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Abstract

This paper presents the design and simulation results considering the use of functional electrical stimulation to control the leg
position of paraplegic patients. The plant is described by a nonlinear system using Takagi—Sugeno fuzzy models and a closed-loop
control is presented. A transfer function represents the mathematical model related to the muscle torque and the electrical stimu-
lation pulse width. Considering that, during the operation, the leg position is between 0° and 60°, then two fuzzy regulators were
designed, assuming that the state vector is available or using an observer when only the output is available. This design was based
on the Lyapunov stability theory and Linear Matrix Inequalities (LMIs). The simulation results show that the proposed procedures
are efficient and offer good results for this control problem. Finally, new conditions regarding the design of the output tracking
control, using a suitable nonlinear transformation for the description of the plant in an adequate form, is presented.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The presented study shows, through theoretical studies and simulations, the possibility of designing a nonlinear
controller for tracking control of the leg position for paraplegic patients, using the description of the plant by a
Takagi—Sugeno (T-S) fuzzy model. The control system was designed considering that, during the operation, the angle
position of the joint knee is between 0° and 60°. Several researchers have used Functional Electrical Stimulation
(FES) to restore some motion activities of persons with injured spinal cord [1-5]. However, FES is not yet a regular

* Corresponding author.
E-mail addresses: rgaino@uel.br (R. Gaino), marciocovacic @uel.br (M.R. Covacic), marcelo@dee.feis.unesp.br (M.C.M. Teixeira),
rcardim@dee.feis.unesp.br (R. Cardim), edvaldo@dee.feis.unesp.br (E. Assuncdo), aac @dee.feis.unesp.br (A.A. de Carvalho),
sanches @dee.feis.unesp.br (M.A.A. Sanches).

http://dx.doi.org/10.1016/j.fs5.2016.06.005
0165-0114/© 2016 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.fss.2016.06.005
http://www.elsevier.com/locate/fss
mailto:rgaino@uel.br
mailto:marciocovacic@uel.br
mailto:marcelo@dee.feis.unesp.br
mailto:rcardim@dee.feis.unesp.br
mailto:edvaldo@dee.feis.unesp.br
mailto:aac@dee.feis.unesp.br
mailto:sanches@dee.feis.unesp.br
http://dx.doi.org/10.1016/j.fss.2016.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fss.2016.06.005&domain=pdf

2 R. Gaino et al. / Fuzzy Sets and Systems 314 (2017) 1-23

clinical method because the amount of effort involved in using actual stimulation systems still outweighs the functional
benefits they provide. One serious problem using FES is that artificially activated muscles fatigue at a faster rate than
those activated by the natural physiological processes. Due to these problems, a considerable effort has been directed
toward developing FES systems based on closed-loop control.

The movement of the lower limb is measured in real time with several types of sensors and the stimulation pattern
is modulated accordingly [5-8]. The dynamics of the lower limb were represented by a nonlinear second order model,
which took into account the gravitational and inertial characteristics of the anatomical segment as into well as the
damping and stiffness properties of the knee joint. In this paper, the authors present a Takagi—Sugeno nonlinear
system [9—18] with the aim of controlling the position of the leg of a paraplegic patient [19,20]. The controller was
designed in order to track a desired trajectory of the joint knee angle, that is between 0° and 60°. The input of the
plant is an electrical stimulation applied to the quadriceps muscle. The leg mathematical model proposed by [5] was
considered. The authors showed that, for the conditions considered in their experiments, a simple one-pole transfer
function was able to model the relationship between the stimulus pulse width and the active muscle torque. The state
space model of paraplegic patients to vary knee joint angle with stimulus pulse width and active muscle torque was
developed by the authors [19-23].

The systematic procedure for fuzzy control systems design proposed in this manuscript involves fuzzy model
construction for nonlinear systems [24], considering arbitrary operation points [18,25,26].

Muscle is a highly complex nonlinear system capable of producing the same output for a variety of inputs [27-32].
When exploiting physiolocally activated muscle, an important effort of the researches is to minimize fatigue [29,32,
33]. When the quadriceps is electrically stimulated, its response is nonlinear. Thus, T-S fuzzy models are used to
design a controller to vary the knee joint angle.

In [19,20,22,23], feedback strategies were proposed for controlling the leg position of paraplegic patients, con-
sidering a given operation point. The nonlinear plant was described by a Takagi—Sugeno (T-S) fuzzy model and an
electrogoniometer was used fastened on the thigh and shank of the patient. The design method considered all plant
nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient, applying electric stim-
ulation at the quadriceps muscle.

The design of tracking control systems for nonlinear plants described by T—S fuzzy systems has been studied in
[34-38], and allows the design of the feedback gains, without the need of a new design of the gains for each point
operation systems. The tracking procedure proposed in this manuscript allows the tracking of a broader class of signals
than the control strategies presented in [39] and [40], where the operation point is not completely known but is in a
given region.

For the design method proposed in this paper, the concept of virtual desired variables was used. In turn gener-
alized kinematic constraint are introduced, to make the design procedure clear. The design procedure is split into
two independent steps: i) determine the virtual desired variables from the desired output equation and the generalized
kinematic constraint; and ii) determine the control feedback gains and observer gains by solving a set of Linear Matrix
Inequalities (LMIs) [15,41,42], the same type of LMIs for stabilization problem [43]. The LMIs problems have been
solved with Matlab Toolbox [44]. Simulation results illustrate the performance of the proposed procedure.

