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Abstract

In this article we introduce the variety of monadic BL-algebras as BL-algebras endowed
with two monadic operators ∀ and ∃. After a study of the basic properties of this variety we
show that this class is the equivalent algebraic semantics of the monadic fragment of Hájek’s
basic predicate logic. In addition, we start a systematic study of the main subvarieties
of monadic BL-algebras, some of which constitute the algebraic semantics of well-known
monadic logics: monadic Gödel logic and monadic  Lukasiewicz logic. In the last section we
give a complete characterization of totally ordered monadic BL-algebras.

Keywords: Mathematical Fuzzy Logic; Monadic Logic; BL-algebras.

1 Introduction

In his book [15] Hájek introduced BL-algebras as the algebraic semantics of his basic fuzzy
logic, which is a common framework for  Lukasiewicz, Gödel and product logics. Afterwards in
[10] it was shown that Hájek’s basic logic was the logic of continuous t-norms (see also [11]).
Subsequently BL-algebras were studied in great depth, see e.g. [3, 8]. BL-algebras were also seen
to be the subvariety of bounded integral commutative divisible residuated lattices generated by
chains (see [15]).

In [15] Hájek also introduced the basic many-valued predicate logic and proved its strong
completeness with respect to its (linear) general semantics, that is, the semantics based on
Kripke frames where the accessibility relation is total and the truth values lie on a BL-chain.
A brief description of the monadic fragment of this calculus is also presented. Recall that the
monadic fragment consists of the formulas with unary predicates and just one object variable.
In addition, Hájek introduced an S5-like modal fuzzy logic and showed that it is equivalent to
the monadic basic predicate logic. He also proposed a set of axioms and inference rules for the
monadic logic and proved its strong completeness with respect to its (linear) general semantics
in [16].

Monadic algebras have been studied since Halmos introduced monadic Boolean algebras in
[17]. Monadic versions of other algebraic structures have been also greatly studied since then.
The two most important examples are monadic MV-algebras and monadic Heyting algebras.
The former were first studied by Rutledge in [21] and then by Di Nola, Grigolia, Cimadamore
and Dı́az Varela in [13, 12]. The latter were introduced by Monteiro and Varsavsky in [19] and
deeply studied by Bezhanishvili in [4]. Monadic  Lukasiewicz-Moisil algebras were also studied

∗Corresponding author. E-mail addresses: diego.castano@uns.edu.ar (D. Castaño), crcima@criba.edu.ar (C.
Cimadamore), usdiavar@criba.edu.ar (J. P. Dı́az Varela), larueda@criba.edu.ar (L. Rueda)

1

http://arxiv.org/abs/1609.05082v1


by Abad in [1] and Heyting algebras with one quantifier were the research topic of Rueda in
[20].

In this article we will introduce the variety of monadic BL-algebras1and make a standard
study of their basic properties, which includes the characterization of their congruences and
subdirectly irreducible algebras. This will be the main topic of Section 2. In Section 3 we will
give a complete characterization of the range of the monadic operators: m-relatively complete
subalgebras. This characterization will be useful to produce the most important examples of
monadic BL-algebras which are functional monadic BL-algebras. In the next section, Section 4,
we will show that this variety is the equivalent algebraic semantics of Hájek’s monadic basic fuzzy
logic in the sense of Blok and Pigozzi [6] as well as simplify the original axioms proposed by Hájek.
In Section 5 we will see that monadic BL-algebras contain as subvarieties the variety of monadic
MV-algebras and monadic Gödel-algebras, the latter being monadic prelinear Heyting algebras
that satisfy the equation ∀(∃x∨ y) ≈ ∃x∨∀y. We will also introduce the subvariety of monadic
product algebras and give a special characterization of its subdirectly irreducible members. In
addition, in each of these three main subvarieties will give a complete characterization of their
totally ordered members. Moreover, we devote Section 6 to study totally ordered monadic BL-
algebras in depth. Specifically we will show how to define all possible quantifiers on a given
BL-chain. Finally, we conclude the paper describing some of the problems about this variety
that constitute our current work.

Throughout this article we assume that the reader is familiar with propositional as well as
first order basic logic and with structural properties of BL-algebras.

2 Monadic BL-algebras: definition and representation theorems

We start this section with the definition of the variety MBL of monadic BL-algebras. We develop
the basic arithmetical properties and prove that the image of the quantifier is a subalgebra. We
also introduce the notion of monadic filter and show that they correspond to congruences. As a
corollary, we derive a characterization for subdirectly irreducible algebras and discuss a special
BL-subdirect representation for them. We refer the reader to [15] for the definition and basic
properties of BL-algebras.

Definition 2.1. An algebra A = 〈A,∨,∧, ∗,→,∃,∀, 0, 1〉 of type (2, 2, 2, 2, 1, 1, 0, 0) is called a
monadic BL-algebra (an MBL-algebra for short) if 〈A,∨,∧, ∗,→, 0, 1〉 is a BL-algebra and the
following identities are satisfied:

(M1) ∀x→ x ≈ 1.

(M2) ∀(x→∀y) ≈ ∃x→∀y.

(M3) ∀(∀x→ y) ≈ ∀x→∀y.

(M4) ∀(∃x ∨ y) ≈ ∃x ∨ ∀y.

(M5) ∃(x ∗ x) ≈ ∃x ∗ ∃x.

For brevity, if A is a BL-algebra and we enrich it with a monadic structure, we denote the
resulting algebra by 〈A,∃,∀〉. We denote by MBL the variety of MBL-algebras. The next lemma
collects some of the basic properties that hold true in any MBL-algebra.

Lemma 2.2. Let A ∈ MBL and a, b ∈ A.

1We should warn the reader that a different kind of algebraic structures were introduced by Grigolia in [14]
under the same name. However, it may be seen that they are not the equivalent algebraic semantics for Hájek’s
monadic calculus.
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(M6) ∀∃a = ∃a.

(M7) a→∃a = 1.

(M8) ∀(∃a→ b) = ∃a→∀b.

(M9) ∀(a→∃b) = ∃a→∃b.

(M10) ∀1 = 1.

(M11) ∃∀a = ∀a.

(M12) ∀(∀a ∨ b) = ∀a ∨ ∀b.

(M13) ∀0 = 0, ∃1 = 1, and ∃0 = 0.

(M14) ∃∃a = ∃a and ∀∀a = ∀a.

(M15) ∀(∃a→∃b) = ∃a→∃b.

(M16) ∃(∃a→ b) → (∃a→∃b) = 1.

(M17) If a ≤ b, then ∀a ≤ ∀b and ∃a ≤ ∃b.

(M18) ∀(∃a ∨ ∃b) = ∃a ∨ ∃b.

(M19) ∀a = a if and only if ∃a = a.

(M20) ∃(a ∨ b) = ∃a ∨ ∃b.

(M21) ∃(∃a ∗ ∃b) = ∃a ∗ ∃b.

(M22) ∀(a→ b) → (∀a→∀b) = 1.

(M23) ∀(a→ b) → (∃a→∃b) = 1.

(M24) (∀a ∗ ∃b) →∃(a ∗ b) = 1.

(M25) (∀a ∗ ∀b) →∃(a ∗ b) = 1.

(M26) ∃(a ∗ ∃b) = ∃a ∗ ∃b.

(M27) ∃(a ∗ ∀b) = ∃a ∗ ∀b.

(M28) ∃(a→∃b) → (∀a→∃b) = 1.

(M29) ∃(∃a→∃b) = ∃a→∃b.

(M30) ∃(∀a→∀b) = ∀a→∀b.

(M31) ∃(∃a ∧ ∃b) = ∃a ∧ ∃b.

(M32) ∃(a ∧ ∃b) = ∃a ∧ ∃b.

(M33) ∀(∀a→∀b) = ∀a→∀b.

(M34) ∃(∀a ∗ ∀b) = ∀a ∗ ∀b.

(M35) ∀(∀a ∗ ∀b) = ∀a ∗ ∀b.

(M36) ∀(∀a ∧ ∀b) = ∀a ∧ ∀b.

(M37) ∀(a ∧ b) = ∀a ∧ ∀b.

Proof. (M6) From ∃a = ∃a ∨ ∃a and (M4), we have that ∀∃a = ∀(∃a ∨ ∃a) = ∃a ∨ ∀∃a. But
from (M1) we know that ∀∃a ≤ ∃a. So, ∀∃a = ∃a.

(M7) From (M6), (M2) and (M1), we can write 1 = ∃a→∀∃a = ∀(a→∀∃a) ≤ a→∀∃a = a→∃a.
Thus, a→∃a = 1.

(M8) From (M6) and (M3) we have that ∀(∃a→ b) = ∀(∀∃a→ b) = ∀∃a→∀b = ∃a→∀b.

(M9) From (M6) and (M2) we have that ∀(a→∃b) = ∀(a→∀∃b) = ∃a→∀∃b = ∃a→∃b.

(M10) From (M1) and (M3), we have that ∀1 = ∀(∀1 → 1) = ∀1 →∀1 = 1.

(M11) We know that ∀a→∃∀a = 1 by (M7). Furthermore, ∃∀a→∀a = ∀(∀a→∀a) = ∀1 = 1 by
(M2) and (M10). Then, ∃∀a = ∀a.

(M12) Using (M4) and (M11), we have that ∀(∀a ∨ b) = ∀(∃∀a ∨ b) = ∃∀a ∨ ∀b = ∀a ∨ ∀b.

(M13) Clearly ∀0 = 0 and ∃1 = 1 by (M1) and (M7) respectively.

Since ∀0 = 0, we have that ∃0 → 0 = ∃0 →∀0 = ∀(0 →∀0) = ∀(0 → 0) = ∀1 = 1 by (M2)
and (M10). So, ∃0 = 0.

(M14) By (M7) we have that ∃a→∃∃a = 1. On the other hand, from (M9) and (M10) we have
that ∃∃a→∃a = ∀(∃a→∃a) = ∀1 = 1. Thus, ∃∃a = ∃a.

By (M3) and (M10), ∀a → ∀∀a = ∀(∀a → ∀a) = ∀1 = 1. Since ∀∀a→ ∀a = 1, then
∀∀a = ∀a.

(M15) From (M9) and (M14), we have that ∀(∃a→∃b) = ∃∃a→∃b = ∃a→∃b.
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(M16) Using (M15), (M2), and ∃a→ b ≤ ∃a→∃b, we obtain ∃(∃a→ b) → (∃a→ ∃b) = ∃(∃a→
b) →∀(∃a→∃b) = ∀((∃a→ b) →∀(∃a→∃b)) = ∀((∃a→ b) → (∃a→∃b)) = ∀1 = 1.

