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Abstract

Cabrelli, Forte, Molter and Vrscay in 1992 considered a fuzzy version of the theory of iterated
function systems (IFSs in short) and their fractals, which now is quite rich and important part of the
fractals theory.

On the other hand, Miculescu and Mihail in 2008 introduced another generalization of the IFSs’
theory - instead of selfmaps of a metric space X , they considered mappings defined on the finite Carte-
sian product Xm.

In this paper we show that the fuzzyfication ideas of Cabrelli et al. can be naturally adjusted to
the case of mappings defined on finite Cartesian product. In particular, we define the notion of a
generalized iterated fuzzy function system (GIFZS in short) and prove that it generates a unique fuzzy
fractal set. We also study some basic properties of GIFZSs and their fractals, and consider the question
whether our setting gives us some new fuzzy fractal sets.
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Introduction

One of the milestones of the fractals theory is the Hutchinson-Barnsley theorem from early 80’s ([B],
[Hut]) which states that if X is a complete matric space and f0, ..., fn−1 : X → X are Banach contractions
(i.e., their Lipschitz constants Lip(fj ) < 1), then there is a unique nonempty and compact set A ⊂ X
such that

A = f1(A)∪ ...∪ fn(A)

Such sets A are called fractals or attractors, and systems (X,(f0, ..., fn−1)) of continuous (contractive)
maps are called iterated function systems (IFSs for short). It turns out that many interesting abstract sets,
for example the Cantor ternary set or the Sierpiński triangle, are such fractals. Also some “natural”
objects, like trees, clouds etc., have a fractal structure in a certain scale and the Hutchinson-Barnsley
fractals theory give nice tools for modelling them.

One direction of studies of the Hutchinson-Barnsley (HB for short) theory origines with the question
if we can look at fractal sets as certain fuzzy sets. The idea of fuzzy sets, introduced by Zadeh [Z] in
1965, is that instead of saying that some element x belongs or not to a set A, we can say that it belong
to A in a certain degree, where this “degree” is some number from [0,1]. Such a nice idea attracted
many mathematicians and found many applications. In particular, Cabrelli et al. [CFMV] introduced
the fuzzy version of HB theory. In this setting, fractals can be fuzzy sets, and a given IFS is somehow
fuzzied by additional family of maps.

Another direction of investigations of IFSs’ theory was initiated by Miculescu and Mihail [MM1]
2008 (see also [M1], [MM] and [SS]). Instead of selfmaps of a metric space X , they considered mappings
defined on finite Cartesian product of X (they called systems of such mappings as generalized IFSs,
GIFSs for short). It turns out that such systems of mappings generate sets which can be considered as
fractal sets, and many parts of classical theory have natural counterparts in such a framework. What is
also important, the class of GIFSs’ fractals is essentially wider than the class of classical IFSs’ fractals
(see Strobin [S]).

Our goal in this paper is to unify this two approaches. We will define a fuzzy version of GIFSs and
prove that under natural contractive conditions, such fuzzy systems generates fuzzy fractal sets. Also,
we will investigate some properties of such fractals, and deal with the question whether our “unifica-
tion” generates some essentially new fuzzy fractal sets. Since we want our paper to be self-contained,
we will recall some basics of fuzzy sets theory, as well as fractals theory of Cabrelli et al. and Miculescu
and Mihail.

The paper is organized as follows. In the next section we give some topological preliminaries and
background of fuzzy sets. In Section 2 we recall the fuzzy IFS theory and GIFSs’ theory. Section 3 is
devoted to introducing a fuzzy version of GIFSs and their fractals. Finally, in the last section we will
study some further properties of them.

1 Preliminaries

1.1 Topological background

For the proofs of the results presented here you can check the excellent handbook Aliprantis and Bor-

der [AB]. Let X be a fixed topological space and R =R∪ {−∞,∞} be the extended set of real numbers.

Definition 1.1. We said that u : X →R is upper semicontinuous (usc) if, for each c ∈R the set u−1([c,+∞]) :=

{x ∈ X | u(x) ≥ c} is closed. Analogously, we said that u : X → R is lower semicontinuous (lsc) if (−f ) is
usc.

The proof of the next two lemmas can be found in [AB], Lemma 2.41 and 2.42, p. 43.

Lemma 1.2. Let ut : X → R, t ∈ T be a family of usc (resp. lsc) functions. Then, the pointwise supremum
(resp. infimum)

u(x) := sup
t∈T

ut(x)

is a usc (resp. lsc) function.
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Lemma 1.3. Let u : X →R. u is usc (resp. lsc) function if and only if for every net (xt)t∈T ⊂ X with xt → x
it follows that limsup

xt→x
u(xt) ≤ u(x) (resp. liminf

xt→t
u(xt) ≥ u(x)). If X is first countable (i.e., each point has a

countable neighborhood base, for example a metric space) the net (xt)t∈T can be replaced by a sequence.

The following result generalizes the Weierstrass theorem.

Theorem 1.4. If u : K ⊆ X → R is a usc (resp. lsc) function on the compact K , then u attains its maximum
(resp. minimum) value maxK u (resp. minK u) and the set

argmax(u) := {x ∈ K | u(x) = max
K
u} (resp. argmin(u) := {x ∈ K | u(x) =min

K
u})

is nonempty and compact.

Now let us recall the Banach Fixed Point theorem.

Theorem 1.5. Let (A,d) be a complete metric space. Given a contraction F : A → A, there exists a unique
a ∈ A such that F(a) = a.Moreover, for every a0 ∈ A, the sequence ak, k ≥ 0 defined by

ak+1 := F(ak),

for all k ∈N, is convergent to a.

Finally, let us present the “Collage Theorem” (the proof can be found in [B] of Barnsley):

Theorem 1.6. “Collage Theorem” Let (A,d) be a complete metric space and T : A→ A be a Lipschitz con-
tractive map, that is, Lip(T) < 1. Then for any u ∈ A we have

d(u,u∗) ≤
1

1−Lip(T)
d(u,T (u))

where u∗ is the unique fixed point of T .

1.2 Basic definitions on Fuzzy Sets

Let X be a set.

Definition 1.7. We say that u is a fuzzy subset of X if u : X → [0,1]. The family of fuzzy subsets of X is
denoted by FX , that is

FX := {u | u : X → [0,1]}.

In this theory fuzzy set means the that each point x has a grade of membership 0 ≤ u(x) ≤ 1 in the
set u. Here, u(x) = 0 indicates that x is not in u and u(x) = 0.4 indicates that x is a member of u with
membership degree 0.4.

Figure 1: Representation of the fuzzy set u(x,y) = 1/2(x2 + y2) in X = [0,1]2 as a grey scale figure. In
this case u(1,1) = 1=a white pixel and u(0,0) = 0=a black pixel.

Definition 1.8. Given α ∈ (0,1] and u ∈ FX , the grey level or α-cut of u is the crisp set

[u]α := {x ∈ X | u(x)≥ α},

that is, the set of points where the grey level exceeds the threshold value α. For α = 0 we define

[u]0 := supp(u) :=
⋃

{[u]α | α > 0} = {x ∈ X : u(x) > 0}
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Remark 1.9. Observe that

[u]0 =
∞
⋃

n=0

[u]αn ,

for every sequence (αn) of positive reals with αn ց 0. It happens because the sequence of sets [u]αn

is nondecreasing since [u]αn ⊆ [u]αn+1 when αn > αn+1. In particular, the set
⋃∞
n=0[u]

αn (which is F-σ
provided u is usc) is dense in [u]0.

Definition 1.10. A fuzzy set u ∈ FX is
a) a crisp set, if u(x) ∈ {0,1} for every x ∈ X . We identify it with the classic subset U = {x ∈ X | u(x) = 1}.
In this case, u is the indicator function of U: u(x) =χU(x);
b) normal, if there is x ∈X such that u(x) = 1;
c) the universe, if u(x)≡ 1 =χX(x);
d) empty, if u(x)≡ 0 =χ∅(x).
If additionally X is a topological space, then we say that u is
e) compactly supported if [u]0 is compact.

Actually, the family of subsets of X , denoted by 2X , can be identified as a subset of FX , using the
injective map χ : 2X →FX defined by χ(B) =χB(x), for any B ∈ 2X .

Given f ,g : X →R, is usual to denote (f ∨g)(x) := max{f (x),g(x)} and (f ∧g)(x) := min{f (x),g(x)}.
It shows how to define the fuzzy algebra of subsets.

Definition 1.11. Given u,v ∈ FX we define:
a) u∪ v := u∨ v ∈ FX and u∩ v := u∧ v ∈ FX , the union and the intersection of u and v, respectively;
b) u′ := 1−u ∈ FX , the complement of u;
c) u ⊆ v if u(x)≤ v(x), ∀x ∈X , the inequality relation.

Remark 1.12. It is well known that the basic operations ∪ and ∩ with fuzzy sets:
a) are associative and distributive;
b) satisfies De Morgan’s Laws (u∩ v)′ = u′ ∪ v′ and (u∪ v)′ = u′ ∩ v′.

We also have other algebraic operations.

Definition 1.13. Given u,v ∈ FX we define:
a) uv := u(x)v(x)⊆ u∩ v ∈ FX , the algebraic product;
b) u+ v := min{u(x) + v(x),1} ∈ FX , the algebraic sum;
c) |u− v| := |u(x)− v(x)| ∈ FX , the absolute difference.
d) tu+ (1− t)v ∈ FX for t ∈ [0,1], the convex combination of u and v;
e) (u,v)∆ := ∆(x)u+∆

′(x)v, the ∆-convex combination of u and v, where ∆ ∈ FX .

Fuzzy sets can be induced by maps. In his pioneering work in the 1965 Zadeh [Z], p. 346, introduced
what we call The Extension Principle, that is a kind of pushforward map between fuzzy subsets.

