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Abstract. Following the idea of Even and Lehrér [3], we discuss a gdrara

proach to integration based on decomposition of the intedriunction. We dis-
tinguish sub-decomposition based integrals (in econotiniked with optimiza-

tion problems to maximize the possible profit) and supeprdeisition based
integrals (linked with costs minimization). We provide seal examples (both
theoretical and realistic) to stress that our approachrgéines that of Even and
Lehrer [3] and also covers problems of linear programming esmbinatorial

optimization. Finally, we introduce some new types of imég related to opti-
mization tasks.

1 Introduction

The idea of decomposition of the integrated functfofor the integration purposes is a
basic feature of constructions / definitions of integratesiever. Recall, e.g., Eudoxus
of Cnidus (408-355 BC) exhaustion principle, Riemann andsgue integrals (lower
and upper integral sums), etc.. Integration always memgesources of information,
the integrated function and weights of special functionsdulor decomposition pur-
poses (e.g., measures assigning weights to sets, i.e.ataatbrize functions of sets),
into a single representative value. In this contributior,will deal with non-negative
(measurable) functions and non-negative weights onlypasipg always the mono-
tonicity of the considered weights, and vanishing of suclights for null functions.
Both from transparency of our ideas as well as for the apjdingurposes in economics
and multicriteria decision support, we will always dealtwit fixed finite spacév =
{1,...,n}, wheren € Nis a fixed positive integer. Then the power 28t being con-
sidered excludes any measurability constraints. Eachtibm¢ : N — [0, oo[= R4
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can be seen as an n-dimensional vegterR’} , X = (z1,...,2,) = (f(1),..., f(n)).
The aim of this contribution is a proposal of a general apgno® decomposition
based integration, distinguishing sub-decompositiorts super-decompositions. We
will stress several integrals known from the literature astipular instances of our
approach. Moreover, several new types of integrals relatagptimization tasks will
be introduced and exemplified. The paper is organized asafsllin Sectioi2 we pro-
pose the idea of sub-decomposition based integrals aniadimsuper-decomposition
approach to integration is discussed in Sedfibn 3. We peos@leral examples of ap-
plication of decomposition integrals, both theoreticalel as realistic. In Section 4
we confront our approach with previous research in litaegtaspecially with the idea
of Even and Lehrei [3]. Particular decomposition basedjiratis are discussed in Sec-
tion[8. Finally, some concluding remarks and formal propfmeuture researches are
added in Sectiof]6.

2 Sub-decomposition based integrals

Any system of vectors dR”, (x')k_, = (x},...,x*) € (Ri)’C with k € N, is called a
collection and the set of all collections ®8,, = UkeN(R’fr) . A decomposition system
is anyD C R, such that there exists # 0 = (0,...,0) with x € (x*)¥_, for some
collection(x®)*_, € D.

Given a decomposition systetn, we denote

D= {xeR%|xe (x)k, forsome collectiorx’)’_, € D}.

Conversely, for anX' C R", we define

Dx ={(x)", eR, |x € Xforalli=1,...,k}

as the complete decomposition system generated pgnd clearlyﬁx = X and,
moreoverDx is the union of all decomposition systeff*ssuch thatD = X.

Definition 1 Let D be a decomposition system. A mappifig D — R, is called a
weighting function orD whenever

— A(x) < A(y) if x,y € D,x < y (monotonicity),
— A(x) > 0 for somex € D and A(0) = 0 wheneveD € D (boundary conditions).

Observe that ifD = R’ , then any weighting function A can be seen as an aggrega-
tion function (in the sense df][5], with related boundarydition, i.e.,sup{ A(X) | x €
R’} } = +oo replaced byup{A(x) | x € R} > 0).

The following example is inspired to Even and Lehrer [3, egbnin Section 2].

