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Abstract. We generalize the notion of complete binary relation on complete lat-
tice to residuated lattice valued ordered sets and show its properties. Then we
focus on complete fuzzy tolerances on fuzzy complete lattices and prove they are
in one-to-one correspondence with extensive isotone Galois connections. Finally,
we prove that fuzzy complete lattice, factorized by a complete fuzzy tolerance, is
again a fuzzy complete lattice.

1 Introduction

In classical algebra, a complete relation on a complete lattice is a relation which pre-
serves arbitrary infima and suprema. For instance, a binary relation∼ on a complete
latticeU is complete, if for each system{〈ui,vi〉}i∈I of pairs of elements fromU , ui ∼ vi

for eachi ∈ I implies
∧

i∈I ui ∼
∧

i∈I vi and
∨

i∈I ui ∼
∨

i∈I vi .
One of the goals of this paper is to define a notion of complete relation for fuzzy sets.

That is, we need to state an appropriate condition for completeness of a fuzzy relation on
a set, possessing an appropriate structure of a complete lattice in fuzzy sense. However,
the above definition cannot be used as is.

As it turns out, there is an equivalent condition to that of completeness of a relation
on a complete lattice, that involves extending relations between sets to relations between
power sets (i.e. sets of all subsets). This situation is known from the theory of so called
power algebras[6], which offers a natural way to extend a binary relationR on a setX
to a binary relationR+ on the power set 2X.

This extension allows us formulate the following equivalent condition for complete-
ness of binary relations: a binary relation∼ on a complete latticeU is complete, if and
only if for any two subsetsV1,V2 in U, V1∼

+ V2 implies
∧

V1∼
∧

V2 and
∨

V1∼
∨

V2.
In [9], Georgescu extended the theory of power algebras to a fuzzy setting. He shows

a way of extending any fuzzyn-ary relationR on a setX to a fuzzyn-ary relation on
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the set of all fuzzy sets inX. In this paper, we use these results to define a notion of
a complete binary fuzzy relation on a complete fuzzy lattice.

As a general framework, we useL-valued fuzzy sets, whereL is a complete residu-
ated lattice, thus covering[0,1]-valued fuzzy sets with arbitrary left-continuous t-norm
on [0,1] as a special case. Under this framework, we use a notion ofL-ordered set,
which is, basically, a set with anL-relation satisfying requirements of reflexivity, an-
tisymmetry and transitivity. A complete fuzzy lattice, or,more precisely, a completely
lattice L-ordered set, is then anL-ordered set whose eachL-subset has a (properly
defined) infimum and supremum.

L-valued fuzzy sets, completely latticeL-ordered sets and other basic notions from
the fuzzy set theory (e.g. isotoneL-Galois connections andL-closure andL-interior
operators) are introduced in Sec. 2. In this section, we alsoprove some basic new results
we need in subsequent parts of the paper, namely some properties on isotoneL-Galois
connections.

Sec. 3 is devoted to some basic parts of the Georgescu’s theory of fuzzy power
structures and its applications toL-ordered sets. We start with recalling the notion of
power binaryL-relations and their basic properties and then we prove someresults on
power relations ofL-orders. Section 4 contains our definition of complete binary L-
relation on completely latticeL-ordered set. We also prove some basic properties of
completeL-relations.

In the main part of the paper, Section 5, we focus on complete fuzzy tolerances.
A (crisp) tolerance on a set is a reflexive and symmetric binary relation. A block of
a tolerance is a set whose elements are pairwise related. A maximal block is a block
which is maximal w.r.t. set inclusion. The set of all maximalblocks of a tolerance is
called the factor set. One of basic results on tolerances on complete lattices is that
complete lattices can be factorized by complete tolerances[7,16]. That is, there can be
introduced in a natural way an ordering on the set of all maximal blocks of a complete
tolerance, such that the factor set, together with this ordering, is again a complete lattice.

We show that the same holds for completeL-tolerances on completely latticeL-
ordered sets. More precisely, we use the usual definition of fuzzy tolerance and cor-
responding factor set and introduce anL-order on the factor set of completely lattice
L-ordered set by a completeL-tolerance, such that the newL-order is again a complete
latticeL-order.

To prove this main result, we investigate deeply propertiesof completeL-tolerances.
We use similar techniques to those used in classical orderedsets. However, we also in-
troduce a result that is new even in the classical case: we show that complete fuzzy
tolerances are in one-to-one correspondence with so-called extensive isotone fuzzy Ga-
lois connections.

Note that factorization of complete lattices, either in ordinary or fuzzy setting, has
been studied in the past [16,8,4,2,14] as it is useful for reducing dimensionality of con-
cept lattices. This paper can be viewed as a contribution to this area.



2 Preliminaries

2.1 Residuated lattices and fuzzy sets

A complete residuated lattice[2,11,15] is a structureL = 〈L,∧,∨,⊗,→,0,1〉 such that

(i) 〈L,∧,∨,0,1〉 is a complete lattice, i.e. a partially ordered set in which arbitrary
infima and suprema exist, 0=

∧

L, 1=
∨

L;

(ii) 〈L,⊗,1〉 is a commutative monoid, i.e.⊗ is a binary operation which is commuta-
tive, associative, anda⊗1= a for eacha∈ L;

(iii) ⊗ and→ satisfy adjointness, i.e.a⊗b≤ c iff a≤ b→ c.

The partial order ofL is denoted by≤. Throughout the paper,L denotes an arbitrary
complete residuated lattice.

Elements ofL are called truth degrees.⊗ and→ are (truth functions of) “fuzzy
conjunction” and “fuzzy implication”.

Common examples of complete residuated lattices include those defined on[0,1],
(i.e.L = [0,1]), ∧ being minimum,∨maximum,⊗ being a left-continuous t-norm with
the corresponding→.

The three most important pairs of adjoint operations on the unit interval are

Łukasiewicz:
a⊗b = max(a+b−1,0)

a→ b = min(1−a+b,1)

Gödel:
a⊗b = min(a,b)

a→ b =

{

1 a≤ b
b otherwise

Goguen (product):
a⊗b = a ·b

a→ b =

{

1 a≤ b
b
a otherwise

An L-set(or fuzzy set) A in a universe setX is a mapping assigning to eachx∈ X
some truth degreeA(x) ∈ L. The set of allL-sets in a universeX is denotedLX .

The operations withL-sets are defined elementwise. For instance,the intersection
of L-sets A,B∈ LX is anL-setA∩B in X such that(A∩B)(x) = A(x)∧B(x) for each
x∈ X, etc. AnL-setA∈ LX is also denoted{A(x)/x|x∈ X}. If for all y∈ X distinct from
x1,x2, . . . ,xn we haveA(y) = 0, we also write{A(x1)/x1,

A(x2)/x1, . . . ,
A(xn)/xn}.

Binary L-relations (binary fuzzy relations) betweenX andY can be thought of as
L-sets in the universeX×Y. That is, abinaryL-relation I∈ LX×Y between a set X and
a set Yis a mapping assigning to eachx∈ X and eachy∈Y a truth degreeI(x,y) ∈ L
(a degree to whichx andy are related byI ). Theinverse relation I−1 to theL-relation I
is anL-set inY×X and is defined byI−1(y,x) = I(x,y).