Definition 1.14. (Zadeh’s Extension Principle) Given a map T : X → Y , u ∈ FX and v ∈ FY , we define
new fuzzy sets T (u) ∈ FY and T −1(v) ∈ FX as follows
a) T (u) : Y → [0,1] is given by

T (u)(y) :=

{

supT (x)=y u(x), if y ∈ T (X);

0, otherwise.

b) T −1(v) : X → [0,1] is given by
T −1(v)(x) := v(T (x)).

Remark 1.15. In He et al. [He], Definitions 2.1, 2.2 and 2.3, we can found some alternative ways to
define the extension principle for real 1 valued fuzzy sets, The Supremum Extension Principle (Zadeh’s

1After Zadeh’s works the Fuzzy Set theory has been extended in several ways. In a wider sense, given X a set and R being
usually some topological space, we define a R-valued fuzzy set as a function u : X → Rg , where Rg , called the range, is a compact

subset of R. In this paper, X is a complete (or even compact) metric space, R = R and Rg = [0,1]. Measure-valued, set-valued,

interval-valued and type-k (Rg is a hypercube in Rk) fuzzy sets are frequently considered in applications.
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Extension Principle), The Minimum Extension Principle (the same as Zadeh’s Extension Principle, replac-
ing by minimization on the preimages) and The Average Extension Principle, respectively. If T −1(y) is
always finite we can define the Average Extension Principle

T̃ (u)(y) :=

{ 1
♯{x|T (x)=y}

∑

T (x)=y u(x), if y ∈ T (X);

0, otherwise.

Obviously 0 ≤ T̃ (u)≤ T (u)≤ 1.

Remark 1.16. It may be instructive to see how T works for a crisp set. If u(x) =χB(x) ∈ FX , for some
B ∈ 2X , we get

T (u)(y) = sup
T (x)=y

u(x) = sup
T (x)=y

χB(x) =
{

1, if y ∈ T (B)
0, if y < T (B)

=χT (B)(y).

That is, T (χB) =χT (B).
Similarly, T −1(χC) =χT−1(C) for all C ∈ 2Y .

Proposition 1.17. Assume that X and Y be metric spaces and f : X → Y a continuous map. Given u ∈ FX
we have
a) If u is normal then f (u) is normal;
b) If u is usc and compactly supported, then f (u) is usc and compactly supported.

Proof. a) Suppose that u is normal, that is, there exists a ∈ X such that u(a) = 1. Let us evaluate f (u) in
b = f (a)

1 ≥ f (u)(b) =

{

supf (x)=b u(x), if b ∈ f (A)
0, otherwise

≥ u(a) = 1,

so f (u)(b) = 1.
b) Assume that u usc and compactly supported. We need to prove that f (u) is so. At first, we prove that

f (u)−1([c,+∞]) is closed for any c ∈R. Since 0 ≤ f (u)≤ 1 we have

f (u)−1([c,+∞]) =















∅, if 1 < c

[f (u)]c, if 0 < c ≤ 1

B, if c ≤ 0

Since ∅ and Y are closed, remains to prove that [f (u)]c for 0 < c ≤ 1.
Let (bn) ⊂ [f (u)]c and b be its limit. We claim that b ∈ [f (u)]c. Since f (u)(bn) ≥ c > 0 thus

f −1(bn) , ∅. Now fix ε ∈ (0,c) and for any n ∈ N, let an ∈ X be such that u(an) ≥ c − ε > 0 and
f (an) = bn. Since u is usc and compactly supported, and (an) ⊂ [u]c−ε, there is a subsequence (ank)
such that ank → a for some a ∈ [u]c−ε. Also, by continuity of f , we have b = f (a). Thus

f (u)(b) = sup
f (x)=b

u(x)≥ u(a)≥ c− ε

Since ε was taken arbitrarily, we have f (u)(b)≥ c, which means that b ∈ [f (u)]c. So [f (u)]c is closed.
To see that f (u) is compactly supported, observe that for any y ∈ Y with f (u)(y) > 0, there exists x ∈ X
such that u(x) > 0 and f (x) = y. Hence

{y ∈ Y : f (u)(y) > 0} ⊂ f ({x ∈ X : u(x) > 0}) ⊂ f ({x ∈ X : u(x) > 0})

since the last set is compact (as f is continuous and u is compactly supported), we get that also

{y ∈ Y : f (u)(y) > 0}

is compact. Hence f (u) is compactly supported.
�
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2 IFS fuzzyfication and generalized IFSs

To avoid any confusions we will reserve the calligraphicR exclusively for IFS and the calligraphic
S will be reserved exclusively for generalized IFS that we will consider after.

Now we turn our attention to the discrete dynamics of fuzzy sets. On one hand the IFS offers for
each iterate φj one of the possible positions φj (x) from an initial point x, that is the dynamics. On the
other hand the IFZS offers one of the possibility functions uj = φju from an initial possibility function
u(x) that is, now we have a dynamics of possibility functions where u(x) represents the possibility of
a “particle” be in the site x ∈ X and uj (x) represents the possibility of the iteration of a “particle” be
in the site φj (x). The analogy is that in the classical mechanics the dynamics is given by a differential
equation that defines the position x and, when we make a quantification we deal with the evolution of
probability distribution of the position via a unitary operator. We are going to develop this ideas using
the notion of fuzzy sets. From the fuzzy point of view the possibility of a “particle” be in the site x ∈X ,
a metric space, is some number u(x) ∈ [0,1], so the iterations generated by an IFS of the function u
must go through an appropriated fuzzy operator producing a new fuzzy set. We advise that it is not a
probabilistic theory.

2.1 IFS fuzzification

The word fuzzification has several uses in the literature. Here, fuzzification means to consider the anal-
ogous for fuzzy sets of the Hutchinson-Barnsley Theory for IFS acting on classical sets. The main ideas
were developed in Cabrelli et al. [CFMV]. We repeat some results here to help the reader with no famil-
iarity with this theory. Note that we extended a bit some of them in view of our study of GIFZSs in the
next section.

We assume here that (X,d) is a given metric space. Recall that the family of (real valued) fuzzy
subsets of X is defined by

FX :=
{

u | u : X → [0,1] is a function
}

,

and if u ∈ FX and α ∈ (0,1], then [u]α := {x ∈ X : u(x)≥ α} and also [u]0 := {x ∈ X : u(x) > 0}.
To make this theory works we need to restrict FX to a smaller family,

F ∗X := {u ∈ FX |u is normal, usc and compactly supported}

Proposition 2.1. If u ∈ F ∗X then for every α ∈ [0,1], the α-cut set of u is nonempty and compact.

Proof. The set [u]0 is compact since u is compactly supported. Now let α ∈ (0,1]. Then we have
[u]α , ∅ because u is normal. Also, [u]α is closed because u is usc. Hence it is a closed subset of a
compact set [u]0, so also compact. �

The topology on F ∗X is defined by the Hausdorff distance between the α-cuts. We recall that in the
set K∗(X) of nonempty and compact crisp subsets of X , the Hausdorff distance is defined by

h(A,B) := max








sup
x∈A

inf
y∈B

d(x,y),sup
y∈B

inf
x∈A

d(x,y)








.

Equivalently, if we define Aε := {x ∈ X | d(x,A) ≤ ε}, where d(x,A) := infy∈Ad(x,y), then we get

h(A,B) = inf{ε > 0 | A ⊆ Bε,B ⊆ Aε}.

Since K∗(X) contains all the α-cuts, we can define a distance d∞ in F ∗X by

d∞(u,v) := sup
α∈[0,1]

h([u]α,[v]α),

for u,v ∈ F ∗X . It is known that d∞ is a metric (see Diamond and Kloeden [DK]), which is complete
provided X is compact (see a.e., Cabrelli et al. [CFMV]). We will extend this result a bit (probably it is
known, but we did not find a reference).

Theorem 2.2. The function d∞ :F ∗X ×F
∗
X →R is a metric and (F ∗X ,d∞) is a complete metric space provided

(X,d) is complete.
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Proof. Let (un) ⊂ F
∗
X be a Cauchy sequence. By definition, this means in particular that the sequence

([un]
0) is Cauchy in K(X), so, by completeness of K∗(X), it is convergent. This implies that X ′ :=

⋃

n∈N[un]0 (equal to the union of all [un]
0 and the limit) is compact. Now for every n ∈ N, let u′n :=

un|X
′ be the restriction of un to X ′ . It is easy to see that (u′n) is a Cauchy sequence in F ∗

X ′
. Since X ′

is compact, F ∗
X ′

is complete, so u′n → u′ for some u′ ∈ F ∗
X ′
(by mentioned result from [CFMV]). Then

un→ u in F ∗X , where u is the natural extension of u′ to the whole X . �

Now we show that the definition of d∞ can be simplified a bit. We will use the following technical
result from [CFMV] (Lemma A.1.)

Lemma 2.3. If (An) is a sequence of sets in K∗(X) such that An ⊆ An+1 for all n ≥ 0 and A :=
⋃

n≥0An ∈
K(X), then An→ A with respect to the Hausdorff distance, that is, h(An,A)→ 0.

Corollary 2.4. For any u ∈ F ∗X and a decreasing sequence (αn) ⊂ (0,1] with αn → 0, we have [u]0 =
lim
n→∞

[u]αn in the Hausdorff distance. In particular,

d∞(u,v) = sup
α∈(0,1]

h([u]α,[v]α)

Proof. The first part follows from Lemma 2.3 and Remark 1.9. The second follows from the first one
since

h([u]0,[v]0) = h( lim
n→∞

[u]1/n, lim
n→∞

[v]1/n) = lim
n→∞

h([u]1/n,[v]1/n).

�

Definition 2.5. A grey level map is a nonzero function ρ : [0,1]→ [0,1]. We said that a grey level map
satisfy ndrc condition or is an ndrc map, if
a) ρ is nondecreasing;
b) ρ is right continuous.

