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Abstract

Cabrelli, Forte, Molter and Vrscay in 1992 considered a fuzzy version of the theory of iterated
function systems (IFSs in short) and their fractals, which now is quite rich and important part of the
fractals theory.

On the other hand, Miculescu and Mihail in 2008 introduced another generalization of the IFSs’
theory - instead of selfmaps of a metric space X, they considered mappings defined on the finite Carte-
sian product X™.

In this paper we show that the fuzzyfication ideas of Cabrelli et al. can be naturally adjusted to
the case of mappings defined on finite Cartesian product. In particular, we define the notion of a
generalized iterated fuzzy function system (GIFZS in short) and prove that it generates a unique fuzzy
fractal set. We also study some basic properties of GIFZSs and their fractals, and consider the question
whether our setting gives us some new fuzzy fractal sets.
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Introduction

One of the milestones of the fractals theory is the Hutchinson-Barnsley theorem from early 80’s ([BI],
[Hut]) which states that if X is a complete matric space and fy, ..., f,_1 : X = X are Banach contractions
(i-e., their Lipschitz constants Lip(f;) < 1), then there is a unique nonempty and compact set A C X
such that

A=fi(A)u..uU f,(A)

Such sets A are called fractals or attractors, and systems (X, (fo, ..., fu—_1)) of continuous (contractive)
maps are called iterated function systems (IFSs for short). It turns out that many interesting abstract sets,
for example the Cantor ternary set or the Sierpinski triangle, are such fractals. Also some “natural”
objects, like trees, clouds etc., have a fractal structure in a certain scale and the Hutchinson-Barnsley
fractals theory give nice tools for modelling them.

One direction of studies of the Hutchinson-Barnsley (HB for short) theory origines with the question
if we can look at fractal sets as certain fuzzy sets. The idea of fuzzy sets, introduced by Zadeh [Z] in
1965, is that instead of saying that some element x belongs or not to a set A, we can say that it belong
to A in a certain degree, where this “degree” is some number from [0,1]. Such a nice idea attracted
many mathematicians and found many applications. In particular, Cabrelli et al. introduced
the fuzzy version of HB theory. In this setting, fractals can be fuzzy sets, and a given IFS is somehow
fuzzied by additional family of maps.

Another direction of investigations of IFSs’ theory was initiated by Miculescu and Mihail [MMI]|
2008 (see also [MI]], [MM] and [SS])). Instead of selfmaps of a metric space X, they considered mappings
defined on finite Cartesian product of X (they called systems of such mappings as generalized IFSs,
GIFSs for short). It turns out that such systems of mappings generate sets which can be considered as
fractal sets, and many parts of classical theory have natural counterparts in such a framework. What is
also important, the class of GIFSs’ fractals is essentially wider than the class of classical IFSs’ fractals
(see Strobin [S]).

Our goal in this paper is to unify this two approaches. We will define a fuzzy version of GIFSs and
prove that under natural contractive conditions, such fuzzy systems generates fuzzy fractal sets. Also,
we will investigate some properties of such fractals, and deal with the question whether our “unifica-
tion” generates some essentially new fuzzy fractal sets. Since we want our paper to be self-contained,
we will recall some basics of fuzzy sets theory, as well as fractals theory of Cabrelli et al. and Miculescu
and Mihail.

The paper is organized as follows. In the next section we give some topological preliminaries and
background of fuzzy sets. In Section 2 we recall the fuzzy IFS theory and GIFSs’ theory. Section 3 is
devoted to introducing a fuzzy version of GIFSs and their fractals. Finally, in the last section we will
study some further properties of them.

1 Preliminaries

1.1 Topological background

For the proofs of the results presented here you can check the excellent handbook Aliprantis and Bor-
der [AB]. Let X be a fixed topological space and IR = R U {—co, 00} be the extended set of real numbers.

{x € X | u(x) > c} is closed. Analogously, we said that u : X — IR is lower semicontinuous (Isc) if (=f) is
usc.

The proof of the next two lemmas can be found in [AB]], Lemma 2.41 and 2.42, p. 43.

Lemma 1.2. Let u,: X —> R, t € T be a family of usc (resp. Isc) functions. Then, the pointwise supremum
(resp. infimum)
u(x) := supu;(x)
teT

is a usc (resp. Isc) function.

Definition 1.1. We said that u : X — Ris upper semicontinuous (usc) if, for each ¢ € R the set u™!([c, +oo]) :



Lemma 1.3. Let u: X — R. u is usc (resp. Isc) function if and only if for every net (x;);er C X with x; — x

it follows that limsup u(x;) < u(x) (resp. limirtlfu(xt) > u(x)). If X is first countable (i.e., each point has a
XX Xt—

countable neighborhood base, for example a metric space) the net (x;) ez can be replaced by a sequence.

The following result generalizes the Weierstrass theorem.

Theorem 1.4. Ifu: K CX — IR is a usc (resp. Isc) function on the compact K, then u attains its maximum
(resp. minimum) value maxg u (resp. ming u) and the set

argmax(u):={x € K |u(x) = ml?xu} (resp. argmin(u) :={x € K | u(x) = mlgnu})

is nonempty and compact.
Now let us recall the Banach Fixed Point theorem.

Theorem 1.5. Let (A,d) be a complete metric space. Given a contraction F : A — A, there exists a unique
a € A such that F(a) = a. Moreover, for every ag € A, the sequence ay, k > 0 defined by

ki1 = Flag),
for all k € N, is convergent to a.

Finally, let us present the “Collage Theorem” (the proof can be found in [B]] of Barnsley):

Theorem 1.6. “Collage Theorem” Let (A,d) be a complete metric space and T : A — A be a Lipschitz con-
tractive map, that is, Lip(T) < 1. Then for any u € A we have

. 1
d(u,u*) < TP(T) d(u,T(u))

where u* is the unique fixed point of T

1.2 Basic definitions on Fuzzy Sets
Let X be a set.

Definition 1.7. We say that u is a fuzzy subset of X if u : X — [0,1]. The family of fuzzy subsets of X is
denoted by Fy, that is
Fx:i={ulu:X —>[0,1]}.

In this theory fuzzy set means the that each point x has a grade of membership 0 < u(x) <1 in the
set u. Here, u(x) = 0 indicates that x is not in u and u(x) = 0.4 indicates that x is a member of u with
membership degree 0.4.

Figure 1: Representation of the fuzzy set u(x,y) = 1/2(x? +y?) in X = [0,1]? as a grey scale figure. In
this case u(1,1) = 1=a white pixel and u(0, 0) = 0=a black pixel.
Definition 1.8. Given a € (0,1] and u € Fx, the grey level or a-cut of u is the crisp set

[u]* ={x e X |u(x) > a),

that is, the set of points where the grey level exceeds the threshold value a. For @ = 0 we define

[4]° := supp(u) ::U{[u]"‘ |a>0}={xeX:u(x)> 0}



Remark 1.9. Observe that
[u]° = J[u]en,
n=0

for every sequence (a,) of positive reals with @, \ 0. It happens because the sequence of sets [u]%"
is nondecreasing since [u]* C [u]*+1 when a, > a,,;. In particular, the set ;> ,[u]%" (which is F-o
provided u is usc) is dense in [u]°.

Definition 1.10. A fuzzy set u € Fx is

a) a crisp set, if u(x) € {0,1} for every x € X. We identify it with the classic subset U = {x € X [ u(x) = 1}.
In this case, u is the indicator function of U: u(x) = Xy (x);

b) normal, if there is x € X such that u(x) = 1;

c) the universe, if u(x) =1 = xx(x);

d) empty, if u(x) = 0= xp(x).

If additionally X is a topological space, then we say that u is

e) compactly supported if [u]® is compact.

Actually, the family of subsets of X, denoted by 2X can be identified as a subset of Fx, using the
injective map x : 2X — Fx defined by x(B) = xp(x), for any B € 2X.

Given f,g: X — R, is usual to denote (f vVg)(x) := max{f(x),g(x)} and (f Ag)(x) := min{f (x), g(x)}.
It shows how to define the fuzzy algebra of subsets.

Definition 1.11. Given u,v € Fx we define:

a)uUv:=uVveFxand unv:=uAve Fx, the union and the intersection of u and v, respectively;
b) u’:=1-u € Fx, the complement of u;

c)uCvifu(x)<v(x), Vx € X, the inequality relation.

Remark 1.12. It is well known that the basic operations U and N with fuzzy sets:
a) are associative and distributive;
b) satisfies De Morgan’s Laws (unv)' =u’Uv’and (uuv) =u'Nnv'.

We also have other algebraic operations.

Definition 1.13. Given u,v € Fx we define:

a) uv:= u(x)v(x) Cunve Fx, the algebraic product;

b) u + v := min{u(x) + v(x),1} € Fx, the algebraic sum;

) lu—v|:=|u(x) —v(x)| € Fx, the absolute difference.

d) tu+(1-t)ve Fx for t € [0,1], the convex combination of u and v;

e) (u,v)p:= A(x)u+A’(x)v, the A-convex combination of u and v, where A € Fx.