Thecomposition R◦T of binaryL-relations R∈ LX×Y and T∈ LY×Z [12] is a binary
L-relation betweenX andZ defined by

(R◦T)(x,z) =
∨

y∈Y

R(x,y)⊗T(y,z). (1)



L-sets in a setX can be naturally identified with binaryL-relations between{1} and
X, resp.X and{1}. Thus, we can also consider composition of anL-sets and a binary
L-relation and even composition of twoL set: forA,A1,A2 ∈LX , B∈LY andR∈LX×Y

we have

(A◦R)(y) =
∨

x∈X

A(x)⊗R(x,y), (R◦B)(x) =
∨

y∈Y

R(x,y)⊗B(y), (2)

and

A1◦A2 =
∨

x∈X

A1(x)⊗A2(x). (3)

An L-setA∈ LX is calledcrisp if A(x) ∈ {0,1} for eachx∈ X. CrispL-sets can be
identified with ordinary sets. For a crispL-setA, we also writex∈ A for A(x) = 1 and
x 6∈ A for A(x) = 0. An L-setA∈ LX is calledempty(denoted by /0) ifA(x) = 0 for each
x∈ X. Fora∈ L andA∈ LX, a⊗A∈ LX anda→ A∈ LX are defined by

(a⊗A)(x) = a⊗A(x) and(a→ A)(x) = a→ A(x).

For anL-setA ∈ LX anda ∈ L, thea-cut of Ais a crisp subsetaA⊆ X such that
x∈ aA iff a≤ A(x). This definition applies also to binaryL-relations, whosea-cuts are
classical (crisp) binary relations.

For a universeX we define anL-relation ofgraded subsethood LX×LX→ L by:

S(A,B) =
∧

x∈X

A(x)→ B(x). (4)

Graded subsethood generalizes the classical subsethood relation⊆; indeed, in the crisp
case (i.e.L = {0,1}) (4) becomesS(A,B) = 1 iff for eachx∈ X : x∈ A impliesy∈ B.
Note thatS is a binaryL-relation onLX . Described verbally,S(A,B) represents a degree
to whichA is a subset ofB. In particular, we writeA⊆ B iff S(A,B) = 1. As a conse-
quence, we haveA⊆ B iff A(x)≤ B(x) for eachx∈ X.

Further we set

A≈X B= S(A,B)∧S(B,A). (5)

The valueA≈X B is interpreted as the degree to which the setsA andB are similar.
A binaryL-relationRon a setX is calledreflexiveif R(x,x) = 1 for anyx∈ X, sym-

metricif R(x,y) = R(y,x) for anyx,y∈ X, andtransitiveif R(x,y)⊗R(y,z)≤R(x,z) for
anyx,y,z∈X. R is called anL-tolerance, if it is reflexive and symmetric,L-equivalence
if it is reflexive, symmetric and transitive. IfR is anL-equivalence such that for any
x,y ∈ X from R(x,y) = 1 it follows x = y, thenR is called anL-equalityon X. L-
equalities are often denoted by≈. The similarity≈X of L-sets (5) is anL-equality on
LX .

Let∼ be anL-equivalence onX. We say that anL-setA in X is compatible with∼
(or extensional w.r.t.∼, if for any x,x′ ∈ X it holds

A(x)⊗ (x∼ x′)≤ A(x′). (6)



A binaryL-relationRonX is compatible with∼, if for eachx,x′,y,y′ ∈ X,

R(x,y)⊗ (x∼ x′)⊗ (y∼ y′)≤ R(x′,y′). (7)

Zadeh’s extension principle[17] allows extending any mappingf : X→Y to a map-
ping f+ : LX → LY by setting for eachA∈ LX

f+(A)(y) =
∨

x∈X, f (x)=y

A(x). (8)

In the following we use well-known properties of residuatedlattices and fuzzy struc-
tures which can be found e.g. in [2,11].

2.2 L-ordered sets

In this section, we recall basic definitions and results of the theory ofL-ordered sets.
Basic references are [1,2] and the references therein.

An L-order on a setU with anL-equality≈ is a binaryL-relation� onU which
is compatible with≈, reflexive, transitive and satisfies(u� v)∧ (v� u) ≤ u≈ v for
anyu,v∈U (antisymmetry). The tupleU = 〈〈U,≈〉,�〉 is called anL-ordered set. An
immediate consequence of the definition is that for anyu,v∈U it holds

u≈ v= (u� v)∧ (v� u). (9)

If U = 〈〈U,≈〉,�〉 is anL-ordered set, then the tuple〈U,1�〉, where1� is the 1-
cut of�, is a (partially) ordered set. We sometimes write≤ instead of1� and use the
symbols∧,

∧

resp.∨,
∨

for denoting infima resp. suprema in〈U,1�〉.
For two L-ordered setsU = 〈〈U,≈U〉,�U〉 andV = 〈〈V,≈V〉,�V〉, a mappingf :

U →V is isotone, if (u1 �U u2) ≤ ( f (u1) �V f (u2)) for anyu1,u2 ∈V. The mapping
f is called anisomorphism ofU andV, if it is a bijection and(u1�U u2) = ( f (u1)�V

f (u2)) for anyu1,u2 ∈V. U andV are then calledisomorphic.
In classical theory of ordered sets, a subsetV of an ordered set is called a lower set, if

for each elementu such that there isv∈V satisfyingu≤ v, it holdsu∈V. Equivalently,
for a lower setV it holds: if u≤ v, thenv∈V impliesu∈V.

Analogously, for anL-ordered setU, anL-setV ∈ LU is called alower set(resp. an
upper set), if for eachu,v∈U it holds

u� v≤V(v)→V(u) (resp.u� v≤V(u)→V(v)). (10)

The lower(resp.upper) set of anL-set V∈ LU is theL-set↓V (resp.↑V), defined by

↓V(u) = (�◦V)(u) =
∨

v∈U

(u� v)⊗V(v), (11)

↑V(u) = (V ◦�)(u) =
∨

v∈U

(v� u)⊗V(v). (12)

In a similar manner we define lower and upper cone ofV ∈ LU . For anyv∈U we set

LV(v) =
∧

u∈U

V(u)→ (v� u), U V(v) =
∧

u∈U

V(u)→ (u� v). (13)



The right-hand side of the first equation is the degree of “Foreachu∈U , if u is in V,
thenv is less than or equal tou”, and similarly for the second equation. Thus,LV(v)
(U V(v)) can be seen as the degree to whichv is less (greater) than or equal to each
element ofV, that isthe degree to which v is a lower(upper) bound of V.

In the caseLV(v) = 1 (resp.U V(v) = 1) we say simplyv is alower (upper) bound
of V. LV (resp.U V) is called theL-set of lower bounds(resp.upper bounds) of V, or
the lower cone(resp.the upper cone) of V.

If u,v∈U , v≤ u, then theL-setJv,uK = U {v}∩L {u} is called anL-interval (or
simply aninterval) in U.

We set[v,u] = 1Jv,uK. Thus,[v,u] denotes the classical interval with respect to the
1-cut of�: [v,u] = {u′ | v≤ u′ ≤ u}.

An L-setV ∈ LU is convexif V = ↓V ∩↑V. The “⊆” inclusion always holds as the
lower set as well as upper set ofV always containV as a subset. For eachV ∈ LU , each
of the following L-sets is convex:↓V, ↑V, LV, U V. EveryL-interval Jv,uK in U is
also convex. Every convexL-set inU is compatible with≈.

In the following two lemmas we formulate basic properties oflower and upper sets
and cones that will be needed in the sequel. All the properties can be proved by direct
computation.