Proposition 2.6. Assume that ρ is an ndrc map and u ∈ FX is usc.
a) The map β : [0,ρ(1)]→ [0,1], given by

β(α) := inf{t | ρ(t)≥ α}

is well defined, nondecreasing and ρ(β(α))≥ α.
b) If α ∈ (0,1], then

[ρ(u)]α =













X if α ≤ ρ(1) and β(α) = 0

[u]β(α) if α ≤ ρ(1) and β(α) > 0
∅ if α > ρ(1)

c) If r+ := inf{t : ρ(t) > 0}, then

[ρ(u)]0 =













X if ρ(0) > 0
⋃

α>r+[u]
α if ρ(0) = 0 and ρ(r+) = 0

[u]r+ if ρ(0) = 0 andρ(r+) > 0

Proof. a) We know that if a ∈ {t | ρ(t) ≥ α} then [a,1] ⊂ {t | ρ(t) ≥ α} because ρ is nondecreasing. So
there is an unique β = inf{t | ρ(t) ≥ α}, in particular β ∈ {t | ρ(t) ≥ α} because ρ is right continuous.
Take δ > 0 such that α < α+ δ ≤ ρ(1) then

{t | ρ(t)≥ α + δ} ⊂ {t | ρ(t)≥ α}

thus inf{t | ρ(t)≥ α + δ} ≥ inf{t | ρ(t)≥ α} or β(α+ δ) ≥ β(α).
b) If 0 < α ≤ ρ(1) and β(α) > 0, then to show that [ρ(u)]α = [u]β(α) we take x ∈ [ρ(u)]α. Then

ρ(u(x))≥ α that is u(x) ∈ {t | ρ(t) ≥ α} thus u(x) ≥ β(α). So x ∈ [u]β(α). Reciprocally, if x ∈ [u]β(α) we
get u(x)≥ β(α) and applying ρ we get ρ(u(x))≥ ρ(β(α))≥ α thus x ∈ [ρ(u)]α.
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If β(α) = 0, then by the right continuity of ρ we have that ρ(t) ≥ α for all t ≥ 0, so for every x ∈ X ,
ρ(u(x))≥ α.
Finally, since for every x ∈X , ρ(u(x))≤ ρ(1), we get that [ρ(u)]α = ∅ for α > ρ(1).

c) If ρ(0) > 0, then β(α) = 0 for some α > 0, so by b) we have that X = [ρ(u)]α ⊂ [ρ(u)]0 ⊂ X .
Now assume that ρ(0) = 0. This means that β(α) > 0 for all α ∈ (0,ρ(1)] and hence by b) we have that

[ρ(u)]0 =
∞
⋃

n=1

[ρ(u)]αn =
∞
⋃

n=1

[u]β(αn).

where (αn) ⊂ (0,ρ(1)] is such that αn ց 0. If ρ(r+) > 0, then β(αn) = r+ for sufficiently large n, so
[ρ(u)]0 = [u]r+ in this case.
If ρ(r+) = 0, then

∀n ∈N, β(αn) > r+ and β(αn)→ r+. (1)

By definition, β(αn) ≥ r+ for all n ∈ N. If β(αn) = r+ for some n, then by a) we have a contradiction
ρ(r+) = ρ(β(αn)) ≥ αn > 0. On the other hand, assume that β(αn) does not converge to r+. Then for
some r′ > r+, we have that β(αn) > r

′ for all n ∈ N (because (β(αn)) is nonincreasing), which implies
that {t : ρ(t) > 0} ⊂ [r′,∞). This contradicts the definition of r+. Hence we get (1). This condition
together with the fact that s > t⇒ [u]t ⊂ [u]s gives the thesis of (c) in this case. �

We notice that, in a metric space (X,d) we have u = χK ∈ F ∗X if and only if K is a compact and

nonempty subset of X . In that case, [ρ(u)]0 = K . Also [1]0 =X .

Proposition 2.7. If ρ : [0,1]→ [0,1] is ndrc, then for every u ∈ F ∗X , the fuzzy set ρ(u) is usc.

Proof. The assertion follows directly from Proposition 2.6 b) and c). �

Definition 2.8. An iterated function system (IFS) is a finite familyR of continuous functions φj : X →
X , denoted byR = (X,(φj )j=0,...,n−1). If additionally the mappings φj satisfy

d(φj (a),φj (b))≤ λj d(a,b), j = 0...n − 1,

for some constants 0 ≤ λj < 1, j = 0, ...,n − 1, then we call it Lipschitz contractive IFS.
The operatorR :K∗(X)→K∗(X) defined by

R(B) :=
⋃

j=0...n−1

φj (B)

is called the Hutchinson-Barnsley (HB) operator associated toR.

Definition 2.9. A system of grey level maps (ρj )j=0...n−1 : [0,1]→ [0,1] is admissible if it satisfies all the
conditions
a) ρj is nondecreasing;
b) ρj is right continuous;
c) ρj (0) = 0;
d) ρj (1) = 1 for some j .

The items a) and b) mean that each grey level map is ndrc. Item c) means that black pixels should
stay black and item d) means that the combination of the grey scales cannot decrease the brightness,
when we represent fuzzy sets as grey scale images.

The fuzzification of an IFS is to consider the parallel action of the Hutchinson-Barnsley operator on
the fuzzy subsets of X .

Definition 2.10. LetR = (X,(φj )j=0...n−1) be an IFS and (ρj )j=0...n−1 be an admissible system of grey
level maps. Then the system ZR := (X,(φj )j=0...n−1,(ρj )j=0...n−1) is called an iterated fuzzy function
system (IFZS in short). Inspired by the (HB) operator, we define the Fuzzy Hutchinson-Barnsley (FHB)
operator associated to ZR by

ZR(u) :=
∨

j=0...n−1

ρj (φj (u))

for all u ∈ F ∗X .
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Figure 2: On the left we have the fuzzy set u(x,y) = 1−4(y− 1
2)

2 in X = [0,1]2 as a grey scale figure and
on the right ρ(u), where ρ(t) = 1/8(4t − f rac(4t)) is drawn in the middle.

Example 2.11. To see the action of the FHB operator we consider the IFS R = ([0,1]2,(φj )j=0,1), where
φ0(x,y) = (x/2,y/2) and φ1(x,y) = (x/2,y/2 + 1/2), with an admissible set of grey level maps ρ0(t) =
1/3(3t − f rac(3t)), ρ1(t) = 0 if t < 1/2 and ρ1(t) = t if t ≥ 1/2. In the Figure 3 we drawn ZR(u) for a
representation of the fuzzy set u(x,y) =

x+y
2 in X = [0,1]2 as a grey scale figure.

Figure 3: The FHB operator acting on u.

Proposition 2.12. If u ∈ F ∗X then ZR(u) ∈ F
∗
X .

Proof. From Proposition 1.17, φj (u) ∈ F
∗
X
for any j = 0...n −1, because each φj is Lipschitz continuous.

Moreover, ρj (φj (u)) are usc because the grey level maps are admissible (see Proposition 2.7). Finally,
ρj (φj (u)) is compactly supported for each j by Proposition 2.6(c). Thus ZR(u) is usc and compactly
supported as the supremum of usc and compactly supported maps.

From the admissibility of ρj there is some j0 such that ρj0(1) = 1. Since φj0(u) is normal, we can
find y0 such that φj0(u)(y0) = 1. Then

ZR(u)(y0) ≥ ρj0(φj0(u)(y0)) = 1.

Thus,ZR(u) is normal. �

The next lemma will be proved with more generality that we need here. Such a version will be useful
in other applications.
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Lemma 2.13. LetX and Y be metric spaces and (ρj )j=0...n−1 an admissible family of grey level maps. Consider
φj : X → Y a family of continuous maps for j = 0...n − 1. Then, for each u ∈ F ∗

X
a) qj = ρj (φj (u)) ∈ FY is usc and compactly supported;

b) [qj ]
α = φj ([ρj (u)]

α) for every α ∈ [0,1];

c)











∨

j=0...n−1

ρj (φj (u))











α

=
⋃

j=0...n−1

φj ([ρj (u)]
α) for every α ∈ [0,1];

d)
∨

j=0...n−1

ρj (φj (u)) is normal.

Proof. The proof follows exactly the same reasoning as in [CFMV], except by a) that is a consequence
of Proposition 1.17 (and can be proved similarly as Proposition 2.12), and d) which also can be proved
similarly as in Proposition 2.12. �

The following result is an extension of classical Hutchinson-Barnsley Theorem for IFZS. We skip the
proof as it is the same as in the particular case of compactX proved in [CFMV] (also, later we will prove
much more general result).

Theorem 2.14. Given a contractive IFZS ZR = (X,(φj )j=0,...,n−1,(ρj )j=0,...,n−1), the FHB operator ZR :
F ∗
X
→F ∗

X
is a Banach contraction in (F ∗

X
,d∞). More precisely,

d∞(ZR(u),ZR(v))≤ λ d∞(u,v), ∀u,v ∈ F
∗
X ,

whereλ := max{Lip(φj ) : j = 0, ...,n−1} and Lip(φj ), j = 0, ...,n−1 are contraction constants ofφ0, ...,φn−1,
respectively.
In particular, if X is complete, then there exists a unique u∗ ∈ F ∗X such that

ZR(u∗) = u∗

and, moreover, for any v ∈ F ∗X we get

d∞(ZR
(k)(v), u∗)→ 0

whereZR
(k)(v) denotes the k-th iteration of the (FHB) operator ZR.

Definition 2.15. The fuzzy set u∗ from the above theorem is called the fuzzy attractor or fuzzy fractal
generated by IFZSZR.

Remark 2.16. Directly from the definition and Lemma 2.13 it follows that if u∗ is the fuzzy fractal
generated by a IFZSZR = (X,(φj )j=0,...,n−1,(ρj )j=0,...,n−1), then for every α ∈ [0,1],

[u∗]α =
⋃

j=0...n−1

φj ([ρj (u
∗)]α)

The next result is known as the IFZS collage theorem.

Theorem 2.17. Assume that X is complete and letR = (X,(φj )j=0...n−1) be a contractive IFS with contrac-
tion constant λ =maxj Lip(φj ) < 1 and u∗ ∈ F ∗X be the fuzzy attractor of the IFZSZR = (X,(φj )j=0...n−1,(ρj )j=0...n−1).
If v ∈ F ∗X then

d∞(v,u
∗) <

1

1−λ
d∞(v,ZR(v)).