Example 1 Consider two different work agencigy and.4;. Each agency provides a
couple of workers with exactly the same skills. Howevehedthe four workers can
work alone, or together with one or more partners. The pdsdibams are identified
with

T ={0,1,2}"\ {(0,0)} C N,



where(1,0), (0,1) represent basic teams formed by a single worker from ageficy
and A, respectively, while, e.g(2, 1) is the team formed by the two workers frotn

and one indifferently chosen from,. Suppose we know the efficiency of each team,
measured in some work unit, given by the weighting fundiior/” — R:

E(1,0) = 1.0
E(2,0) = 2.2
E(0,1) = 1.1
E(0,2) = 2.0
B(1,1) = 2.2 (1)
E(2,1) = 3.5
E(1,2) = 3.0
E(2,2) = 4.3

Clearly, we want to maximize our efficiency by choosing tist @up of teams within
the decomposition system (let us note that= 7)

k
Dr = {(Xj)f_1 | %) € Twith » %/ < (2,2)}.

j=1
We will return on this example later.

Let D C R, be a decomposition system and lt: D — R, be a weighting
function onD. From now, we cal( A, D) abase for integratiomn R’} (shortly, abasg.
Given a basé€ A, D), a vectorx € R’} is called(A, D)-sub-integrable if (we use the
conventiorsup () = 0)

k k
sup {D>_AWY) | (¥)j=1 €D, Yy <X} < 400, 2

j=1 j=1

and we define the set 0fi, D)-sub-integrable vectors as

Scap) = {x € R} | xis (4, D)-sub-integrablg .
Let us note thaS 4 py # (), since the null vecto® is (A, D)-sub-integrable for any
base.
Now, we can introduce our sub-decomposition based integral
Definition 2 Let (A, D) be a base for integration oR’}, then the(A, D)-based sub-
decomposition integral is the functionfly p) : S(4,p) — R4 defined by

k k
I(a,p)(X) = sup {Z A(y) | (YJ);Czl €D, Zyj < x}. 3)
j=1 j=1

The following LemmalL follows directly by definitions &f 4, py andZ 4 p).

Lemma 1. Forally € S4 py andx <y, thenx € S 4 py and 4 py(X) < Ia,p)(Y)-
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Remark 1 LetD be a decomposition system and&t R} — R be an aggregation
function which is super-additiveB(x +y) > B(x) + B(y)], then for the weighting
functionA = B|3 it holds S 4,py = R and (4, p)(x) < B(x) for eachx € RY.
Obviously, if(x) € D, thenI 4 p)(x) = B(X).

Regarding the domaifi 4, p) of sub-decomposition integrd} 4, p), this depends
on bothA andD. Suppose thatA, D) and (A’, D’) are two bases such th& C D’
andA < AI|Z~), thenS(A_,D) D) S(A’,D’) andI(A_,D) < I(A’,D’) on S(A’,D’)- This will be
clear also in the following relevant examples.

Example 2 Consider, e.gn = 2, D = R, andA : R2 — R, given byA(z,y) = =.
ThenS 4,y = R} and (4 %, (x,y) = . If we consider the weighting function
Al(z,y) =z + /y, thenS x4 z,y = {(2,0) | x € Ry } and I 4/ r,)(,0) = x, while
foranyz € Ry andy > 0, (z,y) is non(A’, Ry)-sub-integrable, indeed, beimtf sub-
additive, sup {0, A’ (i, y:) | S, (@i, 3) = (2,9)} > limp 0o nd/(2,2) =
limy,— oo (@ + v/nYy) = +00.

Consider a set of objects (criteridy {1,...,n}, and define ahain a sys-

tem (Ej);?:l such thatty € ... € E;, C N. Let D be the set of all collections

(cj - 1Ej)§:1, being c¢; positive constants amd.‘Ej)f:1 a chain. Now consider the

weighting functionsA : D — R, determined by a monotone measure 2V — R,
(m(®) =0, m(N) > 0, andm(E;) < m(E2) whenevetE; C E; C N), by means of
A(c-1g) = c-m(E). Inthis caseS 4 py = R’} and( 4 py is the Choquet integrel[2]
with respect to measure.

Other that for the Choquet integral, in majority of integriahown so far (Lebesque,
Choquet, Shilkret, Concave, Pan, etc. integrals), decsitipo systemsD such that
anyx € D can be written in the forna - 15, wherec is a positive constant and
a subset ofV (1 is the corresponding characteristic function) are comsitleand
the corresponding weighting functioas: D — R_. are then determined hy(x) =
A(c-1g) = ¢-m(E), beingm : 2Y — R, monotone measures. Hence all these
integrals are covered by our approach. For more details set@84 # anf]s.