2. Takagi-Sugeno fuzzy representation

Some classes of nonlinear systems can be exactly represented by T—S fuzzy models [45]. The local description of
the dynamic plant to be controlled, in terms of local linear models, is:

x(1) =A;x(t) + Bju(r),
y(@©) =Cix(),

where i = 1,2, ...,r (r is the number of linear models), x(¢) € N" is the state vector, u(r) € R is the input vector,
y(#) € N9 is the output vector, A; € R"*", B; € R and C; € RY*". This information is represented by IF-THEN
rules, where the i-th rule is given by:

Rule i : IF z;(t) is M} AND ... AND z,,(1) is M’,,

X(t) = A;x(t) + B;u(?),

¥() = Cix(0). M

THEN {
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Considering the fuzzy model (1), one has, by definition, that M’j (j=1,2,..., p)is the fuzzy set j of the rule i,

21(1), ..., zp(¢t) are the premise variables and ,u; (z;(¢)) are the membership functions of the fuzzy rule ./\/l’] Define:
w'@2(0) =[] 1@ 20 =[21() 220 ... 2p(0)]. 2
j=1
Since ,u"/.(zj(t)) >O0one has, fori =1,2,...,r,
w(2(1)) =0 and Y w'(z(1) > 0. (3)

i=1
To get a T-S fuzzy model for nonlinear systems, one usually adopts z(¢) = x(¢), where x(¢) is the nonlinear system

state vector. Thus, for a given pair (x(¢), u(z)), the resulting fuzzy system is the weighted mean of the local models
described in (1):

Yiow (X0)AX(1) + Biu(@) _ ial_ CEDAXE + Bl

x(t) = Zle w0 (x(0) 2
= (Z o (x(r))Ai) x(1) + (Z a (x(r))&) u(t) = A(@)x(t) + B(e)u(r),
i=1 i=1
, o wl(x() B r
@ (x(1)) = e O lat, ..., 17, (4)

fori=1,2,...,r.
The nonforced system (u(z) = 0) is defined as:

Yoio W (X())AX()
Yo wi(x(0)

For both cases, forced and nonforced, the output is given by:

X(t) =

=Y ai(x()AX(1) = A()X(t). )
i=1

Y w EO)CXE) N~ o
YO =SSy S ;“ (X(N)Cix(1) = C@)x(0). (©)
Observe that, fori =1,2,...,r,
o (x(1)) = 0 and Y ai(x(1)) = 1. ™)

i=1
3. Takagi-Sugeno fuzzy tracking control

Takagi—Sugeno fuzzy models can be used for tracking control systems design for nonlinear systems. The tracking
control system proposed in this manuscript uses the concept of virtual variable [43], introduced to simplify the design
procedure. This method can be divided into two steps:

e determination of the desired virtual variables of the system dynamics;
e determination of the control gains, using LMI-based design, for system stabilization.

At first, for fuzzy regulator design, the premise variables of fuzzy rules are assumed to be measurable. After that,
this concept of virtual variable is used for immeasurable state variables in dynamic nonlinear systems, to design fuzzy
observers [43]. Both of cases are applied to design controllers such that the joint knee angle follows a given trajectory.
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3.1. Tracking control and state regulator

The basic architecture for output tracking control, presented in this section, considers that all state variables are
available. The method was proposed in [43]. In a general form, consider a nonlinear dynamic equation given by:

X()=fx (@) +gx@®)u(),
y(®) =qx()), ®)

where x(7) € i" is the state vector, y(t) € X" is the output variable, u(¢) € iR is the input vector, r(t) € R™ is the
desired output, f(x), g(x) and q(x) are nonlinear functions with appropriate dimensions.

The goal of the tracking control is to assure that the equilibrium point of the controlled system is asymptotically
stable and:

y(t) —r(¢) — 0 when ¢t — oo, )

where r(#) denotes the desired trajectory or the reference signal. To convert the tracking problem in a stability problem,
one defines the desired virtual variables, represented by the vector x,4(¢), such that, for x(¢) = x4 (¢) and from (8), the
condition y(7) = q(x(¢)) = q(x4(¢)) = r(¢) holds.

Defining X(¢) = x(t) — X4(t) as the tracking error and representing the first equation of the plant (8) by the T-S
fuzzy model given in (1)—(7), one has:

(0 =%(0) — %) = Y e (x(1)) (A,-xa) + Biu(t)> — %4 (). (10)

i=1

From [43], suppose that the control law u(t) satisfies the following equation:

D i xEO)BiT (1) =Y e (xO)Bu(t) + Y e (x(1)Aixa(t) — %q (1), (11)
i=l1

i=1 i=1

where 7.(¢) is the new control law. Then, the error equation (10) can be described by the equations:

X(0) =Y i xE)BiTe(t) + Y o (X())A; (X(t) — X4 (1)),

i=1 i=1
X(0) =Y aixUNAKD) + Y i (X(O)BiTc(0). (12)
i=1 i=1

The new fuzzy control law t.(¢) is determined via parallel distributed compensation (PDC):

Te(t) ==Y o (x())FX(). (13)

i=1

Replacing (13) into (10), one gets the closed-loop form:

X1 =) aix())a;(x(1)) (A; — BiF;)X(1). (14)
i=1 j=1

3.2. Generalized dynamics constraints

The goal of the output tracking is to get the control law u(z) such that (11) holds and the equilibrium point X = 0 of
the tracking error equation (12) is asymptotically stable in the large. For that, one uses g(x) = Y ;_; o; (x(#))B;, that
allows to rewrite equation (11) in a compact form:

gX)(u(?) — 7.(1) = —AX)X4 (1) +X4(1), (15)
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where A(x) = Y I_; ;i (x;(1))A; € W™, From (15), the existence of the control law u(¢) depends on the structure
of g(x). Consider that the input matrix g(x) has full rank and is given by:

g(x) = [%&’;’ } , (16)

where 0,_p, € RP~"XM denotes a matrix with null elements and B(x) € R{"*"