Lemma 1. For each V∈ LU we have

↓V = ↓↓V, ↑V = ↑↑V, (14)

LV = ↓LV = L ↑V, U V = ↑U V = U ↓V. (15)

Lemma 2. For each V,V1,V2 ∈ LU , u,v∈U we have

S(V1,V2)≤ S(LV2,LV1), S(V1,V2)≤ S(U V2,U V1), (16)

L U LV = LV, U L U V = U V (17)

V ⊆U LV V⊆L U V (18)

L (V1∪V2) = LV1∩LV2, U (V1∪V2) = U V1∩U V2 (19)

L {v}(u) = u� v, U {v}(u) = v� u, (20)

L U {v}= L {v}, U L {v}= U {v}, (21)

u� v= S(L {u},L {v}), u� v= S(U {v},U {u}). (22)

2.3 Completely lattice L-ordered sets

For anyL-setV ∈ LU there exists at most one elementu ∈ U such thatLV(u) ∧
U (LV)(u) = 1 (resp.U V∧L (U V)(u) = 1) [1,2]. If there is such an element, we call
it the infimum of V(resp.the supremum of V) and denote infV (resp. supV); otherwise
we say that the infimum (resp. supremum) does not exist.

If inf V exists andV(infV) = 1, then it is calledminimum of Vand denoted minV.
Similarly, if supV exists andV(supV) = 1, then we call itmaximum of Vand denote
maxV.

Infimum (supremum) ofV is obviously a lower (upper) bound ofV and, in the same
time, an upper bound ofLV (a lower bound ofU V).



Lemma 3. If infV exists, thenLV =L {infV}. If supV exists, thenU V =U {supV}.

Proof. By definition, LV ⊇ {infV}. Applying both inequalities from (16) we ob-
tain L U LV ⊇L U {infV}. By (17),L U LV = LV and by (21),L U {infV} =
L {infV}. Thus,LV ⊇L {infV}.

By definition of lower cone again,{infV} ⊆ U LV. The first inequality of (16)
givesL U LV ⊆L {infV} and by (17),LV ⊆L {infV}.

The proof for upper cones is similar.

Lemma 4. If infV exists, then V⊆U {infV}. If supV exists, then V⊆L {supV}.

Proof. By (18), Lemma 3, (21),V ⊆ U LV = U L {infV} = U {infV}. The second
part is dual.

An L-ordered setU is calledcompletely latticeL-ordered, if for eachV ∈ LU , both
infV and supV exist.

An important example of a completely latticeL-ordered set is the following. For
a setX, the tuple〈〈LX ,≈X〉,S〉 is a completely latticeL-ordered set with infima and
suprema given by

(infV)(u) =
∧

W∈LX

V(W)→W(u), (supV)(u) =
∨

W∈LX

V(W)⊗W(u). (23)

This fact follows easily e.g. from the main theorem of fuzzy concept lattices (fuzzy
order version) [2,1].

Note that from definition and (17) it follows

infV = maxLV, supV = maxU V. (24)

Thus, to showU is a completely latticeL-ordered set it suffices to prove existence of
suprema resp. infima of allL-sets inU .

Consequently, the following holds for infima and suprema ofL-intervals:

v= minJv,uK, u= maxJv,uK. (25)

Lemma 5. The following holds for anyL-sets V1,V2 in a completely latticeL-ordered
setU.

S(LV1,LV2) = infV1� infV2, S(U V1,U V2) = supV2� supV1, (26)

S(V1,V2)≤ infV2� infV1, S(V1,V2)≤ supV1� supV2 (27)

Proof. By Lemma 3 and (22),S(LV1,LV2) = S(L {infV1},L {infV2}) = infV1 �
infV2, proving the first part of (26). The second part is dual. (27) follows from (26) by
(16).

Lemma 6. The following holds for each u,v∈U:

inf{v�u/u,v}= v, sup{u�v/u,v}= v.

Proof. By direct computation.



2.4 Isotone mappings of L-ordered sets

We prove some basic properties of isotone mappings ofL-ordered sets we will need
later. The following lemma says that isotone mappings transform lower (upper) bounds
of anL-set to lower (upper) bounds of its image.

Lemma 7. Let f : U →U ′ be an isotone mapping ofL-ordered sets, V∈ LU . Then

f (LV)⊆L f (V), f (U V)⊆U f (V).

Proof. By definition of lower cone and isotony off ,

LV(v)≤V(u)→ (v� u)≤V(u)→ ( f (v) � f (u)),

for eachu,v∈U . Now let u′ ∈U ′ and take infimum for allu such thatf (u) = u′ (in
the case there is no suchu, the infimum, as the infimum of empty set inL, is equal to
1∈ L):

LV(v)≤
∧

f (u)=u′
V(u)→ ( f (v) � f (u)) =





∨

f (u)=u′
V(u)



→ ( f (v)� f (u))

= f (V)(u′)→ ( f (v) � u′).

Now denotev′= f (v). The above inequality tells that the following holds for each v∈U
such thatf (v) = v′ andu′ ∈U ′:

LV(v)≤ f (V)(u′)→ (v′ � u′).

Thus,

f (LV)(v′) =
∨

f (v)=v′
LV(v)≤

∧

u′∈U ′
f (V)(u′)→ (v′ � u′) = L f (V)(v′).

This proves the first inclusion, the second one is similar.

Let v∈U . As it has been said,LV(v) is the degree to whichv is a lower bound
of V. We haveLV(v) ≤ f (LV)( f (v)) and by the above lemma,f (LV)( f (v)) ≤
L f (V)( f (v)). This way the lemma tells that the degree to whichf (v) is a lower bound
of f (V) is greater than or equal to the degree to whichv is a lower bound ofV (and
similarly for upper bounds). In the particular caseLV(v) = 1 (or U V(v) = 1) we
obtain the following result:

Corollary 1. In the setting of the previous lemma, ifLV(v) = 1, thenL f (V)( f (v)) =
1 and ifU V(v) = 1, thenU f (V)( f (v)) = 1. In words, if v is a lower (upper) bound of
V , then f(v) is a lower (upper) bound of f(V).

Lemma 8. Let f,g: U →U be two mappings such that for each u∈U, f(u) ≤ u and
g(u)≥ u. Then for each V∈ LU ,

L f (V)⊆LV, U f (V)⊇U V, (28)

L g(V)⊇LV, U g(V)⊆U V. (29)



Proof. We will prove the first inclusion only, the others being analogous. Letv ∈ U .
From transitivity of� we have(v� f (u′))≤ (v� u′) for eachu′ ∈U . Now,

L f (V)(v) =
∧

u∈U

f (V)(u)→ (v� u) =
∧

u∈U





∨

f (u′)=u

V(u′)



→ (v� u)

=
∧

u∈U

∧

f (u′)=u

V(u′)→ (v� u) =
∧

u′∈U

V(u′)→ (v� f (u′))

≤
∧

u′∈U

V(u′)→ (v� u′) = LV(v),

proving the inclusion.

In the last two lemmas we supposeU andU′ are completely latticeL-ordered sets.

Lemma 9. Let f,g be the same as in the previous lemma, V∈ LU . Then

inf f (V)≤ infV, supf (V)≤ supV, (30)

inf g(V)≥ infV, supg(V)≥ supV. (31)

Proof. Follows from Lemma 8 and (26).

Lemma 10. Let f : U →U ′ be an isotone mapping, V∈ LU . Then

f (infV)≤ inf f (V), f (supV)≥ supf (V). (32)

Proof. Follows directly from Corollary 1 (e.g., infV is a lower bound ofV, whence
f (infV) is a lower bound off (V) and hence is less than or equal to inff (V)).

2.5 Isotone L-Galois connections

An isotoneL-Galois connectionbetweenL-ordered setsU andV [10,13] is a pair〈 f ,g〉,
where f : U →V, g: V→U are mappings such that for eachu∈U , v∈V it holds

f (u)� v= u� g(v). (33)

An isotone Galois connection betweenU and U is called simply an isotone Galois
connection onU.

