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Abstract

The Choquet integral and the Owen extension (or multilinear extension) are the most
popular tools in multicriteria decision making to take into account the interaction between
criteria. It is known that the interaction transform and the Banzhaf interaction transform
arise as the average total variation of the Choquet integral and multilinear extension respec-
tively. We consider in this note another approach to define interaction, by using the Sobol’
indices which are related to the analysis of variance of a multivariate model. We prove
that the Sobol’ indices of the multilinear extension gives the square of the Fourier trans-
form, a well-known concept in computer sciences. We also relate the latter to the Banzhaf
interaction transform and compute the Sobol’ indices for the 2-additive Choquet integral.

Keywords: capacity, interaction index, Sobol’ index, multilinear extension, Fourier transform

1 Introduction

In multicriteria decision making, the Choquet integral with respect to a capacity has become
a popular tool to model situations where some interaction exists between criteria [4]. This
often happens in practice, as the evaluation of an alternative under several criteria is a complex
process, where the level of importance of criteria generally depends on which criteria are satisfied
or not.

The basic ingredient to model interaction is the capacity (or fuzzy measure) defined on the
set N of criteria, through its interaction transform [3], which is a generalization of the Shapley
value. Another type of interaction has been introduced by Roubens [11] under the name Banzhaf
interaction transform, and extends the Banzhaf value. So far, emphasis has been put on the
former one in theoretical developments and applications.

It is well known that the Choquet integral is an extension of a capacity, seen as a pseudo-
Boolean function, and called the Lovász extension. Another popular extension of pseudo-
Boolean functions is the Owen extension or multilinear extension, known in Multi-Attribute
Utility Theory from a long time ago [7]. Both can be considered as aggregation functions
on a bounded closed domain (say, [0, 1]n). Defining the interaction index for S ⊆ N w.r.t. an
aggregation function F on [0, 1]n as the average of the total variation of F w.r.t. the coordinates
in S, Grabisch et al. [5] showed that the interaction transform corresponds to the interaction
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index w.r.t. the Choquet integral, while the Banzhaf interaction transform is the interaction
index w.r.t. the multilinear extension.

The present note aims to add another view of interaction to the picture, namely the statistical
view, and to relate it to a well-known transform used in computer sciences but so far ignored
in the field of decision making, which is the Fourier transform. We show that considering
the aggregation model as a multivariate function and defining the interaction index of S ⊆ N

through the Sobol’ index of S (similar to the variance), we come up with the square of the Fourier
transform when the aggregation function is the multilinear model (Theorem 1). We also show
the close relation between the Fourier transform and the Banzhaf interaction transform, and
compute the Sobol’ indices for the 2-additive Choquet integral (Theorem 2).

Throughout the paper, cardinalities of sets S, T, . . . are denoted by the corresponding small
letters s, t, . . ..

2 Basic notions

We consider throughout a finite set N = {1, . . . , n}. We often denote cardinality of sets S, T, . . .
by corresponding small letters s, t, . . ..

A set function is a mapping ξ : 2N → R. A game v is set function vanishing on the empty
set: v(∅) = 0. A capacity [1] or fuzzy measure [14] µ is a game satisfying monotonicity: for
every S, T ∈ 2N such that S ⊆ T , we have µ(S) 6 µ(T ).

Clearly, the set R
2N of set functions on N is a 2n-dimensional vector space. We introduce

on R
2N the following inner product:

〈ξ, ξ′〉 =
1

2n

∑

S⊆N

ξ(S)ξ′(S).

A classical basis of R
2N is the basis of the unanimity games. For any nonempty subset

S ⊆ N , the unanimity game centered on S is the game defined by

uS(T ) =

{
1, if T ⊇ S

0, otherwise
.

Defining the set function u∅(S) = 1 for every S ⊆ N , we obtain a basis of set functions. A
drawback of this basis is that it is not orthogonal w.r.t. the above inner product. We will
introduce later an orthonormal basis.