X, are partitioned as follows:

is nonsingular. Similarly, A(x) and

_ Ay m (%) _ | Xa On-m
A(")‘[ An(x) } ""‘[ % (D } 4
Consequently, the condition (15) is described as:
|: 0,—m ] — [id(t)nm — Ay (X)x4(1) i| (18)
BX)(u(r) — 7c(1)) Xd(Om — A (X)Xg() |

Then, the virtual variables are determined according to the following conditions:
Xd (On—m = Ap—m (X)X4(2),
Xg(Dm = A (X)Xq (1) + BX)(u@) — 7.(1)). 19)
From (13) and (18), the control law proposed in [43] is given by:

u(t) =— Zai XO)FX() +BX) ™ Ga (Dm — An (%4 (1)) (20)

i=1
For many physical systems, the desired virtual variables xy = [x14 --- xng]? can be exactly determined by (19)
[43].

3.3. Tracking control based on observer and state regulator

In tracking design with fuzzy observer [43], the estimation error is required to satisfy:
x(t) — X(t) — 0 when t — oo, 2D

where X(¢) is the estimated state of x(z). For that, the nonlinear system (8) is expressed in fuzzy equations, as in
(4)—(7), with q(x) = er: 12 (x;(£))C;x(t). Therefore, the generic equation for each observer local model can be
written as:

Observer Rule i : IF x(¢) is M’] AND ... AND x,(¢) is /\/li,,

THEN { X(1) = Ai%(r) + Biu(t) + H; {y(1) = ()}, 22)
y(@®) =Cix(®).
The vectors X(¢), y(¢) denote the estimated vectors of x(¢) and y(¢), respectively, and H;, i = 1,2, ..., r, are the

observer gains.

Remark 1. The design of fuzzy observers for plants described by Takagi—Sugeno models assumes that the plant state
vector x(¢) is not available, the plant output y(¢) is available and can consider two cases: (i) the premise variables of the
plant are available because they depend only on the available output y(¢) such that «; (x(¢)) = «; (y(¢)), i = 1,2, ..., 1}
(ii) the premise variables of the plant, ¢; (x(¢)), i = 1,2, ..., r are immeasurable because they depend on the plant state
vector x(¢) that is not available. In the first case it is possible to obtain the observers equations to estimate the vector
x(t) without estimating the premise variables because «;(x(1)) = «;(y(¢)), i = 1,2, ..., r are available [43]. In the
second it is necessary to estimate the premise variables o; (X(1)), i = 1, 2, ..., r, usually using o; (X(¢)), i = 1,2, ..., r,
where X(r) denotes the estimate vector of x(¢). A design method for observers in the second case, considering that
the membership functions satisfy a Lipschitz-like condition, can be found in [43]. Fortunately, in the plant studied in
this manuscript, the variables «; (x(¢)) = «; (y(¢)), i = 1,2, ..., r, are available. Thus, only the first case is studied in



6 R. Gaino et al. / Fuzzy Sets and Systems 314 (2017) 1-23

Electric Stimulation.

Fig. 1. Shank-Foot Complex and its parameters 6, 6, and M, [5].

this manuscript, and then, the observer equations given in (23) and (24) can be easily implemented for estimating the
vector x(t) [43]:

X)) =Y ai(y(1) (A,-fz(r) +Bu(t) +H; :Zai YE)Cix(t) = Y i (y(t))Cii(t)} ) (23)

i=1 i=1 i=1

-

§() =i (y())CiR(). (24)
i=1

In this case, B(x) and A, (x), defined in (17) and above (15) and (16), are available because the variables «; (x(1)) =

ai(y(?)), i =1,2,...,r, are available. Thus, based on the regulator control law (20), the new control law with the
observer state is the following [43]:

u(t) = — Zai (YO)Fi K1) — x4 (1)) + B ™! g (1) — Am (X)X (1)), (25)

i=1
Define the estimation error as e(r) = x(¢) — X(¢) [43]. Then, from the Takagi—Sugeno fuzzy model of the plant
given in (4) and the observer equations (23) and (24), taking the derivative of e(¢) it follows that:

r

e =) ai(y)e;(y(®)(A; —H;Cpe(), (26)

i=1 j=1

that is the well-known Takagi—Sugeno observer error equation [46].
4. Dynamic model used in the control of the leg positon of a patient

The mathematical model of the leg used in this manuscript was proposed in [5]. This model relates the applied pulse
width with the torque generated on the knee joint. In the modeling [5], the leg was considered as an open kinematic
system composed by two rigid segments: the thigh and the shank-foot complex, as shown in Fig. 1. From [5], the
system equation is:

J6, = —mglsin(6,) — My — BO + M,, (27)

where:

e J is the inertial moment of the shank-foot complex;
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Table 1

Numeric values of the shank-foot complex parameters [5].

J =0.362 [kgm?] m =437 [kg] [=23.8 [cm]

B =0.27 [Nm s/rad] A =41.208 [N m/rad] E =2.024 [1/rad]
®=2.918 [rad] T =0.951 [s] G =42500 [N m/s]

Table 2

Numeric values of the knee active torque,
where (91), O, Ma) = (00,0, My0) is an
equilibrium point [5].