By isotoneL-Galois connectionbetween sets X and Ywe understand an isotone
L-Galois connection between completely latticeL-ordered setsLX andLY (23).

Note that in [10] and [13], only isotoneL-Galois connection between sets are con-
sidered. Thus, our approach is more general, but all resultsfrom [10,13] can be trans-
ferred more or less mechanically to our setting. This is alsothe case in Section 2.6.

Theorem 1 (basic properties of isotone L-Galois connections). Let 〈 f ,g〉 be an iso-
toneL-Galois connection betweenL-ordered setsU andV. Then

(a) u≤ g( f (u)) for each u∈U, f(g(v))≤ v for each v∈V.
(b) f and g are isotone.



(c) f(g( f (u))) = f (u), g( f (g(v))) = g(v).
(d) LetU andV be completely latticeL-ordered sets. For U′ ∈ LU and V′ ∈ LV we

have

f (infU ′)≤ inf f (U ′), f (supU ′) = supf (U ′),

g(infV ′) = inf g(V ′), g(supV ′)≥ supg(V ′).

Proof. (a) By (33), from f (u) ≤ f (u) it follows u≤ g( f (u)) and fromg(v) ≤ g(v) it
follows f (g(v))≤ v.

(b) By (a),u2 ≤ g( f (u2)). Thus, by transitivity,(u1� u2) = (u1� u2)⊗1= (u1�
u2)⊗ (u2� g( f (u2)))≤ (u1� g( f (u2))) = ( f (u1)� f (u2)). Similarly for g.

(c) By (a), f (g( f (u))) ≤ f (u). The opposite inequality is proved by (b) and (a):
1= u� g( f (u))≤ f (u)� f (g( f (u))). Similarly the second equality.

(d) The inequalitiesf (infU ′)≤ inf f (U ′), f (supU ′)≥ supf (U ′), g(infV ′)≤ inf g(V ′),
g(supV ′) ≥ supg(V ′) follow from (b) and Lemma 10. By (a), the fourth inequality of
Lemma 9, and the inequalityg(supV ′)≥ supg(V ′) we have already proved,

supU ′ ≤ supg( f (U ′))≤ g(supf (U ′)).

Now by definition,f (supU ′)≤ supf (U ′). The remaining inequality, namelyg(infV ′)≥
inf g(V ′), is proved similarly.

Let 〈 f ,g〉 be an isotoneL-Galois connection betweenU andV. A pair 〈u,v〉, where
u∈U andv∈V, is called afixpoint of〈 f ,g〉 if f (u) = v andg(v) = u.

Suppose〈u1,v1〉, 〈u2,v2〉 are two fixpoints of〈 f ,g〉. We have by (33),

u1� u2 = u1� g(v2) = f (u1)� v2 = v1� v2

and by (9),

u1≈ u2 = v1≈ v2.

We denote the set of all fixpoints of〈 f ,g〉 by Fix〈 f ,g〉. ForL-relations≈Fix〈 f ,g〉 and
�Fix〈 f ,g〉 defined on Fix〈 f ,g〉 by

〈u1,v1〉 ≈Fix〈 f ,g〉 〈u2,v2〉= u1≈ u2 (= v1≈ v2), (34)

〈u1,v1〉 �Fix〈 f ,g〉 〈u2,v2〉= u1� u2 (= v1� v2), (35)

we obtain anL-ordered set Fix〈 f ,g〉 = 〈〈Fix〈 f ,g〉,≈Fix〈 f ,g〉〉,�Fix〈 f ,g〉〉. In the rest of the
paper, we will usually write≈ instead of≈Fix〈 f ,g〉 and� instead of�Fix〈 f ,g〉 .

We denote the set of all isotone Galois connections betweenL-ordered setsU and
V by IGal(U,V) and consider the following binaryL-relations≈IGal(U,V),�IGal(U,V) on
IGal(U,V):

〈 f1,g1〉 ≈IGal(U,V) 〈 f2,g2〉=
∧

u∈U

( f2(u)≈ f1(u))∧
∧

v∈V

(g1(v)≈ g2(v)), (36)

〈 f1,g1〉 �IGal(U,V) 〈 f2,g2〉=
∧

u∈U

( f2(u)� f1(u))∧
∧

v∈V

(g1(v)� g2(v)). (37)



Lemma 11. 〈〈IGal(U,V),≈IGal(U,V)〉,�IGal(U,V)〉 is anL-ordered set.

Proof. Straightforward.

For anL-ordered setU, an isotoneL-Galois connection〈 f ,g〉 on U is calledexten-
siveif

f (u)≤ u and g(u)≥ u (38)

for eachu∈U . The set of all extensive isotoneL-Galois connections onU is denoted
EIGal(U).

Notice that if one of the conditions (38) holds true, then thesecond one follows by
(33).

2.6 L-closure and L-interior operators

Here we recall very briefly basic definitions and results onL-closure andL-interior
operators. More details can be found in [3,1,10].

For anL-ordered setU, a mappingC: U→U is called anL-closure operator, if the
following holds for eachu,u1,u2 ∈U :

C(u)≥ u, (39)

C(C(u)) =C(u), (40)

u1� u2≤C(u1)�C(u2). (41)

A mappingI : U →U is called anL-interior operator, if for eachu,u1,u2 ∈U ,

I(u)≤ u, (42)

I(I(u)) = I(u), (43)

u1� u2≤ I(u1)� I(u2). (44)

By L-closure (resp.L-interior) operatoron a set Xwe mean anL-closure (resp.L-
interior) operator on the completely latticeL-ordered setLX (23).

An elementu∈U is afixpoint of C(resp.fixpoint of I), if C(u) = u (resp.I(u) = u).
The set of all fixpoints ofC (resp.I ) will be denoted FixC (resp. FixI ). The sets FixC
and FixI inherit a structure of anL-ordered set fromU. Considering FixC and FixI with
this structure we have the following result:

Theorem 2. Let U be a completely latticeL-ordered set. ThenFixC is closed w.r.t. ar-
bitrary infima (i.e. for anyL-set V∈ LU , V ⊆ FixC, we haveinfV ∈ FixC) andFixI is
closed w.r.t. arbitrary suprema (i.e. for anyL-set V∈ LU , V ⊆ FixI , we havesupV ∈
FixI ). Consequently,FixC andFixI are completely latticeL-ordered sets.

A subsetV ⊆U which is closed w.r.t. arbitrary infima (resp. suprema) is called an
L-closure(resp.L-interior) system inU. The above theorem says that FixC (resp. FixI )
is anL-closure (resp.L-interior) system inU. In the caseU = LX for some setX we
also talk aboutL-closure (resp.L-interior) systemin X.



Let 〈 f ,g〉 be an isotoneL-Galois connection onU. From Theorem 1 it easily follows
that the compositionC, given byC(u) = g( f (u)) is anL-closure operator onU and the
compositionI , I(v) = f (g(v)) is anL-interior operator onV.

We have the following result for theL-ordered sets of fixpoints of these operators
and of theL-Galois connection〈 f ,g〉 itself:

Theorem 3. Let U be a completely latticeL-ordered set. Then theL-ordered sets
Fix〈 f ,g〉, FixC, FixI are isomorphic. Consequently,Fix〈 f ,g〉 is a completely latticeL-
ordered set. The isomorphismFix〈 f ,g〉 → FixC is given by〈u,v〉 → u and the isomor-
phismFix〈 f ,g〉→ FixI is given by〈u,v〉 → v.