(M17) If a ≤ b, then ∀a ≤ a ≤ b ≤ ∃b. Thus, by (M3), ∀a→∀b = ∀(∀a→ b) = ∀1 = 1, and, by
(M9), ∃a→∃b = ∀(a→∃b) = ∀1 = 1.

(M18) Using (M4) and (M6), ∀(∃a ∨ ∃b) = ∃a ∨ ∀∃b = ∃a ∨ ∃b.

(M19) If a = ∀a, then ∃a = ∃∀a = ∀a = a by (M11). The converse implication follows analo-
gously using (M6).

(M20) Clearly a∨b ≤ ∃a∨∃b. Thus ∃(a∨b) ≤ ∃(∃a∨∃b), by (M17). But ∃a∨∃b = ∀(∃a∨∃b) by
(M18). Then, taking (M19) into account, ∃(∃a∨∃b) = ∃a∨∃b. Therefore, ∃(a∨b) ≤ ∃a∨∃b.

On the other hand, from ∃a ≤ ∃(a∨ b) and ∃b ≤ ∃(a∨ b), it is clear that ∃a∨∃b ≤ ∃(a∨ b).

(M21) Taking into account that ∃a ∗ ∃b ≥ ∀(∃a ∗ ∃b), (M2) and (M8), we have that ∃(∃a ∗ ∃b)→
(∃a∗∃b) ≥ ∃(∃a∗∃b)→∀(∃a∗∃b) = ∀((∃a∗∃b)→∀(∃a∗∃b)) = ∀(∃a→(∃b→∀(∃a∗∃b))) =
∀(∃a→∀(∃b→ (∃a ∗ ∃b))) = ∀∀(∃a→ (∃b→ (∃a ∗ ∃b))) = ∀∀1 = 1.

(M22) From ∀a ≤ a, we have that a→ b ≤ ∀a→ b. Then, using (M17) and (M3), ∀(a→ b) ≤
∀(∀a→ b) = ∀a→∀b.

(M23) Since b ≤ ∃b, we have that a→ b ≤ a→∃b. Thus, ∀(a→ b) ≤ ∀(a→∃b). Then, from (M9),
we have that ∀(a→ b) → (∃a→∃b) = ∀(a→ b) →∀(a→∃b) = 1.

(M24) From (M23), (M22) and (M10), we have that (∀a ∗∃b)→∃(a ∗ b) = ∀a→ (∃b→∃(a ∗ b)) ≥
∀a→∀(b→ (a ∗ b)) ≥ ∀(a→ (b→ (a ∗ b))) = ∀1 = 1.

(M25) Using (M7), (∀a ∗ ∀b) →∃(a ∗ b) ≥ (∀a ∗ ∀b) → (a ∗ b) = 1.

(M26) Since a ≤ ∃a, then a∗∃b ≤ ∃a∗∃b. Consequently, ∃(a∗∃b) ≤ ∃(∃a∗∃b) = ∃a∗∃b from (M21).
On the other hand, from (M9) and (M8), we have that (∃a ∗∃b)→∃(a ∗∃b) = ∃b→ (∃a→
∃(a∗∃b)) = ∃b→∀(a→∃(a∗∃b)) = ∀(∃b→(a→∃(a∗∃b))) = ∀((a∗∃b)→∃(a∗∃b)) = ∀1 = 1.

(M27) Using (M11) and (M26), we have that ∃(a ∗ ∀b) = ∃(a ∗ ∃∀b) = ∃a ∗ ∃∀b = ∃a ∗ ∀b.

(M28) From (M2), ∃(a→∃b)→(∀a→∃b) = ∃(a→∃b)→∀(∀a→∃b) = ∀((a→∃b)→∀(∀a→∃b)) =
∀((a→∃b) → (∀a→∃b)) = ∀1 = 1.

(M29) Clearly ∃a→∃b ≤ ∃(∃a→∃b). Using (M28) and (M6), ∃(∃a→∃b) ≤ ∀∃a→∃b = ∃a→∃b.

(M30) Using (M11) and (M29), ∃(∀a→∀b) = ∃(∃∀a→∃∀b) = ∃∀a→∃∀b = ∀a→∀b.

(M31) From (M7) we have that ∃(∃a∧∃b) ≥ ∃a∧∃b. Since ∃a∧∃b ≤ ∃a and ∃a∧∃b ≤ ∃b, then
∃(∃a ∧ ∃b) ≤ ∃∃a = ∃a and ∃(∃a ∧ ∃b) ≤ ∃∃b = ∃b. Thus, ∃(∃a ∧ ∃b) ≤ ∃a ∧ ∃b.

(M32) We know that a ∧ ∃b ≤ ∃a ∧ ∃b, then ∃(a ∧ ∃b) ≤ ∃(∃a ∧ ∃b) = ∃a ∧ ∃b by (M31).
On the other hand, (∃a ∧ ∃b) → ∃(a ∧ ∃b) = (∃a ∗ (∃a → ∃b)) → ∃(a ∗ (a → ∃b)) =
(∃a ∗ ∀(a→∃b)) →∃(a ∗ (a→∃b)) = 1 by (M9) and (M24).

(M33) From (M3), ∀(∀a→∀b) = ∀a→∀∀b = ∀a→∀b.

(M34) Using (M11) and (M21), we have that ∃(∀a ∗ ∀b) = ∃(∃∀a ∗ ∃∀b) = ∃∀a ∗ ∃∀b = ∀a ∗ ∀b.

(M35) Using (M34) and (M6), we have that ∀a ∗ ∀b = ∃(∀a ∗ ∀b) = ∀(∃(∀a ∗ ∀b)) = ∀(∀a ∗ ∀b).

(M36) Using (M33) and (M35), we have that ∀(∀a∧∀b) = ∀(∀a∗(∀a→∀b)) = ∀(∀a∗∀(∀a→∀b)) =
∀a ∗ ∀(∀a→∀b) = ∀a ∗ (∀a→∀b) = ∀a ∧ ∀b.
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(M37) From (M36), (∀a∧∀b)→∀(a∧ b) = ∀(∀a∧∀b)→∀(a∧ b) = ∀((∀a∧∀b)→(a∧ b)) = ∀1 = 1.
Then, ∀a ∧ ∀b ≤ ∀(a ∧ b). Since a ∧ b ≤ a and a ∧ b ≤ b, we have ∀(a ∧ b) ≤ ∀a ∧ ∀b.

Remark 2.3. Observe that from (M6) and (M11), x = ∀y for some y if and only if x = ∃z for
some z. Thus ∃A = {∃a : a ∈ A} = {∀a : a ∈ A} = ∀A. Using this fact, from (M2), (M3) and
(M4), we deduce that:

• ∀(a→ c) = ∃a→ c,

• ∀(c→ a) = c→∀a,

• ∀(c ∨ a) = c ∨ ∀a,

for any a ∈ A and c ∈ ∀A. Compare with the axioms of the logic S5(C) in Section 4.

Remark 2.4. Note that the identity ∀(x ∗ x) ≈ ∀x ∗ ∀x holds in every monadic MV-algebra and
trivially in any monadic Gödel algebra (cf. Section 5). However, this equation is not valid in any
monadic BL-algebra. For example, let L2 and L3 be the 2-element and 3-element MV-chains,
respectively, and consider the ordinal sum A = L3⊕L2. If we define the quantifiers on A in the
following way:

a 01
1
2 02 1

∀a 01
1
2

1
2 1

∃a 01
1
2 1 1

we get a monadic BL-chain 〈A,∃,∀〉. In this algebra ∀02 ∗ ∀02 = 1
2 ∗ 1

2 = 01, but ∀(02 ∗ 02) =
∀02 = 1

2 .

Lemma 2.5. If A ∈ MBL, then ∃A = ∀A and ∃A is a BL-subalgebra of A.

Proof. We already showed that ∀A = ∃A. From (M7), (M13), (M20), (M31), (M21) and (M29),
we obtain that ∃A is a BL-subalgebra of A.

Given a monadic BL-algebra A, a subset F ⊆ A is a monadic filter of A if F is a filter
and ∀a ∈ F for each a ∈ F . In the following, we characterize the congruences of each MBL-
algebra A by means of monadic filters in the standard way. More precisely, we establish an
order isomorphism from the lattice ConMBL(A) of congruences of A onto the lattice Fm(A) of
monadic filters of A, both ordered by inclusion. Moreover, we prove that the lattice Fm(A) is
isomorphic to the lattice F(∃A) of filters of the BL-algebra ∃A.

If A ∈ MBL and X ⊆ A, X 6= ∅, the monadic filter generated by X is the set

MFg(X) = {a ∈ A : ∀x1 → (∀x2 → (· · · (∀xn → a) · · · )) = 1, where x1, x2, . . . , xn ∈ X}

= {a ∈ A : ∀x1 ∗ ∀x2 ∗ · · · ∗ ∀xn ≤ a, where x1, x2, . . . , xn ∈ X} .

In particular, if X = {b} then MFg({b}) = MFg(b) = {a ∈ A : (∀b)n ≤ a for some n ∈ N}. Let
us observe also that MFg(X) = Fg(∀X), the filter generated by ∀X.

Theorem 2.6. Let A ∈ MBL. The correspondence ConMBL(A) → Fm(A) defined by θ 7→ 1/θ
is an order isomorphism whose inverse is given by F 7→ θF =

{

(a, b) ∈ A2 : (a→ b) ∗ (b→ a) ∈ F
}

.

Proof. Let θ ∈ ConMBL(A). Let us consider the filter 1/θ and let a ∈ 1/θ, that is, a ≡ 1
(mod θ). Since θ is a congruence, we have that ∀a ≡ ∀1 (mod θ) and from here we clearly
obtain that ∀a ∈ 1/θ. Consequently, 1/θ is a monadic filter. Let F ∈ Fm(A). Let us prove
that θF ∈ ConMBL(A). Indeed, let a, b ∈ A such that (a→ b) ∗ (b→ a) ∈ F . Then, a→ b ∈ F
and b→ a ∈ F . So ∀(a→ b) ∈ F and ∀(b→ a) ∈ F . Since F is increasing and from (M22), we
obtain that ∀a→∀b ∈ F and ∀b→∀a ∈ F . Thus, (∀a→∀b) ∗ (∀b→∀a) ∈ F . Furthermore, from
(M23) and considering again that ∀(a→ b) ∈ F , ∀(b→ a) ∈ F and F is increasing, we have that
(∃a→∃b) ∗ (∃b→∃a) ∈ F . Thus, θF ∈ ConMBL(A). Now, it is straigthforward to see that the
correspondence θ 7→ 1/θ is an order isomorphism whose inverse is given by F 7→ θF .
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The following theorem is also routine.