Typical economical problems deal with finite number of gogds. ., g,,, and then
weight (price) is assigned to groups of goods representenhigsisets, i.e., vectors
x € N whereN, = {0,1,2,...}. Note that due to limitations in storing/productid,
is then mostly finite. For this purpose, the next result isantgnt for real applications.

Proposition 1 For any basg A, D) such thatD is finite, thenS 4 p) = R’

Proof. LetD = {x!,...,x™} be finite, and without loss of generality, we can imagine
thatx’ # 0, = 1,...,m. Now, for anyy € R? there existry, ..., n, € N such that
for eachj = 1,..., m the vectom ;x’ exceedy in some component. Thus, we have

k k
sup{Y AY) | (Y)h_1 €D, D ¥ <y} <mAX!) + ...+ ngAKX™) < +oo.
j=1

Jj=1

O



Remark 2 If (A, D) is a base such tha§ 4 py = R}, thenl 4 py : R} — R, isa
weighting function ofR’} . Indeed, monotonicity df 4 py and condition/( 4 1)(0) = 0
follow by definition and, moreover, singeis a weighting function, there existse D
such thatA(x) > 0; suppose thak belongs to the collectioty’)*_, € D, it follows
that I 4 p) (Zle yj) > 38 A(Y) > A(x) > 0.

Let us note thaf 4 p) restricted orD is not, in general, a weighting function, consider,
e.9.,D{((1,3,0),(3,1,0))} with A(1,3,0) = A(3,1,0) = 2, thenI( 4 p(1,3,0) =
Ia,p)(3,1,0) = sup® = 0. Now suppose there existsc D such that/( 4 py(x) > 0
andthen/(4 p) is a weighting function o and we can conside[r(I(A,D) D): However,

in this case, the two weighing functiof and 74 py are non comparable and also
considering sub-decomposition integrals, we have fhaty) is non comparable with
I(I<A,D>,D)' see Examplel 3.

A case wherd (4 py and I( are comparable is when the weighting function

Ita,py,D)
A is super-additive, since in this case for angnd any collectior(y’)%_, € D such
that Zleyj < X, it follows thatzll;:1 Aly) < A(E’;Zl y/) < A(x), and then
I a,p)(X) < A(x) and, consequently(I(A’D%D) < Iia,p)-

Finally, let us note that whe® = R,, and S, py = R}, thenl(4 p) = I(I(A y:D)"
Example 3 ConsiderD {((0,2,1),(2,0,0)),((2,2,1),(0,1,2)),((0,1,2))} and the
weighting functionr4(0,2,1) = A(2,0,0) = A(0,1,2) = 2, A(2,2,1) = 3.

It follows thatl 4 p)(0,2,1) = I(a,p)(2,0,0) = sup® = 0, I(4,1(0,1,2) = 2 and
Iap)(2,2,1) = 4, I(4,p)(2,3,3) = 5.

Finally, it is easily computed thd‘(z<A,D),D) (2,2,1)=0 a”dI(z<A,D),D) (2,3,3) = 6.

WhenD = R,, we are able to enunciate sufficient conditions for existeofc
Itar,)onallR? (for the proof of Theorernl1 and subsequent corollaries,[ge [

Theorem 1 S4 »,) = R’} if and only if the constant vectdr= (1,...,1) is (A, D)-
sub-integrable.

Corollary1 Let A : R} — R, be a weighting function ofk,, such that for each
y e R%Y, A(X) < c-max {y1,...,yn}, Wherec is some fixed constant frojih oo[. Then

Due to Corollary[1]l, also the domination by a weighted sim: R} — R,
W(x) = >0, wizg, withw = (wy,...,w,) € R} \ {0}, is sufficient to guaran-
tee thatS 4 =,,) = R} (i.e., A(y) < W(y) for eachy € R is considered).

Corollary 2 Let A : RT — R, be a weighting function ofR,, and let, for a fixed

e >0, {%| y € R}, max{y1,...,yn} < k} be bounded by a fixed constant
independently of < ]0,¢]. ThenS 4 =,y = R%.

The following example shows that, in general (i.e. wierC R,,), Theoreni1l is
not valid.



