurable) functions and non-negative weights only, supposing always the mono-
tonicity of the considered weights, and vanishing of such weights for null functions.
Both from transparency of our ideas as well as for the application purposes in economics
and multicriteria decision support, we will always deal with a fixed finite spaceN =
{1, . . . , n}, wheren ∈ N is a fixed positive integer. Then the power set2N being con-
sidered excludes any measurability constraints. Each function f : N → [0,∞[= R+
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can be seen as an n-dimensional vectorx ∈ Rn
+, x = (x1, . . . , xn) = (f(1), . . . , f(n)).

The aim of this contribution is a proposal of a general approach to decomposition
based integration, distinguishing sub-decompositions and super-decompositions. We
will stress several integrals known from the literature as particular instances of our
approach. Moreover, several new types of integrals relatedto optimization tasks will
be introduced and exemplified. The paper is organized as follows. In Section 2 we pro-
pose the idea of sub-decomposition based integrals and, similarly, super-decomposition
approach to integration is discussed in Section 3. We provide several examples of ap-
plication of decomposition integrals, both theoretical aswell as realistic. In Section 4
we confront our approach with previous research in literature, especially with the idea
of Even and Lehrer [3]. Particular decomposition based integrals are discussed in Sec-
tion 5. Finally, some concluding remarks and formal proposal for future researches are
added in Section 6.

2 Sub-decomposition based integrals

Any system of vectors ofRn
+, (xi)ki=1 = (x1, . . . , xk) ∈ (Rn

+)
k with k ∈ N, is called a

collection, and the set of all collections isRn = ∪k∈N(R
n
+)

k. A decomposition system
is anyD ⊆ Rn such that there existsx 6= 0 = (0, . . . , 0) with x ∈ (xi)ki=1 for some
collection(xi)ki=1 ∈ D.

Given a decomposition systemD, we denote

D̃ =
{

x ∈ Rn
+| x ∈ (xi)ki=1 for some collection(xi)ni=1 ∈ D

}
.

Conversely, for anyX ⊆ Rn
+, we define

DX = {(xi)ki=1 ∈ Rn | xi ∈ X for all i = 1, . . . , k}

as the complete decomposition system generated byX , and clearlyD̃X = X and,
moreover,DX is the union of all decomposition systemsD such thatD̃ = X .

Definition 1 Let D be a decomposition system. A mappingA : D̃ → R+ is called a
weighting function onD whenever

– A(x) ≤ A(y) if x, y ∈ D̃, x ≤ y (monotonicity),
– A(x) > 0 for somex ∈ D̃ andA(0) = 0 whenever0 ∈ D̃ (boundary conditions).

Observe that ifD̃ = Rn
+, then any weighting function A can be seen as an aggrega-

tion function (in the sense of [5], with related boundary condition, i.e.,sup{A(x) | x ∈
Rn

+} = +∞ replaced bysup{A(x) | x ∈ Rn
+} > 0).

The following example is inspired to Even and Lehrer [3, example in Section 2].

Example 1 Consider two different work agenciesA1 andA2. Each agency provides a
couple of workers with exactly the same skills. However, each of the four workers can
work alone, or together with one or more partners. The possible teams are identified
with

T = {0, 1, 2}2 \ {(0, 0)} ⊆ N2
0,

2



where(1, 0), (0, 1) represent basic teams formed by a single worker from agencyA1

andA2 respectively, while, e.g.,(2, 1) is the team formed by the two workers fromA1

and one indifferently chosen fromA2. Suppose we know the efficiency of each team,
measured in some work unit, given by the weighting functionE : T → R+:







E(1, 0) = 1.0
E(2, 0) = 2.2
E(0, 1) = 1.1
E(0, 2) = 2.0
E(1, 1) = 2.2
E(2, 1) = 3.5
E(1, 2) = 3.0
E(2, 2) = 4.3

(1)

Clearly, we want to maximize our efficiency by choosing the best group of teams within
the decomposition system (let us note thatD̃T = T )

DT =







(
xj
)k

j=1
| xj ∈ T with

k∑

j=1

xj ≤ (2, 2)






.

We will return on this example later.

Let D ⊆ Rn be a decomposition system and letA : D̃ → R+ be a weighting
function onD. From now, we call(A,D) abase for integrationonRn

+ (shortly, abase).
Given a base(A,D), a vectorx ∈ Rn

+ is called(A,D)-sub-integrable if (we use the
conventionsup ∅ = 0)

sup {
k∑

j=1

A(yj) | (yj)kj=1 ∈ D,
k∑

j=1

yj ≤ x} < +∞, (2)

and we define the set of(A,D)-sub-integrable vectors as

S(A,D) =
{

x ∈ Rn
+ | x is (A,D)-sub-integrable

}
.