3 Power structures of L-ordered sets

Power structure [6] is an algebraic structure constructed by “lifting” operations and
relations on a (ordinary) set to its power set, i.e. the set ofall its (ordinary) subsets. The
theory goes back to Frobenius and recently [9] has been generalized to a fuzzy setting.

In this section, we recall basic definitions and results from[9] to the extent we need
in this paper. We also show some results from [2,5] on fuzzy power structures. Then we
prove some properties of power structures of fuzzy ordered sets we will need for the
main result of this paper.

Note that in [9], fuzzy power structures are studied under the framework of contin-
uous t-norms; generalizing results we use in this paper to complete residuated lattices
is straightforward.

Let Rbe a binaryL-relation on a setX. We set for anyL-setsA,B∈ LX

R→(A,B) = S(A,R◦B) =
∧

x∈X

(

A(x)→
∨

y∈X

R(x,y)⊗B(y)

)

, (45)

R←(A,B) = (R−1)→(B,A) = S(B,R−1◦A) = S(B,A◦R)

=
∧

y∈X

(

B(y)→
∨

x∈X

R(x,y)⊗A(x)

)

. (46)

SinceS(A,R◦B) is the degree to whichA is a subset ofR◦B, R→(A,B) can be viewed
as the degree to which each element ofA is related to an element ofB. We set

R+(A,B) = R→(A,B)∧R←(A,B), (47)

obtaining a binaryL-relation, calledpowerL-relation, R+ on the setLX . In the follow-
ing, we prove some basic properties of the powerL-relationR+ for R being a binary
L-relation on a setX and later on anL-ordered set〈〈U,≈〉,�〉.

The following result is straightforward and has been provedin [2, Theorem 4.41].

Lemma 12. For any binaryL-relation R∈ LX it holds

1. if R is reflexive, then so is R+,
2. if R is symmetric, then so is R+,



3. if R is transitive, then so is R+.

The following has been proved in [5, Theorem 2].

Theorem 4. For any twoL-relations R,Q∈ LX it holds

R+ ◦Q+ ⊆ (R◦Q)+. (48)

In the next two theorems we show some basic properties of power relations ofL-
equivalences. We start with a lemma. Note that theL-relation≈X on L-sets inX (5)
does not depend on∼.

Lemma 13. Let∼ be anL-equivalence on a set X, A,B ∈ LX be compatible with∼.
Then A∼+ B= A≈X B.

Proof. By compatibility,
∨

x′∈X(x∼ x′)⊗A(x′) ≤ A(x). As (x∼ x)⊗A(x) = A(x) the
opposite inequality also holds and we have∼◦A= A. Similarly,∼◦B= B. Thus,

A∼+ B= (A∼→ B)∧ (A∼← B) = S(A,∼◦B)∧S(B,∼◦A) = S(A,B)∧S(B,A)

= A≈X B.

Theorem 5. Let∼ be anL-equality on a set X, M⊆ LX a subset, containing onlyL-
sets, compatible with∼. Then the restriction of∼+ to M is anL-equality on M and is
equal to the restriction of theL-relation≈X (5).

Proof. Follows from Lemma 13 asA≈X B= 1 iff A= B.

Theorem 6. Let R be compatible with anL-equivalence∼ on X. Then R+ is compatible
with the powerL-equivalence∼+.

Proof. By Lemma 12,∼+ is indeed anL-equivalence. Compatibility ofRwith∼means
∼◦R◦∼⊆ R. By Theorem 4,∼+ ◦R+ ◦∼+ ⊆ (∼◦R◦∼)+ ⊆ R+.

The following is our main result on power relations ofL-orders.

Theorem 7. Let U = 〈〈U,≈〉,�〉 be anL-ordered set, M⊆ LU a subset, containing
only convexL-sets inU. Then〈〈M,≈+〉,�+〉 is anL-ordered set.

Proof. Since convexL-sets are compatible with≈, then≈+ is anL-equality by The-
orem 5. By Theorem 6,�+ is compatible with≈+ and by Lemma 12,�+ is reflexive
and transitive.

LetV1,V2 ∈ LU be convex. We have

(V1�
+ V2)∧ (V2�

+ V1) = (V1�
→ V2)∧ (V1�

← V2)∧ (V2�
→ V1)∧ (V2�

← V1)

= (V1�
→ V2)∧ (V2�

→ V1)∧ (V2�
← V1)∧ (V1�

← V2)

= S(V1,↓V2)∧S(V1,↑V2)∧S(V2,↓V1)∧S(V2,↑V1)

= S(V1,↓V2∩↑V2)∧S(V2,↓V1∩↑V1) = S(V1,V2)∧S(V2,V1) =V1≈
X V2

=V1≈
+ V2

(the last equality follows by Lemma 13), proving antisymmetry.



The following two lemmas show a way of efficient computing values of power re-
lations≈+ and�+ on intervals.

Lemma 14. Let U = 〈〈U,≈〉,�〉 be anL-ordered set, V1,V2 ∈ LU two L-sets having
minimum and maximum,minV1 = u1, maxV1 = v1, minV2 = u2, maxV2 = v2. Then
V1�

+ V2 = (u1� u2)∧ (v1� v2).

Proof. We will first prove that for eachw∈U ,

(�◦V2)(w) = w� v2. (49)

Sincev2 is the maximum ofV2, then by (18), Lemma 4, and (21),V2 ⊆ L U V2 =
L U {v2}=L {v2}whenceV2(w′)≤L {v2}(w′)=w′� v2 (20). Thus, for eachw∈U ,

(w� w′)⊗V2(w
′)≤ (w� w′)⊗ (w′ � v2)≤ (w� v2)

by transitivity. Taking supremum through allw′ on the left-hand side and taking into
account that(w� v2)⊗V2(v2) = w� v2 we obtain (49).

Thus,

(V1�
→ V2) =

∧

w∈U

V1(w)→ (w� v2) = U V1(v2) = U {v1}(v2) = v1 � v2

by (20).
One can prove similarly(V1�

← V2) = u1� u2 and obtain the desired equality.

Lemma 15. Let U = 〈〈U,≈〉,�〉 be anL-ordered set, V1 = Ju1,v1K, V2 = Ju2,v2K in-
tervals in U. Then V1≈+ V2 = (u1≈ u2)∧ (v1≈ v2).

Proof. According to Theorem 7,〈〈M,≈+〉,�+〉, whereM = {V1,V2}, is anL-ordered
set. Thus by (9) and Lemma 14,

V1≈
+ V2 = (V1�

+ V2)∧ (V2�
+ V1)

= (u1� u2)∧ (v1� v2)∧ (u2� u1)∧ (v2� v1)

= (u1≈ u2)∧ (v1≈ v2).

4 Complete L-relations

In classical theory of complete lattices (see for example [8]), a binary relationR on a
complete latticeU is called complete, if for each system{〈u j ,v j〉} j∈J of pairs of ele-
ments ofU fromu j Rvj for eachj ∈ J it follows

(
∧

j∈J u j
)

R
(
∧

j∈J v j
)

and
(
∨

j∈J u j
)

R
(
∨

j∈J v j
)

.
It can be easily checked that the following condition is equivalent to the above

condition of completeness ofR: if V1,V2 ⊆ U are such that for eachv1 ∈ V1 there is
v2 ∈ V2 such thatv1Rv2 and for eachv2 ∈ V2 there isv1 ∈ V1 such thatv1Rv2, then
(
∧

V1) R(
∧

V2) and(
∨

V1) R(
∨

V2).