Example 4 Consider inR? the following decomposition system

n times
11 11
D= (171)7(575>77<Eaﬁ)

Now, independently from the weighting functidn (1, 1) = sup® = 0. On the
other hand, if we choosé(z, y) = = + ,/y, we have

neN

TR R IRES P OO | S I
1

neN

Example 5 Let us reconsider Examplé 1. To choose the best group of {eeenisave
to compute efficiency of various complete groups (i.e. wiver@se all four workers),
which can be easily done due to small quantity of data.

2. E(1,0) + E(0,2) = 2.0 +2.0 = 4.0

2. E(1,0)+2-E(0,1) =2.0+22=42

E(2,0)+ E(0,2) =2.2+2.0 =42

E(2,0)+2-E(0,1) =2.2+22=44.

E(1,2)+ E(1,0) =3.0+ 1.0 = 4.0 (4)
E(2,2) =4.3

E(1,1)+ E(1,0)+ E(0,1) =22+ 1.0+ 1.1 = 4.3

2.E(1,1) =44

B(2,1) + B(0,1) =35+ 1.1 = 4.6 = I(5.p,)(2,2).

System(d) underlines as the best solution correspondd e »,(2,2). This ex-
ample can be generalized, by thinking that the two agendiesnd A, can provide
any number of workers and then the possible teams are id=htifith elements of
T = N2\ {(0,0)}. Supposing that we know the efficiency of all possible teaxss,
pressed by the weighting functidn : 7 — R, and supposing that the first agency
providesn; workers and the second agenay, then the best group of teams corre-
spond to decompositions @f;, n2) allowing the computation of g ., (n1, n2). For
ny andnsy large enough we need the use of linear programming techsitpueompute
I(g,pry(n1,n2), howeverl g p.y(n1,n2) is the theoretical solution to the problem,
in the sense that the sub-decomposition integral definftionides the algorithmic to
solve the problem.

Let us consider Examplés$ 1 5. The optimal solution wedoi p,)(2,2) =
4.6, can be also obtained by using the concave integral [9] andsihg an “ad hoc”
measure as described in the following. We identify the seheffour workers with
N = {1,2,3,4} where 1 and 2 are the two workers from the first agency and 2,3
those from the second. Consider the measure 2’ — R, given by u(0) = 0,
p(1) = p(2) = E(1,0), u(3) = u(4) = B(0,1), u(12) = E(2,0), u(34) = E(0,2),
p(13) = p(14) = p(23) = p(24) = E(1, 1), u(123) = p(124) = E(2,1), pu(134) =



1(234) = E(1,2) andu(1234) = E(2,2). Now the best solution for the problem pro-
posed in ExamplEl1 is given b (1,1,1,1)dv = 1-1v(123) + 1 - v(3) = 4.6.
Also the generalization of the problem discussed at the éiitkample[b can be ob-
tained using the concave integral, in the sensefhab ) (n1,n2) = [ ydv where
N ={1,2,....(n1 +n2)},y = (1,1,...,1) € Ntn2 andy : 2V — R, is an
opportune capacity. However this is possible only becauséave chosen an integer
components vectofn, ne) and we have allowed only for decomposition of it in in-
teger components vectors. Suppose to have two numerictiotomachines)M; and
M- and they can work alone or together, the first machine depemdsparameteti;
and the second on a parameter with (a1, as) < (2\/5, 2). The possible setting of
these two machines are identified with=]0, a1 ] x]0, a2}, and we know the efficiency
of each combination of these machines giventby 7 — R.. finally the best set-
ting for the couple of machines is obtained by solviig p.,) (1, a2). Suppose that
Iippry (a1, a2) = E(2v/2,v2) + E(0,2 — v/2). In this case no measure can be spec-
ified in order to solve the problem using the concave integral

3 Super-decomposition based integrals

We open this section with a realistic example, providingiwations to our approach to
super-decomposition integral.

Example 6 Consider a Fast Food (FF) which, basically, offers three dedbasic-
offers)
g1 = hamburger ¢, = chips g3 = coke.