Theorem 2.7. Let A ∈ MBL. The correspondence Fm(A) → F(∃A) defined by F 7→ F ∩ ∃A
is an order isomorphism whose inverse is given by M 7→ MFg(M).

Corollary 2.8. If A ∈ MBL then

ConMBL(A) ∼= Fm(A) ∼= F(∃A) ∼= ConBL(∃A).

As an immediate consequence, we have the following results.

Corollary 2.9. Let A ∈ MBL.

(1) A is subdirectly irreducible (simple) if and only if ∃A is a subdirectly irreducible (simple)
BL-algebra.

(2) If A is subdirectly irreducible, then ∃A is totally ordered.

(3) A is a subdirect product of a family of MBL-algebras {Ai : i ∈ I} such that ∃Ai is totally
ordered.

To close this section of basic properties we will show an extension to monadic BL-algebras
of a representation theorem for monadic MV-algebras showed by Rutledge in [21].

Lemma 2.10. Let A be an MBL-algebra and F be a filter in A. For any x, y ∈ A,

F = Fg(F ∪ {x→ y}) ∩ Fg(F ∪ {y→ x}).

Proof. The forward inclusion is straightforward. Now assume z is an element of both Fg(F ∪
{x→y}) and Fg(F∪{y → x}). Then, there are f1, f2 ∈ F , n1, n2 ∈ N0 such that f1∗(x→y)n1 ≤ z
and f2 ∗(y→x)n2 ≤ z. If we let f = f1 ∗f2 and n = max{n1, n2}, it follows that f ∗(x→y)n ≤ z
and f ∗ (y→ x)n ≤ z. Using the residuation condition, (x→ y)n ≤ f → z and (y→ x)n ≤ f → z.
Thus we get (x→ y)n ∨ (y→ x)n ≤ f → z. But (x→ y)n ∨ (y→ x)n = ((x→ y) ∨ (y→ x))n = 1,
so f ≤ z and z ∈ F .

Recall that a filter F in a BL-algebra A is said to be prime if for every a, b ∈ A, either
a→ b ∈ F or b→ a ∈ F . Observe that F is prime if and only if A/F is totally ordered.

Lemma 2.11. Let A be an MBL-algebra such that ∃A is totally ordered. Given a ∈ A, a 6= 1,
there exists a prime filter P in A such that a ∨ ∀r 6∈ P for any r 6= 1.

Proof. Consider C = {a ∨ ∀r : r 6= 1}. Note that 1 6∈ C, since a ∨ ∀r = 1 implies that
1 = ∀(a ∨ ∀r) = ∀a ∨ ∀r and this, in turn, would imply that a = 1 or r = 1.

Let F be the family of filters F in A such that F ∩C = ∅. The above paragraph shows that
{1} ∈ F , so that F is nonempty. In addition, it is straightfoward to verify that any chain in F
has an upper bound in F . Hence, by Zorn’s Lemma, there exists a maximal filter P in F .

We claim that P is prime. Indeed, let x, y ∈ A and note that

P = Fg(P ∪ {x→ y}) ∩ Fg(P ∪ {y→ x}).

If we assume that neither Fg(P ∪ {x → y}) nor Fg(P ∪ {y→ x}) belongs to F , then there are
r1, r2 6= 1 such that a∨∀r1 ∈ Fg(P ∪{x→y}) and a∨∀r2 ∈ Fg(P ∪{y → x}). Since ∀r1 and ∀r2
are comparable, it follows that one of them belongs to both filters. Hence one of them belongs
to P , a contradiction. This shows that either Fg(P ∪ {x→ y}) ∈ F or Fg(P ∪ {y→ x}) ∈ F .

Assume the first option is true. By the maximality of P , P = Fg(P ∪{x→y}), so x→y ∈ P .
Analogously, if P = Fg(P ∪ {y→ x}), y→ x ∈ P .
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Theorem 2.12. Given an MBL-algebra A, there exists a subdirect representation of the un-
derlying BL-algebra A ≤

∏

i∈I Ai, where each Ai is a totally ordered BL-algebra and ∃A is
embedded in Ai via the corresponding projection map.

Proof. For each a ∈ A, a 6= 1, let Pa be one of the prime filters provided by the previous lemma.
Clearly

⋂

a6=1 Pa = {1} and we obtain a natural embedding A →
∏

a6=1 A/Pa. To close the proof
we need only show that the natural map A → A/Pa is injective on ∃A. Indeed, suppose there
were r1, r2 ∈ A such that ∀r1 < ∀r2 and ∀r1/Pa = ∀r2/Pa. We have that ∀r2→∀r1 = ∀(∀r2→∀r1)
and ∀r2 →∀r1 6= 1. Hence, we know that a ∨ (∀r2 →∀r1) 6∈ Pa, which is a contradiction.

3 Building MBL-algebras from m-relatively complete subalge-

bras

In this section we characterize those subalgebras of a given BL-algebra that may be the range
of the quantifiers ∀ and ∃. As a consequence of this characterization, we build the most im-
portant examples of monadic BL-algebras, which we call functional monadic BL-algebras. This
construction will allow us in the next section to prove the main result of this article: monadic
BL-algebras are the equivalent algebraic semantics of Hájek’s monadic fuzzy logic.

Given a BL-algebra A, we say that a subalgebra C ≤ A is m-relatively complete if the
following conditions hold:

(s1) For every a ∈ A, the subset {c ∈ C : c ≤ a} has a greatest element and {c ∈ C : c ≥ a} has
a least element.

(s2) For every a ∈ A and c1, c2 ∈ C such that c1 ≤ c2 ∨ a, there exists c3 ∈ C such that
c1 ≤ c2 ∨ c3 and c3 ≤ a.

(s3) For every a ∈ A and c1 ∈ C such that a ∗ a ≤ c1, there exists c2 ∈ C such that a ≤ c2 and
c2 ∗ c2 ≤ c1.

Condition (s2) may be replaced by either of the following:

(s2′) For every a ∈ A and c1, c2 ∈ C such that c1 = c2 ∨ a, there exists c3 ∈ C such that
c1 = c2 ∨ c3 and c3 ≤ a.

(s2′′) If 1 = c1 ∨ a for some c1 ∈ C, a ∈ A, there exists c2 ∈ C such that 1 = c1 ∨ c2 and c2 ≤ a.

Indeed, (s2′) is an easy consequence of (s2) and (s2′′) follows from (s2′) by setting c1 = 1.
Now assume (s2′′). If c1 ≤ c2 ∨ a, it follows that 1 = (c1 → c2) ∨ (c1 → a). Hence, there exists
c3 ∈ B such that 1 = (c1 → c2)∨ c3 and c3 ≤ c1→ a. Thus c1 ∗ c3 ≤ a and c1 → (c2 ∨ (c1 ∗ c3)) =
(c1 → c2) ∨ (c1 → (c1 ∗ c3)) ≥ (c1 → c2) ∨ c3 = 1.

Furthermore observe that if C is totally ordered, condition (s2′′) may be replaced by the
following simpler equivalent form:

(s2′′ℓ ) If 1 = c ∨ a for some c ∈ C, a ∈ A, then c = 1 or a = 1.

Theorem 3.1. Given a BL-algebra A and an m-relatively complete subalgebra C ≤ A, if we
define on A the operations

∃a := min{c ∈ C : c ≥ a}, ∀a := max{c ∈ C : c ≤ a},

then 〈A,∃,∀〉 is a monadic BL-algebra such that ∀A = ∃A = C. Conversely, if A is a monadic
BL-algebra, then ∀A = ∃A is an m-relatively complete subalgebra of A.

Proof. Clearly condition (s1) from the definition of m-relatively complete subalgebra guarantees
the existence of ∀a and ∃a for every a ∈ A. It remains to show that 〈A,∃,∀〉 satisfies axioms
(M1)–(M5). Let a, b ∈ A.
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(M1) From the definition of ∀a, it is clear that ∀a ≤ a. Thus ∀a→ a = 1.

(M2) Since, by definition, a ≤ ∃a, it follows that ∃a→∀b ≤ a→ ∀b. Then ∃a → ∀b ∈ {c ∈ C :
c ≤ a→ ∀b}. Let us see that ∃a→∀b = max{c ∈ C : c ≤ a→ ∀b}. Indeed, if c ∈ C and
c ≤ a→∀b, then a ≤ c→∀b. Then, by definition of ∃a, ∃a ≤ c→∀b. Thus c ≤ ∃a→∀b.
This shows that ∀(a→∀b) = ∃a→∀b.

(M3) From ∀b ≤ b, we get ∀a→∀b ≤ ∀a→b. In addition, if c ∈ C and c ≤ ∀a→b, then c∗∀a ≤ b.
Thus c ∗ ∀a ≤ ∀b and c ≤ ∀a→∀b. Hence we have shown that ∀(∀a→ b) = ∀a→∀b.

(M4) Since ∀b ≤ b, ∃a ∨ ∀b ≤ ∃a ∨ b. Now, if c ∈ C and c ≤ ∃a ∨ b, by condition (s2) in the
definition of m-relatively complete subalgebra, there must be c′ ∈ C such that c ≤ ∃a∨ c′

and c′ ≤ b. Then c′ ≤ ∀b and c ≤ ∃a ∨ ∀b. Thus, we have shown that ∀(∃a ∨ b) = ∃a∨ ∀b.

(M5) We know that a ∗ a ≤ ∃a ∗ ∃a. In addition, if c ∈ C and a ∗ a ≤ c, by condition (s3), there
is c′ ∈ C such that c′ ∗ c′ ≤ c and a ≤ c′. Then ∃a ≤ c′ and ∃a ∗ ∃a ≤ c′ ∗ c′ ≤ c. We have
thus proved that ∃(a ∗ a) = ∃a ∗ ∃a.

Conversely, let 〈A,∃,∀〉 be a monadic BL-algebra. From Lemma 2.5, we already know that
∀A is a BL-subalgebra of A. Let us now show that conditions (s1)–(s3) hold.

(s1) Using the properties from Lemma 2.2, we have that if c ≤ a for some c ∈ ∀A, then
c = ∀c ≤ ∀a ≤ a. Thus ∀a = max{c ∈ ∀A : c ≤ a}. Analogously ∃a = min{c ∈ ∀A : c ≥ a}.

(s2) Assume c1 ≤ c2 ∨ a for some c1, c2 ∈ ∀A, a ∈ A. Then, using the properties in Lemma 2.2
and the axioms for monadic BL-algebras, we get that c1 ≤ c2 ∨ ∀a and ∀a ≤ a.