6v0 Myo

30° 4.6069 Nm
47° 7.2826 Nm
60° 8.7653 Nm

60, is the knee angle, between the shank and the vertical axis on sagittal plane;
0 =6, + /2 is the knee angle, between the shank and the thigh on sagittal plane;
6 = 6, is the knee angular velocity;

m is the mass of shank-foot complex;

g is the gravitational acceleration;

[ is the distance between the knee and the shank-foot complex mass center;

B is the viscous friction coefficient;

M is the torque due to the rigidity component;

M, is the knee active torque generated by electrical stimulation;

M, is the torque due to gravity;

M,; is the inertial total torque.

The rigidity moment is defined as:
M, =2re B0 — w), (28)

where A and E are the coefficients of the exponential terms and w is the elastic rest angle of the knee. In [5], it was
observed that the torque applied to the muscle (M) and the electrical stimulation pulse width (P) can be adequately
related by the following equation, where G and 7 are positive constants:

tM, + M, =GP. (29)
In [5], the authors suggest methods to experimentally obtain the parameters of interest. In this manuscript, the same
parameters in [5] were adopted, as given in Tables 1 and 2, where (91,, 0., Ma) = (60, 0, M,0) is an equilibrium point.

Considering (27)—(29), the authors proposed the following state space representation of the system [19,20,23,47,
48]:

i 0 10 [x 0
=] ) =5 4 || x|[+]|0 |u (30)
X3 0 0 —-L1ilx g

where, by deﬁnitign, X1 =6y, x2 = év, x3=M,andu=P.
The function f>1(x1) is a nonlinear parameter of the system, given by:

~ 1 P
foren) = — [—mgtsin () = 2eE0E) (5 4+ 2 0)]. (31)
Jx1 2
5. Tracking design for electrical stimulation of paraplegic patients

The advantage of signal tracking is the facility on regulator or observer design without the necessity of getting a
new T-S fuzzy model representation for each new operation point or desired output trajectory. This strategy offers a
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Table 3

Parameters for the Healthy Group (H) and Paraplegic Group (P).

Subject J kg m2] m [kg] [ [cm] A [N m/rad] E [1/rad] w [rad]
H1 0.377 4.05 25.3 1.199 —0.486 2.548
H2 0.358 4.63 23.9 4.679 0.041 2.427
H3 0.399 4.38 24.8 3.657 —0.031 2.71
H4 0.375 3.83 23.7 4.49 0.257 2.701
H5 0.384 4.36 24.3 3.889 —-0.079 2412
P1 0.362 4.37 23.8 41.208 2.024 2918
P2 0.292 342 23.1 3.761 1.317 2.52
P3 0.394 4.76 23.3 15.352 1.644 3.896

Results reported in [5].

new design method for this control problem that is a generalization of the method that considers only a given operation
point, designed in [19,20]. From the plant equation that defines the dynamics of the leg movement of the paraplegic
patient (given in (30)), a new method is presented, using a change of variables, for the regulator design, and then, for
the regulator and observer designs.

5.1. Regulator design with tracking

Note that the plant given in (30) and (31) does not satisfy the condition (18), that must hold in the design method
proposed in [43]. This follows firstly observing that the plant (30) and (31) can be rewritten as dx(7) /dt = A(x)x(¢) +
g(x)u(t) where g(x) and A(x) where defined in (16) and (17). Then, for desired operatlon points (x19, X20, X30) =
00, 6?,,0, M) = (0v0, 0, Myo) = (Xe1, Xe2, Xe3), @ necessary condition for (18) is that f21(x1)x10 + Myo/J =0 for
all x1 in the operation range. In this application, this condition holds only for x; = x;¢ and thus the method presented
in Section 3 cannot be directly applied to control the plant (30) and (31). A solution for this problem can be obtained
considering a new representation of the plant equations (30) and (31), using the definition below:

X1a (1) = 1 (x1(0)x1 (1) = f(x1(1)). (32)
Considering that f(x1(¢)) is an invertible function, one can write:
fExIM) =xi() = 7 x0) =x10). (33)

This consideration can be verified by data analysis of two groups of patients (Table 3), five of the healthy group and
three of the paraplegic group. Note that in Fig. 2, considering the analyzed groups, it can be observed that the function
f(x1()) is an injective function in the operation region (x1(¢) € [0°, 70°]), that assures the existence of f “Lx(1)).
Thus, we consider that this invertibility condition is an acceptable assumption.

Define a new representation of £~ !(x1,(¢)) in (33):

£ X1 (0) 2 ¥ (x10(0)). (34)

A new representation of (30) can be obtained with the definition (34). Determining the new equations from (30),
(32)—(34), defining x»,(¢) = x»(¢) and x3,(¢) = x3(¢), one has:

YR dxia () Y X1 (0))
MO = @) A atam(y =@

. B 1
X2, (1) = X1, (1) — 7X2n(t) + 7X3n(t)

. —1 G
X3, (2) = 7X3n(t) + ?P(t) (35)
The following equationing, based on (35), exists if and only if:

0V (X1, (1))

ox1, (1) # 0. (36)
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—40 | I | | I | | |

-0 0 10 20 30 40 50 60 70 80
x1(t) [deg]

Fig. 2. Function f(x(#)): (-— Healthy group) and (— Paraplegic group).

-0.05-

|
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T

Y (x1n(t))
Ox1n(t)

-0.151

| | | |
-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20

-0.25

Xin (t)

Fig. 3. Verification of (36): (-— Healthy group) and (— Paraplegic group).