Let us note thatS(A,D) 6= ∅, since the null vector0 is (A,D)-sub-integrable for any
base.

Now, we can introduce our sub-decomposition based integral.

Definition 2 Let (A,D) be a base for integration onRn
+, then the(A,D)-based sub-

decomposition integral is the functionalI(A,D) : S(A,D) → R+ defined by

I(A,D)(x) = sup {
k∑

j=1

A(yj) | (yj)kj=1 ∈ D,

k∑

j=1

yj ≤ x}. (3)

The following Lemma 1 follows directly by definitions ofS(A,D) andI(A,D).

Lemma 1. For all y ∈ S(A,D) andx ≤ y, thenx ∈ S(A,D) andI(A,D)(x) ≤ I(A,D)(y).

3



Remark 1 LetD be a decomposition system and letB : Rn
+ → R+ be an aggregation

function which is super-additive[B(x + y) ≥ B(x) + B(y)], then for the weighting
functionA = B|D̃ it holdsS(A,D) = Rn

+ and I(A,D)(x) ≤ B(x) for eachx ∈ Rn
+.

Obviously, if(x) ∈ D, thenI(A,D)(x) = B(x).

Regarding the domainS(A,D) of sub-decomposition integralI(A,D), this depends
on bothA andD. Suppose that(A,D) and(A′,D′) are two bases such thatD ⊆ D′

andA ≤ A′|D̃, thenS(A,D) ⊇ S(A′,D′) andI(A,D) ≤ I(A′,D′) onS(A′,D′). This will be
clear also in the following relevant examples.

Example 2 Consider, e.g.,n = 2, D = R2 andA : R2
+ → R+ given byA(x, y) = x.

ThenS(A,R2) = Rn
+ and I(A,R2)(x, y) = x. If we consider the weighting function

A′(x, y) = x +
√
y, thenS(A′,R2) = {(x, 0) | x ∈ R+} andI(A′,R2)(x, 0) = x, while

for anyx ∈ R+ andy > 0, (x, y) is non(A′,R2)-sub-integrable, indeed, beingA′ sub-
additive, sup {∑k

i=1 A
′(xi, yi) |

∑k

i=1(xi, yi) = (x, y)} ≥ limn→+∞ nA′( x
n
, y
n
) =

limn→+∞(x+
√
ny) = +∞.

Consider a set of objects (criteria)N = {1, . . . , n}, and define achain a sys-
tem (Ej)

k

j=1 such thatE1 ⊆ . . . ⊆ Ek ⊆ N . Let D be the set of all collections
(
cj · 1Ej

)k

j=1
, being cj positive constants and(Ej)

k

j=1 a chain. Now consider the

weighting functionsA : D̃ → R+, determined by a monotone measurem : 2N → R+

(m(∅) = 0, m(N) > 0, andm(E1) ≤ m(E2) wheneverE1 ⊆ E2 ⊆ N ), by means of
A(c · 1E) = c ·m(E). In this caseS(A,D) = Rn

+ andI(A,D) is the Choquet integral [2]
with respect to measurem.

Other that for the Choquet integral, in majority of integrals known so far (Lebesque,
Choquet, Shilkret, Concave, Pan, etc. integrals), decomposition systemsD such that
any x ∈ D̃ can be written in the formc · 1E, wherec is a positive constant andE
a subset ofN (1E is the corresponding characteristic function) are considered, and
the corresponding weighting functionsA : D̃ → R+ are then determined byA(x) =
A(c · 1E) = c · m(E), beingm : 2N → R+ monotone measures. Hence all these
integrals are covered by our approach. For more details see Sections 4 and 5.

Typical economical problems deal with finite number of goodsg1, . . . , gn, and then
weight (price) is assigned to groups of goods represented bymultisets, i.e., vectors
x ∈ Nn

0 whereN0 = {0, 1, 2, . . .}. Note that due to limitations in storing/production,D̃
is then mostly finite. For this purpose, the next result is important for real applications.

Proposition 1 For any base(A,D) such thatD̃ is finite, thenS(A,D) = Rn
+.

Proof. Let D̃ = {x1, . . . , xm} be finite, and without loss of generality, we can imagine
thatxj 6= 0, j = 1, . . . ,m. Now, for anyy ∈ Rn

+ there existn1, . . . , nm ∈ N such that
for eachj = 1, . . . ,m the vectornjxj exceedsy in some component. Thus, we have

sup {
k∑

j=1

A(yj) | (yj)kj=1 ∈ D,

k∑

j=1

yj ≤ y} ≤ n1A(x1) + . . .+ nkA(xm) < +∞.