It is well known that the coordinates of ξ in this basis are the Möbius transform coefficients:

ξ =
∑

S∈2N

mξ(S)uS

with
mξ(S) =

∑

T⊆S

(−1)|S\T |ξ(T ).

The Möbius transform (or Möbius inverse) is a fundamental notion in combinatorics (see, e.g.,
[10]).

There is another vision of set functions, namely the pseudo-Boolean functions [6], noting
that any subset A of N can be encoded by its characteristic function 1A. Formally, a pseudo-

Boolean function is a mapping f : {0, 1}n → R. If follows that the set of pseudo-Boolean
functions of n variables is a 2n-dimensional vector space, with inner product

〈f, f ′〉 =
1

2n

∑

x∈{0,1}n

f(x)f ′(x).
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The standard polynomial expression of a pseudo-Boolean function f is

f(x) =
∑

A⊆N

f(1A)
∏

i∈A

xi
∏

i∈Ac

(1− xi), (1)

for every x ∈ {0, 1}n, and with the convention
∏

i∈∅ xi = 1. Rearranging terms, we get a sum
of monomials:

f(x) =
∑

T⊆N

aT
∏

i∈T

xi, (2)

for every x ∈ {0, 1}n, where the coefficients aT form the Möbius transform of ξf , the set function
associated to f . Indeed, observe that unanimity games uS correspond to monomials

∏
i∈S xi.

Starting from (2), the Owen extension [9] or multilinear extension is obtained by letting x

vary in [0, 1]N :

fOw(x) =
∑

T⊆N

aT
∏

i∈T

xi (x ∈ [0, 1]N ).

Another possible extension is obtained by remarking that in (2), the product can be replaced
by the minimum without changing the value of the function. Letting again x to vary in [0, 1]N ,
we obtain the Lovász extension [8]:

fLo(x) =
∑

T⊆N

aT
∧

i∈T

xi (x ∈ [0, 1]N ). (3)

The Lovász extension coincides in fact with the Choquet integral [1].

3 Transforms of set functions

The Möbius transform presented above is an example of a linear and invertible transform on the
set of set functions, in the sense that to each set function ξ is associated another set function
mξ, called the Möbius transform of ξ, being linear because mξ+αξ′ = mξ + αmξ′ for every ξ, ξ′

and α ∈ R, and ξ can be recovered from mξ by the inverse transform:

ξ(S) =
∑

T⊆S

mξ(T ) (S ∈ 2N ).

3.1 Interaction transforms

Other such transforms exist, and three of them are of importance in this paper. The first one
is the interaction transform [3], defined by

Iξ(S) =
∑

T⊆N\S

(n− t− s)!t!

(n− s+ 1)!

∑

L⊆S

(−1)|S\L|ξ(T ∪ L),

and the inverse relation is given by

ξ(S) =
∑

K⊆N

β
|K|
|S∩K|I

ξ(K),

where

βl
k =

k∑

j=0

(
k

j

)
Bl−j (k ≤ l),

3



and B0, B1, . . . are the Bernoulli numbers. Also, the interaction transform has a simple expres-
sion in terms of the Möbius transform:

Iξ(S) =
∑

T⊇S

1

t− s+ 1
mξ(T ). (4)

The interaction transform is of primary importance in multicriteria decision making, as it
permits to model interaction between criteria [4].

A similar transform is the Banzhaf interaction transform [11] defined by

I
ξ
B(S) =

(1
2

)n−s ∑

K⊆N

(−1)|S\K|ξ(K),

with inverse relation

(I−1
B )ξ(S) =

∑

K⊆N

(1
2

)k

(−1)|K\S|ξ(K). (5)

Its expression in terms of the Möbius transform is

I
ξ
B(S) =

∑

K⊇S

(1
2

)|K\S|
mξ(K), (6)

and the converse relation is

mξ(S) =
∑

K⊇S

(
−

1

2

)|K\S|
I
ξ
B(K). (7)

In [5], the following close relation between the two extensions of a pseudo-Boolean function
and the two interaction indices are shown:

I
ξ
B(S) =

∫

[0,1]n

∂sfOw

∂xS
(x)dx (8)

Iξ(S) =

∫

[0,1]n
∆Sf

Lo(x)dx (9)

where f is the pseudo-Boolean function corresponding to ξ , xS is the restriction of x to coor-
dinates in S, and

∆Sf
Lo(x) =

∑

T⊇S

mξ(T )
∧

i∈T\S

xi,

which plays the role of a partial derivative.