Fig. 3 shows that the condition (36) is satisfied, considering the groups studied in [5], described in Table 3. Note that
(36) holds in all cases, in the operation region (X1, (¢) € [—26.4080, 6.3820]). Thus, we consider that this condition
is an admissible assumption.

From (35) and (36) one obtains the new equation:

1 - -
K1 (1) = 5% () = fi20 K1 (0)X2(0) = fron X1 ()% (1), (37)
X1, (1)
where:

_ 1
Jrn (X1 () = 50257
Toxn @)

The equations (35), (36) and (37) redefine the matrix (30), to represent the new system:

X1 (1) 0 fa®a®) 0 7] [xp,(0) 0

Xou(0) | =1 =+ 7 || %@ |+] 0 | P. (38)
X3 (1) 0 0 1| L xaa(® g

[ — T —_———

Xp (1) A (1) Xy (1) g(xn (1))



10 R. Gaino et al. / Fuzzy Sets and Systems 314 (2017) 1-23

The problem consists of the control input design such that the known equilibrium point (6,0, 6,0, Mao) of the
controlled system is asymptotically stable and thus, from resting conditions, the leg converges to 6, = 0,¢. Then,
consider, for the tracking, that when t — oo the desired state vector X;, () — Xjnq,i = 1,2, 3, where, from (32),
X1nd = f(6v0), Xona = d(0y0)/dt =0 and X3,4 = x3 = M. Write the reference virtual variables as a vector:

X1nd f(QUO)
Xnd = | Xond | = 0 (39
X3nd Mo
As a natural consequence, X4 = 0. Therefore, according to (15):
gxy) () — To(1) = —AXp)Xnd + Xnd - (40)
—
=0
Replacing the terms of the matrices defined in (38) in (40), one gets:
0 0 fiza®ia(®) 0 ][ f(6uo)
0 (@) —tc@)=—]1 =£ x 0 (41)
= 0 0 1 [ Mao
;\‘/_J
g(x, (1)) A(x, (1)) Xnd
where u(t) = P(t). Applying the distributive property in (41), one finds:
0 0
0 =| —f(On0) — Hao | (42)
g @) —7.(0)) M
Note that, from (19) and (39), when x,, = X,,4, then:
. . B 1 MaO
X2n = Xond = 0=X1pd — —Xond + —X3nd = f(6h0) + .
J J J
Then, equations (18) and (42) hold for ¢ > 0. Hence, from (42), the control law is determined as follows:
G Mo
— () — T(1) = ——,
T T
MaO
u(t) = G +7.(1), (43)

where, from (13), 7.(1) = — Y i _; o (X1, (1)) Fi X, (1) and X,, (1) = X, (1) — Xpq.
The vector X, () denotes the tracking error vector.

5.2. Tracking results with regulator

In this subsection, the simulation results, obtained through Matlab, are presented. Considering the curve of the
nonlinear function f~12,, (x1,(¢)) defined in (33)—(37) and represented in Fig. 4, the local models (A;,B;), i = 1,2
which represent the plant (38), as a T-S fuzzy model described in (4), for r = 2, can be obtained applying the method
proposed in [45]. From Fig. 4, the minimum and the maximum values of f2,(X1,(¢)), for 0 < 6, < 70°, that is,
—26.4080 < x1, < 6.3820, are determined, considering that, during the operation of the system:

aip1 = max {flzn(xln(r))} = —11.8078,
a127 = min {flz,, (Xl,,(t))} — —42.6560.

Thus, the local models matrices are given by [45]:
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Fig. 4. Curve of fi2, (x1, (1)).
0 —11.8078 0 0 —42.6560 0

A= 1 —0.7458 27624 |, Ap=|1 —0.7458 2.7624 |,

0 0 —1.0515 0 0 —1.0515
0
B =B,= 0
44690

In the new formulation, the membership functions, for the tracker case, are the following [45]:

al(xln (t)) = f12n(X1n (t)) - a122 ’
ap) —ain

and

FioaX14(1) — ar
a2 —al '
Note that, from (45) and (46):

az(x1, (1) =

a1 (X1 () + (X1 (1) =1, o1 (X1,(1)) 2 0, 02(X1,(1)) =0

and the nonlinear system (38) can be exactly represented by (44)—(47) and

2 2
(1) = (Z o (xlnm)Ai) X, (1) + (Zai (xln(r»Bi) P().

i=l1 i=l1
= Ao (x1,(1)))Xn (1) + Bla (X1, (1)) P (2).

11

(44)

(45)

(46)

(47)

(48)

Considering the regulator design method described in Subsections 3.1 and 3.2 for the nonlinear system (48), from

(20), the control law is the following:
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Fig. 5. Simulation of the controlled paraplegic system (30), (49) and (54). The reference angles are 30°, forOs <t < 10s,47°,for I0s <7 <205,
and 60°, for t > 20 s.

2 G\ ! 0 !
P(t) =— <Zai (Xln(t))Fi> X, (1) + (—) Xind — 0 Xnd | » (49)
i=1 ¢ 5~ | -10515

where X, () = X, (t) — X4, With Xx,,4 defined in (39).