�
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Remark 2 If (A,D) is a base such thatS(A,D) = Rn
+, thenI(A,D) : Rn

+ → R+ is a
weighting function onRn

+. Indeed, monotonicity ofI(A,D) and conditionI(A,D)(0) = 0

follow by definition and, moreover, sinceA is a weighting function, there existsx ∈ D̃
such thatA(x) > 0; suppose thatx belongs to the collection(yj)kj=1 ∈ D, it follows

thatI(A,D)

(
∑k

j=1 yj
)

≥ ∑k
j=1 A(y

j) ≥ A(x) > 0.

Let us note thatI(A,D) restricted onD̃ is not, in general, a weighting function, consider,
e.g.,D {((1, 3, 0) , (3, 1, 0))} with A(1, 3, 0) = A(3, 1, 0) = 2, thenI(A,D)(1, 3, 0) =

I(A,D)(3, 1, 0) = sup ∅ = 0. Now suppose there existsx ∈ D̃ such thatI(A,D)(x) > 0

and thenI(A,D) is a weighting function oñD and we can considerI(I(A,D),D). However,

in this case, the two weighing functionA and I(A,D) are non comparable and also
considering sub-decomposition integrals, we have thatI(A,D) is non comparable with
I(I(A,D),D), see Example 3.

A case whereI(A,D) and I(I(A,D),D) are comparable is when the weighting function

A is super-additive, since in this case for anyx and any collection(yj)kJ=1 ∈ D such
that

∑k

j=1 yj ≤ x, it follows that
∑k

j=1 A(y
j) ≤ A(

∑k

j=1 yj) ≤ A(x), and then
I(A,D)(x) ≤ A(x) and, consequently,I(I(A,D),D) ≤ I(A,D).

Finally, let us note that whenD = Rn andS(A,D) = Rn
+, thenI(A,D) = I(I(A,D),D).

Example 3 ConsiderD {((0, 2, 1) , (2, 0, 0)) , ((2, 2, 1) , (0, 1, 2)) , ((0, 1, 2))} and the
weighting functionA(0, 2, 1) = A(2, 0, 0) = A(0, 1, 2) = 2, A(2, 2, 1) = 3.
It follows thatI(A,D)(0, 2, 1) = I(A,D)(2, 0, 0) = sup ∅ = 0, I(A,D)(0, 1, 2) = 2 and
I(A,D)(2, 2, 1) = 4, I(A,D)(2, 3, 3) = 5.
Finally, it is easily computed thatI(I(A,D),D)(2, 2, 1) = 0 andI(I(A,D),D)(2, 3, 3) = 6.

WhenD = Rn, we are able to enunciate sufficient conditions for existence of
I(A,Rn) on allRn

+ (for the proof of Theorem 1 and subsequent corollaries, see [7]).

Theorem 1 S(A,Rn) = Rn
+ if and only if the constant vector1 = (1, . . . , 1) is (A,D)-

sub-integrable.

Corollary 1 Let A : Rn
+ → R+ be a weighting function onRn such that for each

y ∈ Rn
+, A(x) ≤ c ·max {y1, . . . , yn}, wherec is some fixed constant from]0,∞[. Then

S(A,Rn) = Rn
+.

Due to Corollary 1, also the domination by a weighted sumW : Rn
+ → R+,

W (x) =
∑n

i=1 wixi, with w = (w1, . . . , wn) ∈ Rn
+ \ {0}, is sufficient to guaran-

tee thatS(A,Rn) = Rn
+ (i.e.,A(y) ≤ W (y) for eachy ∈ Rn

+ is considered).

Corollary 2 Let A : Rn
+ → R+ be a weighting function onRn and let, for a fixed

ε > 0, {A(y)
k

| y ∈ Rn
+, max {y1, . . . , yn} ≤ k} be bounded by a fixed constantc,

independently ofk ∈ ]0, ε]. ThenS(A,Rn) = Rn
+.

The following example shows that, in general (i.e. whenD ( Rn), Theorem 1 is
not valid.
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Example 4 Consider inR2
+ the following decomposition system

D =













(1, 1) ,

n times
︷ ︸︸ ︷
(
1

n
,
1

n

)

, . . . ,

(
1

n
,
1

n

)














n∈N

Now, independently from the weighting function,I(A,D)(1, 1) = sup ∅ = 0. On the
other hand, if we chooseA(x, y) = x+

√
y, we have

I(A,D)(2, 2) = sup

{

A(1, 1) +

n∑

1

A

(
1

n
,
1

n

)}

n∈N

= sup
{
3 +

√
n
}

n∈N
= +∞.

Example 5 Let us reconsider Example 1. To choose the best group of teams, we have
to compute efficiency of various complete groups (i.e. wherewe use all four workers),
which can be easily done due to small quantity of data.