(s3) Similarly to the previous paragraph, if a∗a ≤ c for some c ∈ ∀A and a ∈ A, then ∃a∗∃a ≤ c
and a ≤ ∃a, ∃a ∈ ∀A.

This completes the proof that ∀A is an m-relatively complete subalgebra of A.

The following is the most important example of monadic BL-algebras built according to the
previous theorem.

Example 3.2. Consider a BL-chain A and a nonempty set X. We restrict our attention to
those elements f ∈ AX such that inf{f(x) : x ∈ X} and sup{f(x) : x ∈ X} both exist in
A. We denote by S the subset of AX of these “safe” elements. For every f ∈ S, we define:
(∀∧f)(x) = inf{f(y) : y ∈ X} and (∃∨f)(x) = sup{f(y) : y ∈ X}, x ∈ X. Note that ∀∧f and
∃∨f are constant maps.

Let B be a BL-subalgebra of AX contained in S such that for every f ∈ B, ∀∧f,∃∨f ∈ B.
We claim that B has a natural structure of monadic BL-algebra.

Let C be the subset of constant maps of AX . We claim that B ∩ C is an m-relatively
complete subalgebra of B. Indeed, since B and C are subalgebras of AX , it is clear that B∩C

is a subalgebra of B.
If f ∈ B, then ∀∧f ∈ B, so max{c ∈ B ∩ C : c ≤ f} = ∀∧f ∈ B. Analogously, min{c ∈

B ∩ C : c ≥ f} = ∃∨f ∈ B. This shows that condition (s1) holds.
Since B∩C is totally ordered, we may check condition (s2′′ℓ ) instead of (s2). Assume 1 = c∨f

for some f ∈ B and c ∈ B ∩C. Put c(x) = c0 ∈ A, x ∈ X. Then c0 ∨ f(x) = 1 for every x ∈ X.
As A is totally ordered, either c0 = 1 or f(x) = 1 for every x ∈ X. Thus (s2′′ℓ ) holds.

Finally, let us show condition (s3). Assume f ∗ f ≤ c for some f ∈ B and c ∈ B ∩ C. Then
f(x) ∗ f(x) ≤ c0 for every x ∈ X. Moreover, f(x) ∗ f(y) ≤ c0 for every x, y ∈ X, since

f(x) ∗ f(y) ≤ (f(x) ∨ f(y))2 = f(x)2 ∨ f(y)2 ≤ c0.
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Hence, f(x) ≤ f(y) → c0 for a fixed y ∈ X and every x ∈ X. Thus (∃∨f)(x) ≤ f(y) → c0
(remember that ∃∨f is a constant map). Now f(y) ≤ (∃∨f)(x) → c0 for every y ∈ Y . Then,
(∃∨f)(x) ≤ (∃∨f)(x) → c0 and (∃∨f)(x) ∗ (∃∨f)(x) ≤ c0. This concludes the proof that B ∩C

is an m-relatively complete subalgebra of B.
By the previous theorem, 〈B,∃∨,∀∧〉 is a monadic BL-algebra. Monadic BL-algebras of this

form are called functional monadic BL-algebras.
Observe that if A is |X|-complete, then S = AX and 〈AX ,∃∨,∀∧〉 is a functional monadic

BL-algebra.

Remark 3.3. Observe that in the previous example the condition that A is totally ordered was
only necessary to prove condition (s2′′ℓ ) in the definition of m-relatively complete subalgebras.
In fact, there exist (non totally ordered) complete BL-algebras A for which the subalgebra C of
constant maps in AX is not m-relatively complete. For example, consider A = 〈N0,∨,∧, ∗,→
, 0, 1〉, where N0 is the set of nonnegative integers, ∧ is the least common multiple, ∨ is the
greatest common divisor, ∗ is ordinary multiplication and its residuum is given by

a→ b =

{

1 if a = b,
b

gcd(a,b) if a 6= b.

It is easy to check that A is a complete BL-algebra. Now consider the elements c, f ∈ AN given
by c(n) = 2, f(n) = pn (the n-th odd prime), for every n ∈ N. Then c ∨ f = 1. However, the
only constant map below f is 0, and then c ∨ 0 = c 6= 1. This shows that condition (s2′′) does
not hold. Observe that we may define an algebra 〈AN,∃∨,∀∧〉 that satisfies all conditions of
monadic BL-algebras but (M4). In particular, this shows that axiom (M4) is independent of the
rest of the axioms.

4 Hájek’s modal and monadic fuzzy logic

In his monograph [15] Hájek defined the fuzzy modal logic S5(BL) as a modal expansion of his
basic logic. Later, in [16], he presented an axiomatization for this logic and proved its strong
completeness with respect to its generalized semantics. In this section we will show that monadic
BL-algebras are the equivalent algebraic semantics of the logic S5(BL).

The modal logic S5(BL) is equivalent to the monadic fragment mBL∀ of the fuzzy predicate
calculus BL∀, which contains only unary predicates and just one object variable x (without
object constants). The propositional variable pi is associated with the unary predicate Pi(x)
and the modalities � and ♦ correspond to the quantifiers (∀x) and (∃x), respectively. For this
reason, and to continue the algebraic tradition of naming monadic the algebraic semantics of
monadic fragments of several logics (Boolean, intuitionistic,  Lukasiewicz, etc.), we opted to call
the algebras corresponding to the logic S5(BL) monadic BL-algebras. However, in this section
we will work in the language of the modal logic S5(BL) instead of in the monadic fuzzy language.

oWe now recall the basic definitions of S5(BL). The axiom schemata are the ones for the
basic logic BL together with the following modal axiom schemata (ν stands for any propositional
combination of formulas beginning with � or ♦):

(�1) �ϕ→ ϕ

(♦1) ϕ→ ♦ϕ

(�2) �(ν → ϕ) → (ν →�ϕ)

(♦2) �(ϕ→ ν) → (♦ϕ→ ν)

(�3) �(ν ∨ ϕ) → (ν ∨�ϕ)

9



(♦3) ♦(ϕ ∗ ϕ) ≡ ♦ϕ ∗ ♦ϕ

where ϕ ≡ ψ stands for (ϕ→ ψ) ∧ (ψ→ ϕ).
The inference rules of S5(BL) are:

(MP) ϕ,ϕ→ ψ ⊢ ψ

(Nec) ϕ ⊢ �ϕ

The general semantics of S5(BL) is given by Kripke models. A Kripke model for S5(BL) is a
triple K = 〈X, e,A〉 where X is a nonempty set of worlds, A is a BL-chain and e : Prop×X → A
is an evaluation map, Prop being the set of propositional variables. The evaluation map extends
to any formula:

• e(0, x) = 0A, e(1, x) = 1A.

• e(ϕ ∧ ψ, x) = e(ϕ, x) ∧A e(ψ, x), and the same for ∨, → and ∗.

• e(�ϕ, x) = inf{e(ϕ, y) : y ∈ X}.

• e(♦ϕ, x) = sup{e(ϕ, y) : y ∈ X}.

Note that e(�ϕ, x) and e(♦ϕ, x) may be undefined. We say that the Kripke model K is safe if
e(�ϕ, x) and e(♦ϕ, x) are defined for every formula ϕ.

We write K |= ϕ if e(ϕ, x) = 1 for every x ∈ X. K is a model of a set of formulas Γ if K |= ϕ
for every ϕ ∈ Γ.

Theorem 4.1 (Hájek [16, Theorem 2]). The modal logic S5(BL) is strongly complete with respect
to its general semantics, i.e. the following are equivalent for every set of formulas Γ ∪ {ϕ}:

(1) Γ ⊢ ϕ

(2) K |= ϕ for every safe model K of Γ.

Remark 4.2. Consider a safe Kripke model K = 〈X, e,A〉. Note that we can turn the map
e : Prop ×X → A into a map e : Prop → AX given by the relation e(p)(x) = e(p, x). Since K
is safe, e extends to formulas in the following way:

• e(0) = 0A
X

, e(1) = 1A
X

,

• e(ϕ ∧ ψ) = e(ϕ) ∧A
X

e(ψ), and the same for ∨, → and ∗,

• e(�ϕ) = ∀∧e(ϕ),

• e(♦ϕ) = ∃∨e(ϕ).

Thus, it is clear that {e(ϕ) : ϕ formula} ⊆ AX is the universe of a monadic functional BL-algebra
(see Example 3.2).

Following the notation of the last remark, we can rewrite Hájek’s completeness theorem as
follows.

Theorem 4.3. The following are equivalent for every set of formulas Γ ∪ {ϕ}:

(1) Γ ⊢ ϕ

(2) e(ϕ) = 1 for every e : Prop → B, where 〈B,∃∨,∀∧〉 is any functional monadic BL-algebra
and e(γ) = 1 for every γ ∈ Γ.
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Theorem 4.4. The variety MBL of monadic BL-algebras is the equivalent algebraic semantics
for the logic S5(BL) (and mBL∀).

Proof. Following [6], it is enough to show the next two conditions for every set of formulas
Γ ∪ {ϕ,ψ}:

(ALG1) Γ ⊢ ϕ if and only if {γ ≈ 1 : γ ∈ Γ} |=MBL ϕ ≈ 1.

(ALG2) ϕ ≈ ψ |=|=MBL (ϕ→ ψ) ∧ (ψ→ φ) ≈ 1.

Condition (ALG2) is trivially verified. We show condition (ALG1).
For the forward implication, note that if Γ ⊢ ϕ, there exists a proof of ϕ from Γ and the

axioms of S5(BL) by successive application of the inference rules (MP) and (Nec). Thus, it is
enough to show that the equation ϕ ≈ 1 is valid in MBL for every axiom ϕ of S5(BL) and
that the inference rules preserve validity. The former statement follows from the definition of
monadic BL-algebras and Lemma 2.2. The preservation of (MP) is trivial and the preservation
of (Nec) follows from (M10).

For the converse implication, simply observe that, since 〈B,∃∨,∀∧〉 ∈ MBL, condition (2) of
Theorem 4.3 holds.

Thus, from the general theory of algebraic logic, we get the next corollary.

Corollary 4.5. There is a one-one correspondence between axiomatic extension of S5(BL) (or
mBL∀) and subvarieties of MBL.

From the same theorem we can also derive an important algebraic result for the variety
MBL.

Corollary 4.6. The variety MBL is generated (as a variety) by the functional monadic BL-
algebras.