To increase the sales, the FF proposes also discounted aemdpaffers, e.g. to
buy conjointly 1 [hamburger + chips] is less expansive thamaimburger and 1 chips
bought separately. Let us suppose that the FF set of offers is

S ={(1,0,0),(0,1,0),(0,0,1),(1,1,1),(2,0,0),(1,0,1),(0,1,1),(2,1,1)},

where(1,0,0), (0,1, 0) and(0, 0, 1) represent, respectively, the basic offers hamburger,
chips and coke, while, e.d1, 1, 0) represents the compound offer [hamburger + chips].
To attract the consumers, FF propose a price functfonS — R, which is typically
strictly sub-additive, i.e.,

n

P(x,y,z) < Zp(xiayiazi)a
i=1

for all (z,y,z2), (zi,yi,2) € S such that(z,y,z) = >, (zi,vi,2:), n > 2. For
example,P(1,1,1) < P(1,0,1) + P(0,1,0) < P(1,0,0) + P(0,1,0) + P(0,0,1).

Let us suppose that FF prices are

n
K3

P(1,0,0) = 2.80, P(0,1,0) = 1.60, P(0,0,1) = 1.80, P(1,1,1) = 4.80,

P(2,0,0) = P(1,0,1) = P(0,1,1) = 3, and P(2,1,1) = 5.50.



Let us suppose also that a group of friends have to buy alegei0 hamburgers,
30 chips and 60 cokes, and, obviously, they want to pay &sditt possible by taking
advantage of FF offers. This is a linear programming problerich can be formalized
as follows ¢, is integer quantity of1,0,0), P, = P(1,0,0) and so on)

P;(50,30,60) = min{xz, Py + 2Py + . Pe + oo Paa + TacPac + ToePoct

+xabcpabc + xaabcpaabc}

Tgq +2Tgq + Tac + Tabe + 2Taabe = 50

Ty + Tpe + Tabe + Taabe = 30

Te + Tac + Toe + Tabe + Taabe = 60

Ty X, - - - 5 Taabe INtEGEL

(5)
But consider, for example, the necessity to buy 19 hambsird€r chips and 10

cokes. Sincg.5-10 < 5.5-9+ (2.8 + 1.6+ 1.8), we understand that to find the optimal
solution, in equatiorf8) we must replace equality on constrains with inequality, i.e

P(50,30,60) = min{x, Py + 2Py + . Pe + Xaq Paa + TacPac + ToePoct
+xabcpabc + xaabcpaabc}
To + 2xaa + Zae + Tabe + 2xaabc Z 50
Ty + Toec + Tabe + Taabe Z 30
Te + Tac + The + Tabe + Taabe Z 60
Ty Xy - - - 5 Taabe INtEGEL
(6)
We will return on this example later, after introducing sdéeomposition based
integrals.

Sub-decomposition based integrals can be considered astiamzation problem
to maximize the possible profit. In a dual way modeling theimiration of the costs,
one can introduce super-decomposition based integrals.

However, there is a crucial difference concerning the fbss$nputsx € R’} to be
evaluated by a super-decomposition based integral. Indeed fixed decomposition
systemD, D = {Z?Zlyﬂ B = (y/)i_, € D} is the set of maximal elements of
the set of all elements € R’} covered by some collectioB from D, i.e., a super-
decomposition based integral can be defined only on the dm®aiC R’ given by

l? ={xeR}|x S_Zlle y’ for some collectior3 € D} = Uyen|0,Y]. Obviously, if
D =R thenalsdD =R%}.
Given a bas€A, D) andx € D, it results that

k

k
0<inf{d AWY)|x<> ¥, (¥)i, €D} <.
J Jj=1

1

If there existsx € D such thatinf {3°7_; A(¥)|x < Y5 v/, (¥)k, € D} > 0,
(A, D) is called a base for sup-integration (shortly,a sup-bds®)example(A4, R,,)
is not a feasible base for sup-integration when considetiegproduct4A = II or
A = min [consider the decomposition= (x1,0,...,0) + ...+ (0,...,0,z,)].



Definition 3 Let (A, D) be a base for sup-integration dR’;, then the(A, D)-based
super-decomposition integral is the functiodé&t-?) : D — R+ defined by

E

IAD)(x mf{ZA Yol Z (¥)h, € D}, 7)

Obviously, if D = R,, (an thenD = R" s then(AD) : R} — Ry is an aggrega-
tion function.

Remark 3 If an aggregation functiorB : R} — R is sub-additivelA(x +y) <
A(x) + A(y)], and if considering the weighting functioh= B| 5, the couplg A4, D)
is a sup-base, thef4:P)(x) > B(x) for eachx € D. Obviously, if(x) € D, then
IAP)(x) = B(x).