Fuzzy sets can be induced by maps. In his pioneering work in the 1965 Zadeh [Z]), p. 346, introduced
what we call The Extension Principle, that is a kind of pushforward map between fuzzy subsets.

Definition 1.14. (Zadeh’s Extension Principle) Given amap T : X - Y, u € Fx and v € Fy, we define
new fuzzy sets T (u) € Fy and T~!(v) € Fx as follows
a)T(u):Y — [0,1] is given by

_ ) suprzyulx), ifyeT(X);
T(u)y):= { 0, otherwise.

b) T-'(v): X — [0,1] is given by
T 1(v)(x):=v(T(x)).

Remark 1.15. In He et al. [He], Definitions 2.1, 2.2 and 2.3, we can found some alternative ways to
define the extension principle for real [l valued fuzzy sets, The Supremum Extension Principle (Zadeh’s

L After Zadeh’s works the Fuzzy Set theory has been extended in several ways. In a wider sense, given X a set and R being
usually some topological space, we define a R-valued fuzzy set as a function u: X — R, where Rg, called the range, is a compact
subset of R. In this paper, X is a complete (or even compact) metric space, R = IR and Rg =[0,1]. Measure-valued, set-valued,

interval-valued and type-k (Ryg is a hypercube in RK) fuzzy sets are frequently considered in applications.



Extension Principle), The Minimum Extension Principle (the same as Zadeh’s Extension Principle, replac-
ing by minimization on the preimages) and The Average Extension Principle, respectively. If T™1(p) is
always finite we can define the Average Extension Principle

ifyeT(X);

otherwise.

T (u) (p) i= { W L rix)=y (%),

Obviously 0 < T (u) < T(u) <1.

Remark 1.16. It may be instructive to see how T works for a crisp set. If u(x) = xp(x) € Fx, for some
B € 2%, we get

T(u)(y)= sup u(x)= sup Xp(x)=
T(x)=p T(x)=p

Thatis, T(XB) = X1(8)-
Similarly, T"'(X¢) = X1-1(c) forall C € 2Y.

1, ifyeT(B) _
{0' ify er(B) ~XT(B)Y)

Proposition 1.17. Assume that X and Y be metric spaces and f : X — Y a continuous map. Given u € Fx
we have

a) If u is normal then f(u) is normal;

b) If w is usc and compactly supported, then f(u) is usc and compactly supported.

Proof. a) Suppose that u is normal, that is, there exists a € X such that u(a) = 1. Let us evaluate f(u) in

b=f(a)

1> (o) = { Pt ARSI s uga) 21,

so f(u)(b)=1.

b) Assume that u usc and compactly supported. We need to prove that f(u) is so. At first, we prove that
f(u)"Y([c,+0o0]) is closed for any ¢ € R. Since 0 < f (u) < 1 we have

@; if1<C
fu) (e, +00]) = [f(u)]6, if0<c<1
B, ifc<0

Since @ and Y are closed, remains to prove that [f(u)]¢ for 0 <c <1.

Let (b,) C [f(u)]¢ and b be its limit. We claim that b € [f(u)]¢. Since f(u)(b,) > ¢ > 0 thus
f1(b,) = @. Now fix € € (0,¢) and for any n € N, let a, € X be such that u(a,) > c—¢e > 0 and
f(a,) = b,. Since u is usc and compactly supported, and (a,) C [u#]°¢, there is a subsequence (a,,)
such that a,, — a for some a € [u]~¢. Also, by continuity of f, we have b = f(a). Thus

f(u)(b) = sup u(x)>u(a)>c-¢
f(x)=b

Since € was taken arbitrarily, we have f (u)(b) > ¢, which means that b € [f(u)]°. So [f ()] is closed.
To see that f(u) is compactly supported, observe that for any y € Y with f(u)(y) > 0, there exists x € X
such that u(x) > 0 and f(x) = y. Hence

weY:f(u)(y)>0lcf({xeX:u(x)>0}) cf({xeX:u(x)>0})

since the last set is compact (as f is continuous and u is compactly supported), we get that also

yeY:f(u)(y) >0}

is compact. Hence f(u) is compactly supported.



2 IFS fuzzyfication and generalized IFSs

To avoid any confusions we will reserve the calligraphic R exclusively for IFS and the calligraphic
S will be reserved exclusively for generalized IFS that we will consider after.

Now we turn our attention to the discrete dynamics of fuzzy sets. On one hand the IFS offers for
each iterate ¢; one of the possible positions ¢;(x) from an initial point x, that is the dynamics. On the
other hand the IFZS offers one of the possibility functions u; = ¢;u from an initial possibility function
u(x) that is, now we have a dynamics of possibility functions where u(x) represents the possibility of
a “particle” be in the site x € X and u;(x) represents the possibility of the iteration of a “particle” be
in the site ¢j(x). The analogy is that in the classical mechanics the dynamics is given by a differential
equation that defines the position x and, when we make a quantification we deal with the evolution of
probability distribution of the position via a unitary operator. We are going to develop this ideas using
the notion of fuzzy sets. From the fuzzy point of view the possibility of a “particle” be in the site x € X,
a metric space, is some number u(x) € [0,1], so the iterations generated by an IFS of the function u
must go through an appropriated fuzzy operator producing a new fuzzy set. We advise that it is not a
probabilistic theory.

2.1 IFS fuzzification

The word fuzzification has several uses in the literature. Here, fuzzification means to consider the anal-
ogous for fuzzy sets of the Hutchinson-Barnsley Theory for IFS acting on classical sets. The main ideas
were developed in Cabrelli et al. [CFMV]|. We repeat some results here to help the reader with no famil-
iarity with this theory. Note that we extended a bit some of them in view of our study of GIFZSs in the
next section.

We assume here that (X,d) is a given metric space. Recall that the family of (real valued) fuzzy
subsets of X is defined by

Fx:={u|u:X — [0,1] is a function},

and if u € Fx and a € (0,1], then [u]% :={x € X : u(x) > a} and also [u]?:={x € X : u(x) > 0}.
To make this theory works we need to restrict Fx to a smaller family,

Fy :={u € Fx |u is normal, usc and compactly supported}

Proposition 2.1. If u € Fy then for every a € [0,1], the a-cut set of u is nonempty and compact.

Proof. The set [u]° is compact since u is compactly supported. Now let @ € (0,1]. Then we have
[u]® = @ because u is normal. Also, [u]% is closed because u is usc. Hence it is a closed subset of a
compact set [u]?, so also compact. ]

The topology on F¢ is defined by the Hausdorff distance between the a-cuts. We recall that in the
set JC*(X) of nonempty and compact crisp subsets of X, the Hausdorff distance is defined by

h(A,B) := max|supinfd(x,y),supinfd(x,p) |.
xeA VEB yeB X€A
Equivalently, if we define A, :={x € X | d(x,A) < &}, where d(x,A) := inf,c4 d(x,y), then we get
h(A,B) =infle >0| ACB,,BCA,).
Since IC*(X) contains all the a-cuts, we can define a distance d, in F¢ by

deo(u,v) := sup h([u]® [v]?),
a€l0,1]
for u,v € F¢. It is known that d, is a metric (see Diamond and Kloeden [DK), which is complete
provided X is compact (see a.e., Cabrelli et al. [CEMVI]). We will extend this result a bit (probably it is

known, but we did not find a reference).

Theorem 2.2. The function do, : Ff x Fy — Ris a metric and (Fy, d,) is a complete metric space provided
(X,d) is complete.



Proof. Let (u,) C Fy be a Cauchy sequence. By definition, this means in particular that the sequence
([u,]°) is Cauchy in K(X), so, by completeness of KC*(X), it is convergent. This implies that X’ :=
Unen[#,]° (equal to the union of all [u,]° and the limit) is compact. Now for every n € N, let u, :=
u,|X’ be the restriction of u, to X’. It is easy to see that (u,) is a Cauchy sequence in Fy,. Since X’
is compact, Fy, is complete, so u, — u’ for some u’ € Fy,(by mentioned result from [CEMVI]). Then
u, > uin .7:;, where u is the natural extension of u’ to the whole X. [ |

Now we show that the definition of d, can be simplified a bit. We will use the following technical
result from [CEMV]] (Lemma A.1.)

Lemma 2.3. If (A,) is a sequence of sets in JC*(X) such that A, C A, foralln > 0 and A := J,»9A, €
IC(X), then A,, > A with respect to the Hausdorff distance, that is, h(A,,A) — 0.