As a consequence of the algebraization of S5(BL) by monadic BL-algebras, we may give a
simplified set of axioms for this calculus. We define a calculus S5’(BL) whose axiom schemata
are all the ones for basic logic BL together with the following axiom schemata:

(A1) �ϕ→ ϕ

(A2) �(ϕ→�ψ) ≡ (♦ϕ→�ψ)

(A3) �(�ϕ→ ψ) ≡ (�ϕ→�ψ)

(A4) �(♦ϕ ∨ ψ) ≡ (♦ϕ ∨�ψ)

(A5) ♦(ϕ ∗ ϕ) ≡ ♦ϕ ∗ ♦ϕ

and the same rules of inference: modus ponens and necessitation. It is easy to prove in the stan-
dard way (by means of a Lindenbaum-Tarski algebra) that this calculus is sound and complete
with respect to a semantics based on monadic BL-algebras. Indeed, the only non-immediate
results are the content of the following lemma.

Lemma 4.7. In S5’(BL):

(1) ϕ ≡ ψ ⊢ �ϕ ≡ �ψ.

(2) ϕ ≡ ψ ⊢ ♦ϕ ≡ ♦ψ.
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Proof. To prove (1), note that, by (A1), ⊢ �ϕ→ϕ, hence, by transitivity of implication, ϕ→ψ ⊢
�ϕ→ ψ. Using necessitation, ϕ→ ψ ⊢ �(�ϕ→ ψ), and using (A3), we get ϕ→ ψ ⊢ �ϕ→�ψ.
By symmetry, we get (1).

To prove (2), first note that ⊢ ♦ϕ ≡ �♦ϕ. Indeed, using basic logic theorems, (1), (A4) and
(A1), the following equivalences are valid: �♦ϕ ≡ �(♦ϕ ∨ ♦ϕ) ≡ ♦ϕ ∨�♦ϕ ≡ ♦ϕ.

Note also that ⊢ ψ→♦ψ. Indeed, since ⊢ ♦ψ ≡ �♦ψ, we get that ⊢ ♦ψ→�♦ψ. Using (A2),
⊢ �(ψ→�♦ψ), and again using that ⊢ ♦ψ ≡ �♦ψ and (1), we get that ⊢ �(ψ→ ♦ψ). Finally,
using (A1), we obtain that ⊢ ψ→ ♦ψ.

Now, by transitivity, ϕ→ψ ⊢ ϕ→♦ψ. By necessitation, ϕ→ψ ⊢ �(ϕ→♦ψ). Now, using the
equivalences �(ϕ→♦ψ) ≡ �(ϕ→�♦ψ) ≡ ♦ϕ→�♦ψ ≡ ♦ϕ→♦ψ, we get that ϕ→ψ ⊢ ♦ϕ→♦ψ.
By symmetry, we conclude (2).

5 Main subvarieties

In this section we focus our study on three main subvarieties of MBL: monadic MV-algebras,
monadic Gödel algebras and monadic product algebras. These correspond naturally to the
monadic expansions of the most important extensions of Hájek’s basic logic:  Lukasiewicz logic,
Gödel logic and product logic, respectively. In each of these subvarieties we will also give explicit
descriptions of their totally ordered structures.

5.1 Monadic MV-algebras

MV-algebras are the equivalent algebraic semantics of the infinite-valued  Lukasiewicz logic (see
[9]). It is widely known that they coincide with involutive BL-algebras. In other words, the
variety of MV-algebras is term-equivalent to the subvariety of BL determined by the equation
¬¬x ≈ x.

In his Ph. D. thesis, Rutledge defined and studied monadic MV-algebras as a way to study
the infinite-many-valued  Lukasiewicz predicate calculus. More recently, in [12], we studied in
depth the lattice of subvarieties of these algebras.

In this section we will show that the variety defined by Rutledge is term-equivalent to the
subvariety of MBL determined by the equation ¬¬x ≈ x.

Let us recall the original definition of monadic MV-algebra.

Definition 5.1. An algebra A = 〈A,⊕,¬,∃, 0〉 of type (2, 1, 1, 0) is called a monadic MV-
algebra (an MMV-algebra for short) if 〈A,⊕,¬, 0〉 is an MV-algebra and ∃ satisfies the following
identities:

(MV1) x→∃x ≈ 1.

(MV2) ∃(x ∨ y) ≈ ∃x ∨ ∃y.

(MV3) ∃¬∃x ≈ ¬∃x.

(MV4) ∃(∃x⊕ ∃y) ≈ ∃x⊕ ∃y.

(MV5) ∃(x ∗ x) ≈ ∃x ∗ ∃x.

(MV6) ∃(x⊕ x) ≈ ∃x⊕ ∃x.

In an MMV-algebra A, we define ∀ : A → A by ∀a = ¬∃¬a, for every a ∈ A. Clearly,
∃a = ¬∀¬a. In the following lemma we collect some properties of MMV-algebras (see [12]).
Recall that on each (monadic) MV-algebra A we can define the operations ∗, →, ∧ and ∨ as
follows: x ∗ y := ¬(¬x⊕¬y), x→ y := ¬x⊕ y, x ∧ y := x ∗ (x→ y) and x ∨ y := ¬(¬x⊕ y) ⊕ y.

Lemma 5.2. Let A = 〈A,⊕,¬,∃, 0〉 be an MMV-algebra. For every a, b ∈ A, the following
properties hold:

(1) ∀a→ a = 1.

(2) ∀¬∀a = ¬∀a.
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(3) ∀(∃a ∨ b) = ∃a ∨ ∀b.

(4) ∀(a→ b) ≤ ∀a→∀b or, equivalently, ∀(¬a⊕ b) ≤ ¬∀a⊕ ∀b.

(5) ∀(a ∧ b) = ∀a ∧ ∀b.

(6) ∀(∀a⊕ ∀b) = ∀a⊕ ∀b.

(7) ∀(a ∗ a) = ∀a ∗ ∀a.

We collect here two properties of MV-algebras that will be useful later.

Lemma 5.3. The following properties hold true in any MV -algebra A = 〈A,⊕,¬, 0〉, where a, b
denote arbitrary elements of A:

(1) a⊕ b = (a→ (a ∗ b)) → b.

(2) (a→ b)2 → (2a→ 2b) = 1.

We now turn to derive some useful properties of involutive monadic BL-algebras. Some of
the proofs are inspired by syntactic proofs given by Hájek in [15]. On each BL-algebra A we
define the operations ¬ and ⊕ as follows: ¬x := x→ 0 and x⊕ y := ¬x→ y.

Lemma 5.4. The following properties hold in any MBL-algebra A for every a ∈ A:

(1) ∀¬∀a = ¬∀a.

(2) ¬∃a = ∀¬a.

Moreover, if ¬¬a = a for every a ∈ A, the following also hold for arbitrary a, b in A:

(3) ¬∀a = ∃¬a.

(4) a⊕ b = (∀(a ∗ b) ⊕ ¬a) → b.

(5) ∀(a ∗ ∃b) = ∀a ∗ ∃b.

(6) ∃(∃a→ b) = ∃a→∃b.

Proof. (1) By (M3), ∀¬∀a = ∀(∀a→ 0) = ∀a→∀0 = ∀a→ 0 = ¬∀a.

(2) By (M9), ¬∃a = ∃a→ 0 = ∃a→∃0 = ∀(a→∃0) = ∀¬a.

(3) From (2), ¬∀a = ¬∀¬¬a = ¬¬∃¬a = ∃¬a.

(4) Since ¬a ≤ ∀(a ∗ b) ⊕ ¬a, we have that ¬a→ b ≥ (∀(a ∗ b) ⊕ ¬a) → b. On the other hand,
using that ∀(a ∗ b) ⊕¬a ≤ (a ∗ b) ⊕¬a, we get (∀(a ∗ b) ⊕¬a) → b ≥ ((a ∗ b) ⊕¬a) → b and
(¬a→ b) → ((∀(a ∗ b) ⊕¬a)→ b) ≥ (¬a→ b) → (((a ∗ b) ⊕¬a)→ b) = 1 from Lemma 5.3 (1).

(5) Since ∀a∗∃b ≤ a∗∃b, then ∀(∀a∗∃b) ≤ ∀(a∗∃b). Thus ∀a∗∃b ≤ ∀(a∗∃b). On the other hand,
we intend to see that ∀(a ∗∃b)→ (∀a ∗∃b) = 1. First observe that (¬∃b→a)∨ (a→¬∃b) = 1
then, by (4), 1 = ((∀(a ∗ ∃b) ⊕ ¬∃b) → a) ∨ (a→ ¬∃b). Since (a→ ¬∃b) → ¬∀(a ∗ ∃b) =
¬(a ∗ ∃b) → ¬∀(a ∗ ∃b) = 1, we have that ((∀(a ∗ ∃b) ⊕ ¬∃b) → a) ∨ ¬∀(a ∗ ∃b) = 1 and
1 = ∀(((∀(a ∗ ∃b) ⊕ ¬∃b) → a) ∨ ¬∀(a ∗ ∃b)) = ∀((∀(a ∗ ∃b) ⊕ ¬∃b) → a) ∨ ¬∀(a ∗ ∃b), from
(M12).

We claim that ∀((∀(a ∗ ∃b)⊕¬∃b)→ a) ≤ ∀(a ∗ ∃b)→ (∀a ∗ ∃b). From this and the fact that
¬∀(a ∗ ∃b) ≤ ∀(a ∗ ∃b) → (∀a ∗ ∃b) it follows immediately that ∀(a ∗ ∃b) → (∀a ∗ ∃b) = 1.

It only remains to show that ∀((∀(a ∗ ∃b) ⊕ ¬∃b) → a) ≤ ∀(a ∗ ∃b) → (∀a ∗ ∃b). Indeed,
using (M8) and (M3), we have that ∀((∀(a ∗ ∃b) ⊕ ¬∃b) → a) = ∀((∃b→∀(a ∗ ∃b)) → a) =
∀(∀(∃b→(a∗∃b))→a) = ∀(∃b→(a∗∃b))→∀a = (∃b→∀(a∗∃b))→∀a. Since ∀a ≤ ∃b→(∀a∗∃b),
it follows that (∃b→ ∀(a ∗ ∃b)) → ∀a ≤ (∃b→ ∀(a ∗ ∃b)) → (∃b→ (∀a ∗ ∃b)) = (∃b ∗ (∃b→
∀(a ∗ ∃b))) → (∀a ∗ ∃b) = (∃b ∧ ∀(a ∗ ∃b)) → (∀a ∗ ∃b) = ∀(a ∗ ∃b) → (∀a ∗ ∃b).
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(6) By (2), (5), and (3), ¬∃(∃a→ b) = ∀¬(∃a→ b) = ∀((¬b→ (∃a→ 0)) → 0) = ∀(¬b ∗ ∃a) =
∀¬b ∗ ∃a = ¬((∀¬b ∗ ∃a) → 0) = ¬(∃a→ (∀¬b→ 0)) = ¬(∃a→¬∀¬b) = ¬(∃a→ ∃b), then
∃(∃a→ b) = ∃a→∃b.