2 · E(1, 0) + E(0, 2) = 2.0 + 2.0 = 4.0
2 · E(1, 0) + 2 ·E(0, 1) = 2.0 + 2.2 = 4.2
E(2, 0) + E(0, 2) = 2.2 + 2.0 = 4.2
E(2, 0) + 2 · E(0, 1) = 2.2 + 2.2 = 4.4.
E(1, 2) + E(1, 0) = 3.0 + 1.0 = 4.0
E(2, 2) = 4.3
E(1, 1) + E(1, 0) + E(0, 1) = 2.2 + 1.0 + 1.1 = 4.3
2 · E(1, 1) = 4.4
E(2, 1) + E(0, 1) = 3.5 + 1.1 = 4.6 = I(E,DT )(2, 2).

(4)

System(4) underlines as the best solution corresponds toI(E,DT )(2, 2). This ex-
ample can be generalized, by thinking that the two agenciesA1 andA2 can provide
any number of workers and then the possible teams are identified with elements of
T = N2

0 \ {(0, 0)}. Supposing that we know the efficiency of all possible teams,ex-
pressed by the weighting functionE : T → R+ and supposing that the first agency
providesn1 workers and the second agencyn2, then the best group of teams corre-
spond to decompositions of(n1, n2) allowing the computation ofI(E,DT )(n1, n2). For
n1 andn2 large enough we need the use of linear programming techniques to compute
I(E,DT )(n1, n2), howeverI(E,DT )(n1, n2) is the theoretical solution to the problem,
in the sense that the sub-decomposition integral definitionprovides the algorithmic to
solve the problem.

Let us consider Examples 1 and 5. The optimal solution we found,I(E,DT )(2, 2) =
4.6, can be also obtained by using the concave integral [9] and choosing an “ad hoc”
measure as described in the following. We identify the set ofthe four workers with
N = {1, 2, 3, 4} where 1 and 2 are the two workers from the first agency and 2,3
those from the second. Consider the measureν : 2N → R+ given byµ(∅) = 0,
µ(1) = µ(2) = E(1, 0), µ(3) = µ(4) = E(0, 1), µ(12) = E(2, 0), µ(34) = E(0, 2),
µ(13) = µ(14) = µ(23) = µ(24) = E(1, 1), µ(123) = µ(124) = E(2, 1), µ(134) =
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µ(234) = E(1, 2) andµ(1234) = E(2, 2). Now the best solution for the problem pro-
posed in Example 1 is given by

∫ cav
(1, 1, 1, 1)dν = 1 · ν(123) + 1 · ν(3) = 4.6.

Also the generalization of the problem discussed at the end of Example 5 can be ob-
tained using the concave integral, in the sense thatI(E,DT )(n1, n2) =

∫ cav ydν where
N = {1, 2, . . . , (n1 + n2)}, y = (1, 1, . . . , 1) ∈ Nn1+n2 andν : 2N → R+ is an
opportune capacity. However this is possible only because we have chosen an integer
components vector(n1, n2) and we have allowed only for decomposition of it in in-
teger components vectors. Suppose to have two numerical control machinesM1 and
M2 and they can work alone or together, the first machine dependson a parameterα1

and the second on a parameterα2, with (α1, α2) ≤ (2
√
2, 2). The possible setting of

these two machines are identified withT =]0, α1]×]0, α2], and we know the efficiency
of each combination of these machines given byE : T → R+. finally the best set-
ting for the couple of machines is obtained by solvingI(E,DT )(α1, α2). Suppose that
I(E,DT )(α1, α2) = E(2

√
2,
√
2)+E(0, 2−

√
2). In this case no measure can be spec-

ified in order to solve the problem using the concave integral.

3 Super-decomposition based integrals

We open this section with a realistic example, providing motivations to our approach to
super-decomposition integral.

Example 6 Consider a Fast Food (FF) which, basically, offers three goods (basic-
offers)

g1 = hamburger, g2 = chips, g3 = coke.

To increase the sales, the FF proposes also discounted compound-offers, e.g. to
buy conjointly 1 [hamburger + chips] is less expansive than 1hamburger and 1 chips
bought separately. Let us suppose that the FF set of offers is

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (2, 0, 0), (1, 0, 1), (0, 1, 1), (2, 1, 1)} ,

where(1, 0, 0), (0, 1, 0) and(0, 0, 1) represent, respectively, the basic offers hamburger,
chips and coke, while, e.g.,(1, 1, 0) represents the compound offer [hamburger + chips].
To attract the consumers, FF propose a price functionP : S → R+, which is typically
strictly sub-additive, i.e.,

P (x, y, z) <
n∑

i=1

P (xi, yi, zi),

for all (x, y, z), (xi, yi, zi) ∈ S such that(x, y, z) =
∑n

i=1(xi, yi, zi), n ≥ 2. For
example,P (1, 1, 1) < P (1, 0, 1) + P (0, 1, 0) < P (1, 0, 0) + P (0, 1, 0) + P (0, 0, 1).
Let us suppose that FF prices are