3.2 Fourier transform

Another transform is the Fourier transform, well known in computer sciences. It is defined as
the coordinates of a set function in the basis of the parity functions. For any subset S ⊆ N ,
the parity function associated to S is the function

χS(x) = (−1)1S ·x = (−1)
∑

i∈S xi (x ∈ {0, 1}n), (10)

where 1S · x is the inner product between the two vectors 1S , x. The parity function outputs
1 if the number of variables in S having value 1 is even, and −1 if it is odd. In terms of set
functions, the parity function reads

χS(T ) = (−1)|S∩T | (T ∈ 2N ).
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It can be checked that the set of parity functions forms an orthonormal basis of R2N .
Let us denote by f̂(S), S ⊆ N , the coordinates of a pseudo-Boolean function f in the basis

of parity functions:

f =
∑

S⊆N

f̂(S)χS . (11)

The basis being orthonormal, it follows from (11) that f̂(S) is simply given by

f̂(S) = 〈f, χS〉 =
1

2n

∑

x∈{0,1}n

(−1)1S ·xf(x) (S ⊆ N), (12)

or, in terms of set functions,

ξ̂(S) =
1

2n

∑

T⊆N

(−1)|S∩T |ξ(T ) (S ⊆ N). (13)

The set of coordinates {f̂(S)}S⊆N is the Fourier transform.
We establish the relation between the Fourier, Möbius and Banzhaf transforms. Taking any

set function ξ, we have

ξ̂(S) =
1

2n

∑

T⊆N

(−1)|S∩T |ξ(T )

=
1

2n

∑

T⊆N

(−1)|S∩T |
∑

K⊆T

mξ(K)

=
1

2n

∑

K⊆N

mξ(K)
∑

T⊇K

(−1)|S∩T |.

Now,

∑

T⊇K

(−1)|S∩T | = (−1)|K∩S|2n−|K∪S| + (−1)|K∩S|+12n−|K∪S|

(
|S \K|

1

)
+

(−1)|K∩S|+22n−|K∪S|

(
|S \K|

2

)
+ · · · + (−1)|S|2n−|K∪S|

= (−1)|K∩S|2n−|K∪S|
(
1−

(
|S \K|

1

)
+

(
|S \K|

2

)
+ · · · + (−1)|S\K|

)
.

Observe that

1−

(
|S \K|

1

)
+

(
|S \K|

2

)
+ · · ·+ (−1)|S\K| = 0

except if |S \K| = 0. It follows that

ξ̂(S) =
1

2n

∑

K⊇S

mξ(K)(−1)|K∩S|2n−|K∪S|

= (−1)|S|
∑

K⊇S

1

2k
mξ(K). (14)

Now, using (6), we obtain

ξ̂(S) =
(−1

2

)s

I
ξ
B(S). (15)

Lastly, we obtain from (15) and (7)

mξ(S) = (−2)s
∑

T⊇S

ξ̂(T ). (16)
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4 The Sobol’ indices

In statistics, the analysis of variance (ANOVA) (see, e.g., Fischer and Mackenzie [2]) is a
well-known tool to model interaction between variables in a multivariate model. Consider n

independent random variables Z1, . . . , Zn, with uniform distribution on [0, 1], and a multivariate
model Y = F (Z), where Z = (Z1, . . . , Zn). Let us denote for simplicity groups of variables
(Zi)i∈S by ZS , and Z−S denotes (Zi)i 6∈S . Hence, we may write Z = (ZS , Z−S). Moreover, we
denote by E[Y ] the expected value of Y taken over all variables Z1, . . . , Zn. The expected value
of Y can be taken on a subset ZS of variables, with the corresponding notation EZS