Example 7 Continuing in Examplgl6, we can assume
D =38 ={(1,0,0),(0,1,0),(0,0,1),(1,1,1),(2,0,0), (1,0,1), (0,1, 1), (2, 1,1)},

andDgs is the decomposition system containing all collection$ding with elements
from S. It is clear that the solution of problerfG) (the minimal price that the group
should pay to satisfy their constrains)i§™P) (50, 30, 60). Using a linear program-
ming solver it results

IP9)(50,30,60) = 10 - Pagpe + 30 - Pae + 20 - Py, = 205.

Example 8 Let us consider the probabilistic sum (this is a weightingction and a
t-conorm)B : [0,1]? — R, given byB(z,y) = = + y — zy and the decomposition
systenDy 1 = {(XI)5_; € Rn |7 €[0,1]"j =1,...,k}. ThenDjg 1. = [0,1]",
Dy,1» = R, andIB D[O um) : R2 — Ry is given by

If (z,y) € [k, k +1)?

(k+1)(@+y—k) - Y for somek € N,

BP0 (g, ) =

max (z,y) otherwise.

Observe thaf (5-Pr.1") can be seen as a pseudo-addition@rso] (when extended by
monotonicity also for infinite inputs), [16]. [8)[(®'?) = (< k,k+ 1,B > | k € Ny),
i.e., itis associative, commutative aggregation functofiR?. W|th neutral element =
0. Let us note thaf (Z-Po.u) (z, y) + I 4 py ) (2,9) = :v+yfor all z,y € [0, 0],
i.e., our integrals solves Frank’s functional equation,[f8] on [0, o).



4 Relation with some other integrals

LetN = {1,...,n} be afinite setand let : 2% — R, be a monotone measure. Even
and Lehrer([3] consider a decompositionaebeing a non-empty set of finite systﬁ‘ns
of subsets ofV, that isH = {Cy,...,Cx}, With C; = (E;);”:1 foralli = 1,...,k,

beingE;'- C Nforallj =1,...,m;. The?H{-decomposition integral is given by

k k
Im(X) = sup{ Y a;m(E;)| (E))f_, € H, ar,...,ax >0, Y _a;lg, <x}. (8)
j=1

j=1
Itis not difficult to check that thety, ., = I(4,, p,,), Where the decomposition system
Dy, is defined byDy = {(a;1x,)5_,| (E;)i_, € H,a1,...,ar > 0}, and the weight-

ing functionA,,, : Dy — R, is given byA,,(c- 1g) = ¢ - m(E). Thus our approach
extends the proposal of Even and Lehrer [3]. In particutdmlds:

if H ={(E)|E € N}, thenl4,, p,, is the Shilkret integral [15];

if H= {(E]-)f:1 | (Ej);?:l is a chair}, thenI 4, p,,) is the Choquet integrel [2];
if H = {(E]-)?:1 | {E1, ..., By} is a partition of N}, then( 4, p,,) is the PAN

integral [17]; iIf m is additive, then the classical Lebesque integral is rewmje

if H= {(E]-)f:1 | E; €N, j=1,...,k}, I(a,, p,) is the concave integral[9].

The couple(A, v) is defined a fuzzy capacity|[9] f1,...,1) € A C [0,1]™ and
v : A — R, is monotonic, continuous, and there is a positive K such fitragvery
a = (ay,...,a,) € A, itholdsv(a) < KZ?:l a; . The concave integral of € R”}
with respect to the fuzzy capacity, v)[9] is

cav k k
/ xd(A,v) = sup{Zaiu(ai) la;, € A,a; > 0,0 = 1,...,nand2aial- < X} .

=1 =1

If we considerX = {a-a|a >0anda € A}, Dx = {(x)¥, € R,, | X' € X} and
the weighting functiomd : X — R, defined byA(a - @) = a - v(a) then, it results
Iap)(X) = [“xd(A,v) forallx € RY.

For several other integrals covered by our approach we reword [3] [12].

Recently introduced superadditive integral [7] deals watfixed decomposition
systemD = R,, and then the weighting functiod defined onD = R is just
an aggregation function. The superadditive integtal : R} — R, is given by
A(x) = sup ({S0_y A()| S5_y ¥ <x}). Obviously,A* = I(4 ).