P (1, 0, 0) = 2.80, P (0, 1, 0) = 1.60, P (0, 0, 1) = 1.80, P (1, 1, 1) = 4.80,

P (2, 0, 0) = P (1, 0, 1) = P (0, 1, 1) = 3, andP (2, 1, 1) = 5.50.
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Let us suppose also that a group of friends have to buy altogether 50 hamburgers,
30 chips and 60 cokes, and, obviously, they want to pay as little as possible by taking
advantage of FF offers. This is a linear programming problem, which can be formalized
as follows (xa is integer quantity of(1, 0, 0), Pa = P (1, 0, 0) and so on)







PG(50, 30, 60) = min{xaPa + xbPb + xcPc + xaaPaa + xacPac + xbcPbc+
+xabcPabc + xaabcPaabc}
xa + 2xaa + xac + xabc + 2xaabc = 50
xb + xbc + xabc + xaabc = 30
xc + xac + xbc + xabc + xaabc = 60
xa, xb, . . . , xaabc integer.

(5)
But consider, for example, the necessity to buy 19 hamburgers, 10 chips and 10

cokes. Since5.5 ·10 < 5.5 ·9+(2.8+1.6+1.8), we understand that to find the optimal
solution, in equation(5) we must replace equality on constrains with inequality, i.e.,







PG(50, 30, 60) = min{xaPa + xbPb + xcPc + xaaPaa + xacPac + xbcPbc+
+xabcPabc + xaabcPaabc}
xa + 2xaa + xac + xabc + 2xaabc ≥ 50
xb + xbc + xabc + xaabc ≥ 30
xc + xac + xbc + xabc + xaabc ≥ 60
xa, xb, . . . , xaabc integer.

(6)
We will return on this example later, after introducing sub-decomposition based

integrals.

Sub-decomposition based integrals can be considered as an optimization problem
to maximize the possible profit. In a dual way modeling the minimization of the costs,
one can introduce super-decomposition based integrals.

However, there is a crucial difference concerning the possible inputsx ∈ Rn
+ to be

evaluated by a super-decomposition based integral. Indeed, for a fixed decomposition
systemD, D̂ = {∑k

j=1 yj | B = (yj)kj=1 ∈ D} is the set of maximal elements of
the set of all elementsx ∈ Rn

+ covered by some collectionB from D, i.e., a super-
decomposition based integral can be defined only on the domains D̄ ⊆ Rn

+ given by

D̄ = {x ∈ Rn
+| x ≤ ∑k

j=1 yj for some collectionB ∈ D} = ∪y∈D̂[0, y]. Obviously, if

D̃ = Rn
+ then alsoD̄ = Rn

+.
Given a base(A,D) andx ∈ D̄, it results that

0 ≤ inf {
k∑

j=1

A(yj)| x ≤
k∑

j=1

yj , (yj)kj=1 ∈ D} < ∞.

If there existsx ∈ D̄ such thatinf {∑k
j=1 A(y

j)| x ≤ ∑k
j=1 yj , (yj)kj=1 ∈ D} > 0,

(A,D) is called a base for sup-integration (shortly,a sup-base).For example,(A,Rn)
is not a feasible base for sup-integration when consideringthe productA = Π or
A = min [consider the decompositionx = (x1, 0, . . . , 0) + . . .+ (0, . . . , 0, xn)].

8



Definition 3 Let (A,D) be a base for sup-integration onRn
+, then the(A,D)-based

super-decomposition integral is the functionalI(A,D) : D̄ → R+ defined by

I(A,D)(x) = inf {
k∑

j=1

A(yj)| x ≤
k∑

j=1

yj , (yj)kj=1 ∈ D}, (7)

Obviously, ifD = Rn (an thenD̄ = Rn
+), thenI(A,D) : Rn

+ → R+ is an aggrega-
tion function.

Remark 3 If an aggregation functionB : Rn
+ → R+ is sub-additive[A(x + y) ≤

A(x) + A(y)], and if considering the weighting functionA = B|D̃, the couple(A,D)
is a sup-base, thenI(A,D)(x) ≥ B(x) for eachx ∈ D̄. Obviously, if(x) ∈ D, then
I(A,D)(x) = B(x).

Example 7 Continuing in Example 6, we can assume

D̃ = S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (2, 0, 0), (1, 0, 1), (0, 1, 1), (2, 1, 1)} ,

andDS is the decomposition system containing all collections building with elements
from S. It is clear that the solution of problem(6) (the minimal price that the group
should pay to satisfy their constrains) isI(P,DS)(50, 30, 60). Using a linear program-
ming solver it results

I(P,S)(50, 30, 60) = 10 · Paabc + 30 · Pac + 20 · Pbc = 205.