Proof. The proof is a combination of the following results. From Theorem 2.2 we get that (F ∗
X
,d∞)

is complete. From Theorem 2.14 we get that ZR is a Lipschitz contraction with λ = Lip(ZR) and we
also have the existence of the fuzzy fractal attractor u∗. So our result follows from the standard Collage
Theorem 1.6. �

We end this section with presenting some further properties of IFZS.
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Definition 2.18. Given u,v ∈ F ∗X , we say that u ≤ v if u(x)≤ v(x) for all x ∈ X .

Lemma 2.19. If ZR is an IFZS, then the associated operator ZR is monotone that is ZR(u) ≤ ZR(v) if
u ≤ v.

Proof. If u ≤ v then for every j = 0, ...,n − 1 and z ∈ X , we have

φj (u)(z) = sup
φj (y)=z

u(y)≤ sup
φj (y)=z

v(y) = φj (v)(z)

provided φ−1j (z) , ∅, and

φj (u)(z) = 0 = φj (v)(z)

in the opposite case. Hence φj (u)≤ φj (v), and thus we also have

ZR(u) =
∨

j=0...n−1

ρj (φj (u))≤
∨

j=0...n−1

ρj (φj (v)) =ZR(v),

because the grey scale maps are nondecreasing. �

Proposition 2.20. Let the crisp set A(R) ∈ K∗(X) be the attractor of an IFS R = (X,(φj )j=0...n−1), and
u∗ ∈ F ∗X be the fuzzy attractor of the IFZS ZR = (X,(φj )j=0...n−1,(ρj )j=0...n−1). Then, for any B ∈ K

∗(X)
and v ∈ F ∗X we have
a) ifZR(v) ≤ v then u∗ ≤ v;
b) ifR(B)⊆ B then A(R)⊆ B;
c) if v ≤ZR(v) then v ≤ u∗;
d) if B ⊆R(B) then B ⊆ A(R).

Proof. a) If ZR(v) ≤ v we get ZR
(k)(v) ≤ v for k ≥ 1, taking the limit and using Theorem 2.14 we

get ZR
(k)(v)→ u∗. Hence u∗ ≤ v. Indeed, similarly as in [CFMV] we can show that

{

u ∈ F ∗X : u ≤ v
}

is

closed in F ∗X . The other items are proved in the same fashion. �

Theorem 2.21. Let the crisp set A(R) ∈ K∗ be the attractor of the IFSR = (X,(φj )j=0...n−1), and u
∗ ∈ F ∗

X
be the fuzzy attractor of the IFZS ZR = (X,(φj )j=0...n−1,(ρj )j=0...n−1). Then [u∗]0 ⊆ A(R).

Proof. Consider χA(R) ∈ F
∗
X . From Remark 1.16, for any z ∈ X , we have

φj (χA(R))(z) =χφj (A(R))(z) ≤χA(R)(z),

because A(R) = ∪φj (A(R)) implies φj (A(R)) ⊆ A(R)(z) for any j . In particular ρj (φj (χA(R))(z))≤
ρj (χA(R)(z))≤χA(R)(z) for any j , because ρj (0) = 0 and ρj (1) ≤ 1. SinceZR(u) =

∨

j=0...n−1ρj (φj (u))

is a supremum we get ZR(χA(R)) ≤ χA(R). From Proposition 2.20 we get u∗ ≤ χA(R) thus [u∗]0 ⊆
A(R), because if x < A(R) then 0 =χA(R)(x)≥ u

∗(x)≥ 0 so u∗(x) = 0. �

2.2 Generalized iterated function systems

In this section we recall the theory of generalized iterated function systems introduced by Miculescu
and Mihail in 2008.

Let (X,d) be a metric space and m ∈N. By Xm we denote the Cartesian product of m copies of X ,
considered as a metric space with the maximum metric dm:

dm((x0, ...,xm−1),(y0, ...,ym−1)) := max{d(x0,y0), ...,d(xm−1,ym−1)}, (x0, ...,xm−1),(y0, ...,ym−1) ∈ X
m.
(2)

It turns out that appropriately contractive GIFSs generates fractals sets. In order to formulate the result
we need some further notation.
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Definition 2.22. We say that f : Xm→ X is a generalized Matkowski contraction of degree m, if for some

nondecreasingϕ : [0,∞)→ [0,∞)with ϕ(k)(t)→ 0 for t > 0 (here (ϕ(k)(t)) is the sequence of iterations
of ϕ at the point t), it holds

d(f (x), f (y))≤ ϕ(dm(x,y)), x,y ∈ Xm

A function ϕ is called a witness for f .

Remark 2.23. (1) It is easy to see that if Lip(f ) < 1, then f is a generalized Matkowski contraction -
the function ϕ(t) := Lip(f ) · t is a witness.
(2) If m = 1, then a generalized Matkowski contraction is called a Matkowski contraction, and it is
known that each Matkowski contraction on a complete metric space satisfies the thesis Banach Fixed
Point theorem (see Matkowski [Ma]). In fact, it is one of the strongest generalizations of the Banach
Fixed Point theorem. For comparison of other notions of contractiveness, we refer the reader to a paper
[JJ].

The next result shows that the (mentioned above) Matkowski fixed point theorem can be extended
to generalized Matkowski contractions. For a proof, see Strobin and Swaczyna [S], [SS] and Mihail and
Miculescu [MM1], Theorem 3.4 (for a weaker case).

Theorem 2.24. Let (A,d) be a complete metric space. Given a generalized Matkowski contraction F : Am→
A, there exists a unique a ∈ A such that F(a,...,a) = a.Moreover, for every a0,a1, ...,am−1 ∈ A, the sequence
ak, k ≥ 0 defined by

ak+m = F(ak+m−1,ak+m−2, ...,ak),

for all k ∈N, is convergent to a.

Also in Strobin [S] (see also Mihail [M2]), we have

Proposition 2.25. Let (X,d) a metric space and fj : X
m→ X , 0, ...,n − 1 be generalized Matkowski contrac-

tions, with witnessing functions ϕj , j = 0, ...,n − 1. Then the map F :K∗(X)m→K∗(X) given by

F(H0, ...,Hm−1) =
n−1
⋃

j=0

fj (H0 × · · · ×Hm−1),

is a generalized Matkowski contraction with witness function ϕ =maxj ϕj .
In particular, if fj is Lipschitz contractive with Lip(fj ) < 1, j = 0, ...,n−1, then F is also Lipschitz contractive
and Lip(F)≤maxj Lip(fj ) < 1.

Now let us recall some properties of the Hausdorff distance. A proof can be found for example in
[MM1], Proposition 2.7.

Proposition 2.26. If (Y,d ′) and (Z ,d ′′) are metric spaces then

i) if H and K are non empty sets of Y then h(H,K) = h(H,K);

ii) if Hi and Ki for i ∈ I , are non empty families of sets of Y then h










⋃

i∈I

H,
⋃

i∈I

K










≤ sup
i∈I

h(Hi,Ki).

We are ready to define generalized iterated function systems and prove the existence theorem (see
mentioned papers [Mi], [M2], [MM1],[S] and [SS]).

Definition 2.27. A generalized iterated function system of degreem (GIFS) is a (finite) family S of contin-
uous mappings φj : X

m→X , denoted S = (X,(φj )j=0...n−1).
If each φj is a generalized Matkowski contraction, then we say that S is Matkowski contractive.
If each Lip(φj ) < 1, then we say that S is Lipschitz contractive.
The operator S :K∗(X)m→K∗(X) defined by

S(K0, ...,Km−1) :=
⋃

j=0,...,n−1

φj (K0 × ...×Km−1)

is called the generalized Hutchinson-Barnsley (GHB) operator associated to S.
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Theorem 2.28. Given a Matkowski contractive GIFS S(X,(φi)i=0,...,n−1) of order m, the GHB operator is a
generalized Matkowski contraction. In particular, if X is complete, then there exists a unique AS ∈ K

∗(X)
such that

AS = S(AS, ...,AS ) =
⋃

j=0,...,n−1

φj (AS × ...×AS)

Moreover, for every K0, ...,Km−1 ∈ K
∗(X), the sequence (Kk) defined by

Kk+m = S(Kk, ...,Kk+m−1)

converges to AS .

Proof. By the above auxiliary results we see that S : K∗(X)m → K∗(X) is a generalized Matkowski
contraction (or even Lip(S) < 1, if S is Lipschitz contractive), so the result follows from Theorem 2.24.
�

3 GIFS fuzzyfication

In this section we introduce and study a fuzzy version of GIFSs.
Let X be a metric space andm ∈N. We start with recalling the definition of the finite Cartesian product
of fuzzy sets.

Definition 3.1. Givenm≥ 2 and u0, ...,um−1 ∈ FX we define we define the Cartesian product u0×...×um−1 ∈
FXm by

(u0 × ...×um−1)(x0, ...,xm−1) =
m−1
∧

i=0

ui(xi).

Figure 4: Representation of the fuzzy set u×v in X = [0,1]2 as a grey scale figure (in the bottom). In the
top, u(x) = 1/8(8x − f rac(8x)) (left) and v(y) = 1− 4(x − 1

2)
2 (right) are actually fuzzy sets in X = [0,1]

but we represent in X = [0,1]2 to get a better graphical idea (u(x) = u(x,y) and v(y) = v(x,y)).

Remark 3.2. We denote

(u0, ...,um−1) = (u)m−1i=0 = (u)i and u0 × ...×um−1 =×
m−1
i=0 ui =×iui

to simplify the writing of elements in (F ∗X )
m, if there is no risk of misunderstanding.