Corollary 2.4. For any u € Fy and a decreasing sequence (a,) C (0,1] with &, — 0, we have [u]® =
lim [u]%*" in the Hausdorff distance. In particular,
n—oo

do(u,v) = sup h([u]% [v]¥)
ae(0,1]

Proof. The first part follows from Lemma [2.3]and Remark The second follows from the first one
since
h([u]° [v]°) = h(lim [u]"", lim [v]Y") = Llim h([u]"", [v]"").
n—oo n—oco n—oo

Definition 2.5. A grey level map is a nonzero function p : [0,1] — [0,1]. We said that a grey level map
satisty ndrc condition or is an ndrc map, if

a) p is nondecreasing;

b) p is right continuous.

Proposition 2.6. Assume that p is an ndrc map and u € Fx is usc.
a) The map B:[0,p(1)] - [0,1], given by

Bla) = inf(t| p(t) > a)

is well defined, nondecreasing and p(B(a)) > a.
b) If « € (0,1], then
X if a<p(l)andB(a)=0
[p(u)]* =3 [u]f'¥) if a<p(1)andp(a)>0
0 if a>p(1)

c)If r, :=inf{t : p(t) > 0}, then

X if p(0)>0

[p(u)]°= Uasr, [u]* if p(0)=0andp(r,) =0
[u]™ if p(0)=0andp(r,)>0

Proof. a) We know that if a € {t | p(t) > a} then [a,1] C {# | p(t) > a} because p is nondecreasing. So
there is an unique B = inf{t | p(¢) > a}, in particular B € {t | p(t) > a} because p is right continuous.
Take 6 > 0 such that @ < @+ 6 < p(1) then

{tlp(t)2a+d}c{t|p(t)2a}

thus inf{t | p(t) > a + 6} > inf{t | p(t) > a}or f(a+6) > B(a).

b) If 0 < @ < p(1) and B(a) > 0, then to show that [p(u)]* = [u]#(®) we take x € [p(u)]®. Then
p(u(x)) > a that is u(x) € {t | p(t) > a} thus u(x) > B(a). So x € [u]P(¥). Reciprocally, if x € [u]f(*) we
get u(x) > B(a) and applying p we get p(u(x)) > p(B(a)) > a thus x € [p(u)]*.



If B(a) = 0, then by the right continuity of p we have that p(t) > a for all £ > 0, so for every x € X,
p(u(x)) > a.
Finally, since for every x € X, p(u(x)) < p(1), we get that [p(u)]* =0 for a > p(1).
¢)If p(0) > 0, then B(@) = 0 for some & > 0, so by b) we have that X = [p(u)]* c [p(u)]° c X.
Now assume that p(0) = 0. This means that B(a) > 0 for all & € (0, p(1)] and hence by b) we have that

[P(”)]O B U[p(ll)]an = U[u]ﬁ(an).
n=1 n=1

where (a,) c (0,p(1)] is such that @, \ 0. If p(r,) > 0, then B(a,) = r, for sufficiently large n, so
[p(u)]° = [u]™ in this case.
If p(r,) =0, then

YneN, B(a,)>r, and B(a,) > r,. (1)
By definition, f(a,) > r, for all n € N. If B(a,) = r, for some n, then by a) we have a contradiction
p(ry) = p(B(a,)) = a, > 0. On the other hand, assume that g(ea,) does not converge to r,. Then for
some t’ > r,, we have that f(a,) > r’ for all n € IN (because (B(«a,)) is nonincreasing), which implies
that {t : p(t) > 0} C [#/,00). This contradicts the definition of r,. Hence we get (I). This condition
together with the fact that s > t = [u]? c [u]® gives the thesis of (c) in this case. [ |

We notice that, in a metric space (X,d) we have u = xx € Fy if and only if K is a compact and
nonempty subset of X. In that case, [p(u)]° = K. Also [1]° = X.

Proposition 2.7. If p:[0,1] — [0,1] is ndrc, then for every u € Fy, the fuzzy set p(u) is usc.
Proof. The assertion follows directly from Proposition[2.6]b) and c). [ |

Definition 2.8. An iterated function system (IFS) is a finite family R of continuous functions ¢; : X —
X, denoted by R = (X, (¢;)j=o,...,n-1)- If additionally the mappings ¢; satisfy

d(¢j(a),$j(b)) < A;d(a,b), j=0..n-1,

for some constants 0 < /\j <1,j=0,..,n -1, then we call it Lipschitz contractive IFS.
The operator R : IC*(X) — K*(X) defined by

R(B) := U ¢;(B)

j:O...n—l
is called the Hutchinson-Barnsley (HB) operator associated to R.

Definition 2.9. A system of grey level maps (pj)j=o..n—1: [0,1] = [0,1] is admissible if it satisfies all the
conditions

a) Pj is nondecreasing;

b) Pj is right continuous;

c)pj(0)=0;

d) pj(1) =1 for some j.

The items a) and b) mean that each grey level map is ndrc. Item c¢) means that black pixels should
stay black and item d) means that the combination of the grey scales cannot decrease the brightness,
when we represent fuzzy sets as grey scale images.

The fuzzification of an IFS is to consider the parallel action of the Hutchinson-Barnsley operator on
the fuzzy subsets of X.

Definition 2.10. Let R = (X, (¢;)j=o...n—1) be an IFS and (p;);j=¢..n—1 be an admissible system of grey
level maps. Then the system Zz := (X, (¢;)j=0..n-1,(Pj)j=0..n-1) is called an iterated fuzzy function
system (IFZS in short). Inspired by the (HB) operator, we define the Fuzzy Hutchinson-Barnsley (FHB)
operator associated to Zx by
Zrw)= \/ pj(d;(w)
j:O...n—l
forall u € Fy.



_ D . . .

Greyscalemapp

Figure 2: On the left we have the fuzzy set u(x,y) =1-4(y - %)2 in X =[0,1]? as a grey scale figure and
on the right p(u), where p(t) = 1/8(4t - frac(4t)) is drawn in the middle.

Example 2.11. To see the action of the FHB operator we consider the IFS R = ([0,1]?, (¢j)j=0,1), where
bo(x,v) = (x/2,9/2) and ¢1(x,v) = (x/2,9/2 + 1/2), with an admissible set of grey level maps po(t) =
1/3(3t — frac(3t)), p1(t) = 0 if t <1/2 and py(¢t) = t if t > 1/2. In the Figure[Blwe drawn Zx(u) for a
representation of the fuzzy set u(x,y) = % in X =[0,1]? as a grey scale figure.

Figure 3: The FHB operator acting on u.

Proposition 2.12. If u € F{ then Zr(u) € Fy.

Proof. From Proposition[LT7] ¢;(u) € Fy for any j = 0...n — 1, because each ¢; is Lipschitz continuous.
Moreover, p;(¢;(u)) are usc because the grey level maps are admissible (see Proposition [2.7). Finally,
pj(®;(u)) is compactly supported for each j by Proposition [2.6]c). Thus Zx (u) is usc and compactly
supported as the supremum of usc and compactly supported maps.

From the admissibility of p; there is some jq such that p; (1) = 1. Since ¢;,(u) is normal, we can
find yo such that ¢; (u)(yo) = 1. Then

Zr(u)(yo) 2 pj, (P, (u) (o)) = 1.

Thus, Z% (u) is normal. [ |

The next lemma will be proved with more generality that we need here. Such a version will be useful
in other applications.
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Lemma 2.13. Let X and Y be metric spaces and (p]- )j:o...n—l an admissible family of grey level maps. Consider
¢j: X - Y a family of continuous maps for j = 0...n — 1. Then, for each u € Fy

a) qj = pj(¢pj(u)) € Fy is usc and compactly supported;
b) [4;1% = ¢j([pj(u)]*) for every a €[0,1];

v p] 4’] ‘ U ¢]([P](”)] ) for every & € [0,1];
j=

=0...n-1

d) v pj(®;(u)) is normal.

j:O...n—l

Proof. The proof follows exactly the same reasoning as in [CEMV]], except by a) that is a consequence
of Proposition[[.17] (and can be proved similarly as Proposition [2Z12)), and d) which also can be proved
similarly as in Proposition [2.12 [ |

The following result is an extension of classical Hutchinson-Barnsley Theorem for IFZS. We skip the
proof as it is the same as in the particular case of compact X proved in [CEMV]] (also, later we will prove
much more general result).

Theorem 2.14. Given a contractive IFZS Zg = (X, (¢;j)j=o,.,n-1,(Pj)j=0,..,n-1), the FHB operator Zp :
.’F; - .’F; is a Banach contraction in (.7-';, d,). More precisely,

doo(Zr(u), Zr(v)) < Ady(u,v), Yu,ve Fy,

where A := max{Lip(¢;) : j =0,...,n-1} and Lip(;), j = 0,...,n—1 are contraction constants of ¢g, ..., Pn_1,
respectively.
In particular, if X is complete, then there exists a unique u* € Fy such that

Zr(u*)=u
and, moreover, for any v € Fy we get
deo(Z2 ™) (v), u") >0
where Z5 ¥ (v) denotes the k-th iteration of the (FHB) operator Zx.

Definition 2.15. The fuzzy set u* from the above theorem is called the fuzzy attractor or fuzzy fractal
generated by IFZS Zx.