We now prove the main theorem of this subsection.

Theorem 5.5. The subvariety of MBL determined by the equation ¬¬x ≈ x is term-equivalent
to the variety of MMV-algebras.

Proof. Consider first an MBL-algebra A = 〈A,∨,∧, ∗,→,∃,∀, 0, 1〉 that satisfies the equation
¬¬x ≈ x. We define A′ = 〈A,⊕,¬,∃, 0〉 where ¬x := x→ 0 and x ⊕ y := ¬x → y. We claim
that A′ is an MMV-algebra. Indeed, conditions (MV1), (MV2), and (MV5) are precisely (M7),
(M20), and (M5), respectively. Condition (MV3) follows from ∃¬∃a = ∃(∃a→0) = ∃(∃a→∃0) =
∃a→ ∃0 = ∃a→ 0 = ¬∃a. From (MV3) and (M29) we have that ∃(∃a⊕ ∃b) = ∃(¬∃a→ ∃b) =
∃(∃¬∃a→∃b) = ∃¬∃a→∃b = ¬∃a→∃b = ∃a⊕∃b; hence, (MV4) holds. Finally, we prove (MV6).
On the one hand, since a⊕a ≤ ∃a⊕∃a, we get ∃(a⊕a) ≤ ∃(∃a⊕∃a) = ∃a⊕∃a. On the other hand,
from Lemma 5.3 (2), (∃a→a)2 ≤ (∃a⊕∃a)→(a⊕a). Then ∃((∃a→a)2) ≤ ∃((∃a⊕∃a)→(a⊕a)).
By (M5), we have that (∃(∃a→a))2 ≤ ∃((∃a⊕∃a)→(a⊕a)). From Lemma 5.4 (6), we conclude
that 1 = ∃((∃a⊕ ∃a) → (a⊕ a)) = ∃(∃(∃a⊕ ∃a) → (a⊕ a)) = (∃a⊕ ∃a) →∃(a⊕ a).

Conversely, let B = 〈B,⊕,¬,∃, 0〉 be an MMV-algebra and define B′ = 〈B,∨,∧, ∗,→
,∃,∀, 0, 1〉, where 1 := ¬0, x → y := ¬x ⊕ y, ∀x := ¬∃¬x, x ∗ y := ¬(¬x ⊕ ¬y), x ∨ y :=
¬(¬x ⊕ y) ⊕ y, x ∧ y := x ∗ (x → y). We claim that B′ is an MBL-algebra that satis-
fies the equation ¬¬x ≈ x. Indeed, conditions (M1), (M4) and (M5) are found in Lemma
5.2 (1), Lemma 5.2 (3), and (MV5), respectively. To prove condition (M2), note that, since
a ≤ ∃a, ∃a→ ∀b ≤ a→ ∀b. Thus ∃a→ ∀b = ∀(∃a→ ∀b) ≤ ∀(a→ ∀b). On the other hand,
∀(a→ ∀b) = ∀(¬∀b→ ¬a) ≤ ∀¬∀b→ ∀¬a = ¬∀b→ ¬∃a = ∃a→ ∀b. It only remains to prove
condition (M3). By Lemma 5.2, ∀(∀a→ b) ≤ ∀a→∀b. In addition, since ∀a→∀b ≤ ∀a→ b, it
follows that ∀a→∀b = ∀(∀a→∀b) ≤ ∀(∀a→ b).

It would be interesting to characterize all monadic BL-chains and we will do this in the last
section of this article. The problem for monadic MV-algebras is already solved (see [13]), but
we give here an elementary proof.

Theorem 5.6. Let A be a totally ordered MMV-algebra. Then ∃a = a for every a ∈ A, that is,
the quantifier on A is the identity.

Proof. We show the result by way of contradiction. Let A be a totally ordered MMV-algebra
and assume there exists a ∈ A such that ∃a 6= a. Consider b = ∃a→ a and note that b 6= 1 and
∃b = ∃(∃a→ a) = ∃a→ ∃a = 1.

Suppose b2 ≤ ∀b. Then 1 = (∃b)2 = ∃b2 ≤ ∃∀b = ∀b ≤ b, so b = 1, a contradiction.
Since A is a chain, ∀b < b2. Then ∀b ≤ ∀b2 = (∀b)2. Thus ∀b is an idempotent element of A
forcing ∀b to be 0 or 1. The case ∀b = 1 implies b = 1, a contradiction. Now assume ∀b = 0,
that is, 0 = ∀(∃a→ a) = ∃a→ ∀a. Since ∀a ≤ ∃a→ ∀a, it follows that ∀a = 0. Moreover,
0 = ∃a→∀a = ¬∃a = ∀¬a. Now, there are two possibilities for a: either a ≤ ¬a or ¬a ≤ a. If
a ≤ ¬a, then 2(¬a) = 1. So 1 = ∀2(¬a) = 2∀(¬a) = 0, a contradiction. Analogously, if ¬a ≤ a,
then 2a = 1 and 1 = ∀2a = 2∀a = 0, another contradiction.

5.2 Monadic Gödel algebras

Gödel algebras are prelinear Heyting algebras, that is, they constitute the variety generated
by totally ordered Heyting algebras. Concretely, Gödel algebras are the subvariety of Heyting
algebras determined by the prelinearity equation (x→y)∨(y→x) ≈ 1. This variety is generated
by the Gödel t-norm [0, 1]G and may be also identified with the subvariety of BL-algebras that
satisfy the equation x2 ≈ x (idempotence), since this equation is equivalent to x ∗ y ≈ x ∧ y. In
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this subsection we are interested in the subvariety of monadic BL-algebras determined by the
equation x2 ≈ x. We call these algebras monadic Gödel algebras.

Monadic Heyting algebras were introduced by Monteiro and Varsavksy in [19] and later
studied in depth by Bezhanishvili in [4]. As in the previous section we will study now the
connection between monadic Gödel algebras and the variety of monadic Heyting algebras. More
precisely, we will show that monadic Gödel algebras coincide with monadic prelinear Heyting
algebras that satisfy the equation

∀(∃x ∨ y) ≈ ∃x ∨ ∀y. (1)

We recall the definition of monadic Heyting algebras from [4].

Definition 5.7. An algebra 〈A,∨,∧,→,∃,∀, 0, 1〉, shortened as 〈A,∃,∀〉, is a monadic Heyting
algebra if 〈A,∨,∧,→, 0, 1〉 is a Heyting algebra and ∀,∃ are unary operators on A satisfying the
following conditions for all a, b ∈ A.

(H1) ∀a ≤ a, a ≤ ∃a.

(H2) ∀(a ∧ b) = ∀a ∧ ∀b, ∃(a ∨ b) = ∃a ∨ ∃b.

(H3) ∀1 = 1, ∃0 = 0.

(H4) ∀∃a = ∃a, ∃∀a = ∀a.

(H5) ∃(∃a ∧ b) = ∃a ∧ ∃b.

The following properties will be useful and their proofs may be found in [4].

Lemma 5.8. The following properties hold in any monadic Heyting algebra A, where a, b denote
arbitrary elements of A.

(1) If a ≤ b then, ∀a ≤ ∀b and ∃a ≤ ∃b.

(2) ∀(a→ b) ≤ ∀a→∀b.

(3) ∀∀a = ∀a and ∃∃a = ∃a.

(4) ∀(a→∀b) = ∃a→∀b.

(5) ∀(a→∃b) = ∃a→∃b.

Theorem 5.9. Monadic Gödel algebras coincide with monadic prelinear Heyting algebras that
satisfy equation (1).

Proof. If A is a monadic Gödel algebra, from the definition of monadic BL-algebra and some of
the properties of Lemma 2.2 it is immediate that A is also a monadic prelinear Heyting algebra
and satisfies equation (1). Conversely, let A be a monadic prelinear Heyting algebra that satisfies
equation (1). Clearly A satisfies conditions (M1), (M4) and (M5) in the definition of monadic
BL-algebra. Condition (M2) follows from Lemma 5.8 (4). It remains to show condition (M3).
From Lemma 5.8, ∀(∀a→ b) ≤ ∀∀a→∀b = ∀a→∀b. In addition, from (H1) we know that ∀b ≤ b.
Then, using the properties from Lemma 5.8, we have that ∀(∀a→ ∀b) ≤ ∀(∀a→ b) and then
∃∀a→∀b = ∀a→∀b ≤ ∀(∀a→ b).

Remark 5.10. Note that monadic prelinear Heyting algebras may not satisfy equation (1). A
counterexample is given by the monadic Heyting algebra depicted in the Hasse diagram below
with the monadic operators defined as in the table.
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1

b c

a

0

x 0 a b c 1

∃x 0 c 1 c 1

∀x 0 0 0 c 1

Indeed, note that ∀(b ∨ ∃c) = ∀(b ∨ c) = ∀1 = 1 whereas ∀b ∨ ∃c = 0 ∨ c = c.

Finally, we would like to make explicit all the possible monadic structures that we may define
on a given totally ordered Gödel algebra. Using that a∗b = a∧b holds true in any Gödel algebra,
the conditions stated in Theorem 3.1 reduce only to relative completeness. More precisely, we
have the following result.

Theorem 5.11. Given a totally ordered Gödel algebra A and a relatively complete subalgebra
C ≤ A, if we define on A the operations

∀a := max{c ∈ C : c ≤ a}, ∃a := min{c ∈ C : c ≥ a},

then 〈A,∃,∀〉 is a monadic Gödel algebra such that ∀A = ∃A = C.

In addition, since in any totally ordered Gödel algebra A we have that

x→ y =

{

1 if x ≤ y,

y otherwise,

any finite subset of A that contains 0 and 1 is a relatively complete subalgebra of A and, hence,
defines a structure of monadic Gödel algebra on A.

5.3 Monadic product algebras

In this subsection we introduce the subvariety of MBL that consists of those monadic BL-algebras
whose underlying BL-structure is a product algebra. We name these algebras monadic product
algebras. In particular, we will prove that only two monadic operators may be defined on any
totally ordered product algebra, namely, the identity operators and the Monteiro-Baaz operators
∆ and ∇ (see [18]). We think that this subvariety deserves a more detailed study, but we will
intend to pursue this task in a forthcoming article.

Recall that a product algebra is a BL-algebra satisfying the following identities:

(P1) ¬¬z→ ((x ∗ z→ y ∗ z) → (x→ y)) ≈ 1.