Proposition 3.3. Consider u0, ...,um−1 ∈ FX .
a) If ui, i = 0, ..,m− 1 are normal, then×iui is normal.
b) If ui, i = 0, ..,m− 1 are usc, then×iui is usc.
c) If ui, i = 1, ...,m− 1 are compactly supported, then×iui is compactly supported.
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Proof.
a) If ui(x̄i) = 1, i = 0, ..,m− 1 then (×iui)(x̄0, ..., x̄m−1) = 1.
b) We claim that

(×iui)−1([c,+∞]) = u−10 ([c,+∞])× · · ·×u−1m−1([c,+∞])

which will imply that×iui is usc as the latter set is obviously closed.
To see that our claim is true, we take (x̄0, ..., x̄m−1) ∈ (×iui)−1([c,+∞]). Then

(×iui)(x̄0, ..., x̄m−1) ≥ c

that is
∧m−1
i=0 ui(x̄i) ≥ c so ui(x̄i) ≥ c for each i = 0, ...,m − 1. Thus (x̄0, ..., x̄m−1) ∈ u

−1
0 ([c,+∞]) × · · · ×

u−1m−1([c,+∞]). The reciprocal it is true because the minimum is the maximum of the lower bounds.
c) Similarly as in b) we can show that

(×iui)−1((0,+∞]) = u−10 ((0,+∞])× · · · ×u−1m−1((0,+∞])

which clearly implies c). �

Definition 3.4. A generalized iterated fuzzy function system of degreem (GIFZS in short)
ZS := (X,(φj )j=0...n−1,(ρj )j=0...n−1) consists of a GIFS S = (X,(φj )j=0...n−1), with a set of admissible
grey level maps (see Definition 2.9) (ρj )j=0...n−1 : [0,1]→ [0,1].
We say that ZS is Matkowski contractive or Lipschitz contractive , if the GIFS S is so.
The operatorZS :F ∗

X
× · · · ×F ∗

X
→F ∗

X
defined by

ZS((u)i) :=
∨

j=0...n−1

ρj (φj (×iui))

is called the generalized fuzzy Hutchinson-Barnsley operator (GFHB) associated to ZS

Recall that for φj : X
m→ X and u0, ...,um−1 ∈ F

∗
X
then

φj (×iui)(z) =
{

supφj ((x)i)=z
∧m−1
i=0 ui(xi), if φ−1

j
(z) ,∅

0, otherwise
.

Proposition 3.5. The operator ZS is well defined, that is,ZS(F
∗
X
× · · · ×F ∗

X
) ⊆ F ∗

X
.

Proof. From Proposition 3.3, we get u0 × ... × um−1 ∈ F
∗
Xm because u0, ...,um−1 ∈ F

∗
X , and from Proposi-

tion 1.17 φj (u0 × ... ×um−1) is normal, compactly supported and usc. Moreover, ρj (φj (u0 × ... × um−1))
is usc and compactly supported because each ρj is ndrc (see Lemma 2.13 taking Xm and X ). Thus
ZS(u0, ...,um−1) ∈ F

∗
X because the family ρj is admissible implies that ZS(u0, ...,um−1) is normal (see

Lemma 2.13(d)). �

Next we consider the complete metric space ((F ∗X )
m,dm∞), where dm∞ is defined as in (2), that is

dm∞((u0, ...,um−1),(v0, ...,vm−1)) = max
i=0,...,m−1

d∞(ui,vi).

Lemma 3.6. Given α ∈ [0,1] we get









[(×iui)]
α = ×i[ui]

α, if α > 0;

[(×iui)]
0 = ×i[ui]

0 = limβn→0×i[ui]
βn , if α = 0 and βn > 0.

Proof. With α > 0 we can deal similarly as in Proposition 3.3, b), and obtain

[(×iui)]
α = (×iui)

−1([α,+∞]) = ×i(ui)
−1([α,+∞]) = ×i[ui]

α.

For the second part, we show first ×i[ui]
0 = [(×iui)]

0.



15

Take (x)i ∈ [×iui]
0 then there is a sequence ((yk)i) such that (yk)i → (x)i with (yk)i ∈ [×iui]

αk =

×i[ui]
αk for some αk ց 0. By the properties of the product topology, each coordinate yki → xi ∈ [ui]

0,

so (x)i ∈ ×i[ui]
0. Reciprocally, if (x)i ∈ ×i[ui]

0 there for every i = 0, ...,m − 1 there is a sequence (yki )

such that yk
i
→ xi and y

k
i
∈ [ui]

αi
k . Take γk := mini α

i
k
> 0 and consider the sequence ((yk)i). We claim

that (yk)i ∈ ×i[ui]
γk = [×iui]

γk . Indeed, yk
i
∈ [ui]

αi
k ⊆ [ui]

γk for i = 0, ...,m − 1. Since (x)i = lim
k→∞

(yk)i

we get (x)i ∈ [×iui]
0.

Obviously ×i[ui]
0 = lim

k→∞
×i[ui]

βk for all βkց 0 because of the considered topology on K∗(Xm). �

Remark 3.7. By the above Lemma, Proposition 2.6 and Lemma 2.13, we have that ifZS is a GIFZS and
u0, ...,um−1 ∈ F

∗
X , then for every α ∈ [0,1],

[ZS(×iui)]
α =

⋃

j=0,...,n−1

φj ([ρj (×iui)]
α)

and if α ∈ (0,ρj (1)], then (note that since ρj (0) = 0, be have βj (α) > 0)

[ρj (×iui)]
α = [×iui]

βj (α) = ×i[ui]
βj (α)

and if α = 0, then

[ρj (×iui)]
0 = ×i[ui]

r
j
+

provided ρj (r
j
+) > 0, and

[ρj (×iui)]
0 =

⋃

α>r
j
+

[×iui]α =
⋃

α>r
j
+

×i[ui]α = ×i
⋃

α>r
j
+

[ui]α =
⋃

α>r
j
+

[u0]α × ...×
⋃

α>r
j
+

[um−1]α

provided ρj (r
j
+) = 0.

The next lemma shows the relationship between the Hausdorff distance on K∗(Xm) and the maxi-
mum distance on K∗(X)m.

Lemma 3.8. Let A0, ...,Am−1,B0, ...,Bm−1 ∈ K
∗(X) then

h(×iAi ,×iBi) = max
i=0,...,m−1

h(Ai,Bi).

Proof. We recall that Uε = {x ∈ X | d(x,U) ≤ ε}, and h(U,V ) = inf{ε > 0 |U ⊆ Vε,V ⊆Uε}.We claim that
(×iAi)ε =×i(Ai)ε. Indeed, given (z)i ∈ (×iAi)ε we get

max
i
d(zi,xi) = dm((z)i,(x)i) ≤ ε, for some (x)i ∈×iAi

that is d(zi,xi) ≤ ε and xi ∈ Ai for all i = 0, ...,m − 1. Thus (z)i ∈×i(Ai)ε. So (×iAi)ε ⊆×i(Ai)ε. The
reciprocal is evident, because dm((z)i,(x)i) = maxi d(zi,xi).

Take ε > 0 such that ×iAi ⊆ (×iBi)ε and ×iBi ⊆ (×iAi)ε. Then ×iAi ⊆ ×i(Bi)ε and ×iBi ⊆
×i(Ai)ε. Using the properties of the Cartesian product we get Ai ⊆ (Bi)ε, ∀i and Bi ⊆ (Ai)ε, ∀i. Thus,
h(Ai,Bi) ≤ ε for i = 0, ...,m − 1, so maxi=0,...,m−1h(Ai ,Bi) ≤ ε. Reverting the reasoning above we get
h(×iAi ,×iBi) =maxi=0,...,m−1h(Ai ,Bi). �

Lemma 3.9. The mapping ψ : ((F ∗X )
m,dm∞)→ (F ∗Xm ,d∞) given by

ψ(u0, ...,um−1) := u0 × ...×um−1

is isometry, that is

d∞(ψ(u0, ...,um−1),ψ(v0, ...,vm−1)) = d
m
∞((u0, ...,um−1),(v0, ...,vm−1)).
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Proof. By definition
d∞(ψ((u)i),ψ((v)i)) = sup

α∈[0,1]
h([×iui]

α,[×ivi]
α)

From Lemma 3.6 we have [×iui]
α = ×i[ui]

α and from Lemma 3.8 we get, for any α ∈ [0,1],

h([×iui]
α,[×ivi]

α) = h(×i[ui]
α,×i[vi]

α) = max
i=0,...,m−1

h([ui]
α,[vi]

α) .

So

d∞(ψ((u)i),ψ((v)i)) = sup
α∈[0,1]

max
i=0,...,m−1

h([ui]
α,[vi]

α)

= max
i=0,...,m−1

sup
α∈[0,1]

h([ui]
α,[vi]

α)

= max
i=0,...,m−1

d∞(ui,vi)

= max
i
d∞(ui,vi)

= dm∞((u0, ...,um−1),(v0, ...,vm−1)).

�

Lemma 3.10. Let (A,d) be a metric space and ρ an ndrc grey level map with ρ(0) = 0. Then the map induced
by ρ is nonexpansive, that is,

d∞(ρ(u),ρ(v))≤ d∞(u,v),

for any u,v ∈ F ∗A .

Proof. By Corollary 2.4, we have d∞(ρ(u),ρ(v)) = sup
0<α≤1

h([ρ(u)]α,[ρ(v)]α).

Take 0 < α ≤ 1. From Proposition 2.6 we know that [ρ(u)]α = ∅ if α > ρ(1) and if α ∈ (0,ρ(1)], then
[ρ(u)]α = [u]β(α), where β : [0,ρ(1)]→ [0,1], given by

β(α) = inf{t | ρ(t)≥ α}

is well defined and nondecreasing. Then

h([ρ(u)]α,[ρ(v)]α) = h([u]β(α),[v]β(α)) ≤ d∞(u,v),

hence
d∞(ρ(u),ρ(v))≤ d∞(u,v).

�

Definition 3.11. A fuzzy set u ∈ F ∗
X
is called a generalized fuzzy fractal of a GIFZSZS = (X,(φj ),(ρj ))j=0,...,n−1

ifZS(u,...,u) = u, that is

u =
∨

j=0...n−1

ρj (φj (×
m−1
i=0 u)).