Remark 2.16. Directly from the definition and Lemma [2.13]it follows that if u* is the fuzzy fractal
generated by a IFZS Z = (X, (¢j)=0,..,n-1-(Pj)j=0,..,n-1), then for every a € [0,1],

wie=|J #j(le;(w)1%)

j=0...n-1
The next result is known as the IFZS collage theorem.

Theorem 2.17. Assume that X is complete and let R = (X, (¢;) j=o...n-1) be a contractive IFS with contrac-
tion constant A = max; Lip(¢;) < 1 and u* € Fg be the fuzzy attractor of the IFZS Zr = (X, (§})j=0..n-1, (Pj) j=0...n-1)-
If ve F{ then

d_(v,u") < ﬁ d_(v,Z(v)).

Proof. The proof is a combination of the following results. From Theorem we get that (Fy,d,)
is complete. From Theorem 214l we get that Z5 is a Lipschitz contraction with A = Lip(Zx) and we
also have the existence of the fuzzy fractal attractor u*. So our result follows from the standard Collage
Theorem [T.6] [

We end this section with presenting some further properties of IFZS.
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Definition 2.18. Given u,v € Fy, we say that u <v if u(x) <v(x) for all x € X.

Lemma 2.19. If Z5 is an IFZS, then the associated operator Zgx is monotone that is Zp(u) < Zr(v) if
u<v.

Proof. If u < v then for every j =0,...,n —1 and z € X, we have

$j(u)(z) = sup u(y)< sup v(y)=¢;(v)(z)
¢j(y)=2 $j(v)=2
provided 4)]71(2) =0, and
¢j(u)(z) =0=¢;(v)(z)

in the opposite case. Hence ¢;(u) < ¢;(v), and thus we also have

zrw) = \/ pi(gi) < \/ pi(9;(0) = 2= (v),

j=0...n-1 j=0...n-1

because the grey scale maps are nondecreasing. [ |

Proposition 2.20. Let the crisp set A(R) € IC*(X) be the attractor of an IFS R = (X, (})j=o..n-1), and
u* € Fy be the fuzzy attractor of the IFZS Zr = (X, (¢;j)j=0..n-1,(Pj)j=0..u-1). Then, for any B € K*(X)
and v € F we have

a) if Zr (v) < v then u* <v;

b) if R(B) C B then A(R) C B;

c)ifv<Zr(v)thenv<u*;

d) if BC R(B) then BC A(R).

Proof. a) If Zx(v) < v we get Zr®(v) < v for k> 1, taking the limit and using Theorem [2.14] we
get Zz®(v) - u*. Hence u* < v. Indeed, similarly as in [CEMV] we can show that {u €Fg:ux< v} is
closed in Fy. The other items are proved in the same fashion. [ |

Theorem 2.21. Let the crisp set A(R) € IC* be the attractor of the IFS R = (X, (@) j=o..n-1), and u* € Fg
be the fuzzy attractor of the IFZS Zg = (X, (¢})j=0..n-1, (Pj) j=0..n-1). Then [u*]° CA(R).

Proof. Consider X4 () € Fy- From Remark[L.T6] for any z € X, we have
¢i(Xar))(2) = Xg,;(a(R)) (2) < Xa(r)(2),

because A(R) = U¢;(A(R)) implies ¢;(A(R)) € A(R)(z) for any j. In particular p;(¢;(Xa(r))(2)) <
pj(Xar)(2)) < Xa(r)(2) for any j, because p;(0) = 0and p;(1) < 1. Since Zr (4) = Vj=q...u-1 Pj($; (1)
is a supremum we get Zg(Xa(r)) < Xa(r)- From Proposition 220 we get u* < x,(g) thus [4*]°
A(R), because if x € A(R) then 0= X 4(r)(x) > u*(x) > 00 u*(x) = 0.

~

H N

2.2 Generalized iterated function systems

In this section we recall the theory of generalized iterated function systems introduced by Miculescu
and Mihail in 2008.

Let (X,d) be a metric space and m € IN. By X we denote the Cartesian product of m copies of X,
considered as a metric space with the maximum metric d™:

A" ((xgyeeer Xim-1)» (320: ey Ym-1 ) := max{d(xm}’o | J d(xm—lrym—l )b (X050 Xm-1), (VOI e Vm-1 )eX™.
(2)
It turns out that appropriately contractive GIFSs generates fractals sets. In order to formulate the result
we need some further notation.
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Definition 2.22. We say that f : X™ — X is a generalized Matkowski contraction of degree m, if for some
nondecreasing ¢ : [0,00) — [0, c0) with @(¥)(£) — 0 for t > 0 (here (¢'¥)(t)) is the sequence of iterations
of @ at the point t), it holds

d(f(x),f()) <@(d™(x,9)), x,y€X™

A function ¢ is called a witness for f.

Remark 2.23. (1) It is easy to see that if Lip(f) < 1, then f is a generalized Matkowski contraction -
the function @(t) := Lip(f) -t is a witness.

(2) If m =1, then a generalized Matkowski contraction is called a Matkowski contraction, and it is
known that each Matkowski contraction on a complete metric space satisfies the thesis Banach Fixed
Point theorem (see Matkowski [Mal]). In fact, it is one of the strongest generalizations of the Banach
Fixed Point theorem. For comparison of other notions of contractiveness, we refer the reader to a paper

[I71-

The next result shows that the (mentioned above) Matkowski fixed point theorem can be extended
to generalized Matkowski contractions. For a proof, see Strobin and Swaczyna [S], and Mihail and
Miculescu [MMT]], Theorem 3.4 (for a weaker case).

Theorem 2.24. Let (A,d) be a complete metric space. Given a generalized Matkowski contraction F : A™ —
A, there exists a unique a € A such that F(a,...,a) = a. Moreover, for every ag, a1, ..., a;,_1 € A, the sequence
ay, k > 0 defined by

Aem = F(Akym-1 Okpm—2s - Ak ),

for all k € N, is convergent to a.
Also in Strobin [S] (see also Mihail [M2]]), we have

Proposition 2.25. Let (X,d) a metric space and f; : X™ — X, 0,...,n — 1 be generalized Matkowski contrac-
tions, with witnessing functions @;j, j = 0,...,n — 1. Then the map F : IC*(X)™ — K*(X) given by

n-1
F(Hy,..,Hy_1) = Uf](HO x oo x Hy_1),
j=0

is a generalized Matkowski contraction with witness function ¢ = max; @;.
In particular, if f; is Lipschitz contractive with Lip(f;) <1, j = 0,...,n—1, then F is also Lipschitz contractive
and Lip(F) < max; Lip(f;) <1.

Now let us recall some properties of the Hausdorff distance. A proof can be found for example in
[MMT1]), Proposition 2.7.

Proposition 2.26. If (Y,d’) and (Z,d”) are metric spaces then
i) if H and K are non empty sets of Y then h(H,K) = h(H,K);

ii) if H; and K; for i € 1, are non empty families of sets of Y then h UH, UK

iel iel

<suph(H;, K;).

iel

We are ready to define generalized iterated function systems and prove the existence theorem (see

mentioned papers [Mil, [M2], [MM1],[S] and [SS]).

Definition 2.27. A generalized iterated function system of degree m (GIFS) is a (finite) family S of contin-
uous mappings ¢; : X" — X, denoted § = (X, (¢;) j=0...n-1)-

If each ¢; is a generalized Matkowski contraction, then we say that S is Matkowski contractive.

If each Lip(¢;) <1, then we say that S is Lipschitz contractive.

The operator 8 : KK*(X )™ — IC*(X) defined by

S(Ko, .oy Kiy_q) = U ¢ (Kox ... x K1)
j:O,...,n—l

is called the generalized Hutchinson-Barnsley (GHB) operator associated to S.
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Theorem 2.28. Given a Matkowski contractive GIFS S(X, (¢;)i=o,..,n_1) 0f order m, the GHB operator is a
generalized Matkowski contraction. In particular, if X is complete, then there exists a unique Ag € K*(X)
such that

Ag=S8(Ag,..,As) = U $j(As X ... xAg)
j:O,...,n—l

Moreover, for every Ko, ..., K,,,_1 € K*(X), the sequence (Ky) defined by
Kism = S(Kiyeor Kiym-1)

converges to Ag.

Proof. By the above auxiliary results we see that & : IC*(X)™ — IC*(X) is a generalized Matkowski
contraction (or even Lip(S) <1, if § is Lipschitz contractive), so the result follows from Theorem [2.24]
|

3 GIFS fuzzyfication

In this section we introduce and study a fuzzy version of GIFSs.
Let X be a metric space and m € IN. We start with recalling the definition of the finite Cartesian product
of fuzzy sets.

Definition 3.1. Given m > 2 and u,...,u,,_1 € Fx we define we define the Cartesian product ugX...Xu,,_1 €
fxm by

(S

m—

(g X eoe X Upy_1) (X 0y ever X1 ) = u;(x;).