[Y ].
Any multivariate function can be decomposed in the following way (ANOVA decomposition):

Y = F (Z) = F∅ +
n∑

i=1

Fi(Zi) +
∑

i<j

Fij(Zi, Zj) + · · ·+ FN (Z) =
∑

S⊆N

FS(ZS),

with

F∅ = E[Y ]

Fi(Zi) = E[Y |Zi]− F∅

Fij(Zi, Zj) = E[Y |Zi, Zj ]− Fi(Zi)− Fj(Zj)− F∅

= E[Y |Zi, Zj ]− E[Y |Zi]− E[Y |Zj ] + E[Y ]

... =
...

FS(ZS) = EZ−S
[Y |ZS ]−

∑

T⊂S

FT (ZT ) =
∑

T⊆S

(−1)|S\T |
EZ−T

[Y |ZT ]

... =
...

FN (Z) =
∑

T⊆N

(−1)|N\T |
EZ−T

[Y |ZT ].

The property of this decomposition is that each term has zero mean, except the first one, F∅.
It follows that the variance of Y can be decomposed as follows:

Var[Y ] =
∑

∅ 6=S⊆N

Var[FS(ZS)].

The first-order Sobol’ indices [12, 13] are the quantities Var[FS(ZS)]
Var[Y ] , although one can omit the

normalization factor. The next theorem establishes the close link between Sobol’ indices and
the Fourier transform (and consequently the Banzhaf transform) for the multilinear model.

Theorem 1. Consider the multilinear extension fOw
µ of a capacity µ. Then the (nonnormalized)

Sobol’ index for a subset ∅ 6= S ⊆ N is given by

Var[(fOw
µ )S ] =

1

3s
(
µ̂(S)

)2
,

where µ̂ is the Fourier transform of µ. Moreover, the ANOVA decomposition takes the following
form

fOw
µ (x) =

∑

S⊆N

(−1)s
∏

i∈S

(2xi − 1)× µ̂(S).

6



Proof. We set for simplicity f = fOw
µ . We compute

fS =
∑

K⊆S

(−1)kE(f | ZS\K) (S ⊆ N, |S| > 0).

We have for any such S:

E(f |ZS\K) =

∫

[0,1]N\(S\K)

f dzN\(S\K) =
∑

T⊆N

mµ(T )

∫

[0,1]N\(S\K)

∏

i∈T

zi dzN\(S\K)

=
∑

T⊆N

mµ(T )
1

2|T\(S\K)|

∏

i∈T∩(S\K)

zi

=
∑

L⊆N\S

∑

T⊆S

mµ(L ∪ T )
1

2|L∪(T∩K)|

∏

i∈T\K

zi. (17)

It follows that

fS =
∑

K⊆S

(−1)k
∑

L⊆N\S

∑

T⊆S

mµ(L ∪ T )
1

2|L∪(T∩K)|

∏

i∈T\K

zi

=
∑

L⊆N\S

1

2l

∑

T⊆S

mµ(L ∪ T )
∑

K⊆S

(−1)k
1

2|T∩K|

∏

i∈T\K

zi.

Letting T ′ = T ∩K, we have

∑

K⊆S

(−1)k
1

2|T∩K|

∏

i∈T\K

zi =
∑

T ′⊆T

(−1)t
′ 1

2t′
∏

i∈T\T ′

zi
∑

K ′⊆S\T

(−1)k
′
.