(P2) x ∧ ¬x ≈ 0.

Note that the identity (P2) implies that every product algebra is pseudocomplemented,
whereas the identity (P1) implies that in any chain the non-zero elements form a cancellative
hoop. For basic properties of product algebras and cancellative hoops, see [15, 5].

We define a monadic product algebra to be a monadic BL-algebra that is also a product
algebra.

Example 5.12. On any product algebra A, we can define two sets of monadic operators, that
we will henceforth call trivial operators:

• Identity operators: ∃a = ∀a = a for every a ∈ A.
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• Monteiro-Baaz operators:

∀a = ∆a =

{

1 if a = 1,

0 if a < 1,
and ∃a = ∇a =

{

0 if a = 0,

1 if a > 0,

for every a ∈ A.

Conditions (M1)-(M4) in the definition of monadic BL-algebras are easily checked for these
operators. To verify condition (M5), note that if a 6= 0, a2 6= 0 and so ∃a = (∃a)2 = ∃a2 =
1.

We now intend to prove that in any totally ordered product algebra we can only define the
trivial quantifiers.

Lemma 5.13. Let A be a non-trivial totally ordered monadic product algebra.

(1) ∃(∃a→ a) = 1 for every a ∈ A.

(2) If a ∈ A \ {0} and ∀a = 0, then ∃a = 1.

(3) If A′ = {u ∈ A : ∀u 6= 0}, then A′ = 〈A′, ∗,→, 1〉 is a cancellative hoop.

Proof. To prove (1), note first that ∃(∃0→0) = 1. Now let a > 0. Then a = ∃a∧a = ∃a∗(∃a→a).
Thus,

∃a = ∃(∃a ∗ (∃a→ a)) = ∃a ∗ ∃(∃a→ a).

Since ∃a > 0, we can cancel out ∃a in the previous equation and get that 1 = ∃(∃a→ a).
To prove (2), let a ∈ A\{0} such that ∀a = 0. Since A is totally ordered then ∃a→a < ∃a or

∃a ≤ ∃a→a. Let us suppose that ∃a ≤ ∃a→a. Then 0 < a ≤ ∃a = ∀∃a ≤ ∀(∃a→a) = ∃a→∀a =
∃a→ 0 = 0, a contradiction. Then ∃a→ a < ∃a. From (1), we have that 1 = ∃(∃a→ a) ≤ ∃∃a,
so ∃a = 1.

Finally we show (3). Since the non-zero elements of A form a cancellative hoop, it is enough
to show that 1 ∈ A′ and that A′ is closed under ∗ and →. Indeed, 1 ∈ A′ since ∀1 = 1 > 0. In
adddition, if u, v ∈ A′, then

0 < ∀u ∗ ∀v = ∀(∀u ∗ ∀v) ≤ ∀(u ∗ v).

Thus, u ∗ v ∈ A′. From 0 < ∀v ≤ ∀(u→ v), we have that u→ v ∈ A′.

From the last lemma, we know that A′ is a cancellative hoop. In particular, A′ is a Wajsberg
hoop and hence, we may apply to this hoop the MV-closure construction given in [2]. We recall
here this construction. We define the MV-closure MV(A′) of the cancellative hoop A′ =
〈A′, ∗,→, 1〉 as follows:

MV(A′) = 〈A′ × {0, 1},⊕mv ,¬mv, 0mv〉,

where 0mv := (1, 0), ¬mv(a, i) := (a, 1 − i),

(a, i) ⊕mv (b, j) :=























(a⊕ b, 1) if i = j = 1,

(b→ a, 1) if i = 1 and j = 0,

(a→ b, 1) if i = 0 and j = 1,

(a ∗ b, 0) if i = j = 0,

where a⊕ b = (a→ (a ∗ b)) → b. The other common MV-operations are defined as follows:

• 1mv := ¬mv0mv = (1, 1),

• (a, i) ∗mv (b, j) := ¬mv(¬mv(a, i) ⊕mv ¬mv(b, j)),
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• (a, i) →mv (b, j) := ¬mv(a, i) ⊕mv (b, j),

• (a, i) ∧mv (b, j) := (a, i) ∗mv ((a, i) →mv (b, j)),

• (a, i) ∨mv (b, j) = ((a, i) →mv (b, j)) →mv (b, j).

If we identify a with (a, 1) for every a ∈ A′, we can consider A′ a subalgebra of the hoop-reduct
of MV(A′). If b = (a, 0) for some a ∈ A′, then b = ¬mv(a, 1) and we write b = ¬mva. Then we
can consider the universe of MV(A′) as the disjoint union of A′ and ¬mvA

′. The order relation
on MV(A′) is given by: (a, i) ≤ (b, j) if and only if one of the following conditions holds:

• a ≤ b and i = j = 1,

• a⊕ b = 1, i = 0, and j = 1,

• b ≤ a and i = j = 0.

Observe that since A′ is a cancellative hoop, then a⊕b = 1 for every a, b ∈ A′, so in this case, the
elements in A′ are all above the ones in ¬mvA

′. Thus MV(A′) is a totally ordered MV-algebra.
Let us define the following quantifiers:

∃(a, i) =

{

(∃a, 1) if i = 1,

(∀a, 0) if i = 0,
∀(a, i) =

{

(∀a, 1) if i = 1,

(∃a, 0) if i = 0.

Then the following result may be easily checked.

Lemma 5.14. Let A be a non-trivial totally ordered monadic product algebra and let A′ = {u ∈
A : ∀u 6= 0}. Then 〈MV(A′),∃,∀〉 is an MMV-chain.

As we saw in the previous subsection, on an MV-chain we can only define the identity
quantifiers. Thus the next corollary is immediate.

Corollary 5.15. Let A be a non-trivial totally ordered monadic product algebra, then ∃A′ =
∀A′ = A′.

We are now ready to prove the main result of this subsection.

Theorem 5.16. In any totally ordered monadic product algebra the quantifiers are trivial.

Proof. Let A be a non-trivial totally ordered monadic product algebra. Let us suppose that
there is u ∈ A such that ∀u = 0 and u > 0. From Lemma 5.13 (2) we know that ∃u = 1. Let
v ∈ A and v 6= 0, 1. Since A is a chain we have that v ≤ u or u ≤ v. If v ≤ u, then ∀v = 0
and, again by Lemma 5.13 (2), ∃v = 1. If u ≤ v then ∃v = 1. If ∀v 6= 0 then v ∈ A′ and, from
the previous corollary, ∀v = v = ∃v = 1, which is a contradiction. So, ∀v = 0. This proves that
∃ = ∇ and ∀ = ∆.

We now deal with the case in which ∀u 6= 0 for all u ∈ A \ {0}. Then A′ = {u ∈ A :
∀u 6= 0} = A \ {0} and, from the previous corollary, we have that ∃A′ = ∀A′ = A′. Therefore,
∃ = ∀ = id.

6 Monadic BL-chains

The objective of this section is to characterize all MBL-chains. Based on the characterization of
BL-chains as ordinal sums of totally ordered Wajsberg hoops given by Aglianò and Montagna
in [3], later simplified by Busaniche in [7], we will present a way of building a monadic BL-
chain as an ordinal sum of totally ordered Wajsberg hoops indexed on a monadic Heyting chain.
Moreover, we will also show that any monadic BL-chain may be obtained using this construction.

First we need to recall the definition of ordinal sum of a family of Wajsberg hoops indexed
on a totally ordered set I. Fix a bounded totally ordered set (I,≤, 0, 1) that will be used as an
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index set. Set C1 = {1} and, for each i ∈ I \ {1}, let Ci be a set such that 〈Ci ∪ {1}, ∗i,→i, 1〉
is a totally ordered Wajsberg hoop. Assume also that C0 has a least element 0.

Let CI := {(i, a) : i ∈ I, a ∈ Ci} ⊆ I×(
⋃

i∈I Ci). We define a total order on CI (lexicographic
order) as follows:

(i, a) ≤ (j, b) iff i < j or (i = j and a ≤ b).

We define on CI the following operations:

(i, a) ∗ (j, b) =











(i, a) if i < j,

(i, a ∗i b) if i = j,

(j, b) if i > j,

(i, a)→(j, b) =











(1, 1) if (i, a) ≤ (j, b),

(i, a→i b) if i = j and a > b,

(j, b) if i > j,

The algebra CI = 〈CI ,∨,∧, ∗,→, (0, 0), (1, 1)〉 is a BL-chain. This follows immediately from
the construction given by Busaniche in [7].

In order to define a structure of monadic BL-algebra on CI , we will require that I be endowed
with a monadic Heyting structure; we denote by I this monadic Heyting chain. We also need to
assume that the sets Ci, i ∈ I, satisfy the following conditions:

• if ∀i < i, C∀i has a greatest element u∀i,

• if i < ∃i, C∃i has a least element 0∃i.

Note that if ∃i = 1, then 0∃i = 01 = 1.
Consider the subset S ⊆ CI given by: (i, a) ∈ S iff i ∈ ∀I. We claim that S is an m-

relatively complete subalgebra of CI . The fact that S is a subalgebra of CI is immediate from
the definition of the operations. We now show that the conditions for m-relative completeness
hold for S:

(1) Let (i, a) be any element of CI . If i ∈ ∀I, then (i, a) ∈ S and the conditions hold trivially.
Suppose i 6∈ ∀I. Then i < ∃i and it follows that (∃i, 0∃i) exists and (i, a) ≤ (∃i, 0∃i).
Moreover, if (i, a) ≤ (j, b) for some (j, b) ∈ S, i.e., j ∈ ∀I, then i ≤ j, so ∃i ≤ j and then
(∃i, 0∃i) ≤ (j, b). The dual condition follows analogously.

(2) This condition is trivial for chains.

(3) Consider (i, a) ∈ CI and (j, b) ∈ S (i.e. j ∈ ∀I) such that (i, a)2 = (i, a2) ≤ (j, b). If i ∈ ∀I,
then (i, a) ∈ S and the condition follows trivially. Suppose i 6∈ ∀I. Then i < ∃i ≤ j, so
(i, a) ≤ (∃i, 0∃i) and (∃i, 0∃i)

2 = (∃i, 0∃i) ≤ (j, b).

We denote by CI the monadic BL-algebra induced by S on CI .
We have thus shown the following theorem.

Theorem 6.1. CI is a monadic BL-chain and the monadic operators on CI are given by:

∃(i, a) =

{

(i, a) if i ∈ ∀I,

(∃i, 0∃i) if i /∈ ∀I,
∀(i, a) =

{

(i, a) if i ∈ ∀I,

(∀i, u∀i) if i /∈ ∀I.