Figure 4: Representation of the fuzzy set uxv in X = [0,1]? as a grey scale figure (in the bottom). In the
top, u(x) = 1/8(8x — frac(8x)) (left) and v(y) =1 - 4(x - %)2 (right) are actually fuzzy sets in X = [0,1]
but we represent in X =[0,1]? to get a better graphical idea (u(x) = u(x,y) and v(y) = v(x,)).

Remark 3.2. We denote

m-1
(tgy vy 1) = (u)?;)l =(u);and ugx ... xtyy,_1 = Xi:O u; = X;u;

to simplify the writing of elements in (F)™, if there is no risk of misunderstanding.

Proposition 3.3. Consider ug,...,u,,_1 € Fx.

a)Ifu;, i =0,..,m—1 are normal, then X;u; is normal.

b)Ifu;, i =0,..,m—1 are usc, then X;u; is usc.

c)Ifu;, i =1,...,m—1 are compactly supported, then X;u; is compactly supported.
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Proof.
a)Ifu;(x;)=1,i=0,.,m—1then (X;u;)(Xo,..., X,_1) = 1.
b) We claim that
(Xiu,-)_l([c,+oo]) = ual([c,+oo]) X eee X u;ql_l([c,+oo])

which will imply that X;u; is usc as the latter set is obviously closed.
To see that our claim is true, we take (%, ..., £,,_1) € (X;u;) " ([¢, +00]). Then

(xiui)(’zov--lfm—l) =c

that is /\:';)1 u;(x;) > c so u;(x;) > c for eachi = 0,...,m — 1. Thus (%y,...,X,,,_1) € ual([c,+oo]) X +ee X
u;ql_l ([c, +o0]). The reciprocal it is true because the minimum is the maximum of the lower bounds.
¢) Similarly as in b) we can show that

(Xiui)_l((0,+oo]) = ual((0,+oo]) X +ee X u;l_l((0,+oo])

which clearly implies c). [ |

Definition 3.4. A generalized iterated fuzzy function system of degree m (GIFZS in short)

Zs = (X,(¢j)j=0..n-1,(pj) j=0..n—1) consists of a GIFS S = (X, (¢;)j=0...n-1), With a set of admissible
grey level maps (see Definition[2.9) (p;)j=o...n-1: [0,1] = [0,1].

We say that Zg is Matkowski contractive or Lipschitz contractive , if the GIFS S is so.

The operator Zg : Ff x---x Fy — F¢ defined by

Zs((u);) := v pj(d;i(X;u;))
j:O...n—l
is called the generalized fuzzy Hutchinson-Barnsley operator (GFHB) associated to Zg
Recall that for ¢; : X™ — X and uy, ..., uy,_1 € Fy then

¢](x u;)(z) _{ Sup(p,-((x)i):z /\:151 ui(x;), if ¢]_1(z) =Q
it = .

0, otherwise

Proposition 3.5. The operator Z5 is well defined, that is, Z5(Fy x -+ x FJ) C Fy.

Proof. From Proposition B3] we get ug x ... x tt,,_1 € Fym because ug, ..., u,,_1 € Fy, and from Proposi-
tion[LIZ1 ¢ (ug x ... X u,,_1) is normal, compactly supported and usc. Moreover, p;(;(ug X ... X t1,_1))
is usc and compactly supported because each p; is ndrc (see Lemma [Z13] taking X" and X). Thus
Zs(ugyeytty_1) € Fy because the family p; is admissible implies that Zs(uy, ..., #y,_1) is normal (see

Lemma [Z.13(d)). [ |
Next we consider the complete metric space ((Fy)™,d), where dif is defined as in (2), that is
dg(("o: o Um-1 )l (VOI ceor Um-1 )) =, max doo(uir Vi )
i=0,...,m-1

Lemma 3.6. Given a € [0,1] we get

[(x;ju;)]% = x;[u;]%, if a>0;
[(xiui)]® = x;[;]° =limg _,ox;[u;]f+, if a=0 and B,>0.

Proof. With a > 0 we can deal similarly as in Proposition[3:3] b), and obtain
[(x;u;)]% = (x;u;) 7 ([@, +00]) = x;(u;) 7 ([@, +00]) = x; [u;]%.

For the second part, we show first x;[u;]% = [(x;u;)]°.
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Take (x); € [x;u;]° then there is a sequence ((y¥);) such that (y*); — (x); with (v¥); € [x;u;]% =
x;[u;]* for some a; \ 0. By the properties of the product topology, each coordinate y:‘ - x; € [4;]°,
so (x); € x;[u;]°. Reciprocally, if (x); € x;[u;]° there for every i = 0,...,m — 1 there is a sequence (y:‘)
such that y:‘ — x; and y:‘ € [u,-]a;;. Take yy := min; a;'( > 0 and consider the sequence ((y*);). We claim
that (p*); € x;[u;]7 = [x;u;]7*. Indeed, y:‘ € [u,-]a;; C [u;]7 for i = 0,...,m — 1. Since (x); = I}i_)lzlo(}?k)i

we get (x); € [x;u;]°.
Obviously x;[u;]° = I}im x;[u;]Px for all Bx \u 0 because of the considered topology on K*(X™). m

Remark 3.7. By the above Lemma, Proposition[Z.6land Lemma [2.13] we have that if Zg is a GIFZS and
Uy ooy Uyy_1 € F, then for every a € [0,1],

[Zs(xu))®= (] ¢(lpj(ximi)]®)

j:O,...,n—l

and if a € (0,p;(1)], then (note that since p;(0) = 0, be have g;(«) > 0)
[pj (xiui)]® = [x;u; i) = x; [;]Pi(®)
and if @ = 0, then
j
[pj(xiui)]o =x;[u;]™
provided p; (ri) >0, and

Loj (xiui)1® = | Dauile = () xilwil® = xi | [ide = (U ol o | [tma)@

a>r

j
o a>r,

provided pj(ri) =0.

The next lemma shows the relationship between the Hausdorff distance on /C*(X™) and the maxi-
mum distance on IC*(X)™.

Lemma 3.8. Let Ay,...,Ap_1,Bg,.eey Byu_1 € IC*(X) then
h(XiAi, xiB,') = max lh(A,',B,').
1

:0,...,m—

Proof. We recall that U, = {x € X | d(x,U) < €}, and h(U,V) =inf{e >0|U C V.,V C U,.}. We claim that
(X;A;)e = X;(A;),. Indeed, given (z); € (X;A;), we get

maxd(z;,x;) =d,,((2);,(x);) <& forsome (x); € X;A;
1
that is d(z;,x;) < eand x; € A; for alli = 0,...,m — 1. Thus (z); € X;(A;).. So (X;A;)e € X;(A;). The
reciprocal is evident, because d,,((z);, (x);) = max; d(z;,x;).

Take &€ > 0 such that X;A; C (XiBi)s and X;B; C (XiAi)g. Then X;A; C xi(Bi)e and X;B; C
X;(A;)e. Using the properties of the Cartesian product we get A; C (B;),, Yi and B; C (A;),, Vi. Thus,
h(A;,B;) < efori=0,..,m—-1, so max;—g,__,-1h(A; B;) < e. Reverting the reasoning above we get
h(X;A;, X;B;) =max;_o,..,m-1h(A;, B;). u
Lemma 3.9. The mapping i : ((F5)",d5) = (Fym» do) given by

W(Ugy ey Upy_1) t= U X oo X Upy_q

is isometry, that is

d«,(’#(”g;---; Um-1 )l #)(VOI i vm—l)) = dorg((uOI el )l (VOI i vm—l))'
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Proof. By definition
doo(P((u)i), P((v);)) = sup h([x;u;]% [x;v;]%)

ael0,1]

From Lemma [B.6lwe have [x;u;]* = x;[#;]* and from Lemma [3.8 we get, for any a € [0,1],
h([xiu;]%, [x;v;]1%) = b (x; [u;]%, x;[v;]%) :i—(fnaiqh([u"]a’[vi]a)'
So

doo (P((u)i), P((v)i))

sup ~max h([u;]% [v;]?)
ael0,1] i=0,...,m-1

~max _ sup h([u;]% [v;]%)
i=0,..,m-14c10,1]

1
8
o
=
W

8

=

3

=maxd(u;,v;)
1

= do'g((um---: Up_1), (Voyerr Upy1))-

Lemma 3.10. Let (A, d) be a metric space and p an ndrc grey level map with p(0) = 0. Then the map induced
by p is nonexpansive, that is,

de(p(u),p(v)) < dg(u,v),
forany u,v e .7-:4*.