Observing that
∑

K ′⊆S\T (−1)k
′
= 0 except if S \ T = ∅, it follows that

fS =
∑

L⊆N\S

1

2l
mµ(L ∪ S)

∑

T⊆S

(−1)t
1

2t

∏

i∈S\T

zi. (18)

Observe that ∑

T⊆S

(−1)t
1

2t

∏

i∈S\T

zi =
1

2s

∏

i∈S

(2zi − 1),

hence we finally get by (14):

fS = (−1)s
∏

i∈S

(2zi − 1)µ̂(S). (19)

Note that this expression is also true for S = ∅ as

f∅ =

∫

[0,1]N
f(z) dz =

∑

T⊆N

mµ(T )

∫

[0,1]N

∏

i∈T

zi dz =
∑

T⊆N

mµ(T )

2t
= µ̂(∅).

We obtain finally

E[f2
S ] =

∫

[0,1]S

(∏

i∈S

(2zi − 1)µ̂(S)
)2

dzS =
1

3s
(µ̂(S))2.
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This result is not very surprising as, historically, Sobol’ generalized the Fourier base to
obtain the decomposition underlying the Sobol’ indices [13].

Therefore, up to a multiplicative constant depending on the cardinality of the subset, the
Sobol’ indices are the coefficients of the square of the Fourier transform, or, due to (15), of the
square of the Banzhaf transform (compare with (8)).

The computation of the Sobol’ indices for a general Choquet integral is quite complex due
to the presence of the minimum operator in (3), and there does not seem to be a compact and
appealing expression. We restrict ourself to a sub-class of capacities – called 2 additive – where
all Möbius coefficient of cardinality strictly greater than 2 are zero [3]. The Choquet integral
of such capacities therefore becomes (see (3))

fLo(z) =
∑

i∈N

m(i) zi +
∑

{i,j}⊆N

m(i, j) zi ∧ zj

with the notation m(i) = m({i}) and m(i, j) = m({i, j}), the Möbius transform of the capacity.

Theorem 2. Consider the Lovász extension fLo
µ of a 2-additive capacity µ with Möbius trans-

form m. Then fLo
µ is decomposed in the following terms according to ANOVA

fLo
∅ =

∑

i∈N

m(i)

2
+

∑

{i,j}⊆N

m(i, j)

3
(20)

fLo
k (zk) = −

m(k, ·)

2
zk

2 + (m(k) +m(k, ·)) zk −

(
m(k)

2
+

m(k, ·)

3

)
(21)

fLo
p,q(zp, zq) = m(p, q)

(
−zp ∨ zq +

zp
2

2
+

zq
2

2
+

1

3

)
(22)

where m(k, ·) :=
∑

i∈N\{k} m(k, i). Moreover, the (nonnormalized) Sobol’ index are given by

Var[fLo
k ] =

m(k)2

12
+

m(k, ·)2

45
+

m(k)m(k, ·)

12
(23)

Var[fLo
p,q] =

m(p, q)2

90
(24)

Proof.

fLo
∅ =

∑

i∈N

m(i) E[Zi] +
∑

{i,j}⊆N

m(i, j) E[Zi ∧ Zj]

where E[Zi ∧ Zj ] = 2
∫ 1
0

∫ zi
0 zi ∧ zj dzi dzj = 2

∫ 1
0

∫ zi
0 zj dzi dzj = 2

∫ 1
0

zi
2

2 dzi =
1
3 . Hence (20) is

proved.

For k ∈ N ,

fLo
k (zk) =

∑

i∈N

m(i)

(
E[Zi|Zk = zk]−

1

2

)
+

∑

{i,j}⊆N

m(i, j)

(
E[Zi ∧ Zj|Zk = zk]−

1

3

)

We observe that E[Zk ∧ Zi|Zk = zk] =
∫ 1
0 zk ∧ zi dzi =

∫ zk
0 zi dzi +

∫ 1
zk
zk dzi = zk −

zk
2

2 . Hence

fLo
k (zk) = m(k)

(
zk −

1

2

)
+m(k, ·)

(
zk −

zk
2

2
−

1

3

)

= −
m(k, ·)

2
zk

2 + (m(k) +m(k, ·)) zk −

(
m(k)

2
+

m(k, ·)

3

)
.