We will now show that any monadic BL-chain is isomorphic to CI for a suitable monadic
Heyting chain I and suitable Wajsberg chains {Ci : i ∈ I}.

Fix a monadic BL-chain A and recall the representation of BL-chains as ordinal sums of
totally ordered Wasjberg hoops given by Busaniche in [7].

For each a ∈ A, we consider the set Fa = {x ∈ A \ {1} : a→ x = x}. We can define the
following equivalence relation on A: a ∼ b iff Fa = Fb. Each equivalence class C is a convex set
and C′ = 〈C ∪ {1}, ∗,→, 1〉 is a totally ordered Wajsberg hoop. Let I be the set of equivalence
classes ordered by: C � D iff either C = D, or, for all a ∈ C and for all b ∈ D, a ≤ b. We
write C ≺ D when C � D and C 6= D. We also know that if C ≺ D, a ∈ C and b ∈ D, then
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b→ a = a and a ∗ b = a. We denote by C0 the equivalence class that contains the element 0,
and by C1 the class that contains the element 1. Observe that C1 = {1}. Then A is isomorphic
as a BL-algebra to CI as defined above.

For each equivalence class C we will show that either C ⊆ ∀A or C ∩ ∀A = ∅. Since this is
trivially true for the class C1, we assume C 6= C1 in the sequel.

We now show that C ∩ ∀A is an increasing subset of C. Suppose there is c ∈ C such that
∀c = ∃c = c and consider D = {a ∈ C : a ≥ c} ∪ {1}. Since D is an bounded increasing
subset of C ′, we can define an MV-structure on D. Indeed, D = 〈D,∨,∧, ∗c,→, c, 1〉 where
x ∗c y := (x ∗ y) ∨ c. Note that if a ∈ D, a 6= 1, then c ≤ a and c = ∀c ≤ ∀a ≤ a, and since C is
convex, ∀a ∈ D. It follows that D is closed under ∀. We define a unary operation ∃′ on D by

∃′x := ∀(x→ c) → c = (∃x→ c) → c.

We claim that 〈D,∃′,∀〉 is a totally ordered monadic MV-algebra. To prove this, it is enough
to check the identities (M1)-(M5).

Since the identities (M1) and (M3) involve only the operations →,∀, 1, and these are defined
on 〈D,∃′,∀〉 as restrictions of the original operations of A, these identities hold trivially on
〈D,∃′,∀〉.

Fix a, b ∈ D. If ∃a ∈ D, then ∃′a = (∃a→ c) → c = ∃a ∨ c = ∃a and it is clear that

∀(a→∀b) = ∃′a→ ∀b, (2)

∀(∃′a ∨ b) = ∃′a ∨ ∀b. (3)

If ∃a 6∈ D, then ∃′a = (∃a→ c) → c = c→ c = 1. Then (3) holds trivially, and we also have that
∀(a→∀b) = ∃a→∀b = ∀b = ∃′a→∀b. This shows that 〈D,∃′,∀〉 satisfies (M2) and (M4).

It remains to show the validity of (M5). Take a ∈ D and note that ∃′(a ∗c a) = ∃′(a2 ∨ c) =
(∃(a2 ∨ c) → c) → c = (∃a2 → c) → c and (∃′a) ∗c (∃′a) = ((∃a→ c) → c)2 ∨ c. We distinguish the
following cases:

• ∃a 6∈ D: In this case ∃a → c = c, so ∃′a = 1. Moreover, ∃a2 = (∃a)2 6∈ D. Hence,
∃′a ∗c ∃

′a = ∃′(a ∗c a) = 1.

• ∃a ∈ D and ∃a2 ∈ D: In this case, ∃′(a∗c a) = ∃a2∨c = ∃a2 and ∃′a∗c∃
′a = (∃a∨c)2∨c =

(∃a)2 ∨ c = ∃a2.

• ∃a ∈ D, but ∃a2 6∈ D: In this case a 6= 1, ∃a 6= 1, and ∃a2 = (∃a)2 < c. Thus ∃′(a∗c a) = c
and ∃′a ∗c ∃

′a = (∃a)2 ∨ c = c.

This concludes the verification that equation (M5) holds in 〈D,∃′,∀〉.
We have thus shown that 〈D,∃′,∀〉 is a totally ordered monadic MV-algebra. From Theorem

5.6, we deduce that ∃′, and also ∀ and ∃, are the identity quantifiers on D. Thus D ⊆ ∀A. This
proves the claim that C ∩ ∀A is an increasing subset of C.

We now distinguish two possibilities for the totally ordered Wajsberg hoop C′.

• C′ is a bounded Wajsberg hoop, that is, there exists 0′ ∈ C such that 0′ ≤ a, for all a ∈ C.

In this case we can endow C′ with a natural MV-structure. We make a further distinction
according to whether 0′ ∈ ∀A or not.

– Assume 0′ ∈ ∀A.

In this case, since C ∩ ∀A is an increasing subset of C, it follows that C ⊆ ∀A.

– Assume 0′ 6∈ ∀A.

In this case ∀0′ < 0′ < ∃0′. We will show that C ∩ ∀A = ∅. Indeed, assume there is
a ∈ C such that ∀a = ∃a = a. As 0′ ≤ a, we have that 0′ ≤ ∃0′ ≤ ∃a = a, so ∃0′ ∈ C.

20



Note that ∃0′→0′ 6= 1 and ∃0′→0′ = ∃(0′∗0′)→0′ = (∃0′∗∃0′)→0′ = ∃0′→(∃0′→0′),
hence ∃0′→ 0′ ∈ F∃0′ = F0′ , and then 0′→ (∃0′→0′) = ∃0′→0′, which is not possible
since 0′ → (∃0′ → 0′) = 1 and ∃0′ → 0′ 6= 1.

Observe that, since C ∩ ∀A = ∅, for every a ∈ C, ∀a = ∀0′ and ∃a = ∃0′.

• C′ is an unbounded Wajsberg hoop, and hence a cancellative hoop.

We claim that for any a ∈ C: if ∀a 6∈ C, then ∃a 6∈ C.

By way of contradiction, assume that ∀a 6∈ C and ∃a ∈ C. Note that ∀a < a < ∃a and
hence ∃a→ a ∈ C. Observe also that, since a = a ∧ ∃a = ∃a ∗ (∃a→ a), we have that
∃a = ∃a ∗ ∃(∃a→ a). If ∃(∃a → a) ∈ C, then, using the cancellative property, we get
that ∃(∃a→ a) = 1, a contradiction. This shows that ∃(∃a→ a) 6∈ C and, consequently,
∃(∃a→ a) > b for every b ∈ C.

Suppose now that ∃a→ a ≤ ∃a. Then ∃(∃a→ a) ≤ ∃a, which is a contradiction. On
the other hand, suppose that ∃a ≤ ∃a→ a. In this case, ∃a2 = (∃a)2 ≤ a and, moreover,
∃a2 ≤ ∀a. However ∀a 6∈ C and ∀a < b for every b ∈ C. Thus ∀a < a2 ≤ ∃a2 ≤ ∀a, a
contradiction.

Consequently, if there is a ∈ C such that ∀a 6∈ C, then ∃a 6∈ C and it is clear that
C ∩∀A = ∅. Otherwise, if, for every a ∈ C, ∀a ∈ C, then, using the fact that C ∩∀A is an
increasing subset of C, it follows that C ⊆ ∀A.

From what we have just proved, it follows that, for any given a ∈ A, there are two possibilities:

• if Ca ⊆ ∀A, then ∀a = ∃a = a;

• if Ca ∩ ∀A = ∅, then C∀a ≺ Ca ≺ C∃a; moreover, since C∀a, C∃a must be contained in ∀A,
then ∀a is the greatest element of C∀a and ∃a is the least element of C∃a.

Finally, note that we can define a monadic Heyting structure on I = A/∼ = {Ca : a ∈ A}.
Indeed, since (I,�) is a bounded totally ordered set with least element C0 and greatest element
C1, it can be turned into a totally ordered Heyting structure I:

Ca ∧ Cb = Ca∧b,

Ca ∨ Cb = Ca∨b,
Ca → Cb =

{

C1 if Ca � Cb,

Cb if Cb ≺ Ca.

Now consider S = {Ca : a ∈ ∀A}. It is immediate that S is a subalgebra of I. Moreover,
S is a relatively complete subalgebra. Indeed, let Ca be an arbitrary element of I and Cb ∈ S
such that Cb � Ca. There are two possible situations. If Cb = Ca, then Ca ⊆ ∀A, so ∀a = a and
Cb = Ca = C∀a. If Cb ≺ Ca, then b < a, so b ≤ ∀a and Cb � C∀a. This shows that C∀a is the
greatest element in S below Ca. In an analogous manner, it may be shown that C∃a is the least
element in S above Ca.

Since S is a relatively complete subalgebra of I, by Theorem 5.11, S defines a monadic
Heyting structure on I.

If we consider now the map ψ : A → CI given by ψ(a) = (Ca, a), it is clear from what we
have shown above that ψ is an isomorphism of monadic BL-algebras.

We have thus finished the proof of the characterization of all monadic BL-chains.

Theorem 6.2. Any monadic BL-chain is isomorphic to some CI.

To close this section, we would like to remark that the subvariety of MBL generated by
monadic BL-chains may be axiomatized within MBL by a single identity:

∀(x ∨ y) ≈ ∀x ∨ ∀y.

Indeed, it is easily verified that any monadic BL-chain satisfies this identity. Conversely, consider
a subdirectly irreducible algebra A ∈ MBL that satisfies the identity. Given x, y ∈ A we know
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that (x→ y) ∨ (y → x) = 1. Then ∀(x→ y) ∨ ∀(y → x) = 1, but, since ∀A is totally ordered,
either ∀(x → y) = 1 or ∀(y → x) = 1. It follows that x ≤ y or y ≤ x. This proves that A is
totally ordered.

Conclusions and further work

In this work we have presented an equivalent algebraic semantics for the monadic fragment
of Hájek’s fuzzy predicate logic. This class turned out to be a very interesting variety, whose
algebras we called monadic BL-algebras.

We have started a study of some subvarieties of MBL, but we think that a deeper study of
many of its subvarieties is in order. For example, it would be interesting to know the lattice of
subvarieties of monadic product algebras, Gödel algebras, and the variety generated by chains.
In each case, we would like to determine whether they are generated by their finite members.

Another variety worth of research is the one generated by functional monadic BL-algebras
defined over continuous t-norms. This is a proper variety because it satisfies the equation
∀(x ∗ ∀y) ≈ ∀x ∗ ∀y.
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