Example 8 Let us consider the probabilistic sum (this is a weighting function and a
t-conorm)B : [0, 1]2 → R+ given byB(x, y) = x + y − xy and the decomposition
systemD[0,1]n = {(xj)kj=1 ∈ Rn | xj ∈ [0, 1]n j = 1, . . . , k}. ThenD̃[0,1]n = [0, 1]n,

D̄[0,1]n = Rn
+, andI(B,D[0,1]n) : R2

+ → R+ is given by

I(B,D[0,1]n)(x, y) =







(k + 1)(x+ y − k)− xy
if (x, y) ∈ [k, k + 1]2

for somek ∈ N,

max (x, y) otherwise.

Observe thatI(B,D[0,1]n) can be seen as a pseudo-addition on[0,∞] (when extended by
monotonicity also for infinite inputs), [16], [8],I(B,D) = (< k, k + 1, B > | k ∈ N0),
i.e., it is associative, commutative aggregation functiononR2

+ with neutral elemente =
0. Let us note thatI(B,D[0,1]n)(x, y) + I(A,D[0,1]n )(x, y) = x + y for all x, y ∈ [0,∞],
i.e., our integrals solves Frank’s functional equation [4], [8] on [0,∞].
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4 Relation with some other integrals

LetN = {1, . . . , n} be a finite set and letm : 2N → R+ be a monotone measure. Even
and Lehrer [3] consider a decomposition setH being a non-empty set of finite systems5

of subsets ofN , that isH = {C1, . . . , Ck}, with Ci =
(
Ei

j

)mi

j=1
for all i = 1, . . . , k,

beingEi
j ⊆ N for all j = 1, . . . ,mi. TheH-decomposition integral is given by

IH,m(x) = sup {
k∑

j=1

ajm(Ej)| (Ej)
k
j=1 ∈ H, a1, . . . , ak ≥ 0,

k∑

j=1

aj1Ej
≤ x}. (8)

It is not difficult to check that thenIH,m = I(Am,DH), where the decomposition system
DH is defined byDH = {(aj1Ej

)kj=1| (Ej)
k
j=1 ∈ H, a1, . . . , ak ≥ 0}, and the weight-

ing functionAm : D̃H → R+ is given byAm(c · 1E) = c ·m(E). Thus our approach
extends the proposal of Even and Lehrer [3]. In particular, it holds:

– if H = {(E)|E ⊆ N}, thenI(Am,DH) is the Shilkret integral [15];

– if H = {(Ej)
k

j=1 | (Ej)
k

j=1 is a chain}, thenI(Am,DH) is the Choquet integral [2];

– if H = {(Ej)
k

j=1 | {E1, . . . , Ek} is a partition ofN}, thenI(Am,DH) is the PAN
integral [17]; ifm is additive, then the classical Lebesque integral is recovered;

– if H = {(Ej)
k

j=1 | Ej ⊆ N, j = 1, . . . , k}, I(Am,DH) is the concave integral [9].

The couple(A, ν) is defined a fuzzy capacity [9] if(1, . . . , 1) ∈ A ⊆ [0, 1]n and
ν : A → R+ is monotonic, continuous, and there is a positive K such thatfor every
a = (a1, . . . , an) ∈ A, it holdsν(a) ≤ K

∑n

i=1 ai . The concave integral ofx ∈ Rn
+

with respect to the fuzzy capacity(A, ν)[9] is

∫ cav

xd(A, ν) = sup

{
k∑

i=1

αiν(ai) | ai ∈ A,αi ≥ 0, i = 1, . . . , n and
k∑

i=1

αiai ≤ x

}

.

If we considerX = {α · a | α ≥ 0 anda ∈ A}, DX = {(xi)ki=1 ∈ Rn | xi ∈ X} and
the weighting functionA : X → R+ defined byA(α · a) = α · ν(a) then, it results
I(A,DX)(x) =

∫ cav xd(A, ν) for all x ∈ Rn
+.

For several other integrals covered by our approach we recommend [3] [12].
Recently introduced superadditive integral [7] deals witha fixed decomposition

systemD = Rn, and then the weighting functionA defined onD̃ = Rn
+ is just

an aggregation function. The superadditive integralA∗ : Rn
+ → R+ is given by

A∗(x) = sup ({∑k

j=1 A(y
j)| ∑k

j=1 yj ≤ x}). Obviously,A∗ = I(A,Rn).
In the framework of super-decomposition based integrals, we recall that, for a monotone
measurem:

– if H = {(Ej)
k

j=1 | (Ej)
k

j=1 is a chain}, thenI(Am,DH) is the Choquet integral;

5 Effectively, Even and Lehrer [3] speak about sets whereas wespeak about systems. Precisely,
they define acollectionD to be a set of subsets ofN , i.e.D ⊆ 2

N , and then they consider sets
of collections. However their approach can be equivalentlygiven using systems and this allow
us to demonstrate that our approach is more general.
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– if H = {(Ej)
k

j=1 | Ej ⊆ N, j = 1, . . . , k} \ {(∅)}, thenI(Am,DH) is the convex
integral recently introduced in [11].