In the framework of super-decomposition based integratgaeall that, for a monotone
measuren:
—ifH= {(Ej);?:l | (Ej);?:l is a chair}, then(A=P+) is the Choquet integral;
5 Effectively, Even and Lehref[3] speak about sets whereaspgak about systems. Precisely,
they define aollectionD to be a set of subsets of, i.e.D C 2%, and then they consider sets

of collections. However their approach can be equivalegitign using systems and this allow
us to demonstrate that our approach is more general.
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—ifH = {(Ej);?:l |E; CN, j=1,....,k}\ {(0)}, thenIA=-P#) is the convex
integral recently introduced in [11].

Also the subadditive integrall. : R} — R, introduced in[[7] can be seen as
super-decomposition based integral, = 1(4:R»),

4.1 The Choquet integral with respect to a level dependent gacity

An example of an integral which cannot be considered a sgbfdposition based int-
geral is the Choquet integral with respect to a level dependapacity [6]. Given a
set of criteriaN = {1,...,n}, a level dependent capacity is an index §8bcr
such that for alt € R, v, : 2V — [0,1] is a capacity. The Choquet integral of
X = (x1,...,2,) € R% with respect to the level dependent capadity);cr, is
given by Chy(x,v¢) = [;°v({i € N | z; > t})dt. In this case the integral brings
too much information to be modeled via a decomposition ofitiegrated function,
X =Y, + ...+, and weights assigned to addend§/,),...w(y,,). Consider the
following example. GivenV = {1,2,3}, andx = (3,2,5) it resultsCh;(X,v;) =
f02 ve({1,2, 3})dt+f23 ve({1,3})dt+ f35 v:({3})dt. This integral decomposition “sug-
gests” the vector decomposition= (3,2,5) = (2 — 0)(1,1,1) + (3 — 2)(1,0,1) +
(5—=3)(0,0,1) = (2= 0)1y + (3 — 2)1{1,33 + (5 — 3)1(3, however to apply the
decomposition approach we should assign weights to ferris E) € R% x 2/ with

a < b, being these Weightﬁ: vi(E)dt.

5 Particular decomposition based integrals

Inspired by set decomposition systems recalled in Sectiamd can define particular
vector decomposition systems. Namely we can consider:

- for a fixedk € N, D = {(y/)¥_,| ¥ andy’ are comonotone for any, j <
{1,...,k}}. Note thatif eacly) = a;-1p, fora; > 0 andE; # 0, then(y/)*_,
Dy, if and only if (Ej)g?:1 is a chain inN, compare set decomposition system for
the Choquet integral; and we dende, = | J,-, Dx;

— forafixedk € {1,...,n},D* = {(y7)§:1| supp ¥’ Nsuppy' = O whenever #
j}; these decomposition systems are related to set decomopasistem inducing
PAN-integral;

— forafixedk € N, Dy = {(y/)¥_, }; clearly,D () = Up—; D) = R, and these
decomposition systems are related to the concave (convegyral.

Note that fork = 1, D; = DY = Dy = {(y)|y € R}, and therD; = R?. For
any aggregation (weighting) functioh : R — R it holdsI 4 p,) = I4PV) = A,
Moreover,J 4 p,..,) = A* and[4Pe) = A,, comparel[7].

We turn our attention to the decomposition systBm (recall its relation to the
Choquet integral). Due to Schmeidlér [13],[14], Choquétgnal can be characterized
by the comonotone additivity. Recall that two vecteyg € R’! are comonotone when-
ever(z; — z;)(y; —y;) > 0foranyi, j € {1,...,n}. The mutual comonotonicity
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of a collectionC = (yj)é?:1 € D, means that there is a common chai, )",

in N such that eacly/;, j € {1,...,k}, can be expressed as a linear combination
Yy = Zle ar; - 1g,, with non-negative constands ;. Moreover for any setl C N,

the minimal values of sdty’| i € E}, j = 1,..., k, are attained in a single coordinate
ip € E. This observation has an important consequence formdlizbe next Lemma.

Lemmal Letx, z € R} be comonotone and let = Zleyj, z = _ZZ’;I u’,
Where(yﬂ);?:1 and(u")™, are comonotone systems. Then a(l@é);?zl, (u),)isa
comonotone system.