Proof. By Corollary[2.4] we have d,(p(u),p(v)) = sup h([p(u)]% [p(v)]F).
0<a<l1
Take 0 < @ < 1. From Proposition 2.6l we know that [p(u)]* =@ if & > p(1) and if a € (0,p(1)], then
[p(u)]® = [u]f@), where B: [0,p(1)] - [0,1], given by
B(a) = inf{t| p(t) > a}

is well defined and nondecreasing. Then

h(lp(u)]% [p(v)]%) = h([u]?), [v]#1)) < d.y(u,v),

hence
deo(p(u),p(v)) < dg(u,v).

Definition 3.11. A fuzzy set u € Fy is called a generalized fuzzy fractal of a GIFZS Zs = (X, (¢;), (pj)) j=0,...,n-1
if Zg(u,...,u) = u, that is

m-1
u= v pj(¢j(><i:0 u)).
j:O...n—l
Example 3.12. Consider Zg = (S$! =IR/Z ~[0,1], (¢hi)j=0,1,(Pj)j=0,1), with the admissible grey level maps
pj(t) :=t, t € [0,1] and the Lipschitz maps given by (j)j(x,y) = %x + %, j =0,1. In this case,

. i l _
& (uxv)(z) :{ SUPyeln), o MW AV, FAxst g =z

0, otherwise
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Since [0,1] = [v]*(?= D u[0,1]\[v]*(?27), for y € [v]*(?57) we get v(y) > u(2z—j) so u(2z—j) Av(y) =
u(2z - j). Analogously, if y € [0,1]\[v]*(?*7) we get v() < u(2z - j) so u(2z) Av(y) = v(p). Thus

sup {u(x) Av(y)}= sup {u(2z-j) Av(y)}=u(2z-j).

1x+4=z,7€[0,1] yel0,1]
Forj=0
_ | u(2z), ifze[0,1/2]
4"’(””)(2’)‘{ 0, ifze(1/2,1]
Forj=1

o ifz€[0,1/2)
P1(uxv)(z) = { u(2z-1), ifze[1/2,1]

We point out that u(2(1/2)) v u(2(1/2) = 1) = u(1) V u(0), but 0 = 1 in $1.
From
Zs(u,v) = v ¢j(uxv)
j=0,1
we get
Zs(u,v)(z) =u(T(z)), T(z):=2z mod 1.

Obviously Zs(1,1) = 1. We claim that this is the unique fixed point of Zs in Fy, i.e., Zs(u,u)(z) = u(z).
Indeed, let u € F} be such that u(z) = u(T(z)), Yz € [0,1]. Since u is normal, there exists a point a € [0,1]
such that u(a) = 1. WedefineI := J,en T " (a). Obviously, u(T~"(a)) = u(a), Yn. We claim that T is dense
in [0,1]. To see this, we take any x € [0,1] and let x,, = d,,_12  +d,,_22724d,_3273+....4dg 27", d; €{0,1},
be a base 2 truncated expansion of x. It is easy to see that

Vp=Xp+a2 " =d, 127 +d, 5272 +d, 3273 + . +dg2™ a2 €T,

that is T"(y,) = a, so y,, — x. From the upper semicontinuity of u we get u(x) > limsupu(y,) = u(a). Thus
n—oo
1=u(a) = min u(x) < 1. From this, we get u = 1.
x€[0,1]
Remark 3.13. Actually, in any similar case, that is, Zs = (X, (¢})j=0,1,(pj)j=0,1), With pj(t) =¢t, t €
[0,1], Uj=0,1 ¢j (X x X) = X and X compact, we get

Zs(L)(z) = \/ ¢j(1x1)(z)= \/  sup  (1(x)A1(p))=1,
i=0,1 j=0,1(xy)€d;! (2)

because the property U ¢;(X x X) = X implies that (j)]_l(z) is never an empty set.
j=0,1

Now we prove that the operator Zg satisfies the same contractive conditions as mappings from S.
Especially, this extends the first parts of Theorems[2.14]and [2.28]

Theorem 3.14. Let Z5 = (X, (¢;)j=0,..,n-1, (Pj)j=0,..,n-1) be a Matkowski contractive GIFZS of degree m.
Then the (FGHB) operator Zg : (.’F;)m - .’F; is a generalized Matkowski contraction. Its witness is the
function @ :=max;_, . .1 @j where @;, j =0,..,n -1, are witnesses for ¢, j = 1,...,n -1, respectively.

In particular, if Zg is Lipschitz contractive, then the (FGHB) operator Zg is also Lipschitz contractive with
Lip(Zs) <maxj—,. 41 Lip(¢;) <1.

Proof. Let (u);, (v); € (Fy)™. We have

doo(Zs((u)i), Z5((v)i)) = S}lopllh([zs((u)i)]“,[Zs((V)i)]“)

a€l0,1]

]

= sup k| Jo;(lp;(xiu)1®), | i ([pj(xivi)1%)
j
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Taking H; = ¢j([p;j(X;u;)]%) and K; = ¢;([p;(X;v;)]¥) and applying Propositions [2.25 and [Z.26] we
get

< sup h[Ucl)j([pj(X,-ui)]“LU(P;‘([P,’(XW:')]a)]
j j

ael0,1]

IA

sup suph(¢;([p;(X;u:)1%), ¢;([p;(X;v:)]%))

ael0,1] j
< sup supo; (h([p;(X;u;)]% [p;(X;v:)]%))
ac[0,1] j

< sqp(pj[ sup h([Pj(xiui)]a: [Pj(xivi)]a)]

j ae(0,1]

(p( sup h([pj(Xiu,-)]"‘, [Pj(xivi)]a)]

ael0,1]

= @(dg((u)i, (v)i))
Also, it is easy to see that ¢ is nondecreasing and for every ¢ > 0, %) (£) — 0. [

From Theorem[3.T4land Theorem[2.24]we had proved the main result, which gathers Theorems[2.14]
and [2.28

Theorem 3.15. If X is complete, then there is a unique generalized fuzzy attractor uz € Fy for a Matkowski
contractive GIFZS Zs = (X, (), (pj)), i.e., a unique uz € Fy such that

uZ:ZS(uz,...,uz): \/ p]-((p]-(uzx...xuz)).
j=0...n-1

Moreover, for every ug, Uy, ..., uy,_1 € F,, the sequence (uy) defined by
Ukem = 25 (Ukom—1) Ykam=2s - Uk)»
for all k € N, is convergent to u z.

Theorem 3.16. “GIFZS Collage Theorem” If X is complete and Zg is a Lipschitz contractive GIFZS with
A:=Lip(Zs) <1, then for any u € F;}, we have

1
d(uluZ) < m d(u,Zs(u,...,u))

where uz is a unique fractal generated by Zg.

Proof. The proof follow from Theorem[L.6] taking A = X and T (u) := Z5(u,...,u). Theorem[3.14]claims
that
doo(Z5((1)i), Zs5((v);)) < Adg((u)i, (v);), Yui,v; € Fy,

with contraction constant 0 < Lip(¢;) < 1. If (u); = (w,...,u) and (v); = (v,...,v) then d3((u);, (v);) =
max; d,(u,v) = dy(u,v). Thus, the above inequality became

d(T(u), T(v)) <Ad(u,v), Yu,ve Fy.

From Theorem [[@lfor T we get

1
d(uluZ) < m d(u,Zs(u,...,u))
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4 Further properties

4.1 Monotonicity of the generalized fuzzy operator

To generalize the Proposition [Z20] and to prove the analogous of Theorem [2.21]in the GIFZS case we
need to extend the notion of monotonicity.

Definition 4.1. Given ug, uy,uy,...,... € Fx, we say that this sequence is nonincreasing, if ug > uy > ...,
and nondecreasing, if ug <uy <....

Lemma 4.2. The operator Zs, associated to a GIFZS, preserves monotonous sequences in Fy . More precisely,
if g 2 -+ 2 Uy_q, the sequence U,y = Zs(Ugim-1)Uksm—2s - Uk), for all k € N, is nonincreasing in Fy
provided u,,_1 > u,,. The same is true for a nondecreasing sequence.

Proof. By assumption, we have that uy > uy > ... > u,,_1 > u,,. Suppose that uy >--- > ug,,,_1 for some
k > 1. We will prove that uy,,,_1 > #g,,,. Using the fact that up,,,, = Z5(Ukim_1, Ukpm—2s --» Ux) and
Ukom-1 = Z5(Uksm—2 Uksm—3s -» Uk_1), We need to compare

i (Ugim—1 X .. xug)(z) and ¢ (Ugpm_2 X ... x Ug_1)(2),Vz €X

If (¢;)7!(z) = @ then ¢ (tjepm-1%...x1ui) (2) = 0 < P (Upym_2X...xUk_1)(2). Otherwise, if (xq, ..., Xpy_1) €
(¢;)7'(z) = @ then
uk+m—l(x0) < uk+m—2(x0)r“‘ luk(xm—l) < uk—l(xm—l)

thus @ (upm—1 X ... x ug)(2) < @j(Ugym—2 X ... x u_1)(2). Hence we get

Z5(Ukpm-1) Uksm—2s -+0r Ug) = \/ Pj (¢j(uk+m—1 X . X Ug)) <
j:O...n—l

< v P]((P] (Ukpm—2 X oo X Uk_1)) = Z5(Ukpm—2s Wksm=3s -+ Uk-1),
j:O...n—l

because the grey scale maps are nondecreasing. [ |

Proposition 4.3. Let the crisp set As € IC*(X) be the attractor of a Matkowski contractive GIFS 8§ =
(X, (¢j)j=0..u-1), and uz € Fy be the fuzzy attractor of the GIFZS Zs = (X, (¢j)j=0..n-1,(Pj) j=0...u-1)-
Then, for any B € K*(X) and v € Fy; we have

a)If Zg(vx--+xv) <vthenuzg <v;

b)If S(Bx---xB) C B then As C B;

A)Ifv<Zg(vx---xv) thenv <uz;

d)IfBCS(Bx---xB) then BC Ag.