This leads us to the following definition. A binaryL-relation on a completely lattice
L-ordered setU = 〈〈U,≈〉,�〉 is calledcomplete, if it is compatible with≈ and for any
two L-setsV1,V2 ∈ LU it holds

R+(V1,V2)≤ R(infV1, infV2), (50)

R+(V1,V2)≤ R(supV1,supV2). (51)

Following are basic properties of complete relations on a completely latticeL-
ordered setU = 〈〈U,≈〉,�〉.

Lemma 16. If R is complete, then so is R−1.

Proof. We have

(R−1)+(V1,V2) = (R−1)→(V1,V2)∧ (R
−1)←(V1,V2)

= R←(V2,V1)∧R→(V2,V1) = R+(V2,V1)≤ R(infV2, infV1)

= R−1(infV1, infV2),

and similarly for suprema.

Theorem 8. The system of all complete binaryL-relations onU is anL-closure system
in the set U×U, hence a completely latticeL-ordered set.

Proof. We will show 1. that ifRj , j ∈ J, are complete then so is
⋂

j∈J Rj and 2. that
for eacha∈ L andR complete the shifta→R is also complete. Since the system of all
binaryL-relations that are compatible with≈ is anL-closure system, there is no need
to prove compatibility of the relations.

1. We have

(

⋂

j

Rj

)

◦V(v) =
∨

w∈U

(

∧

j

Rj(v,w)

)

⊗V(w) ≤
∧

j

∨

w∈U

Rj(v,w)⊗V(w)

=
∧

j

(Rj ◦V)(v).

Thus,(
⋂

j Rj)◦V ⊆
⋂

j(Rj ◦V). Now,

(

⋂

j

Rj

)→

(V1,V2) = S

(

V1,

(

⋂

j

Rj

)

◦V2

)

≤ S

(

V1,
⋂

j

(Rj ◦V2)

)

=
∧

j

S(V1,Rj ◦V2)

=
∧

j

(Rj)
→(V1,V2)



and, finally,

(

⋂

j

Rj

)+

(V1,V2) =

(

⋂

j

Rj

)→

(V1,V2)∧

(

⋂

j

Rj

)←

(V1,V2)

≤
∧

j

(Rj)
→(V1,V2)∧ (Rj)

←(V1,V2) =
∧

j

(Rj)
+(V1,V2)

≤
∧

j

Rj(infV1, infV2) =

(

⋂

j

Rj

)

(infV1, infV2).

Similarly for suprema.
2. We have

((a→R)◦V)(v) =
∨

w∈U

(a→R(v,w))⊗V(w)≤ a→
∨

w∈U

R(v,w)⊗V(w)

= a→ (R◦V)(v).

Thus,(a→R)◦V ⊆ a→ (R◦V). Now,

(a→R)→(V1,V2) = S(V1,(a→ R)◦V2)≤ S(V1,a→ (R◦V2)) = a→ S(V1,R◦V2)

and, finally,

(a→R)+(V1,V2) = (a→R)→(V1,V2)∧ (a→R)←(V1,V2)

≤ (a→ R→(V1,V2))∧ (a→ (R←(V1,V2)) = a→ (R→(V1,V2)∧R←(V1,V2))

≤ a→ R(infV1, infV2) = (a→ R)(infV1, infV2).

Similarly for suprema.

Lemma 17. The following holds for each V1,V2 ∈ LU :

V1�
→ V2≤ supV1� supV2, V1�

← V2≤ infV1� infV2.

Proof. We have by (16), (15), (26),

V1�
→ V2 = S(V1,�◦V2) = S(V1,↓V2)≤ S(U ↓V2,U V1) = S(U V2,U V1)

= supV1� supV2.

Hence the first inequality. The second one is obtained similarly.

Theorem 9. TheL-relations� and≈ on U are complete.

Proof. By Lemma 17, for eachV1,V2 ∈ LU , V1�
+ V2≤ (V1�

→ V2)≤ supV1� supV2

andV1�
+ V2≤V1�

← V1≤ infV1� infV2, proving completeness of�.
Since≈=�∩�, completeness of≈ follows from Lemma 16 and Theorem 8.



5 Complete tolerances

5.1 Basic properties

Recall thatL-tolerance on a setX is a reflexive and symmetric binaryL-relation onX.
For anL-tolerance∼ on a setX, anL-setB∈ LX is called ablock of∼ [2] if for each
x1,x2 ∈ X it holdsB(x1)⊗B(x2) ≤ (x1 ∼ x2). A block B is calledmaximalif for each
blockB′ from B⊆B′ it follows B=B′. The set of all maximal blocks of∼ always exists
by Zorn’s lemma, is calledthe factor set of X by∼ and denoted byX/∼.

Further we set for eachx∈ X, JxK∼(y) = x∼ y, obtaining anL-setJxK∼ calledthe
class of∼ determined by x.

Let ∼ be a complete tolerance on a completely latticeL-ordered setU = 〈〈U,≈
〉,�〉. From reflexivity of∼ we haveV ⊆ ∼◦V for eachV ∈ LU and from symmetry
∼−1 =∼.

For eachu∈U we set

u∼ = infJuK∼, u∼ = supJuK∼. (52)

We denote the system of all completeL-tolerances on a completely latticeL-ordered
setU by CTolU and consider it together with theL-equality≈U×U andL-orderS.

Theorem 10. CTolU is anL-closure system in the set U×U, hence a completely lattice
L-ordered set.

Proof. Evidently, if ∼ is anL-tolerance then so isa→∼ for eacha ∈ L and if ∼ j ,
j ∈ J, areL-tolerances then

⋂

j∈J is also anL-tolerance. Thus, the theorem follows
from Theorem 8.

5.2 From complete tolerances to isotone Galois connections

Lemma 18. For each u∈U, u∼ u∼ = u∼ u∼ = 1.

Proof. SetV1 = {u}, V2 = JuK∼. SinceV1 ⊆V2, we haveV1 ∼
→ V2 = 1. Further,(∼◦

V1)(v) = v∼ u= JuK∼(v). Thus,V1∼
← V2 = S(JuK∼,JuK∼) = 1. Now,

V1∼
+ V2 = (V1∼

→ V2)∧ (V1∼
← V2) = 1

and by completeness of∼, 1= infV1∼ infV2 = u∼ u∼ and 1= supV1∼ supV2 = u∼
u∼.

Lemma 19. It holds for any u∈U

u∼
∼ ≥ u, u∼∼ ≤ u. (53)

Proof. By Lemma 18,JuK∼(u∼) = 1. This means that alsoJu∼K∼(u) = 1. Sinceu∼∼ =
supJu∼K∼, we have the first inequality.

The second inequality is analogous.



Lemma 20. For each u,v∈U it holds

(u� v)≤ (u∼ � v∼), (u� v)≤ (u∼ � v∼). (54)

Proof. Let a = u� v, V1 = {a/u,v}, V2 = {
a/u∼,v∼}. By Lemma 18,u∼ u∼ = v∼

v∼ = 1. Thus,V1⊆∼◦V2, V2⊆∼◦V1 and we haveV1∼
+ V2 = 1. By completeness of

∼, supV1∼ supV2 = 1.
By Lemma 6, supV1 = v. Thus,v∼ supV2 = 1, which means supV2 ≤ v∼. On the

other hand, sinceV2(v∼) = 1, we have supV2≥ v∼, whence supV2 = v∼. By Lemma 4,
V2 ⊆L {v∼}. Thus,a= V2(u∼) ≤L {v∼}(u∼) = u∼ � v∼ and the second inequality
in (54) is proved.