Based on Lemmi 1, we have the next characterizatidp.ob_ ).

Theorem 2 Let A : R} — R, be an aggregation function such théity p_) = R.
Thenl 4 p_) is the smallest comonotone superadditive aggregatiortimmdominat-
ing A, and for eactx € R}, I (4 p_y(X) = min {C(x)| C > A, C'is a comonotone
superadditive aggregation functi¢n

Proof. We only prove the comonotone superadditivity iof, p__y, while the rest of
proof can be done similarly as inl[7] (Proposition 2). Fix anmmotone couple, z €
R’ . Based on Lemmid 1, (it implies the first inequality)

p p
Iapy(x+2) =sup{d ANV Y v =x+2z (v/)!_, € Do} >
r=1

r=1

k
> sup {3 AWY) + D AW)] Doy =x Y ow' =z (), (0, € D) 2

j=1 i=1 j=1 i=1

O

Example 9 DefineA : R2 — R, by A(z,y) = max (In(1 + ), In(1 +y)). Then
A*(z,y) = liap.), (2,y) =2 +y, butAs p_)(z,y) = max {z,y}. Observe that
max IS not superadditive but it is comonotone superadditive.

A similar result can be shown where considerig®) decomposition system. We omit
its proof due to its simplicity.

12



Theorem 3 Let A : R} — R, be an aggregation function such thﬁ((A_’D@o)) =R,.

Thenl 4 pe-y is the smallest aggregation function which is superadelitor vectors
with disjoint supports, i.e 4 pee))(X +2) > L4 pe))(X) + L4 D)) (2) Whenever
XAz=0.

Similar chains can be shown for the super-decompositioaedidegrals.

6 Conclusions

In this paper we have studied decomposition approacheségration generalizing
previous works (see [12], [3] and [11]). Our general apphoicintegration is based
on three steps: (a) sub/super sum decomposition of inesfjfanctions; (b) weighting
of the addend functions used in decompositions; (c) sumeaggjon of these weighted
addend functions and choice of extremal elemesisp ( inf) to define the integral.
The final integral depends (other that on the choice of splefsdecomposition) on
the set of allowable functions used to decompose the indgjfanction in step (a),
and on the weighting function used to weigh addend functiorstep (b). Note that
this approach can be further generalized by replacing ataratidition in step (c) with
a pseudo-addition. For example taking any decompositistesyD such thatD =
{¢-1g | c € [0,00], E C N}, and putting as pseudo-additiamx, and as weighting
functionA(c- 1g) = ¢ - m(E) beingm : 2 — R, a measure, the resulting integral
is the Shilkret integral; ifA(c - 1g) = min(c,m(E)), Sugeno integral is obtained.
D can be finite, consider Ali Baba in the cave with preciousdhifrom Gold, only
their weight matters, since his donkey can take onkg. Ali Baba can take any good
he wants, but only one. In this case we haYe= {gi,...,gx}, g; are all possible
precious goods in the cave, characterized by their wejghind, then, the weighting
function isA(d) = d, and thus[ma")( ) = max{g; | ¢; < x}. Note that if Ali Baba
has no limitation in the number of goods but only in the weightve have to use our
approach based on addition, and tHen p) (X) = max{>;; gi |>_;c; 9i < x} and,
then, surelyl( 4 p)(x IM»%, (x). This last example recalls a very famous example
in literature, the o) calleénapsack problerfil0]. The knapsack problem or rucksack
problem is a problem in combinatorial optimization, whagiwen a set of items, each
with a mass and a value, we have to determine the number ofiteacto include in a
collection so that the total weight is not greater than amlimit and the total value is as
large as possible. The knapsack problem has been studietbferthan a century (for
example in combinatorics or in the field of resource alla@tiand it is straightforward
that it can be faced by using our sub-decomposition basedrition.

Let us note that in the last step of our construct method feodgosition inte-
grals, we choose the extremal elements of the set of weigidddnd functions, that
is I a,p)(x) = sup{...} andI4P)(x) = inf{...} and this to link our integrals to
optimization problems that usually arise in economics. &again, a further general-
ization is to define the decomposition integral not as theeexal element of the set of
all weighted sums of integrated function decompositions,ds a representative ele-
ment of this set, and, finally, we could consider as intedrahthole set, following an
approach a la Aumanhl[1].
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