Proof. a) If Zg(vx---xv) < v we get, from Lemmal[4.2] a nonincreasing sequence g = v >+++ >, 1 = v
and Uy, = Z5(Ukim—1r Uksm—2s --» Ux) for all k € N. From Theorem B.15] we have limy_, ., ux = uz so
uz < v. The other items are proved in the same fashion. [ |

4.2 Relationships between a GIFZS and the appropriate GIFS

Here we will investigate the basic relationships between GIFZS Zs and the GIFS S. As iterated fuzzy
function systems are particular versions of GIFZSs, the results are also true for them.

Theorem 4.4. Assume that X is complete and Zs = (X, (¢;) j=o..n-1, (Pj) j=0...n-1) is @ Matkowski contrac-
tive GIFZS with the attractor uz, and let

I:={j €{0,..,n-1}:p;(1) =1}}

and 8’ := (X, (¢j)jer). Then we have
(1) [uz]°cAg, and ifr]fr =0forall j=0,..,n -1, then [uz]° = Ag;



20

(2) As: Cluz]', andif Bj(1) =1 forall j €I, then Asr = [ug]".

(3)IfI={0,..,n -1}, then uz = x.

Proof. Ad(1) Consider x4, € Fy then,

$;(X;Xas)(2) = A\ Xag(xi),

¢](X0, :xm 1) z q

if (¢; )~1(z) = @ the inequality is trivial. We notice that

/\ XAs (x;) = XASX---XAS (%0s +er Xp—1)

thus
¢](xlXAS)(Z): sup XASx...xAS(xO,...,xm_l):quj(AsxmxAs)(z)SXAS(Z)’
i (x0perXin_1)=2
n-1
from Remark[T.T6land because Ag = U¢j (As x---xAg) implies ¢;(As x++-xAg) C Ag for any j.
j=0

In particular p;(¢;(X;Xas)) < pj(Xas) < Xa, for any j, because each ¢; is not decreasing and
pj(0) =0and p;(1) <1. Since Z5 is a supremum we get Z5(Xa,--» Xag) < Xas- From Proposition[4.3]
we get uz < X, thus [uz]? C Ag, because if x € Ag then Xag(x)=02uz(x) 20s0uz(x) =
To prove the second part, assume that ri =0 forall j =0,..,n —1. Then by Remark [3.7] (note that here
pj(ri) =p;(0) = 0), we have

[uz]’=[Zs(xiuz)l= | @jlpj(xuz)l” = |J ¢jluz]"x.x[uz]")

j=0,...,n-1 j=0,...,n-1

Hence [uz]° = Ag by the uniqueness of the attractor of a GIFS.
Ad (2) By Remark[3.7]

[uz]' = U ¢;(Lpj (xiun)1") = () ¢;(lpj(xiui)]") =

0,...,n-1 jel
= U«pj(xi[uz]ﬁf“’) S| (xiluzl') = 8 ([uzl', .., [uz]") (3)
jel jel

where the second equality follows from the fact that if p;(1) < 1, then [pj(xuz)]l = 0 (Proposition
[2.6lb)). Hence by PropositionE3lwe get [uz]' D Ag. Also, if for all j €I, (1) = 1, then in (B) we have
all equalities, so in this case [uz]' = Ag’.
Ad (3) If I ={0,...,n — 1}, then by (1) and (2) we have

As=Ag C [uz]l C [uz]o CAs

so [uz]' = [uz]® = As, and this implies uz = x,. [ |

The above result suggests the definition:
Definition 4.5. An admissible system of grey level maps (p]-)j:(),___,,,_l is called proper, if r; =0 and
Bi(pj(1)) =1forallj=0,..,n-1.

As a corollary of the above proof, we have that

Corollary 4.6. Let Zs = (X, (¢;)j=0,...n-1,(Pj)j=0,..,u-1) be a Matkowski contractive GIFZS on a complete
metric space with a proper family (p;). If I :={j : pj(1) =1}, S := (X, (§;)) and 8" := (X, (¢}) jer), then
[uz]®=Ag and [uz]' = A(S’), where uz is the attractor of Zg.
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Remark 4.7. The above result gives a natural sufficient condition under which the attractor of a GIFZS
is not a crisp set. Indeed, take a GIFS § = (X, (¢;);=o,..,n—1) whose attractor is not a singleton and let
I c{0,...,n — 1} be such that the attractor of a GIFS §” = (X, (¢;) jer) does not equal As (for example, I
can be a singleton). Finally take a proper family (p;) of grey level maps so that p;(1) = 1if j € I and
pj(1) <1if j € I. Then by Corollary[46] the attractor uz of a GIFZS Zs = (X, (¢;), (pj)) is not a crisp
set.

Example 4.8. In this example, we explore the symmetries of a fixed GIFS to give some general properties of
the fuzzy attractor for any admissible family of grey level maps. Consider Z5 = ([0,1],(¢;)=0,1,(pj)j=0,1),
where p;(t), t € [0,1] is an arbitrary family of admissible grey level maps and the Lipschitz maps are given

by (Pj(x;})) = %x+ %y+ %, j =0,1. In this case,

. _ | suPxyefo], y=az—2j—x #(X) AV(Y), ifIx,ysty=4z-2j-x
¢j(uxv)(z) = { 0, otherwise

First we need to compute (j)]_l(z) It is easy to see that

{(x,4z - x),x € [0,4z]}, z€[0,1/4];
qﬁal(z):{ {(x,4z—x),x € [4z-1,1]}, z€[1/4,1/2];
@, ze (1/2,1].

50
SUPycio,az) #(X) Au(dz-x),  z€[0,1/4];
¢ol(u,u)(z) = SUPye[4z-1,1] u(x) Au(dz-x), ze[1/4,1/2];

0, ze(1/2,1].
We can also prove that
1 | {2} z€[0,1/2)
2 (Z)‘{ ¢l (z-1/2), ze[1/2,1].

N

Zs(mu)(z)= \/ pj(¢j(uxu)(z) =

j=0,1

po(u(1)) v p1(u(0)),  z=1/2

{ polPoluxu)(z)), z€[0,1/2);
p1(poluxu)(z-1/2)), ze(1/2,1].

Suppose that u z is the fuzzy fractal of Zg. Then

uz(z) = po(@oluz xuz)(z)), z€[0,1/2)

and 1
uz(2) = p1(Poluz xuz)(z-3)), z€(1/2,1]

A particular case is po(t) := 3t and pq(t) := t. In this situation
1
uz(z) = 5¢oluz xuz)(z), z€[0,1/2)

and
uz(z) = poluzxuz)(z-1/2), z€ (1/2,1]

Now let z € (1/2,1). Then z-1/2 € (0,1/2), so we have

uz(z) =poluzxuz)(z-1/2) = 2(%¢0(uz xuz)(z- 1/2)) =2uz(z-1/2)

Another particular case is po(t) := t and pq(t) := 0. In this situation the attractor uz is given by uz(z) =
X0(2)
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4.3 Richness of the class of generalized fuzzy fractals

Now we are going to investigate the class of generalized fuzzy fractals. In particular, we give a partially
positive answer to the question whether such class is essentially wider than the class of fuzzy fractals
generated by IFZSs. We also show that for certain complete metric spaces, the family of IFZSs’ fractals
is dense in F (this result is in fact a slight generalization of already known result due to Cabrelli et al.).
Let
Aj:={u € F; | Zs(u) = u for some Lipschitz contractive IFZS}

M, :={u € F{ | Z5(u) = u for some Matkowski contractive IFZS}

and if m € N, then
AZ," ={ueFy | Zs(u,....,u) = u for some Lipschitz contractive GIFZS of degree m} C Fx-
and finally

M"g" i={ue F{ | Z5(u,....,u) = u for some Matkowski contractive GIFZS of degree m} C Fy.

Clearly, A; = A; and M; = M}g.
The next result is analogous to Strobin [S] and Miculesu [Mi] (see also Miculescu and Mihail [MMI]])
in the fuzzy setting.

Theorem 4.9.
(1) For every m € N, .A;" c A?“ and M;" c M;"H.
(2) There exists a complete metric space X such that A; C Af,.