Example 3.12. ConsiderZS = (S1 =R/Z ≃ [0,1],(φj )j=0,1,(ρj )j=0,1), with the admissible grey level maps

ρj (t) := t, t ∈ [0,1] and the Lipschitz maps given by φj (x,y) :=
1
2x +

j
2 , j = 0,1. In this case,

φj (u× v)(z) =











sup
y∈[0,1], 1

2x+
j
2=z

u(x)∧ v(y), if ∃x s.t. 12x +
j
2 = z

0, otherwise
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Since [0,1] = [v]u(2z−j )∪[0,1]\[v]u(2z−j ), for y ∈ [v]u(2z−j ) we get v(y)≥ u(2z−j ) so u(2z−j )∧v(y) =
u(2z − j ). Analogously, if y ∈ [0,1]\[v]u(2z−j ) we get v(y) < u(2z − j ) so u(2z)∧ v(y) = v(y). Thus

sup
1
2x+

j
2=z, y∈[0,1]

{u(x)∧ v(y)}= sup
y∈[0,1]

{u(2z − j )∧ v(y)}= u(2z − j ).

For j = 0

φ0(u× v)(z) =

{

u(2z), if z ∈ [0,1/2]
0, if z ∈ (1/2,1]

For j = 1

φ1(u× v)(z) =

{

0, if z ∈ [0,1/2)
u(2z − 1), if z ∈ [1/2,1]

We point out that u(2(1/2))∨u(2(1/2)− 1)= u(1)∨u(0), but 0 = 1 in S1.
From

ZS(u,v) =
∨

j=0,1

φj (u× v)

we get
ZS(u,v)(z) = u(T (z)), T (z) := 2z mod 1.

ObviouslyZS(1,1) = 1. We claim that this is the unique fixed point ofZS inF ∗X , i.e.,ZS(u,u)(z) = u(z).
Indeed, let u ∈ F ∗

X
be such that u(z) = u(T (z)), ∀z ∈ [0,1]. Since u is normal, there exists a point a ∈ [0,1]

such that u(a) = 1. We define Γ :=
⋃

n∈NT
−n(a). Obviously, u(T−n(a)) = u(a), ∀n. We claim that Γ is dense

in [0,1]. To see this, we take any x ∈ [0,1] and let xn = dn−12
−1+dn−22

−2+dn−32
−3+....+d02

−n+1, dj ∈ {0,1},
be a base 2 truncated expansion of x. It is easy to see that

yn = xn +a2
−n = dn−12

−1 +dn−22
−2 +dn−32

−3 + ....+d02
−n+1 +a2−n ∈ Γ,

that is T n(yn) = a, so yn→ x. From the upper semicontinuity of u we get u(x)≥ limsup
n→∞

u(yn) = u(a). Thus

1 = u(a) = min
x∈[0,1]

u(x)≤ 1. From this, we get u ≡ 1.

Remark 3.13. Actually, in any similar case, that is, ZS = (X,(φj )j=0,1,(ρj )j=0,1), with ρj (t) = t, t ∈
[0,1],

⋃

j=0,1φj (X ×X) = X and X compact, we get

ZS(1,1)(z) =
∨

j=0,1

φj (1× 1)(z) =
∨

j=0,1

sup
(x,y)∈φ−1j (z)

(1(x)∧ 1(y)) = 1,

because the property
⋃

j=0,1

φj (X ×X) =X implies that φ−1j (z) is never an empty set.

Now we prove that the operator ZS satisfies the same contractive conditions as mappings from S.
Especially, this extends the first parts of Theorems 2.14 and 2.28.

Theorem 3.14. Let ZS = (X,(φj )j=0,...,n−1,(ρj )j=0,...,n−1) be a Matkowski contractive GIFZS of degree m.
Then the (FGHB) operator ZS : (F ∗X )

m → F ∗X is a generalized Matkowski contraction. Its witness is the
function ϕ := maxj=0,...,n−1ϕj where ϕj , j = 0, ...,n − 1, are witnesses for φj , j = 1, ...,n − 1, respectively.
In particular, if ZS is Lipschitz contractive, then the (FGHB) operator ZS is also Lipschitz contractive with
Lip(ZS) ≤maxj=0,...,n−1Lip(φj ) < 1.

Proof. Let (u)i,(v)i ∈ (F
∗
X )

m. We have

d∞(ZS((u)i),ZS((v)i)) = sup
α∈[0,1]

h([ZS((u)i)]
α,[ZS((v)i)]

α)

= sup
α∈[0,1]

h











⋃

j

φj ([ρj (×iui)]
α),

⋃

j

φj ([ρj (×ivi)]
α)










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Taking Hj = φj ([ρj (×iui)]α) and Kj = φj ([ρj (×ivi)]α) and applying Propositions 2.25 and 2.26 we
get

≤ sup
α∈[0,1]

h











⋃

j

φj ([ρj (×iui)]α),
⋃

j

φj ([ρj (×ivi)]α)










≤ sup
α∈[0,1]

sup
j
h
(

φj ([ρj (×iui)]α),φj ([ρj (×ivi)]α)
)

≤ sup
α∈[0,1]

sup
j
ϕj

(

h
(

[ρj (×iui)]α,[ρj (×ivi)]α
))

≤ sup
j
ϕj








sup
α∈[0,1]

h
(

[ρj (×iui)]α,[ρj (×ivi)]α
)









= ϕ








sup
α∈[0,1]

h
(

[ρj (×iui)]α,[ρj (×ivi)]α
)









= ϕ(dm∞((u)i,(v)i))

Also, it is easy to see that ϕ is nondecreasing and for every t > 0, ϕ(k)(t)→ 0. �

From Theorem 3.14 and Theorem 2.24 we had proved the main result, which gathers Theorems 2.14
and 2.28.

Theorem 3.15. If X is complete, then there is a unique generalized fuzzy attractor uZ ∈ F
∗
X for a Matkowski

contractive GIFZS ZS = (X,(φj ),(ρj )), i.e., a unique uZ ∈ F
∗
X such that

uZ =ZS(uZ, ...,uZ) =
∨

j=0...n−1

ρj (φj (uZ × ...×uZ)).

Moreover, for every u0,u1, ...,um−1 ∈ F
∗
X , the sequence (uk) defined by

uk+m :=ZS(uk+m−1,uk+m−2, ...,uk),

for all k ∈N, is convergent to uZ.

Theorem 3.16. “GIFZS Collage Theorem” If X is complete and ZS is a Lipschitz contractive GIFZS with
λ := Lip(ZS) < 1, then for any u ∈ F ∗X , we have

d(u,uZ) ≤
1

1−λ
d(u,ZS(u,...,u))

where uZ is a unique fractal generated byZS .

Proof. The proof follow from Theorem 1.6, taking A = X and T (u) :=ZS(u,...,u). Theorem 3.14 claims
that

d∞(ZS((u)i),ZS((v)i))≤ λ d
m
∞((u)i,(v)i), ∀ui ,vi ∈ F

∗
X ,

with contraction constant 0 ≤ Lip(φj ) < 1. If (u)i = (u,...,u) and (v)i = (v,...,v) then dm∞((u)i,(v)i) =
maxi d∞(u,v) = d∞(u,v). Thus, the above inequality became

d∞(T (u),T (v)) ≤ λ d∞(u,v), ∀u,v ∈ F
∗
X .

From Theorem 1.6 for T we get

d(u,uZ) ≤
1

1−λ
d(u,ZS(u,...,u))

�
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4 Further properties

4.1 Monotonicity of the generalized fuzzy operator

To generalize the Proposition 2.20 and to prove the analogous of Theorem 2.21 in the GIFZS case we
need to extend the notion of monotonicity.

Definition 4.1. Given u0,u1,u2, ..., ... ∈ FX , we say that this sequence is nonincreasing, if u0 ≥ u1 ≥ ...,
and nondecreasing, if u0 ≤ u1 ≤ ....

Lemma 4.2. The operatorZS , associated to a GIFZS, preserves monotonous sequences inF ∗X . More precisely,
if u0 ≥ · · · ≥ um−1, the sequence uk+m = ZS(uk+m−1,uk+m−2, ...,uk), for all k ∈ N, is nonincreasing in F ∗X
provided um−1 ≥ um. The same is true for a nondecreasing sequence.

Proof. By assumption, we have that u0 ≥ u1 ≥ ... ≥ um−1 ≥ um. Suppose that uk ≥ · · · ≥ uk+m−1 for some
k ≥ 1. We will prove that uk+m−1 ≥ uk+m. Using the fact that uk+m = ZS(uk+m−1,uk+m−2, ...,uk) and
uk+m−1 =ZS(uk+m−2,uk+m−3, ...,uk−1), we need to compare

φj (uk+m−1 × ...×uk)(z) and φj (uk+m−2 × ...×uk−1)(z),∀z ∈ X

If (φj )
−1(z) =∅ thenφj (uk+m−1×...×uk)(z) = 0 ≤ φj (uk+m−2×...×uk−1)(z). Otherwise, if (x0, ...,xm−1) ∈

(φj )
−1(z) ,∅ then

uk+m−1(x0) ≤ uk+m−2(x0), · · · ,uk(xm−1) ≤ uk−1(xm−1)

thus φj (uk+m−1 × ...×uk)(z)≤ φj (uk+m−2 × ...×uk−1)(z). Hence we get

ZS(uk+m−1,uk+m−2, ...,uk) =
∨

j=0...n−1

ρj (φj (uk+m−1 × ...×uk))≤

≤
∨

j=0...n−1

ρj (φj (uk+m−2 × ...×uk−1)) =ZS(uk+m−2,uk+m−3, ...,uk−1),

because the grey scale maps are nondecreasing. �

Proposition 4.3. Let the crisp set AS ∈ K
∗(X) be the attractor of a Matkowski contractive GIFS S =

(X,(φj )j=0...n−1), and uZ ∈ F
∗
X

be the fuzzy attractor of the GIFZS ZS = (X,(φj )j=0...n−1,(ρj )j=0...n−1).
Then, for any B ∈ K∗(X) and v ∈ F ∗X we have
a) IfZS(v× · · · × v) ≤ v then uZ ≤ v;
b) If S(B × · · · ×B) ⊆ B then AS ⊆ B;
c) If v ≤ZS(v× · · · × v) then v ≤ uZ;
d) If B ⊆S(B × · · · ×B) then B ⊆ AS .