8



Hence (21) is proved. Then

E

[(
fLo
k

)2]
=

∫ 1

0

[
m(k)2

(
zk

2 − zk +
1

4

)
+m(k, ·)2

(
zk

2 +
zk

4

4
+

1

9
− zk

3 −
2 zk
3

+
zk

2

3

)

+2m(k)m(k, ·)

(
zk

2 −
zk

3

2
−

zk

3
−

zk

2
+

zk
2

4
+

1

6

)]
dzk

=
m(k)2

12
+

m(k, ·)2

45
+

m(k)m(k, ·)

12

Hence (23) holds.

Consider now

fLo
p,q(zp, zq) = m(p, q) (zp ∧ zq − E[Zp ∧ Zq|Zp = zp]− E[Zp ∧ Zq|Zq = zq]− E[Zp ∧ Zq])

= m(p, q)

(
zp ∧ zq −

(
zp −

zp
2

2

)
−

(
zq −

zq
2

2

)
+

1

3

)

= m(p, q)

(
−zp ∨ zq +

zp
2

2
+

zq
2

2
+

1

3

)

as zp ∧ zq + zp ∨ zq = zp + zq. Hence (22) is proved. Then

E

[(
fLo
p,q

)2]
= m(p, q)2

∫ 1

0

∫ 1

0

(
−zp ∨ zq +

zp
2

2
+

zq
2

2
+

1

3

)2

dzp dzq

= m(p, q)2
∫ 1

0

∫ 1

0

(
(zp ∨ zq)

2 − (zp ∨ zq)

(
zp

2 + zq
2 +

2

3

))
dzp dzq

+m(p, q)2
∫ 1

0

∫ 1

0

(
zp

4

4
+

zq
4

4
+

zp
2 zq

2

2
+

1

3

(
zp

2 + zq
2
)
+

1

9

)
dzp dzq

= 2m(p, q)2
∫ 1

0

∫ zp

0

(
zp

2 − zp

(
zp

2 + zq
2 +

2

3

))
dzp dzq

+m(p, q)2
(

1

20
+

1

20
+

1

18
+

1

9
+

1

9
+

1

9

)

= 2m(p, q)2
(
1

4
−

1

5
−

1

15
−

2

9

)
+m(p, q)2

(
1

10
+

1

18
+

1

3

)
=

m(p, q)2

90

Hence (24) is proved.

The interaction indices for the two-additive model are, using (4)

Iµ(k) = m(k) +
m(k, ·)

2
Iµ(p, q) = m(p, q)

There is a clear difference between the Sobol’ and the interaction indices, due to the presence
of the square in the definition of the Sobol’ indices. We observe that Iµ(p, q) and Var[fLo

p,q] are

both proportional to m(p, q) or its square. By contrast, Var[fLo
k ] is not proportional to the

square of Iµ(k). Term m(k) takes more importance in Var[fLo
k ].

The Sobol’ and interaction indices are both based on sensitivity analysis, but performed in
a different manner. The interaction indices consider the average value of the partial derivative
of fLo w.r.t. its components (see (9)), and is thus the mean value of a local sensitivity analysis.
By contrast, the Sobol’ indices comes from a sensitivity analysis based on variance. They are

9



used for instance to identify which factors shall be fixed (the other variables being unknown
and governed by uniform distribution) in order to reduce as much as possible the variance on
the output variable.

It is not clear how to compare the interaction indices for singletons and pairs. For instance,
if Iµ(1) = 2 Iµ(1, 2), does it mean that the interaction between variables 1 and 2 is twice more
important than the importance of criterion 1? Such a comparison is possible with the Sobol’
indices as the variance of the output variable is decomposed into the variance of each variable
individually, each pair of variables, and so on. This allows to compare the Sobol’ indices for
different terms. Then if Var[fLo

1 ] = 2 Var[fLo
1,2], then one can say that variable 1 alone is twice

more influential than the interaction between variables 1 and 2.
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