(3) Let X =IR? and m > 1. Then there exists u* € .’F; such that:
- u* is the attractor of some Lipschitz contractive GIFZS Zs = (X, (¢;),(pj)) of degree m with proper system

(Pj );
- u* is not the attractor of any Matkowski contractive GIFZS Zs = (X, (), (pj)) of degree m —1 consisting
of an admissible system (p;) with r]f' =0 forall j;

- u* is not the attractor of any GIFS.

Proof. Ad(1) We want to prove that MZ,“I C My for all m > 1. Suppose v € M"g”‘l, that is Zx (v) =
Vjzo..n-1Pj(¥j(x;v)) = v, for a Matkowski contractive GIFZS Zs = (X, (¢;)j=0..n-1, (Pj) j=0..n-1)- Let
us consider the degree m GIFZS

Zs = (X, (¢j)j=0..n-1,(Pj) j=0..n-1)
where for every ug,...,u,,_1 € F,
i (g thy_1) = (o) eees Up_2)

Obviously, ¢; are generalized Matkowski contractions.
We recall that for j =0,...,n — 1 and uy,...,u,,_1 € F,}, we have that

0, otherwise

¢j<x-u->(z)“{ P ()= AiZo tilxi)s if 977(2) =0
) (2) = .

But (p]Tl(z) ={(x0s oo Xm-1) | Pj(x0y o0y Xm_2) = 2} = 4)].‘1(2) x X.
On the other hand

Suplpj(xo,...,xm_z):z :1?)2 ui(x;), if 1’l)]_1 (2) =@
A otherwise.

Pj(ug X .. XUy _2)(2) = {

We claim that
¢ (x5 v) (2) = 9 (x P v) (2).
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Indeed, if (xg,..e0, X;_1) € 4)]71(2) ={(x0s e Xm-1) | Pj(x0y o0y Xm_2) =2} = 1/)].‘1(2) x X = @ then

7_\1v(x,-) = { /\1 Ozv(xl) ifv(xy,_1) > v(x;), for somei <m-2

) v(X-1), ifv(x;) >v(x,_1), foralli <m-2
1=
SO
m-1 m-2
¢j(X;v)(z) = sup v(x;) = sup v(x;) = P;(X;v)(2).
¢](x0' Xm_1)= =Z i=0 l/’](xO' Xm_2)= =Z i-0

Thus Z5(v,...,v) = Z5/(v,..,v) =ve M.

In the same way we show the first inclusion in (1).

Ad(2) To show the inequality we are going to show that a certain GIFZS has an attractor that is not the
attractor of any IFZS.

In Miculescu [Mi] Remark 4.7, we find the following example of GIFS. Let X := []2[0, 4,] and
consider it as a compact space with the product metric. Let us point out that the Hausdorff dimension
of X is infinite.

Consider the GIFZS Z5 = (X, (¢})j=0,1, (pj) j=0,1), with po(t) :=t,p1(t) :=¢t, t € [0,1] and ¢} (x,) :=
(%xo + %, %y), j =0,1. Let us to consider the operator

Zs(wv)=\/ pj(¢j(uxv)) = \/ ¢;(uxv).

j=0,1 j=0,1

It is easy to see that Z5(1,1) = 1 because ¢o(X,X) U ¢1(X,X) = X and, under the hypothesis of
Theorem [4.4]3) we know that u* = 1 = X is the unique fuzzy attractor of this GIFZS. Suppose that u* €
A;. Then Theorem Z2T]implies that [u*]® C A, the attractor of the associated Lipschitz contractive
IFS R. In particular [#*]? has finite Hausdorff dimension, contradicting [u*]° = X.

Ad(3) Let m > 1. By [S] we know that there is a Lipschitz contractive GIFS S = (IR?, (¢j)j=o,.,3) of
degree m whose attractor Ag is a Cantor-type subset of R? which is not an attractor of any GIFS of
degree m — 1. Let p;(t) := %t for j = 0,1,2 and p3(t) := ¢, and let Zg := (IRZ,((I)j)jzo,m,g,,(p]')jzo’"’?,)
and uz be its attractor. Since (pj);j=qo,..,3 is proper and the attractor of a one-element GIFS (R?, ¢3) is a
singleton, by Remark .7lwe have that uz is not crisp and by Theorem £4} [uz]° =

Now assume that uz is the attractor of some Matkowski contractive GIFZS Zg/ = (IRZ,(z,bj), (nj)) of
degree m — 1 with the system (7;) satisfying r;.r = 0 for all j. Then by Theorem [£4(1), we get that

Ag =[uz]? = Ag/, which is a contradiction. [

Remark 4.10. The proof of part (1) of the above suggests a canonical way to builta GIFS S = (X, (f] )j=0..n-1)
with the same attractor of a given Matkowski contractive IFS R = (X, (¢;)j=o...n-1). We simply define

¢j(x0s s Xy_1) 1= fj(x0), j=0..n - 1.

It is easy to see that S(AR,...,Axr ) = AR, and thus from the uniqueness of As we obtain Ar = Ag.
The same is true for the fuzzyfied ones. Given an IFZS Z% = (X, (f;)j=0..n-1, (Pj)j=0..n-1) we define an

Zs= (Xr(¢j )j:O...n—lr(pj )j:O...n—l ), where
¢ (X;u;) := fj(uo)

We notice that

¢;(Xju;)(2) = { P )=x ALy i) I ()X 20

otherwise

:{ SUP £, (x,)=z #0(X0), iffj_l(z) =0 = fi(uo)(2)

0, otherwise
Again it is immediate to see that if u* is the fuzzy attractor of Z then
Zspu) =\ (X)) =\ pilfi(w) = Zr(u) =u
j=0...n-1 j=0...n-1

So u* is a fuzzy fractal also for Zg.
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As an application of the GIFZS Collage Theorem we get a density result, which is a slight
extension of [CM], Theorem 3.1.

Theorem 4.11. Assume that (X,d) is a complete metric space which has a Lipschitz contraction structure,
i.e., which satisfies

VKeK(X)VL>0VxeXVe>03f:X - X, Lip(f) <L, s.t. f(K) CB(x,¢),

(for example if X = R"). Then I, = F,}, where the closure is taken in the metric d,. In particular .A_Z," =F;
for all m > 2.

Proof. We prove for IFZS first, and extend to GIFZS after. The proof of this part is due to The-
orem 3.1, slightly generalized for spaces with Lipschitz contraction structure. We present it here for
completeness, but the reasoning is essentially the same.

Take u € F¢. Then [u]° C X is a compact set. Hence for each & > 0 there exists N € N and xg, ..., Xn_1

such that U B(xj,e/4) D [4]°. Clearly, we can assume that u(xj) >0 for j =0,..., N — 1. Using the
j=0...N-1
contraction structure we can find (¢;);-o..N—1 such that

¢j([u]0) C B(xj,€/4),j =0..N -1,

and A; :=Lip(¢;) < 2, if it not happens we can consider a power of the initial contraction.

Chose now aj:= sup u(x). Then each a; >0and [u]* C U [u]% for any a € [0,1]. Indeed, it
xeB(x],£/4) aj<a

follows from u(x) > a > a;

Now define p;(x) := aj)([a’,,l](x), that is obviously ndrc. In particular p;(0) = 0, p;j(1) = @; and
Bj(a) = aj for 0 < a < a;. Consider the IFZS Zx := (X, (¢})j=0..n-1,(Pj) j=0..n-1)-

By Proposition[2.6]

' «a_|D a>a;

[p](u)] —{[u]a’- 0<aS06j-

By Lemma[Z.13]c), we get [Zxr (u U ¢i([pj(u)]?) = U ¢j([u]?) for @ € (0,1].

j=0...n-1 jia<aj

So fix a € (0,1]. Then by the above we have

h([u]“,[ZR(u)]“)=h[[u]“, U ¢j([u]“f)] (4)

JiaZaj

Take any x € [u]%. Then for some j, x € B(x;j, ). By definition, a; > u(x) > a. Also, # = ¢;([u]%)

¢j([u]0) C B(xj, ). This gives us
[u]* [ U oj([u)® ]

j: ala;
Conversely, let x € ¢; ([_u]“i) for some j with a < a;. Then x € B(xj, §), and by definition of a; and a
compactness of the set B(x;, ) N [u], thereisy € B(xj, §) such that u(y) = aj soy € [u]®. In particular,
U ¢5([u®) c ([u1%)
jia<aj

Hence by (@) and Corollary[2.4] we have

doo(u, Zr (u)) = S‘;lopl]h([u]“,[ZR(u)]“)s

£
2

N[ m

By the IFZS Collage Theorem we get d o, (u,u*) < 175 1/2 €/2 = e where u* is the attractor of Z5. Hence

we get A; = Fy. By Theorem[4.9we have A; C A% for every m € N, so A;= - implies that A'” Fe
for all m > 2. [ |
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