The first inequality is proved similarly.

Theorem 11. The pair〈∼,∼〉 is an extensive isotone Galois connection onU.

Proof. We will show〈∼,∼〉 is an isotone Galois connection. Letu,v∈U . We have by
Lemma 20, Lemma 19, and transitivity of�,

(u∼ � v)≤ (u∼
∼ � v∼)≤ (u� v∼).

The converse inequality is proven analogously.
Extensivity of〈∼,∼〉 follows trivially from reflexivity of�.

5.3 Structure of maximal blocks

Lemma 21. If 〈u,v〉 is a fixpoint of〈∼,∼〉, thenJv,uK is a block of∼.

Proof. 1. We will prove that for eachw,

Jv,uK(w)≤ u∼ w (55)

(i.e. “if w belongs toJv,uK, then it is similar tou”).
Seta= w� u, b= v� w, V1 = {u,a/w}, V2 = {

b/v,w}. By Lemma 6, supV1 = u
and supV2 = w.

Now,

(∼◦V1)(v) = ((v∼ u)⊗V1(u))∨ ((v∼ w)⊗V1(w)) = (1⊗1)∨ ((v∼ w)⊗a) = 1,

(∼◦V1)(w) = ((w∼ u)⊗V1(u))∨ ((w∼ w)⊗V1(w)) = ((w∼ u)⊗1)∨ (1⊗a)≥ a,

(∼◦V2)(u) = ((u∼ v)⊗V2(v))∨ ((u∼ w)⊗V2(w)) = (1⊗b)∨ ((u∼ w)⊗1)≥ b,

(∼◦V2)(w) = ((w∼ v)⊗V2(v))∨ ((w∼ w)⊗V2(w)) = ((w∼ v)⊗b)∨ (1⊗1)= 1.

Thus,

S(V1,∼◦V2) = (V1(u)→ (∼◦V2)(u))∧ (V1(w)→ (∼◦V2)(w)) ≥ b,

S(V2,∼◦V1) = (V2(v)→ (∼◦V1)(v))∧ (V2(w)→ (∼◦V1)(w))≥ a



and

Jv,uK(w) = a∧b≤ S(V1,∼◦V2)∧S(V2,∼◦V1) =V1∼
+ V2

≤ supV1∼ supV2 = u∼ w,

proving (55).
2. Let w1,w2 ∈U , a1 = Jv,uK(w1), a2 = Jv,uK(w2), b1 = w1 � u, b2 = w2 � u. By

(55),a1≤ b1, a2≤ b2. SetV1 = {
b1/u,w1}, V2 = {

b2/u,w2}. By similar direct calcula-
tions as above we obtain

a1⊗a2≤ a1⊗b2 = (b1→ b2)∧ (1→ b2⊗a1)≤V1∼
→ V2.

Similarly, a1⊗a2≤V1∼
← V2 and

a1⊗a2≤V1∼
+ V2≤ infV1∼ infV2 = w1 ∼ w2,

provingJv,uK is a block.

Lemma 22. If B is a block of∼, then so is B∪{inf B}.

Proof. Let u= inf B. It suffices to proveB(v)≤ u∼ v for eachv∈U .
LetV = {v}. We have

B∼→ V =
∧

w∈U

B(w)→ (v∼ w)≥ B(v),

B∼← V = B(v).

Thus,

B(v)≤ B∼+ V ≤ inf B∼ infV = u∼ v

and the lemma is proved.

Lemma 23. For each block B of∼ there is a fixpoint〈u,v〉 of 〈∼,∼〉 such that B⊆ Jv,uK.

Proof. Set w = inf B, u = w∼, v = u∼. Since〈∼,∼〉 is an isotone Galois connection
(Theorem 11),〈u,v〉 is a fixpoint. By Lemma 22, theL-setB′=B∪{w} is again a block.
By Lemma 4, we haveB′⊆U {w}⊆U {v}. Also, for eachw′ it holdsB′(w′)≤w′ ∼w.
Thus, by definition of class,B′ ⊆ JwK∼, whence supB′ ≤ supJwK∼ = u (27). This yields
B′ ⊆L {u} and we can concludeB⊆ B′ ⊆U {v}∩L {u}= Jv,uK.

Theorem 12. Maximal blocks of∼ are exactly intervalsJv,uK, where〈u,v〉 are fix-
points of〈∼,∼〉.

Proof. Follows from the above lemmas.



5.4 Structure of classes

Theorem 13. For each u∈U, the classJuK∼ is equal to the intervalJu∼,u∼K.

Proof. By Lemma 4,JuK∼ ⊆ U {infJuK∼} = U {u∼} and similarlyJuK∼ ⊆ L {u∼}.
Thus,JuK∼ ⊆ Ju∼,u∼K.

Let u′ ∈U , a= Ju∼,u∼K(u′) = (u∼ � u′)∧ (u′ � u∼). We will show theL-setV =
{a/u′,u} is a block. For the lower cone ofV we have

LV(w) = (w� u)∧ (a→ (w� u′)). (56)

Let v = infV. According to Lemma 4,V ⊆ U {v}. By Lemma 19,v∼∼ ≤ v, whence
V ⊆U {v∼∼}.

Now consider membership degrees ofu andu′ in the lower coneL {v∼}. Since
a≤ u∼ � u′, then (56)LV(u∼) = 1∧ (a→ (u∼ � u′)) = 1. Thus, 1= u∼ � v= u�
v∼ = L {v∼}(u), obtainingL {v∼}(u) = 1.

For L {v∼}(u′) we first notice by (56),LV(u′∼) = u′∼ � u = u′ � u∼ ≥ a. By
Lemma 4, and (20),LV(u′∼) = L {v}(u′∼) = u′∼ � v, andL {v∼}(u′) = u′ � v∼ =
u′∼ � v≥ a. Thus,V ⊆L {v∼}.

Together,V ⊆ U {v∼∼} ∩L {v∼} = Jv∼∼,v∼K. By Theorem 12,Jv∼∼,v∼K is a
block. Thus,V is also a block and by definition of block we obtainJu∼,u∼K(u′) =
V(u′) = V(u′)⊗V(u) ≤ u′ ∼ u= JuK∼(u′). Thus,Ju∼,u∼K ⊆ JuK∼ and the theorem is
proved.

The following is an important consequence of Theorem 13 thatwe will use later to
prove our main result.

Lemma 24. For each u,v∈U we have

u∼ v= (u∼ � v)∧ (v� u∼). (57)

Proof. The right-hand side is equal toJu∼,u∼K(v), which is by Theorem 13 equal to
JuK∼(v) = u∼ v.

We use the above results in the proof of the following lemma. By Theorem 11, for
each completeL-tolerance∼ on U the pair〈∼,∼〉 is an isotoneL-Galois connection.
Thus, we canL-order suchL-Galois connections by theL-relation�IGal(U,U) (37).

Lemma 25. For any two completeL-tolerances∼1,∼2 on U we have

S(∼1,∼2) = 〈∼1,
∼1〉 �IGal(U,U) 〈∼2,

∼2〉.

Proof. By definitions ofSand�IGal(U,U) we have to prove the following equality:

∧

u,v∈U

(u∼1 v)→ (u∼2 v) =
∧

u∈U

(u∼2 � u∼1)∧
∧

u∈U

(u∼1 � u∼2). (58)

We will proceed by proving both inequalities “≤” and “≥”.