In this design, the specifications are the asymptotic stability of the equilibrium point x,(¢) = x,4, a decay
rate greater than or equal to 8, = 1.6 and an input constraint ||P(¢)||2 < u + 1.0515(%)_1, where from Table 1
1.0515(£)71 =2.3529 x 1075, and 1o = 1 x 1073 s, for an initial condition x,,(0) = [ —20.1178 0 0 ]”". For an LMI-
based design of the regulator gains, following the method presented in [15.41,42], find matrices X = X7 > 0 and M;,
i=1,2,...,r,such that the LMIs (50)—(53) are feasible:

XA —M!B] + A X -B;M; +26X<0, i=12,...,r, (50)
XA] —M7B] +XAT —M/B} +A;X+B:M; +A;X—B;M; + 45X <0, (51)
i=1,2,...,r, j=2,3,...,r and j >,

x ™7

3 ] —

[Mi /LZI]ZO’ i=1,2,...,r, (52)
1 x,(07

[xn(O) x |=° (53)

The LMIs (50)-(51) were feasible and thus, the gains were obtained as follows [15,41,42]:
Fi=M;X"'=107x[0.0237 03929 0.2093],
F,=M,X ' =103 x [0.0301 0.2511 0.1870]. (54)

Fig. 5 shows the simulation results of the paraplegic patient closed-loop system of the plant (30), (or its equivalent
representations (38) and (44)—(48)) with the control law (49).
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Fig. 6. Signal tracking, for the reference angles 30°, for 0 s <r < 10, 47°, for 10 s < <20 s, and 60°, for t > 20 s.
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Fig. 7. Membership functions « (X1, (¢)) and o (X1, (¢)) — tracking results with regulator.

Fig. 6 shows the behavior of the signal tracking, using the equation X, (¢) = X, (f) — X,,4. Note that, when t —> o0,
X, () =0.

Fig. 7 shows the membership functions o1 (x1,(¢)) and a2 (X1, (2)).

The results considering tracking are similar to the results that assume a specific design for this operation point.
Using the presented tracking, one can easily find the desired responses when the desired position changes, without the
need of calculating the new operation point and find a new solution of a set of LMISs, as proposed in [19-23].
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5.3. Regulator and observer design with reference tracking

For tracking, consider the representation of the plant described in (38) and (44)—(48), with the output y(¢) = x1,(¢)
given in (6) and the input u(¢) = P (¢). The observer equations, for the plant (48), given by (23) and (24), remembering
that y(#) = x1,(¢) is available, can be implemented and are the following:

X, (1) = Y i (X1, (1)) (Ai&n (1) + BiP(t) + H; (y(t) — §(1)) )
i=1
y() = Cx, (1), (55)

where C =1[100].
The control law using the observer state vector, based on (25), is now given by:

2 -1 0
G
P(t) =— ( > i (Xln(t))Fz) X (1) — Xna) + (—) Xind = 0 Xnd | - (56)
i=1 ’ = [ -1.0515

Denote the control law with the observer state vector (regulator with observer) given in (56) by P,,(#) and the
control law using only the plant state vector (regulator) presented in (49) by P,(¢). Then, from (49) and (56), note
that:

2 2
Pro(t) = Pr(t) + > i (X1 (0)F; (%, (1) — %0 (1) = Pr(0) + Y oty (x10 (1) Fi 0 (1), (57)

i=1 i=1
where e, (t) = x,(t) — X, (¢). Note that, for an input P(t) = P, (¢), the plant (38) and (44)—(48) can be described from
the analysis described in Subsection 3.1, equations (10)—(14):

2

2
Xa (1) =Y > e (X1 (1)t (X12 (1)) (A; — BiF )X, (1), (58)

i=1 j=I
where X, () = x,(t) — X,4. Then, for an input P,,(¢), given in (56), from (38), (44)—(48), (57) and (58), it follows
that:

2 2

Xu(1) = Y i (x12(1)etj (X12 (1) [(Ai — BiF )%, (1) + BiF je, (1)]. (59)

i=1 j=1

Consider that, for the plant (30), x;(¢) is available and x;(¢), x3(¢) are not available. Then, as from (32) x1,(¢) is
available, one can implement the observer described in (55). From the observer equations (55) and the plant equation
(48), note that:

2

2
én(t) =Y Y ai(xin () (x1a())(Ai — HiCe, (1), (60)

i=1 j=1

where e, (1) = x,, (1) — X, (¢).
Finally, from (59) and (60), one obtains the equation of the controlled system with observer [46]:

< 2 2 ~
X ()] , _ A; —B;F;, BF; X, (1)
[én(,)}—E;amxln(r))a,(m(r))[ 0 Ai_ﬁic}[en(t)] (61)

From this fact, in [46], the authors proved the separation principle for this class of systems, that allows two distinct
designs in this case: one for the regulator gains and another for the observer gains.
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Fig. 8. Dynamic equations simulation for the paraplegic model, for the reference angles 30°, 47° and 60° and initial condition e(s) = [0 0 0].

5.4. Tracking results with regulator and observer

For simulation of (61), consider only x(¢) = 6, (¢) available for measurement (therefore x1, (¢) is also available).
The LMIs (50) and (51), where X = X” > 0 are used for designing the regulator gains, and the LMIs (62)—(63), where
P=P7 > 0, for obtaining the observer gains [15,41,42].

PA; +ATP-M;C; — CIM! +28,P <0, i=1,2,...,r. (62)

A/P—CIM] +ATP—C/M] +PA; —M;C; +PA; —M;C; +48,P <0, (63)
i=1,2,...,r, j=2,3,...,r and j >i.

Thus, the LMISs (62) and (63) with P = P > 0, if feasible, guarantee global asymptotic stability of the equilibrium
point of e, = 0 of the observer, with decay rate greater than or equal to S,.