Also the subadditive integralA∗ : Rn
+ → R+ introduced in [7] can be seen as

super-decomposition based integral,A∗ = I(A,Rn).

4.1 The Choquet integral with respect to a level dependent capacity

An example of an integral which cannot be considered a sub-decomposition based int-
geral is the Choquet integral with respect to a level dependent capacity [6]. Given a
set of criteriaN = {1, . . . , n}, a level dependent capacity is an index set(νt)t∈R+

such that for allt ∈ R+, νt : 2N → [0, 1] is a capacity. The Choquet integral of
x = (x1, . . . , xn) ∈ Rn

+ with respect to the level dependent capacity(νt)t∈R+ is
given byChl(x, νt) =

∫∞

0
νt({i ∈ N | xi ≥ t})dt. In this case the integral brings

too much information to be modeled via a decomposition of theintegrated function,
x = y1 + . . . + yk, and weights assigned to addendsw(y1),...,w(yn). Consider the
following example. GivenN = {1, 2, 3}, andx = (3, 2, 5) it resultsChl(x, νt) =
∫ 2

0
νt({1, 2, 3})dt+

∫ 3

2
νt({1, 3})dt+

∫ 5

3
νt({3})dt. This integral decomposition “sug-

gests” the vector decompositionx = (3, 2, 5) = (2 − 0)(1, 1, 1) + (3 − 2)(1, 0, 1) +
(5 − 3)(0, 0, 1) = (2 − 0)1N + (3 − 2)1{1,3} + (5 − 3)1{3}, however to apply the
decomposition approach we should assign weights to terns(a, b, E) ∈ R2

+ × 2N with

a ≤ b, being these weights
∫ b

a
νt(E)dt.

5 Particular decomposition based integrals

Inspired by set decomposition systems recalled in Section 4, one can define particular
vector decomposition systems. Namely we can consider:

– for a fixed k ∈ N, Dk = {(yj)kj=1| yi and yj are comonotone for anyi, j ∈
{1, . . . , k}}. Note that if eachyj = aj ·1Ej

for aj > 0 andEj 6= ∅, then(yj)kj=1 ∈
Dk if and only if (Ej)

k
j=1 is a chain inN , compare set decomposition system for

the Choquet integral; and we denoteD∞ =
⋃∞

k=1 Dk;
– for a fixedk ∈ {1, . . . , n},D(k) = {(yj)kj=1| supp yj ∩ supp yi = ∅ wheneveri 6=
j}; these decomposition systems are related to set decomposition system inducing
PAN-integral;

– for a fixedk ∈ N,D(k) = {(yj)kj=1}; clearly,D(∞) =
⋃∞

k=1 D(k) = Rn, and these
decomposition systems are related to the concave (convex) integral.

Note that fork = 1, D1 = D(1) = D(1) = {(y)| y ∈ Rn
+}, and thenD̃1 = Rn

+. For
any aggregation (weighting) functionA : Rn

+ → R+ it holdsI(A,D1) = I(A,D1) = A.
Moreover,I(A,D(∞)) = A∗ andI(A,D(∞)) = A∗, compare [7].

We turn our attention to the decomposition systemD∞ (recall its relation to the
Choquet integral). Due to Schmeidler [13],[14], Choquet integral can be characterized
by the comonotone additivity. Recall that two vectorsx, y ∈ Rn

+ are comonotone when-
ever(xi − xj)(yi − yj) ≥ 0 for any i, j ∈ {1, . . . , n}. The mutual comonotonicity
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of a collectionC = (yj)kj=1 ∈ D∞ means that there is a common chain(Er)
n
r=1

in N such that eachyj , j ∈ {1, . . . , k}, can be expressed as a linear combination
yj =

∑n

r=1 ar,j · 1Er
, with non-negative constantsar,j. Moreover for any setE ⊆ N ,

the minimal values of set{yji | i ∈ E}, j = 1, . . . , k, are attained in a single coordinate
iE ∈ E. This observation has an important consequence formalizedin the next Lemma.

Lemma 1 Let x, z ∈ Rn
+ be comonotone and letx =

∑k

j=1 yj , z =
∑m

i=1 u
i,

where(yj)kj=1 and(ui)mi=1 are comonotone systems. Then also((yj)kj=1, (u
i)mi=1) is a

comonotone system.

Based on Lemma 1, we have the next characterization ofI(A,D∞).

Theorem 2 LetA : Rn
+ → R+ be an aggregation function such thatS(A,D∞) = Rn.