Proof. a) IfZS(v×· · ·×v)≤ v we get, from Lemma 4.2, a nonincreasing sequence u0 = v ≥ · · · ≥ um−1 = v
and uk+m = ZS(uk+m−1,uk+m−2, ...,uk) for all k ∈ N. From Theorem 3.15 we have limk→∞uk = uZ so
uZ ≤ v. The other items are proved in the same fashion. �

4.2 Relationships between a GIFZS and the appropriate GIFS

Here we will investigate the basic relationships between GIFZS ZS and the GIFS S. As iterated fuzzy
function systems are particular versions of GIFZSs, the results are also true for them.

Theorem 4.4. Assume that X is complete and ZS = (X,(φj )j=0...n−1,(ρj )j=0...n−1) is a Matkowski contrac-
tive GIFZS with the attractor uZ, and let

I := {j ∈ {0, ..,n − 1} : ρj (1) = 1}}

and S′ := (X,(φj )j∈I). Then we have

(1) [uZ]
0 ⊆ AS , and if r+

j
= 0 for all j = 0, ...,n − 1, then [uZ]

0 = AS ;
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(2) AS′ ⊆ [uZ]
1, and if βj (1) = 1 for all j ∈ I , then AS′ = [uZ]

1.

(3) If I = {0, ...,n − 1}, then uZ = χAS .

Proof. Ad(1) Consider χAS ∈ F
∗
X then,

φj (×iχAS )(z) = sup
φj (x0,...,xm−1)=z

∧

i

χAS (xi),

if (φj )
−1(z) =∅ the inequality is trivial. We notice that

∧

i

χAS (xi) =χAS×···×AS (x0, ...,xm−1)

thus

φj (×iχAS )(z) = sup
φj (x0,...,xm−1)=z

χAS×···×AS (x0, ...,xm−1) =χφj (AS×···×AS)(z) ≤χAS (z),

from Remark 1.16 and because AS =
n−1
⋃

j=0

φj (AS × · · · ×AS) implies φj (AS × · · · ×AS) ⊆ AS for any j .

In particular ρj (φj (×iχAS)) ≤ ρj (χAS) ≤ χAS for any j , because each φj is not decreasing and
ρj (0) = 0 and ρj (1) ≤ 1. SinceZS is a supremum we getZS(χAS , ...,χAS ) ≤χAS . From Proposition 4.3

we get uZ ≤χAS thus [uZ]
0 ⊆ AS , because if x < AS then χAS(x) = 0 ≥ uZ(x)≥ 0 so uZ(x) = 0.

To prove the second part, assume that r
j
+ = 0 for all j = 0, ...,n − 1. Then by Remark 3.7 (note that here

ρj (r
j
+) = ρj (0) = 0), we have

[uZ]
0 = [ZS(×iuZ)]

0 =
⋃

j=0,...,n−1

φj ([ρj (×iuZ)]
0) =

⋃

j=0,...,n−1

φj ([uZ]
0 × ...× [uZ]

0)

Hence [uZ]
0 =AS by the uniqueness of the attractor of a GIFS.

Ad (2) By Remark 3.7

[uZ]
1 =

⋃

j=0,...,n−1

φj ([ρj (×iui)]
1) =

⋃

j∈I

φj ([ρj (×iui)]
1) =

=
⋃

j∈I

φj (×i[uZ]
βj (1)) ⊃

⋃

j∈I

φj (×i[uZ]
1) =S′([uZ]

1, ...,[uZ]
1) (3)

where the second equality follows from the fact that if ρj (1) < 1, then [ρj (×uZ)]
1 = ∅ (Proposition

2.6(b)). Hence by Proposition 4.3 we get [uZ]
1 ⊃ AS′ . Also, if for all j ∈ I , βj (1) = 1, then in (3) we have

all equalities, so in this case [uZ]
1 = AS′ .

Ad (3) If I = {0, ...,n − 1}, then by (1) and (2) we have

AS =AS′ ⊂ [uZ]
1 ⊂ [uZ]

0 ⊂ AS

so [uZ]
1 = [uZ]

0 = AS , and this implies uZ = χAS . �

The above result suggests the definition:

Definition 4.5. An admissible system of grey level maps (ρj )j=0,...,n−1 is called proper, if r+j = 0 and

βj (ρj (1)) = 1 for all j = 0, ...,n − 1.

As a corollary of the above proof, we have that

Corollary 4.6. Let ZS = (X,(φj )j=0,...,n−1,(ρj )j=0,...,n−1) be a Matkowski contractive GIFZS on a complete
metric space with a proper family (ρj ). If I := {j : ρj (1) = 1}, S := (X,(φj )) and S

′ := (X,(φj )j∈I), then
[uZ]

0 = AS and [uZ]
1 = A(S′), where uZ is the attractor of ZS .
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Remark 4.7. The above result gives a natural sufficient condition under which the attractor of a GIFZS
is not a crisp set. Indeed, take a GIFS S = (X,(φj )j=0,...,n−1) whose attractor is not a singleton and let
I ⊂ {0, ...,n − 1} be such that the attractor of a GIFS S′ = (X,(φj )j∈I) does not equal AS (for example, I
can be a singleton). Finally take a proper family (ρj ) of grey level maps so that ρj (1) = 1 if j ∈ I and
ρj (1) < 1 if j < I . Then by Corollary 4.6, the attractor uZ of a GIFZS ZS = (X,(φj ),(ρj )) is not a crisp
set.

Example 4.8. In this example, we explore the symmetries of a fixed GIFS to give some general properties of
the fuzzy attractor for any admissible family of grey level maps. Consider ZS = ([0,1],(φj )j=0,1,(ρj )j=0,1),
where ρj (t), t ∈ [0,1] is an arbitrary family of admissible grey level maps and the Lipschitz maps are given

by φj (x,y) :=
1
4x +

1
4y +

j
2 , j = 0,1. In this case,

φj (u× v)(z) =

{

supx,y∈[0,1], y=4z−2j−x u(x)∧ v(y), if ∃x,y s.t. y = 4z − 2j − x
0, otherwise

First we need to compute φ−1j (z). It is easy to see that

φ−10 (z) =











{(x,4z − x),x ∈ [0,4z]}, z ∈ [0,1/4];
{(x,4z − x),x ∈ [4z − 1,1]}, z ∈ [1/4,1/2];
∅, z ∈ (1/2,1].

so

φ0(u,u)(z) =













supx∈[0,4z] u(x)∧u(4z− x), z ∈ [0,1/4];
supx∈[4z−1,1] u(x)∧u(4z− x), z ∈ [1/4,1/2];
0, z ∈ (1/2,1].

We can also prove that

φ−11 (z) =

{

{∅}, z ∈ [0,1/2)
φ−10 (z − 1/2), z ∈ [1/2,1].

so

ZS(u,u)(z) =
∨

j=0,1

ρj (φj (u×u)(z)) =











ρ0(φ0(u×u)(z)), z ∈ [0,1/2);
ρ0(u(1))∨ ρ1(u(0)), z = 1/2;
ρ1(φ0(u×u)(z− 1/2)), z ∈ (1/2,1].

Suppose that uZ is the fuzzy fractal ofZS . Then

uZ(z) = ρ0(φ0(uZ ×uZ)(z)), z ∈ [0,1/2)

and

uZ(z) = ρ1(φ0(uZ ×uZ)(z −
1

2
)), z ∈ (1/2,1]

A particular case is ρ0(t) :=
1
2t and ρ1(t) := t. In this situation

uZ(z) =
1

2
φ0(uZ ×uZ)(z), z ∈ [0,1/2)

and
uZ(z) = φ0(uZ ×uZ)(z − 1/2), z ∈ (1/2,1]

Now let z ∈ (1/2,1). Then z − 1/2 ∈ (0,1/2), so we have

uZ(z) = φ0(uZ ×uZ)(z − 1/2) = 2
(

1

2
φ0(uZ ×uZ)(z − 1/2)

)

= 2uZ(z − 1/2)

Another particular case is ρ0(t) := t and ρ1(t) := 0. In this situation the attractor uZ is given by uZ(z) =
χ{0}(z).
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4.3 Richness of the class of generalized fuzzy fractals

Now we are going to investigate the class of generalized fuzzy fractals. In particular, we give a partially
positive answer to the question whether such class is essentially wider than the class of fuzzy fractals
generated by IFZSs. We also show that for certain complete metric spaces, the family of IFZSs’ fractals
is dense in F ∗X (this result is in fact a slight generalization of already known result due to Cabrelli et al.).

Let
Ai := {u ∈ F

∗
X | ZS(u) = u for some Lipschitz contractive IFZS}

Mi := {u ∈ F
∗
X | ZS(u) = u for some Matkowski contractive IFZS}

and ifm ∈N, then

Am
g := {u ∈ F ∗X | ZS(u,....,u) = u for some Lipschitz contractive GIFZS of degreem} ⊆ F ∗X .

and finally

Mm
g := {u ∈ F ∗X | ZS(u,....,u) = u for some Matkowski contractive GIFZS of degree m} ⊆ F ∗X .

Clearly,Ai =A
1
g andMi =M

1
g .

The next result is analogous to Strobin [S] and Miculesu [Mi] (see also Miculescu and Mihail [MM1])
in the fuzzy setting.

Theorem 4.9.
(1) For everym ∈N,Am

g ⊂A
m+1
g andMm

g ⊂M
m+1
g .

(2) There exists a complete metric space X such thatAi (A
2
g .