“≤”: Sinceu∼1 u∼1 (Lemma 18), the left-hand side of (58) is≤
∧

u∈U u∼2 u∼1.
Now by Theorem 13 and (20) we have

u∼2 u∼1 = Ju∼1K∼2(u) = L {(u∼1)∼2}(u)∧U {(u∼1)∼2}(u)

≤U {(u∼1)∼2}(u) = (u∼1)∼2 � u= u∼1 � u∼2.

Thus,
∧

u,v∈U(u∼1 v)→ (u∼2 v)≤
∧

u∈U u∼1 � u∼2. The inequality
∧

u,v∈U(u∼1 v)→
(u∼2 v)≤

∧

u∈U u∼2 � u∼1 is proved similarly.
“≥”: by Theorem 13 and (20) again and by antisymmetry of� we obtain

(u∼1 � u∼2)⊗ (u∼1 v)≤ (u∼1 � u∼2)⊗ ((v� u∼1)∧ (u∼1 � v))

≤ (u∼1 � u∼2)⊗ (v� u∼1)≤ v� u∼2.

Similarly (u∼2 � u∼1)⊗ (u∼1 v)≤ (u∼2 � v), thereby (Theorem 13 and (20))

(u∼2 v) = (u∼2 � v)∧ (v� u∼2)

≥ ((u∼1 � u∼2)⊗ (u∼1 v))∧ ((u∼2 � u∼1)⊗ (u∼1 v))

≥ ((u∼1 � u∼2)∧ (u∼2 � u∼1))⊗ (u∼1 v).

By adjointness,

(u∼1 v)→ (u∼2 v)≥ (u∼1 � u∼2)∧ (u∼2 � u∼1),

yielding the “≥” part of (58).

5.5 From extensive isotone Galois connections to complete tolerances

Let 〈 f ,g〉 be an extensive isotoneL-Galois connection on a completely latticeL-ordered
setU = 〈〈U,≈〉,�〉. We set for eachu,v∈U ,

u∼〈 f ,g〉 v= ( f (u)� v)∧ (v� g(u)). (59)

The following theorem summarizes main properties of theL-relation∼〈 f ,g〉.

Theorem 14. ∼〈 f ,g〉 is a complete tolerance such that for each u∈U,

u∼〈 f ,g〉 = f (u), u∼〈 f ,g〉 = g(u). (60)

Proof. TheL-relation∼〈 f ,g〉 is evidently reflexive and symmetric, hence anL-tolerance.
SetR(u,v)= u� g(v). We haveu∼〈 f ,g〉 v=R(u,v)∧R−1(u,v). Thus, by Lemma 16

and Theorem 8 it is sufficient to prove thatR is complete.
LetV ∈ LU . Using obvious inequalityV(w)≤ g(V)(g(w)) we have

(R◦V)(v) =
∨

w∈U

R(v,w)⊗V(w) =
∨

w∈U

(v� g(w))⊗V(w)

≤
∨

w∈U

(v� g(w))⊗g(V)(g(w))≤
∨

w′∈U

(v� w′)⊗g(V)(w′)

= (�◦g(V))(v)



and

(R−1◦V)(v) =
∨

w∈U

R(w,v)⊗V(w) =
∨

w∈U

(v� f (w))⊗V(w)

≤
∨

w∈U

(v� f (w))⊗ f (V)( f (w)) ≤
∨

w′∈U

(v� f (w))⊗ f (V)(w′)

= (�◦ f (V))(v),

whenceR→(V1,V2) = S(V1,R◦V2)≤S(V1,�◦g(V2)) =V1�
→ g(V2) andR←(V1,V2) =

S(V2,R−1◦V1)≤ S(V2,�◦ f (V1)) = f (V1)�
← V2.

Now by Lemma 17 and Theorem 1 (d),

R+(V1,V2)≤ R→(V1,V2)≤V1�
→ g(V2)≤ supV1� supg(V2)

≤ supV1� g(supV2) = R(supV1,supV2),

R+(V1,V2)≤ R←(V1,V2)≤ f (V1)�
← V2≤ inf f (V1)� infV2

≤ f (infV1)� infV2 = R(infV1, infV2),

proving completeness ofRand hence of∼〈 f ,g〉.
To prove (60), we notice that for eachu∈U the classJuK∼〈 f ,g〉 is equal to the interval

J f (u),g(u)K:

JuK∼〈 f ,g〉(v) = u∼〈 f ,g〉 v= ( f (u)� v)∧ (v� g(u))

= U { f (u)}(v)∧L {g(u)}(v) = J f (u),g(u)K(v).

Now, u∼〈 f ,g〉 = infJ f (u),g(u)K = f (u) andu∼〈 f ,g〉 = supJ f (u),g(u)K = g(u).

5.6 Factorization theorem, representation theorem

By Theorem 12, the factor setU/∼ consists of intervals. Thus, by Theorem 7, the
tupleU/∼ = 〈〈U/∼,≈+〉,�+〉 is anL-ordered set. By Theorem 11, the pair〈∼,∼〉 is
an extensive isotone Galois connection. The following theorem connectsU/∼ to the
completely latticeL-ordered set Fix〈∼,∼〉.

Theorem 15 (factorization theorem). The L-ordered setU/∼ is isomorphic to the
completely latticeL-ordered setFix〈∼,∼〉 and, as such, is itself a completely latticeL-
ordered set. The isomorphism is given byJv,uK→ 〈u,v〉.

Proof. Follows directly from Lemma 15, 14 and definition ofL-order on Fix〈∼,∼〉.

The second main result is that complete tolerances on completely latticeL-ordered
sets can be represented by extensive isotone Galois connections.

Theorem 16 (representation theorem). The mapping

∼ 7→ 〈∼,
∼〉

is an isomorphism betweenCTolU andEIGal(U). Its inverse is

〈 f ,g〉 7→ ∼〈 f ,g〉.

CTolU andEIGal(U) are both completely latticeL-ordered sets.

Proof. Follows from Theorem 11, Lemma 24, Theorem 14, Lemma 25, and Theo-
rem 10.



6 Conclusion

We introduced a notion of complete binary fuzzy relation on complete fuzzy lattice
(completely lattice fuzzy ordered set). The notion leads inordinary (crisp) case to the
classical notion of complete relation on complete lattice,but re-formulated in terms of
the theory of power structures. We proved some basic properties of power structures of
fuzzy ordered sets.

In the main part of the paper, we defined complete fuzzy binaryrelations and com-
plete fuzzy tolerances and investigated their properties.Our main results are covered in
Theorem 15 and 16. We show that a fuzzy complete lattice can befactorized by means
of a complete fuzzy tolerance and that there is a naturally-defined structure of fuzzy
complete lattice on the factor set. This result correspondsto the known result from the
ordinary case [7,16].

In addition, we found an isomorphism between the fuzzy ordered sets of all com-
plete fuzzy tolerances and extensive isotone fuzzy Galois connections on a fuzzy com-
plete lattice. This result is useful for testing fuzzy tolerances for completeness and is
new even in the ordinary (crisp) setting.

Our future research will focus on applying results from thispaper to Formal Concept
Analysis of data with fuzzy attributes [2]. In ordinary setting, there is a correspondence
between complete tolerances on a concept lattice and so called block relations of the
associated formal context [16,8]. Theorem 15 and 16 will help establish a link between
complete fuzzy tolerances on a fuzzy concept lattice and (properly defined) block re-
lations on the formal context. This will allow generalize results from [16,8] to fuzzy
concept lattices.

One of the consequences of our results is that the condition of compatibility from
the definition of complete relation on a completely latticeL-ordered set (Sec. 4) is re-
dundant forL-tolerances. This leads to an open problem, namely, whetherthe condition
of compatibility follows from the other conditions of the definition.
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