ThenI(A,D∞) is the smallest comonotone superadditive aggregation function dominat-
ing A, and for eachx ∈ Rn

+, I(A,D∞)(x) = min {C(x)| C ≥ A , C is a comonotone
superadditive aggregation function}.

Proof. We only prove the comonotone superadditivity ofI(A,D∞), while the rest of
proof can be done similarly as in [7] (Proposition 2). Fix a comonotone couplex, z ∈
Rn

+. Based on Lemma 1, (it implies the first inequality)

I(A,D∞)(x + z) = sup {
p

∑

r=1

A(vr)|
p

∑

r=1

v
r = x + z, (vr)pr=1 ∈ D∞} ≥

≥ sup {
k∑

j=1

A(yj) +
m∑

i=1

A(ui)|
k∑

j=1

yj = x,
m∑

i=1

u
i = z, (yj)kj=1, (u

i)mi=1 ∈ D∞} ≥

≥ sup {
k∑

j=1

A(yj)|
k∑

j=1

yj = x, (yj)kj=1 ∈ D∞}+

+sup {
m∑

i=1

A(ui)|
m∑

i=1

u
i = z, (ui)mi=1 ∈ D∞} =

= I(A,D∞)(x) + I(A,D∞)(z).

�

Example 9 DefineA : R2
+ → R+ by A(x, y) = max (ln(1 + x), ln(1 + y)). Then

A∗(x, y) = I(A,D∞), (x, y) = x + y, butA(A,D∞)(x, y) = max {x, y}. Observe that
max is not superadditive but it is comonotone superadditive.

A similar result can be shown where consideringD(∞) decomposition system. We omit
its proof due to its simplicity.
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Theorem 3 LetA : Rn
+ → R+ be an aggregation function such thatS(A,D(∞)) = Rn.

ThenI(A,D(∞)) is the smallest aggregation function which is superadditive for vectors
with disjoint supports, i.e.,I(A,D(∞))(x + z) ≥ I(A,D(∞))(x) + I(A,D(∞))(z) whenever
x ∧ z = 0.

Similar chains can be shown for the super-decomposition based integrals.

6 Conclusions

In this paper we have studied decomposition approaches to integration generalizing
previous works (see [12], [3] and [11]). Our general approach to integration is based
on three steps: (a) sub/super sum decomposition of integrated functions; (b) weighting
of the addend functions used in decompositions; (c) sum aggregation of these weighted
addend functions and choice of extremal elements (sup / inf) to define the integral.
The final integral depends (other that on the choice of sub/super-decomposition) on
the set of allowable functions used to decompose the integrated function in step (a),
and on the weighting function used to weigh addend functionsin step (b). Note that
this approach can be further generalized by replacing standard addition in step (c) with
a pseudo-addition. For example taking any decomposition systemD such thatD̃ =
{c · 1E | c ∈ [0,∞], E ⊆ N}, and putting as pseudo-additionmax, and as weighting
functionA(c · 1E) = c ·m(E) beingm : 2N → R+ a measure, the resulting integral
is the Shilkret integral; ifA(c · 1E) = min(c,m(E)), Sugeno integral is obtained.
D̃ can be finite, consider Ali Baba in the cave with precious things from Gold, only
their weight matters, since his donkey can take onlyx kg. Ali Baba can take any good
he wants, but only one. In this case we haveD̃ = {g1, . . . , gk}, gi are all possible
precious goods in the cave, characterized by their weightgi and, then, the weighting
function isA(d) = d, and thusImax

(A,D)(x) = max{gi | gi ≤ x}. Note that if Ali Baba
has no limitation in the number of goods but only in the weightx, we have to use our
approach based on addition, and thenI(A,D)(x) = max{∑i∈I gi |

∑

i∈I gi ≤ x} and,
then, surelyI(A,D)(x) ≥ Imax

(A,D)(x). This last example recalls a very famous example
in literature, the so calledknapsack problem[10]. The knapsack problem or rucksack
problem is a problem in combinatorial optimization, where,given a set of items, each
with a mass and a value, we have to determine the number of eachitem to include in a
collection so that the total weight is not greater than a given limit and the total value is as
large as possible. The knapsack problem has been studied formore than a century (for
example in combinatorics or in the field of resource allocation), and it is straightforward
that it can be faced by using our sub-decomposition based integration.

Let us note that in the last step of our construct method for decomposition inte-
grals, we choose the extremal elements of the set of weightedaddend functions, that
is I(A,D)(x) = sup{. . .} andI(A,D)(x) = inf{. . .} and this to link our integrals to
optimization problems that usually arise in economics. Once again, a further general-
ization is to define the decomposition integral not as the extremal element of the set of
all weighted sums of integrated function decompositions, but as a representative ele-
ment of this set, and, finally, we could consider as integral the whole set, following an
approach a lá Aumann [1].
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