The design considered as decay rate specifications 8, = 1.6 in (50) and (51) (regulator), 8, = 8.0 in (62) and (63)
(observer) and an input constraint £ = 1 x 1073 in the LMISs (52) and (53), and for initial error vector e(r)=1[0 0 0]”.
The results are shown in Fig. 8 and the obtained regulator and observer gains were, respectively:

Fi =M X =107 x [0.0170 0.4605 0.2184],
F, =MpX ' =107 x [0.0251 0.3373 0.2025],

0.0571 0.0196
Li=P 'M; =10 x | —0.9149 |, L, =P~ 'M, = 10* x | —0.3526
—3.6903 —1.4325

Fig. 8 shows the time evolution of equation (61). Note that only 8,(¢) is available for measurement. Fig. 9 shows
the behavior of X, () = X, () — X4 — €,(¢). When t —> 00, X,,(¢) = 0. Since the initial error conditions are null and
the observer decay rate is five times faster than the regulator decay rate, Fig. 9 is equal to Fig. 6.

Fig. 10 shows the membership functions o1 (X1, (¢)) and a2 (X1,(1)).
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Fig. 9. Signal tracking for the reference angles 30°, 47° and 60°, and initial condition e(¢) = [0 0 0].
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Fig. 10. Membership functions o (X1, (¢)) and (X1, (¢)) — Tracking results with regulator and observer, with initial condition e(z) = [0 0 0].

For observer tracking, one considers the existence of an initial error between the plant state and the estimated states.
In practical applications, it is more real, in view of the difficulty for know the real state parameters of the plant. From
(61), the initial error vector is defined as e(r) = [—0.8 O — 0.4]. One considers that the transient response velocity
and input signal constraint are equal to the preview case. The result is shown in Fig. 11. The state variable X3, is
shown with more details in Fig. 12. The regulator and observer gains are, respectively:

Fi =M X"'=107x [0.0170 0.4605 0.2184],
F, =MpX ' =107 x [0.0251 0.3373 0.2025].
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Fig. 11. Dynamic equations simulation for the paraplegic model, for the reference angles 30°, 47° and 60° and initial condition e(t) =
[-0.8 0 —0.4].

0.0571 0.0196
Li=P 'M; =10 x | —0.9149 |, L, =P~ 'M, = 10* x | —0.3526
—3.6903 —1.4325

Fig. 13 shows the behavior of equation ’on (t) = x,(t) — Xuq — €,(¢) for the reference angles 30°, 47° and 60°.
When t — o0, X, (1) =0.

Fig. 14 shows the membership functions o1 (x1,(¢)) and a2 (X1, (1)).

The behavior of the curves attend the control laws that control the system.

6. Tracking control conditions for a class of nonlinear systems

This section presents new conditions regarding the design of the output tracking control method proposed in [43].
The main idea was, based on the procedure presented in Subsection 5.1, to use a suitable nonlinear transformation
and represent a class of plants as x = A(x)x 4 g(x)u, such that the required tracking conditions (16)—(18), that were
proposed in [43], hold. This result allows the application of the state feedback tracking method presented in Subsec-
tions 3.1, 3.2, 5.1 and 5.2, and also of the output tracking procedure based on observer and state regulator described
in Subsections 3.3, 5.3 and 5.4, for a broader class of nonlinear plants than that considered in [43]. By the authors
knowledge there are not general conditions for the representation of nonlinear plants as X = A(x)x + g(x)u such that
(16)—(18) hold.

Consider that a nonlinear plant can be described by

Xp =A,(Xp)Xp +gp(Xplu,  y=4q(xp), (64)
0 Txp) O 0
z Apn—m(Xp) 5
xp= | Wl A= e =] RO VoD S mwa=| D 69
S Apm(Xp)
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. 1—m) , (n=m) . .
where x, e ", uandy e ", n —miseven,wandze N 2 ,seN”, Seh 2 XM §s a constant matrix, T(xp),

R(z) and V(x,) € 0722 A (x,) € R and B(x,,) € Rmxm.

The goal of the output tracking problem described in Subsection 3.1 and proposed in [43] is to assure that the
equilibrium point of the controlled system is asymptotically stable and y(¢) — r(¢t) — 0 when t — oo, where r(¢)
denotes the desired reference signal.

Consider that r(¢) = is a constant vector and there exists a constant vector X,y = [zg wg sg]T, such that (64)
holds and y; =1 = g, (Xq). Therefore, from (64) and (65), note that

2y =0=TXpq)Wy,
Wi =0=R(21)24 + V(Xpa)Wa + S84, = Zpa + V(Xpa)Wa + Ssa, (66)
where z,; = ﬁ(zd)zd.

The next theorem presents sufficient conditions for the representation of the plant (64), (65) with (66) such that the
output tracking conditions (16)—(18) hold.

Theorem 1. Consider the plant (64) and (65), a constant vector Xpq = [zg wg sg]T such that the tracking conditions
Ya =T =g,(Xpq) and (66) hold. Suppose that in an operation region Q, T(Xp) and B(xp) are nonsingular, R(z) =
R(z)z=[R\(z) R»(z) - R% ()17 is smooth and the Jacobian matrix

IR @) R@ IR
BZI 322 0Zn—m
2
VR(z) = : : (67)
ORp—m (z) ORp—m (z) ORn—m ()
2 2 e 2
311 322 BZ%

is nonsingular. Then, in the region 2, the inverse of the function R : N2 = NI there exists, is smooth and the
plant (64) and (65) can be rewritten as

0 VR@T(kx, O

0
L V) s || ™ 3 [An_m (x,,)} [ 0 }
= _ w |+ 0 u= A (X)) X+ B(x,) u,

Zp

W Y . .
$ s B(x,)
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z R(z) z R (z,)
x=|w |[= w , X=|Ww|= w . (68)
S S S S

Furthermore, in the region Q2 the output tracking conditions (16)—(18) hold for the system (68).