(3) Let X =R2 andm> 1. Then there exists u∗ ∈ F ∗X such that:
- u∗ is the attractor of some Lipschitz contractive GIFZSZS = (X,(φj ),(ρj )) of degreem with proper system
(ρj );
- u∗ is not the attractor of any Matkowski contractive GIFZS ZS = (X,(φj ),(ρj )) of degree m− 1 consisting
of an admissible system (ρj ) with r

+
j = 0 for all j ;

- u∗ is not the attractor of any GIFS.

Proof. Ad(1) We want to prove thatMm−1
g ⊆Mm

g for all m > 1. Suppose v ∈ Mm−1
g , that is ZR(v) =

∨

j=0...n−1ρj (ψj (×iv)) = v, for a Matkowski contractive GIFZS ZS = (X,(ψj )j=0...n−1,(ρj )j=0...n−1). Let
us consider the degreem GIFZS

ZS′ = (X,(φj )j=0...n−1,(ρj )j=0...n−1)

where for every u0, ...,um−1 ∈ F
∗
X ,

φj (u0, ...,um−1) = ψj (u0, ...,um−2)

Obviously, φj are generalized Matkowski contractions.
We recall that for j = 0, ...,n − 1 and u0, ...,um−1 ∈ F

∗
X
, we have that

φj (×iui)(z) :=
{

supφj ((x)i)=z
∧m−1
i=0 ui(xi), if φ−1j (z) ,∅

0, otherwise
.

But φ−1j (z) = {(x0, ...,xm−1) | ψj (x0, ...,xm−2) = z} = ψ
−1
j (z)×X .

On the other hand

ψj (u0 × ...×um−2)(z) =

{

supψj (x0,...,xm−2)=z
∧m−2
i=0 ui(xi), if ψ−1j (z) ,∅

0, otherwise.

We claim that
φj (×

m−1
i=0 v)(z) = ψj (×

m−2
i=0 v)(z).
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Indeed, if (x0, ....,xm−1) ∈ φ
−1
j (z) = {(x0, ...,xm−1) | ψj (x0, ...,xm−2) = z} =ψ

−1
j (z)×X ,∅ then

m−1
∧

i=0

v(xi) =

{ ∧m−2
i=0 v(xi), if v(xm−1) ≥ v(xi), for some i ≤m− 2

v(xm−1), if v(xi) ≥ v(xm−1), for all i ≤m− 2

so

φj (×iv)(z) = sup
φj (x0,...,xm−1)=z

m−1
∧

i=0

v(xi) = sup
ψj (x0,...,xm−2)=z

m−2
∧

i=0

v(xi) = ψj (×iv)(z).

ThusZS(v,...,v) =ZS′(v,...,v) = v ∈M
m
g .

In the same way we show the first inclusion in (1).
Ad(2) To show the inequality we are going to show that a certain GIFZS has an attractor that is not the
attractor of any IFZS.

In Miculescu [Mi] Remark 4.7, we find the following example of GIFS. Let X :=
∏∞
r=0[0,

1
4r ], and

consider it as a compact space with the product metric. Let us point out that the Hausdorff dimension
of X is infinite.

Consider the GIFZSZS = (X,(φj )j=0,1,(ρj )j=0,1),with ρ0(t) := t,ρ1(t) := t, t ∈ [0,1] andφj (x,y) :=

( 12x0 +
j
2 ,

1
4y), j = 0,1. Let us to consider the operator

ZS(u,v) =
∨

j=0,1

ρj (φj (u× v)) =
∨

j=0,1

φj (u× v).

It is easy to see that ZS(1,1) = 1 because φ0(X,X) ∪ φ1(X,X) = X and, under the hypothesis of
Theorem 4.4(3) we know that u∗ = 1 =χX is the unique fuzzy attractor of this GIFZS. Suppose that u∗ ∈
Ai . Then Theorem 2.21 implies that [u∗]0 ⊆ AR, the attractor of the associated Lipschitz contractive
IFSR. In particular [u∗]0 has finite Hausdorff dimension, contradicting [u∗]0 = X .
Ad(3) Let m > 1. By [S] we know that there is a Lipschitz contractive GIFS S = (R2,(φj )j=0,...,3) of

degree m whose attractor AS is a Cantor-type subset of R2 which is not an attractor of any GIFS of
degree m − 1. Let ρj (t) :=

1
2t for j = 0,1,2 and ρ3(t) := t, and let ZS := (R2,(φj )j=0,...,3,(ρj )j=0,..,3)

and uZ be its attractor. Since (ρj )j=0,...,3 is proper and the attractor of a one-element GIFS (R2,φ3) is a

singleton, by Remark 4.7 we have that uZ is not crisp and by Theorem 4.4, [uZ]
0 = AS .

Now assume that uZ is the attractor of some Matkowski contractive GIFZS ZS′ = (R2,(ψj ),(ηj )) of
degree m − 1 with the system (ηj ) satisfying r+j = 0 for all j . Then by Theorem 4.4(1), we get that

AS = [uZ]
0 =AS′ , which is a contradiction. �

Remark 4.10. The proof of part (1) of the above suggests a canonical way to built a GIFSS = (X,(fj )j=0...n−1)
with the same attractor of a given Matkowski contractive IFSR = (X,(φj )j=0...n−1). We simply define

φj (x0, ...,xn−1) := fj (x0), j = 0..n − 1.

It is easy to see that S(AR, ...,AR) =AR, and thus from the uniqueness of AS we obtain AR = AS .
The same is true for the fuzzyfied ones. Given an IFZSZR = (X,(fj )j=0...n−1,(ρj )j=0...n−1) we define an
ZS = (X,(φj )j=0...n−1,(ρj )j=0...n−1), where

φj (×iui) := fj (u0)
We notice that

φj (×iui)(z) =
{

supfj (x0)=z
∧m−1
i=0 ui(xi), if f −1j (z)×Xn−1 ,∅

0, otherwise
=

=

{

supfj (x0)=z u0(x0), if f −1j (z) ,∅

0, otherwise
= fj (u0)(z)

Again it is immediate to see that if u∗ is the fuzzy attractor ofZR then

ZS(u
∗, ...,u∗) =

∨

j=0...n−1

ρj (φj (×iu∗)) =
∨

j=0...n−1

ρj (fj (u
∗)) =ZR(u∗) = u∗.

So u∗ is a fuzzy fractal also forZS .
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As an application of the GIFZS Collage Theorem 3.16 we get a density result, which is a slight
extension of [CM], Theorem 3.1.

Theorem 4.11. Assume that (X,d) is a complete metric space which has a Lipschitz contraction structure,
i.e., which satisfies

∀K ∈ K(X) ∀L > 0 ∀x ∈X ∀ε > 0 ∃ f : X → X, Lip(f ) < L, s.t. f (K)⊂ B(x,ε),

(for example if X =Rn). ThenAi =F
∗
X
, where the closure is taken in the metric d∞. In particularAm

g =F ∗
X

for allm≥ 2.

Proof. We prove for IFZS first, and extend to GIFZS after. The proof of this part is due to [CM] The-
orem 3.1, slightly generalized for spaces with Lipschitz contraction structure. We present it here for
completeness, but the reasoning is essentially the same.

Take u ∈ F ∗X . Then [u]0 ⊆ X is a compact set. Hence for each ε > 0 there exists N ∈N and x0, ...,xN−1

such that
⋃

j=0...N−1

B(xj ,ε/4) ⊃ [u]0. Clearly, we can assume that u(xj ) > 0 for j = 0, ...,N − 1. Using the

contraction structure we can find (φj )j=0...N−1 such that

φj ([u]
0)⊂ B(xj ,ε/4), j = 0...N − 1,

and λj := Lip(φj ) <
1
2 , if it not happens we can consider a power of the initial contraction.

Chose now αj := sup
x∈B(xj ,ε/4)

u(x). Then each αj > 0 and [u]α ⊆
⋃

αj≤α

[u]αj for any α ∈ [0,1]. Indeed, it

follows from u(x)≥ α ≥ αj .
Now define ρj (x) := αjχ[αj ,1](x), that is obviously ndrc. In particular ρj (0) = 0, ρj (1) = αj and

βj (α) = αj for 0 < α ≤ αj . Consider the IFZSZR := (X,(φj )j=0...n−1,(ρj )j=0...n−1).
By Proposition 2.6,

[ρj (u)]
α =









∅, α > αj
[u]αj , 0 < α ≤ αj .

By Lemma 2.13 c), we get [ZR(u)]α =
⋃

j=0...n−1

φj ([ρj (u)]
α) =

⋃

j :α≤αj

φj ([u]
αj ) for α ∈ (0,1].

So fix α ∈ (0,1]. Then by the above we have

h([u]α,[ZR(u)]α) = h











[u]α,
⋃

j :α≤αj

φj ([u]
αj )











(4)

Take any x ∈ [u]α. Then for some j , x ∈ B(xj ,
ε
4 ). By definition, αj ≥ u(x) ≥ α. Also, ∅ , φj ([u]

αj ) ⊂

φj ([u]
0) ⊂ B(xj ,

ε
4). This gives us

[u]α ⊂











⋃

j :α≤αj

φj ([u]
αj )











ε
2

Conversely, let x ∈ φj ([u]
αj ) for some j with α ≤ αj . Then x ∈ B(xj ,

ε
4), and by definition of αj and a

compactness of the set B(xj ,
ε
4)∩[u]

0, there is y ∈ B(xj ,
ε
4) such that u(y) = αj so y ∈ [u]

α. In particular,
⋃

j :α≤αj

φj ([u]
αj ) ⊂ ([u]α) ε

2

Hence by (4) and Corollary 2.4, we have

d∞(u,ZR(u)) = sup
α∈(0,1]

h([u]α,[ZR(u)]α) ≤
ε
2

By the IFZS Collage Theorem we get d∞(u,u
∗) < 1

1−1/2ε/2 = ε where u∗ is the attractor ofZR. Hence

we getAi =F
∗
X . By Theorem 4.9 we haveAi ⊂A

m
g for everym ∈N, soAi =F

∗
X , implies thatAm

g =F ∗X
for allm≥ 2. �
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