Proof. The nonlinear transformation z,, = ﬁ(z)z = R(z), in an operation region €2 is smooth and the Jacobian matrix

VR(z) given in (67) is nonsingular. Then R : RN > R'7 isalocal diffeomorphism in € and thus, its inverse R™!
exists and is smooth [49]. Now, from (65) and (67) it follows that

z, = VR(2)z= VR@)T(x,)W,
W:fl(z)z—l—V(xp)w—i—Ss:zn + V(x,)w +Ss, (69)
S =Apn(xp)xp +B(xp)u

Note that (69) can be rewritten as (68).

Considering that T(x) is nonsingular in €2, from (66) T(x,4)Ws = 0 and thus wy = 0. Therefore, from (66) note
that z,; + Ssy = 0.

The conditions (16)—(18), applied to the system (68), taking into account that X,q and x; = [z,{ d wg sg]T are
constant vectors, can be described by

0 VR®@Tx, O
[ O0n—m i| _ I:an—m - An—m(x)xdi| - _ Ly V(Xp) N End

B(x,) () = 7.(1)) Kim —An(OXa |7 | e v
Apm(xp) d
0
=— 0 . (70)
Apm(xp)xd

Hence, considering that the plant state vector X, is available, one can design a control law based on (20), given by

u(t) =7.(t) — Bxp) " Apm (Xp)Xa,

-
() == )i (OF; (x — %), (71)
i=1
where in (64) and (65), (A, (Xp), By(xp)) = Z;zl ai(Ap;, Bpi), a; €[0, 1]fori e{1,2,...,r}and oy + o +--- +
o, = 1 is a Takagi—Sugeno representation of the plant. The design of the gains F;, i = 1,2, ..., r can be done using
the same procedure described in Section 5. Now, if x,, is not available and the plant output y is available, one can
use the output tracking procedure, based on observer and state regulator, described in Subsections 3.3, 5.3 and 5.4.
Observe that the results given in Theorem [ also allow the application of the output tracking design methods proposed
in [43], when the premise variables of the plant are available (because they depend only on the available output y(¢))
and also when it is necessary to estimate the premise variables (because they depend on the plant state vector x(t)
that is not available) considering that the membership functions satisfy a Lipschitz-like condition (see Remark | in
Subsection 3.3 and [43] for more details). The proof is concluded. O

Remark 2. Note that the procedure described in Theorem | can be applied to the plant (30), for the design (based
on [43]) of state feedback tracking controllers (as presented in Subsections 3.1, 3.2, 5.1 and 5.2), and also of out-
put tracking controllers (as described in Subsections 3.3, 5.3 and 5.4). In Subsection 5.3 this plant was rewritten
as presented in (38), that has the form given in (68), using the definitions (32)—(34). Observe that from (32)—(37)
Fron (i) = [R5l =1 — (AL G0) =1 i -1,

X1y, X1y x1p
Now, followipg the mgthod proposedain Theorem 1 for the plant((BO), thegl Z=X1,2n = R(z)~ =X1p = fo1(x1)x] =
fx) = f(2), % = % = %’1 = %‘1” Therefore, note that.%f) = %1]" = [g%r'l]’1 = f12,(x1,) and then the
procedure used in Subsection 5.3 is equivalent to that proposed in Theorem 1, because (38) and (68) represent the
same system. An important fact regarding the method given in Theorem 1, is that it was not necessary to find the

inverse of functions for the design of the control law, as in the procedure used in Section 5.
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7. Conclusions

The design of the regulator and observer, used to control the position of the leg of a paraplegic patient, met the
requirements of stability and performance, using an electrical stimulus applied to the quadriceps muscle. The projects
were designed with strict Lyapunov functions, based on Linear Matrix Inequalities (LMIs) and Takagi—Sugeno (T-S)
fuzzy models for the representation of the nonlinear plant. Some constraints, such as stability, decay rate, and output
constraints were considered. Operating points for the position of the leg were specified for projects controlling nonlin-
ear continuous-time (regulator and/or observer tracking the signal with the regulator and observer). New results were
obtained for the project of tracking the position of the leg with the regulator and observer. These results facilitate the
designer’s vision, because there is no need to design specific drivers for each operating point. The controlled system
presented a good performance within a specified range of operation. The proposed method, for tracking the position of
aleg, can offer more general feasible designs than the methods proposed in [39] and [40] because it allows the tracking
of a broader class of signals than the control strategies presented in [39] and [40]. In [39] and [40], are considered only
constant reference signals and all set of the desired operation points for obtaining the maximum and minimum values
of the plant nonlinear functions, to get the local models following the method proposed in [30]. The proposed method
can be implemented the same as [50] and [51]. By the authors knowledge, in [50], the Takagi—Sugeno fuzzy models
method to control the knee joint of paraplegic patients was implemented for the first time. Finally, a more general
result based on a suitable nonlinear transformation that can be applied to a broader class of plants for output tracking
control design based on [43] is also proposed. The method studied in the manuscript, proposed in [43], was applied in
the sensorless control of permanent-magnet synchronous motors and experimental results showed that the proposed
scheme is suitable in practical applications [52]. Further researches can explore the results presented in this manuscript
for uncertain plants, for instance, using switched control laws for uncertain plants described by Takagi—Sugeno (T-S)
fuzzy models with unknown membership functions [53].
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